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Figure 1: WildCAT3D. (top) We use large image collections captured in the wild to train our
feed-forward novel-view synthesis model. (middle) At inference time, WildCAT3D can generate full
scene-level novel views from a single image of a new (never-before encountered) scene. (bottom) It
can also be used to control the appearance of the generated views, e.g. via a text prompt.

Abstract

Despite recent advances in sparse novel view synthesis (NVS) applied to object-
centric scenes, scene-level NVS remains a challenge. A central issue is the lack of
available clean multi-view training data, beyond manually curated datasets with
limited diversity, camera variation, or licensing issues. On the other hand, an
abundance of diverse and permissively-licensed data exists in the wild, consisting
of scenes with varying appearances (illuminations, transient occlusions, etc.) from
sources such as tourist photos. To this end, we present WildCAT3D, a framework
for generating novel views of scenes learned from diverse 2D scene image data cap-
tured in the wild. We unlock training on these data sources by explicitly modeling
global appearance conditions in images, extending the state-of-the-art multi-view
diffusion paradigm to learn from scene views of varying appearances. Our trained
model generalizes to new scenes at inference time, enabling the generation of
multiple consistent novel views. WildCAT3D provides state-of-the-art results on
single-view NVS in object- and scene-level settings, while training on strictly fewer
data sources than prior methods. Additionally, it enables novel applications by
providing global appearance control during generation.
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1 Introduction

Imagine observing the Golden Gate Bridge from afar at different viewpoints as the weather conditions
change – in fog, bright sunlight, in rain and at night. From these observations, one can intuit the
3D structure of the Golden Gate Bridge, and can likely imagine how similar bridges might appear
from various viewpoints. Our work applies a similar intuition to novel view synthesis (NVS) – the
task of predicting a new 2D view of a scene which has been partially observed – to generate views
of new scenes by learning from observations differing in global appearance. While recent progress
in NVS has been achieved by leveraging powerful multi-view diffusion models, as popularized
by CAT3D Gao et al. [2024], these models typically have poor applicability to full scenes due to
scarce clean multi-view data. As such, these models typically build off pretrained image generation
models which are fine-tuned on limited datasets of synthetic renderings or crowd-sourced videos
capturing isolated objects, with poor applicability to full scenes like the MegaScenes collection [Tung
et al., 2024]. On the other hand, such scenes are abundantly covered in permissively-licensed image
collections captured in the wild from the Internet, in which scene views differ greatly in appearance
(e.g., aspect ratios, lighting, weather conditions or transient occlusions), making them incompatible
with existing multi-view diffusion architectures. In this work, we unlock their ability to learn from
this scalable source of readily-available, diverse, and permissively licensed scene data.

We propose WildCAT3D, a multi-view diffusion model à la CAT3D which can be learned from
in-the-wild Internet data through appearance awareness. Our key insight is that inconsistent data
can be leveraged during multi-view diffusion training to learn consistent generation, by specifically
decoupling content and appearance when denoising novel views. More concretely, starting from
the standard multi-view diffusion framework of CAT3D, we propose to explicitly integrate a feed-
forward and generalizable appearance model whose goal is to capture the appearance properties
of the input views. We do so by adding an appearance encoding branch to the model, designed to
produce low-dimensional appearance embeddings that are used as an extra conditioning signal for
the multi-view diffusion model. This branch is trained simultaneously with the diffusion model and
a custom classifier-free guidance mechanism is applied to avoid oversaturation artifacts. During
inference, the appearance embedding from the source view is injected to the target views, which
allows us to preserve the appearance across the generated views. Intuitively, these design choices
allow our model to “peek” at coarse appearance signals such as weather condition and aspect ratio,
without leaking too much information about the target views to denoise.

In addition, in order to improve the viewpoint consistency, we augment our appearance-aware model
by adapting a warp conditioning mechanism to the context of our multi-view diffusion framework.
More specifically, for each target view to denoise, pixels from the source view are warped following
the target viewpoint using a known depth map, and the resulting image is injected as an additional
conditioning signal into the diffusion model. Intuitively, such a mechanism approximately indicates
the correct placement of the scene, thus resolving the scale ambiguity that is inherent to the single-view
NVS problem.

We exhaustively compare our method on standard NVS benchmarks and demonstrate superior
performance, while training on fewer curated data sources than prior works. Importantly, this
highlights the strength of our work in leveraging a larger set of samples from existing, permissively
licensed imagery captured in-the-wild, rather than relying on heavily curated datasets. Our results
also show strong performance on diverse scenes captured in tourist photos, including static video
generation from single input frames and custom camera trajectories. In addition, our explicit modeling
of appearance both allows us to learn from in-the-wild data to successfully generate consistent views
of full scenes and also enables novel applications such as interpolation between views of differing
appearances or NVS with appearance control via text, as showcased in Figure 1.

