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ABSTRACT

Labelling data is expensive, making active learning especially valuable in low-
budget settings where only a few samples can be annotated. However, existing
methods often rely on delicate and complex hyper-parameter tuning, which often
requires labelled validation data. We introduce Greedy Silhouette Search (GSS), a
practical and robust method that leverages the Silhouette clustering metric to guide
both sample selection and hyper-parameter configuration. We prove a bound on
generalisation error for the 1-Nearest Neighbour (1-NN) classifier when labels are
generated by GSS. Experiments demonstrate that GSS achieves competitive per-
formance compared to baselines that require extensive tuning, making it a strong
candidate for real-world, resource-constrained applications.

1 INTRODUCTION

Machine learning is driving significant advances across a wide range of application domains. A
key factor underlying this success is the increased availability of large-scale annotated datasets in
today’s big data era. However, despite the abundance of raw data, obtaining high-quality labelled
data remains a major bottleneck. This reliance on labelling data poses a fundamental challenge to
the scalability and generalisation of traditional machine learning models.

Active learning (AL) aims to address this challenge by seeking an efficient way to selectively label
the data, rather than labelling a random subset. In this process, AL progressively identifies a limited
number of the most useful data points and asks an oracle to label them. Such a strategy aims at
minimising the time and resources spent on annotation and helping machine learning models learn
faster and more efficiently. In practice, the time and resources available for annotation can be quite
limited. For example, manual annotating medical images relies on expert radiologists’ or doctors’
specialised knowledge Mahapatra et al. (2024). This is especially expensive and time-consuming.
Quantifying the catalytic efficiency of an enzyme typically necessitates complex, highly controlled
laboratory experiments conducted by trained biologists, posing challenges in terms of scalability,
reproducibility, and cost Steinberg et al. (2025). Emotion analysis from textual or speech data
often requires multiple human annotators to ensure label reliability, as emotional interpretation is
inherently subjective and prone to inter-annotator variability Zhang et al. (2021). Numerous practical
examples motivate the development of effective AL strategies in low-label-budget regimes, where
only a small subset of data points can be annotated. In such a setting, the scarcity of labelled data
also complicates subsequent model tuning and validation. Most of the work on AL involves hyper-
parameter tuning schemes that are either sophisticated or played down Yehuda et al. (2022); Chen &
Wujek (2020); Mahmood et al. (2022). Unlike that in traditional supervised learning settings, where
labelled validation sets serve for this purpose, AL do not have that luxury of labelled validation sets.
Therefore, delicate hyper-parameter tuning does not suit the low-budget regime of AL.

Despite being a popular evaluation metric for clustering, there is little work on directly using Sil-
houette in optimisation due to its prohibitive computational cost Lenssen & Schubert (2022; 2024).
In this paper, we introduce Greedy Silhouette Search (GSS), which has a direct application in AL.
GSS utilises the medoid Silhouette, and by developing an accelerated algorithm and adopting the
greedy strategy, we make the GSS algorithm feasible in the AL setting. It serves as a sole criterion
for data labelling and hyper-parameter optimisation. Combined with a 1-NN classifier, we present
experiment results under a validation-set-free setting. Results on several datasets show that the pro-
posed GSS method achieves comparable performance with competing baselines, with the advantage

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of being free from hyper-parameter tuning. This shows a great potential of GSS in practice. The
contributions of this paper are four-fold:

• We propose the Silhouette search algorithm for selecting samples from a dataset that opti-
mises the macro-averaged medoid Silhouette.

• We propose the Greedy Silhouette Search (GSS) using golden-section search to simulta-
neously find a locally-optimal hyper-parameter, and a batch of samples efficiently under a
validation-set-free setting.

• We provide and analyse the bound on the expected error of the 1-NN classifier with the
proposed GSS algorithm.

• We show concretely feasible examples of directly using GSS in low-budget AL tasks with
the accelerated algorithm and the greedy strategy achieving promising results.

2 PROBLEM SETTING AND BACKGROUND

We use AL as an example to explain the problem that GSS solves, and introduce some related
work. We will sometimes use Silhouette and medoid Silhouette interchangeably for simplicity of
expression.

2.1 PROBLEM DEFINITION

Given X ∈ RD, and its true label set Y = {1, ...,K}, we assume that there exists a true labelling
function f : X → Y . In the AL setting, a small labelled dataset L = {x̃l, ỹl}Ll=1 is made available
initially, where L is the number of labelled samples that is usually very small or can be zero. The aim
of AL is