In summary, our key contributions are three-fold:

• A new appearance-aware multi-view diffusion model able to learn from in-the-wild images,
• Performance superior to state-of-the-art methods on single-view NVS benchmarks,
• Novel applications enabled by NVS with controlled appearances.
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2 Related Work

NVS with Diffusion Models. Following recent progress in using diffusion models for generative
modeling of image data, a line of works has successfully applied view-conditioned diffusion to NVS.
Earlier works are limited to in-distribution object views with masked backgrounds and spherical
camera poses [Watson et al., 2022, Zhou and Tulsiani, 2023]. The more recent Zero-1-to-3 [Liu
et al., 2023a] and ZeroNVS [Sargent et al., 2023] train a diffusion model to generate a new view
conditioned on an observed view and new camera pose, using curated multi-view image data as strong
supervision to learn generalizable NVS. More recently, following works demonstrating diffusion
models with a multi-view prior [Shi et al., 2023a, Li et al., 2023, Wang and Shi, 2023, Shi et al.,
2023b, Yang et al., 2024a, Liu et al., 2023b], CAT3D [Gao et al., 2024] has shown SOTA NVS
performance by leveraging this multi-view prior, allowing for multiple observed and/or output views
to be processed in parallel. These approaches yield high-quality novel views, which may be used
for tasks such as downstream 3D asset reconstruction. However, they are constrained by limited
available training data, mostly covering single objects captured in crowd-sourced videos or synthetic
renderings. Moreover, key sources of synthetic data may have contested licensing status. In contrast
to these, our work enables training a multi-view diffusion model on a freely-licensed and abundant
source of data in-the-wild, whose appearance variations are incompatible with these prior methods.

Another line of work leverages diffusion models with a warp-and-inpaint pipeline to enforce 3D
consistency in unbounded scenes [Fridman et al., 2024, Yu et al., 2024a, Shriram et al., 2024, Chung
et al., 2023, Yu et al., 2024b]. While this ensures 3D consistency, it often accumulates errors from
depth estimation leading to inaccurate warps. By contrast, our method uses warps as a conditioning
signal and not a strict constraint, allowing our model to correct such inaccuracies.

NVS from in-the-Wild Image Data. The abundance of Internet photo-tourism images has inspired
research on extracting 3D structure from such data for tasks such as NVS. While such work predates
modern neural methods [Snavely et al., 2006, Agarwal et al., 2011], recent works have used deep
learning methods applied to large-scale photo collections which have been processed with SfM
pipelines [Li and Snavely, 2018, Tung et al., 2024]. A number of works have concentrated on
enhancing NVS and 3D reconstruction pipelines with explicit modeling of appearance variation
between photos captured in-the-wild [Meshry et al., 2019, Li et al., 2020, Martin-Brualla et al.,
2021, Chen et al., 2022, Kulhanek et al., 2024]. These methods perform test-time optimization on
a single scene, with appearance representations extracted from pixel-level features or learned as
directly optimized vectors. By contrast, our method trains a generalizable encoder which extracts
appearance representations from image latents. Moreover, our framework uses these representations
as conditioning signals for diffusion-based generation, which requires training- and inference-time
adaptations to generate consistent, high-quality novel scene views. As such, our trained model is
able to generalize to novel scenes without lengthy optimization and may directly use appearance
information to condition high-quality 2D view generation, unlike existing works.

3 WildCAT3D

We proceed to define the WildCAT3D framework. We begin by providing background on the
CAT3D [Gao et al., 2024] framework (Section 3.1) which our method extends. We then describe
WildCAT3D’s explicit modeling of appearance conditions (Section 3.2) and its scene scale disam-
biguation via warp conditioning (Section 3.3). Our full pipeline is illustrated in Figure 2.

3.1 Background: CAT3D

CAT3D is a multi-view diffusion model, adapted and fine-tuned from a text-to-image Latent Diffusion
Model (LDM) [Rombach et al., 2022] in order to generate multiple views of a scene conditioned on
source view(s) and source and target camera poses. Denoting the latent dimension as k and the spatial
resolution of latents as n× n, the input noise (originally k× n× n) is first expanded to accept v = 8
slots corresponding to observed or unobserved views. Then, the input I of shape v× (k+7)×n×n
consists of ground-truth latent for observed views and noise for unobserved views, concatenated
channel-wise with 7 additional channels including a binary mask for observed and unobserved views
(copied over all n× n spatial locations) and a 6× n× n-dimensional Plücker raymap [Sajjadi et al.,
2022, Zhang et al., 2024] parametrizing the cameras for each view. To process these inputs, the
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Figure 2: Overview. WildCAT3D learns to synthesize novel views by denoising target views of
inconsistent appearances from a source view. Given a batch of source (blue) and target (red) views, we
first compute camera embeddings and VAE latents. The latter are then fed to an encoder computing a
small appearance vector copied across spatial locations, allowing the model to “peek” at appearance
conditions. Finally, for target views, we compute additional warping embeddings using the VAE
applied to warped source images calculated from an estimated depth map. These signals are channel-
wise concatenated and fed to the diffusion model. During training (depicted above), noise is added to
target view latents. During inference, target view latents are replaced by random noise while their
appearance channels are copied from the source view branch.

LDM’s self-attention layers are expanded to 3D attention, by selecting queries, keys, and values from
all v views. The original text-based cross-attention layers are removed (discarding the text encoder).
At each denoising pass, ground-truth clean latents are passed in observed positions of the input, and
the denoising loss in training is applied to slots for unobserved views only. CAT3D may be trained
with any number (≤ v) of observed and unobserved views, integrating single- and multiple-view
NVS in a single model. During inference, CAT3D generates multiple novel scene views in parallel.

This may be formulated mathematically as follows. A generative model for single images estimates
the probability distribution p(I|t) of images I conditioned on some conditioning signal t. CAT3D
models the distribution p(Iu|Io, ca) where ·o,u,a indicate observed/unobserved/all views, and c the
camera information for a given view. This is parametrized by model weights θ and Gaussian noise
zu ∼ (N(0, 1))u (i.i.d. noise for each unobserved view), and images are parametrized by the VAE.

3.2 Appearance-Aware Multi-View Diffusion

In-the-wild photo collections show appearance variations such as differing aspect ratios, lighting
conditions, seasonal weather, transient occlusions, etc., and naively training CAT3D on such data
results in similar inconsistencies at inference time (shown in our ablations). We thus propose to
explicitly model appearance variations while encouraging consistency at inference time as follows.

Generalizable Appearance Encoder. We augment CAT3D with a feed-forward appearance encoder
module, implemented as a shallow convolutional network applied to image latents. By compressing
each view into a single, low-dimensional vector, this serves as an information bottleneck, encoding
coarse global appearance variations without the capacity to leak fine-grained details in images. During
training, the d-dimensional appearance embedding of each view is copied across each n× n spatial
position. The resulting k×d×n×n tensor is concatenated to the input channels of CAT3D, allowing
the model to “peek” at global appearances of both observed and unobserved views during training
(despite unobserved views’ latents themselves being noised). The appearance encoder is jointly
trained with the model’s denoising objective at train time; it is generalizable as it can be applied to
new scenes at inference (unlike test-time methods such as Chen et al. [2022]).
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Using the notation from Section 3.1, we formulate this approach as follows. We assume that each
image I possesses a latent appearance variable a, representing the conceptual space of appear-
ance variations for the same underlying scene. WildCAT3D models the conditional distribution
p(Iu|Io, ca,aa,wo), parametrized by model weights θ, Gaussian noise zu ∼ (N(0, 1))u, appearance
variables aa, and warp information wo (see Section 3.3).

We also assume that appearance can be derived given an image; as such, we learn encoder Aϕ with
weights ϕ that parametrizes a ≈ Aϕ(I). Thus we model p(Iu|Io, ca, Aϕ(I

a),wo), with the predicted
distribution determined by weights θ, ϕ. We implement A with a light-weight convolutional network
to introduce an inductive bias towards global appearance. Note that Aϕ is a lossy (bottleneck)
function, compressing an image into a single, low-dimensional vector. Therefore, Iu cannot be
directly reconstructed from Aϕ(I

a) and thus modeling this distribution is non-trivial.

We note that this derives appearance representations directly from images, rather than using ac-
companying textual metadata. This has several advantages: Images may not be accompanied by
descriptive text, conditioning on text would require additional novel components to bridge text and
visual appearance spaces, and important appearance details may be poorly reflected in text, such as
precise image aspect ratios and lighting conditions.

Our encoder design follows standard convolutional principles with gradually decreasing spatial dimen-
sions to create a low-dimensional appearance bottleneck. The architecture requires low-dimensional
output to serve as an effective information bottleneck. Overall, this uses a minimal network avoiding
additional design choices or parameters that would require computationally intensive testing. Further
details are provided in the appendix.

Appearance-Aware Conditioning. Following CAT3D, we apply classifier-free guidance (CFG) [Ho
and Salimans, 2022] to achieve high visual quality; this drops conditioning signals (latents and
camera rays for observed views) for unconditional training, and extrapolating between conditional
and unconditional predictions in inference. However, further naively applying CFG to the appear-
ance conditions (i.e. masking aa in unconditional training ) results in oversaturation artifacts. We
hypothesize that this is because appearance embeddings are tied to image lighting and color bal-
ance, and CFG is known to be prone to oversaturation when applied to components controlling
“gain” of intensity values in images [Sadat et al., 2024]. Therefore we propose an appearance-aware
conditioning method to achieve the benefits of CFG without such artifacts. We adapt the “uncondi-
tional” setting of standard CFG by keeping appearance conditions while dropping other observed
view conditions: p(uncond)(Iu|cu, Aϕ(I

a)), i.e. we still condition on all appearance embeddings
Aϕ(I

a) = (ao,au) which includes those of observed views. In other words, WildCAT3D “peeks” at
the global appearances of all views in both conditional and unconditional training settings of CFG.

Appearance-Conditioned Inference There is an inherent gap between the training objective of
WildCAT3D (denoising views of varying appearances) and its use during inference (generating
views fully consistent with an input view). To produce outputs that are consistent despite training
on inconsistent data, we select the first observed view I0, calculate its appearance embedding
a0 = Aϕ(I0), and copy it into the appearance embedding channel of each unobserved view, then
generating using appearance-aware CFG as described above. Intuitively, this conditions the generated
views on the same overall appearance as the first observed view, and our results show that this indeed
succeeds in matching its appearance characteristics (lighting, style, etc.). Interestingly, this solution
also enables the preservation of the aspect ratio, resulting in generated views that are consistent
enough to generate smooth and appealing videos given a single image.

Since the appearance embedding used at inference is arbitrary, we can actually use a completely
external image to compute the desired appearance embedding and thus perform appearance transfer
or appearance-controlled generation. In order to support appearance control through text, we propose
to concatenate our model with a text-to-image retrieval model. More specifically, given a text prompt,
we use CLIP Radford et al. [2021] to compute its similarity with pre-computed image embeddings
from a given database. In practice, we perform this retrieval over approximately 10K images from
MegaScenes, covering varying weather and lighting conditions similar to the full dataset.

3.3 Warp Conditioning

A central challenge for single-view NVS systems is the inherent scale ambiguity of single image
input: given an observed view and the relative camera pose of a desired unobserved view, the scale
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of the translation vector between the cameras’ extrinsic poses is unknown [Ranftl et al., 2020, Yin
et al., 2022]. We resolve this via the observation from [Tung et al., 2024] that scene scale can be
injected by an image warped according to its depth aligned to the extrinsic camera scale. To adapt
this to our multi-view diffusion setting, we warp the first observed view to the camera of each of the
v slots of CAT3D using an estimated depth map aligned to the scene’s SfM pointcloud, concatenating
the VAE latents of each warp as additional conditioning channels. Note that this is fully compatible
with in-the-wild data since warps encode the correct pose even when differing in global appearance
from target views. We show in our ablations that this warp conditioning is necessary for accurate
viewpoint consistency.

To summarize, in total WildCAT3D has input of shape v × (2k + d+ 7)× n× n, where the k + 7
input channels of CAT3D (k latents, 6 camera embeddings, 1 binary mask) are extended with d
channels for appearance embeddings and k channels for warp latents.

3.4 Implementation Details

For WildCAT3D’s pretrained image generative backbone, we use an open-source LDM similar to
[Rombach et al., 2022]. We first expand it to a CAT3D model and train on the standard curated
CO3D [Reizenstein et al., 2021] and Re10K [Zhou et al., 2018] multi-view datasets; we then
expand to a full WildCAT3D model and fine-tune on MegaScenes [Tung et al., 2024] and CO3D. Our
appearance module is a fully-convolutional network applied to image latents, outputting an embedding
of dimension d = 8 for each image. This is copied to every spatial location and concatenated as a
additional channels to the denoiser network’s input at each denoising step. By default we use v = 8
(slots for views), training with one observed and seven unobserved randomly-selected scene views.
For video results (supp. mat.), we increase this to v = 16 slots at inference.

The additional input channels are handled through a lightweight 1×1 convolution projection layer,
making them compatible with the lower input dimension expected by the LDM’s denoising network
while adding negligible extra parameters. See the appendix for further details.

To calculate warp images for warp conditioning, we unproject the first observed view to a 3D
point cloud, and then render it from each camera pose. Following Tung et al. [2024], we unproject
using depth calculated with DepthAnything [Yang et al., 2024b] and aligned with RANSAC to the
COLMAP point cloud (corresponding to the cameras’ extrinsic scale). We render warps by rendering
this point cloud from each view, with points’ RGB values derived from the first view.

4 Experiments

4.1 Novel View Synthesis Results

NVS metrics are provided in Table 1, comparing to the recent SOTA MegaScenes NVS model
(MS NVS) along with prior models reproduced from [Tung et al., 2024]. Our method trained
on MegaScenes directly (unlike the aggressive filtering used to train MS NVS) mostly achieves
superior performance across the board, on both reference-based and generative metrics, and on
out-of-distribution datasets (object-centric DTU and scene-centric Mip-NeRF 360). This is despite
MS NVS and other prior models being trained on additional sources of multi-view data (see supp.).
Visual comparisons are provided in Figures 3–6a and in our supmat, showing that WildCAT3D
generally maintains consistency with observed views while hallucinating plausible content for unseen
regions.

On the MegaScenes benchmark itself, our quantitative results are comparable to the MS NVS
baseline. However, we observe a significant qualitative improvement when applied to views with
novel trajectories, as seen in Figure 3. We suspect this reflects the MegaScenes baseline model being
trained on image pairs selected using the same filtering method used to construct the MegaScenes
test set, which consists of (ground truth, target) image pairs, while our method is not exposed to such
filtering at train time. Hence, the baseline model may be partially overfit to the data format of this
benchmark. Consistent with this, our model shows significantly better metrics on out-of-distribution
NVS benchmarks including the challenging scene-level Mip-NeRF 360 benchmark (Table 1).
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DTU [Jensen et al., 2014] Mip-NeRF 360 [Barron et al., 2022]

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓
Zero-1-to-3 (released) 6.872 0.210 0.565 128.9 0.297 10.72 0.287 0.526 171.2 1.126
ZeroNVS (released) 5.799 0.111 0.648 160.0 0.352 6.999 0.124 0.669 137.0 0.537
Zero-1-to-3 (MS) 7.637 0.276 0.516 101.9 0.223 12.92 0.383 0.443 67.65 0.163
ZeroNVS (MS) 8.019 0.307 0.483 87.41 0.158 13.78 0.412 0.406 60.68 0.139
SD-Inpaint 9.946 0.369 0.495 214.4 1.067 12.92 0.400 0.456 150.1 0.792
MS NVS 8.795 0.393 0.400 85.96 0.163 14.06 0.441 0.381 64.41 0.142
WildCAT3D (Ours) 10.77 0.426 0.388 57.32 0.039 14.77 0.445 0.352 42.17 0.050

Re10K [Zhou et al., 2018] MegaScenes [Tung et al., 2024]

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓
Zero-1-to-3 (released) 11.63 0.438 0.405 160.2 0.725 9.090 0.241 0.548 86.89 0.634
ZeroNVS (released) 9.487 0.353 0.456 123.0 0.352 7.471 0.151 0.616 69.10 0.487
Zero-1-to-3 (MS) 14.64 0.570 0.272 68.91 0.024 12.16 0.367 0.429 9.784 0.023
ZeroNVS (MS) 16.02 0.630 0.205 61.12 0.024 12.90 0.401 0.386 9.838 0.024
SD-Inpaint 15.54 0.643 0.269 118.9 0.396 12.36 0.392 0.425 38.48 0.242
MS NVS 17.22 0.666 0.177 60.01 0.023 13.40 0.445 0.344 11.58 0.040
WildCAT3D (Ours) 21.58 0.758 0.131 24.70 -0.001 13.92 0.439 0.355 9.871 0.015

Table 1: Novel-view synthesis benchmarks. We evaluate the single-view setup and compare our
results to prior works as reported by Tung et al. [2024]: Zero-1-to-3 [Liu et al., 2023a], ZeroNVS Sar-
gent et al. [2023], a naive inpainting method dubbed SD-Inpaint, and MegaScenes NVS model Tung
et al. [2024]). Our method achieves superior performance compared to baseline methods while using
strictly fewer data sources and not requiring aggressive data filtering. KID* indicates KID values
multiplied by ten for readability. Best results are in bold.

4.2 Additional Applications

In Figures 4–5, we illustrate additional applications of WildCAT3D. By injecting the appearance
embedding of an external image during inference, we may generate novel views of a scene while
editing its appearance (e.g. generating a nighttime scene observed from a daytime photo). By
concatenating this with CLIP text-to-image retrieval [Radford et al., 2021], we may use text to control
the edit (e.g. “sunset”); as seen in the figure, text-based retrieval may effectively find images capturing
the desired overall appearance for subsequent injection. Finally, by fine-tuning WildCAT3D with
two observed input views, we can interpolate between views of a scene with differing appearances to
produce a static video with a consistent appearance starting and ending at the two respective poses.
At inference time, this uses camera poses along an interpolated trajectory between the two input
cameras, along with the appearance of either the start or the end pose injected into each slot.

4.3 Analysis of Appearance Embeddings

To further interpret our results, we analyze the appearance embeddings produced by WildCAT3D’s
trained appearance encoder module. We cluster embeddings of approximately 20K MegaScenes
(val and test) images with K-Means (k = 100). Figure 7 illustrates such clusters projected into two
dimensions via PCA, and random exemplars from different clusters. Clusters contain images with
similar aspect ratios, lighting conditions, and other global appearance factors (e.g. indoor vs. blue
sky vs. nighttime), providing interpretability to the appearance encoder’s functionality.

4.4 Ablations

We ablate key elements of our framework in Table 2 and Figure 6b. Removing warp conditioning
leads to spatial misalignments due to scene scale ambiguity. Further removing appearance modeling,
i.e. fine-tuning CAT3D directly on in-the-wild data, leads to appearance inconsistencies. By contrast,
our full model improves on all benchmarks except Re10K from training on in-the-wild data over the
base CAT3D, due to our careful modeling of appearance and scene scale. Note that Re10K has very
limited diversity and camera movement, and is in-distribution for the base CAT3D; we thus interpret
the stronger performances of the latter on Re10K as an overfitting effect.
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Figure 3: Qualitative comparison on MegaScenes with novel trajectories. Using single images
as input (left), we show results for WildCAT3D and MegaScenes NVS model (MS NVS) on scenes
unseen during training, conditioned on a continuous camera trajectory. We see that our model
significantly outperforms prior SOTA at generating consistent and high-quality sequences from single
views. We encourage the reader to check our video results in our supmat to further assess the quality
gap.

Input View Appearance∗ Generated Novel Views

Figure 4: Application: appearance-controlled generation. Starting from a source view (left) and an
additional image with a specific appearance (middle), our model is able to synthesize novel views that
are not only consistent with the source view content and the desired viewpoints, but also consistent
with the appearance style of the additional image (right). We perform text-guidance by concatenating
our model with a text-to-image retrieval model. ∗Retrieved with text prompts “sunset” and “a
spring day with a clear blue sky” respectively.
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Figure 5: Application: in-the-wild interpolation. When fine-tuned with two observed views,
WildCAT3D can interpolate between scene views with differing appearances. Injecting the appearance
embedding of either the start or the end pose yields generated views with consistent appearances.
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(b) Ablation study

Figure 6: Qualitative NVS results. (a) We compare predicted views to the ground-truth for
MegaScenes NVS model from Tung et al. [2024] (MS NVS) and ours. Our model shows greater
consistency with target poses as well as better visual quality, consistent with our quantitative results.
(b) Removing warp conditioning (-warp) results in misalignment relative to ground-truth camera
poses. Training CAT3D directly on in-the-wild data (i.e. without warps and appearance embeddings,
-warp-app) yields inconsistent output images.

Figure 7: Appearance embedding analysis. A subset of K-Means clusters are visualized with a 2D
PCA and random cluster images. They tend to show similarities in appearance and aspect ratio.
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DTU [Jensen et al., 2014] Mip-NeRF 360 [Barron et al., 2022]

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓
WildCAT3D (Ours) 10.77 0.426 0.388 57.32 0.039 14.77 0.445 0.352 42.17 0.050
-warp 9.795 0.374 0.439 54.89 0.042 13.98 0.404 0.395 44.82 0.056
-warp-app 8.699 0.281 0.491 68.80 0.069 13.90 0.390 0.417 46.80 0.064
Base CAT3D 10.25 0.399 0.424 53.96 0.042 13.92 0.399 0.410 57.96 0.205

Re10K [Zhou et al., 2018] MegaScenes [Tung et al., 2024]

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓
WildCAT3D (Ours) 21.58 0.758 0.131 24.70 -0.001 13.92 0.439 0.355 9.871 0.015
-warp 18.97 0.670 0.182 28.71 0.003 13.45 0.410 0.379 9.934 0.014
-warp-app 17.73 0.625 0.216 31.99 0.008 12.63 0.368 0.422 12.41 0.026
Base CAT3D 21.89 0.751 0.127 21.53 -0.004 12.91 0.390 0.415 19.16 0.116

Table 2: Quantitative ablation study. We evaluate ablating key parts of our model, namely warp
(“warp”) and appearance components (“app”), when trained on in-the-wild data. We also report the
performance of the base CAT3D without any in-the-wild finetuning. KID* indicates KID values
multiplied by ten for readability. Best results are in bold.

5 Conclusion

We have presented the WildCAT3D framework for generalizable novel view synthesis learned from
images in-the-wild. By explicitly modeling appearance variations, WildCAT3D unlocks training on
abundant and permissively-licensed photo-tourism data, as well as allowing control over the global
appearance conditions of generated views. Our results have shown its superior performance on NVS
benchmarks and novel applications, while training on strictly fewer data sources than prior methods
and more fully leveraging existing open web data capturing full scenes. Our experiments, while on a
limited scale, demonstrate that modeling appearance enables learning from unfiltered, in-the-wild
data, laying a foundation for web-scale NVS training.

Limitations and Future Work. Generated views are not guaranteed to be fully consistent, unlike
methods using explicit 3D representations. While our method mitigates degradation due to training
on mutually inconsistent data, some visual artifacts persist, such as mild flickering and saturation
changes. Our architecture could be enhanced by incorporating a video prior, textual conditioning,
automatic generation of camera poses, or explicit modeling of transient occlusions. Additional
components may help to model semantic variations between images (e.g. holiday decorations) or
view-dependent effects such as reflections. Our method relies on an existing depth estimation pipeline,
and errors in predicted depth may propagate to novel views (see appendix). Finally, while our text-
based conditioning via image retrieval may provide coarse appearance conditioning, future work
could add explicit textual conditioning to allow more fine-grained editing or control over semantic
content of scenes.

Societal Impact. While scene generation shows promise for positive applications in entertainment and
education, we acknowledge the inherent risks of visual generative models to produce disinformation
or undesired hallucinations. The central aim of our work is to encourage the adoption of open data for
state-of-the-art NVS, while still requiring the same caution in responsible usage as existing generative
methods.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction summarize our work, fully in accordance with
the details described in the remainder of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are explicitly discussed in the paper’s conclusion section.
Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The
authors should reflect on how these assumptions might be violated in practice and
what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not contain theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed description of all experimental methodology to enable
reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend on
the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results or a way to
reproduce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While we do not release our code or model weights, we provide full experi-
mental details to enable reproduction of our results.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All such details are thoroughly described in our main paper and supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to compute limitations (each training run requiring approximately one
week on our system) we do not re-run training multiple times to estimate the variance in our
results due to the stochastic nature of training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe these required compute resources in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not infringe on any of the items covered in these guidelines.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper discusses potential societal impact of our work in the conclusion
section.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to
point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We cannot release our code or data as discussed above, so this concern does
not apply.

Guidelines:
• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly credit models and sources of data used in our paper, along with
licensing and terms of use.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new code, data, or models. Our supplementary
material contains videos displaying model inference results, which are fully documented.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: We do not use crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not use crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Results

A.1 Video Qualitative Results

Please see the results viewer on our project page for additional results of WildCAT3D inference
and applications on validation and test inputs. Videos include examples of vanilla WildCAT3D
inference for novel view synthesis, and examples of applications (appearance-controlled generation,
in-the-wild interpolation). We also provide the images used as input views. For vanilla inference,
results include various hard-coded trajectories (lateral turns, zoom-outs, and NeRF-like circular
paths). For each scene in the interpolation results, two interpolations are provided: one using the start
view’s appearance and the other using the end view’s appearance throughout. For the appearance
conditioned generation application, the images used for appearance embedding injection are also
provided.

A.2 Image Qualitative Results

Figures 8 and 9 illustrate further examples of our outputs on in- and out-of-distribution NVS bench-
marks, showcasing our strong performance at predicting novel views from a single observation.

A.3 MegaScenes–Only Ablation

In Table 3 we compare to training end-to-end using data in-the-wild from MegaScenes as the only
source of multi-view data (rather than including CO3D and Re10K in multi-view training). While
this underperforms our full model including these curated sources of multi-view data, it still achieves
competitive performance overall, indicating that MegaScenes alone may be used to learn a strong
prior on consistent novel views of scenes despite itself containing inconsistencies between scene
views due to appearance variations.

A.4 3D Reconstruction

While the main focus of our work is generating novel 2D views of a scene, we also show that these
outputs may be used for downstream 3D reconstruction. In particular, we feed the 15 generated
novel views of a scene (using v = 16 slots for WildCAT3D) into VGGSfM [Wang et al., 2024],
a state-of-the-art feed-forward 3D reconstruction pipeline that recovers camera poses and the 3D
geometry of the scene, and use reconstructed sparse scene geometry to initialize a 3D Gaussian
Splatting representation Kerbl et al. [2023]. Examples are illustrated in Figure 10, showing that our
model’s outputs are sufficiently high-quality and consistent to recover underlying 3D scene geometry.
Additionally, the recovered camera trajectories generally match the trajectories used for conditional
generation (lateral, circular, and straight trajectories respectively in the examples shown).

DTU [Jensen et al., 2014] Mip-NeRF 360 [Barron et al., 2022]

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓
WildCAT3D (Ours) 10.77 0.426 0.388 57.32 0.039 14.77 0.445 0.352 42.17 0.050
MS-only 9.679 0.362 0.453 70.42 0.080 13.68 0.405 0.403 47.56 0.063

Re10K [Zhou et al., 2018] MegaScenes [Tung et al., 2024]

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID* ↓
WildCAT3D (Ours) 21.58 0.758 0.131 24.70 -0.001 13.92 0.439 0.355 9.871 0.015
MS-only 18.83 0.673 0.188 29.15 0.005 13.30 0.415 0.378 10.03 0.016

Table 3: MegaScenes-only ablation. We compare our full model to using MegaScenes as the only
source of multi-view data (“MS-only” above), discussed in Section A.3. KID* indicates KID values
multiplied by ten for readability.
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Figure 8: In-distribution qualitative results. Given a single input image (left), WildCAT3D can
generate consistent novel views from target viewpoints (right). We here show results on test scenes
from in-distribution data (MegaScenes, CO3D), OOD results can be found in Figure 9. Despite
training on in-the-wild data with appearance variations, we produce views with consistent appearances
(aspect ratio, global lighting, etc.) by using the appearance embedding from the input view.

A.5 Depth Estimation Error Propogation

As our method relies on an existing depth estimation pipeline (monocular depth estimation aligned to
a scene’s SfM pointcloud), it may suffer from error propagation when depth is incorrectly estimated.
Examples are illustrated in Figure 11, suggesting that more robust depth estimation may further
improve results.
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Figure 9: Out-of-distribution (OOD) qualitative results. Results similar to Figure 8, applied to
OOD data sources (DTU, Mip-NeRF 360).

B Additional Implementation Details

B.1 Image Resolution

We train on 512×512 pixel resolution (64× 64 latent resolution); images with other aspect ratios are
resized so the longest edge is 512 and padded to be square. Such padding is also used by prior work
and evaluation benchmarks (e.g. Gao et al. [2024], Tung et al. [2024]); unlike square cropping, it
avoids losing information from the image periphery and allows for generation of images with different
aspect ratios in inference. For metric calculations, we resize predictions to 256×256 resolution.

B.2 Diffusion Process Details

Following Salimans and Ho [2022], Lin et al. [2024], we adjust noise scheduling to enforce zero
terminal SNR and train with velocity prediction and loss in order to allow for generation of images
with varying overall brightness levels. During inference, we generate images using CFG scale 3.

B.3 Camera Representation Details

Following CAT3D [Gao et al., 2024], we remove a degree of ambiguity by transforming all camera
poses to be relative to the first, observed pose. During training, we normalize camera scale using
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Input Sample Generated Views 3D Reconstructions (Point Cloud + Cameras)

3DGS Novel Rendered Views and Depth Maps

Figure 10: 3D Reconstruction from Generated Views. We show 3D reconstruction results applied
to WildCAT3D generations, as described in Appendix A.4. Reconstructed point clouds and camera
positions are shown above, generally matching the expected scene geometry and camera trajectories
used for generation. While two generated views are shown for conciseness, 3D reconstruction results
are calculated from 15 views. We also show an example of novel views and their normalized depth
maps generated using a 3D Gaussian Splatting (3DGS) representation initialized with the sparse
reconstruction of the first scene.

the 10th quantile of COLMAP sparse depth visible from the first view, following ZeroNVS [Sargent
et al., 2023].

We calculate Plücker raymaps as follows: given camera origin o and pixel p (vectors in world
coordinates), its raw 6-dimensional coordinates are given by (d,o × d), where d = d − o is its
displacement from the camera origin. As these are homogeneous coordinates describing its associated
ray, we unit-normalize by dividing by the scalar factor

√
∥d∥2 + ∥o× d∥2. This provides numerical

stability by ensuring all coordinates are bounded (as extreme values may have been introduced into
cameras’ extrinsic matrices from translation vector scaling mentioned above). These coordinates
calculated for each 64× 64 spatial position provide 6× 64× 64 channel coordinates used as input
channels.

B.4 Model Architecture

The appearance encoder module has the following architecture: It is made up of alternating convolu-
tional layers (filter size 3, same padding) and 2×2 max pooling, with filter dimensions 16, 16, 16, 4, 2
respectively. This converts 64× 64 image VAE latents to 2× 2× 2-dimensional embeddings, which
are finally flattened to an embedding of dimension 8.

In order to be compatible with the dimensionality of added channels concatenated to latents, we add
a projection layer (1× 1 convolution) to reduce the 64× 64× (2k+ d+7) concatenated channels to
dimension 64× 64× 4 before being input to the LDM’s UNet.
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Input Warp Generated View Target View

Figure 11: Propagation of Depth Estimation Errors. As our method relies on an existing depth
estimation module to calculate warps, errors in depth estimation may propagate to novel views. This
is illustrated above, as incorrect warps correspond to errors in depth estimation, which are seen to
cause resulting novel generated views to deviate from the correct targets.

Curated Data In-the-Wild
Method Synth.∗ ACID CO3D Re10K MegaScenes

Zero-1-to-3 ✓ × × × ×
ZeroNVS ✓ ✓ ✓ ✓ ×
MS baseline ✓ ✓ ✓ ✓ ✓–

WildCAT3D (Ours) × × ✓ ✓ ✓
MS-only ablation × × × × ✓

Table 4: Training data sources used. Curated Data refers to fully consistent multiview data obtained
from synthetic renderings or heavily curated videos. ✓–= filtered for matching time metadata and
aspect ratios; MS=MegaScenes; ∗Objaverse(-XL)

B.5 Training Data

Table 4 shows the sources of multi-view data used to train WildCAT3D, as well as those used in
the baseline models we compare to (Zero-1-to-3 Liu et al. [2023a], ZeroNVS Sargent et al. [2023],
MegaScenes baseline NVS Tung et al. [2024]). As seen in the table, our model uses strictly fewer data
sources for multi-view training (neither using Objaverse [Deitke et al., 2023a,b] nor ACID [Liu et al.,
2021]), and does not require aggressive filtering of in-the-wild data to avoid views with differing
appearances.

Our approach successfully utilizes the full MegaScenes dataset without aggressive filtering, consisting
of approximately 430K scenes and over 2M images. This is large relative to curated multi-view
datasets (e.g. CO3D contains 19K videos, with 1.5M total frames). This highlights a key strength of
our method – its ability to fully utilize this new, scalable source of data.

Our training data sources are all licensed under permissive licenses: Re10K and Megascenes under
CC BY 4.0, and CO3D under CC BY-NC 4.0.

B.6 Training Procedure and Compute Resources

For all model training, we use batch size 64 (where each sample in a mini-batch is itself a set of
eight scene views), distributed over 32 NVIDIA A100 GPUs (using approximately 80GB of memory
on each) on our internal cluster. The initial CAT3D model initialized from an open-source LDM is
trained for 200K iterations, followed by 60K WildCAT3D fine-tuning iterations. End-to-end model
training takes approximately one week to complete. The datasets used require several terabytes of
storage, such as the 3.2 TB used to store the original images from MegaScenes, although this could be
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reduced by only storing images resized to the 512× 512 resolution used by our model. Preliminary
experiments and each of our ablations used similar compute resources.

Compared to the leading alternative method – the MegaScenes baseline NVS model – our imple-
mentation has a larger computational footprint during training, requiring several times more GPU
memory and days of training. (MegaScenes NVS was trained on 6 NVIDIA A6000 GPUs for 1-2
days.) In particular, our approach is trained to generate several (8) high-resolution (512x512) images
in parallel, unlike MegaScenes NVS (which is trained to generate one 256x256 image). Our approach
could be adjusted for computational efficiency in training by reducing the number of generated views
and their resolution.

B.7 Experimental Details

For evaluation benchmarks, we apply WildCAT3D with v = 8 input slots (matching its training
procedure). As benchmarks pair one source view to a single unobserved target view, we apply
WildCAT3D by grouping target views together that share the same source view. We split these into
groups of seven unobserved views, padding with extra duplicated targets as needed to match the
number of input slots.

To calculate generative metrics (FID, KID) on MegaScenes, we use a random 15K-item subset of the
test set to make their calculation computationally feasible.

For our interpolation application (generating interpolated views between two views of a scene with
differing appearances), we generate a camera trajectory as folllows: We use camera intrinsics from
the first view, and interpolated extrinsics. In particular, we linearly interpolate between the camera
translation vectors, and use spherical linear interpolation (slerp) to interpolate between the camera
rotation matrices.
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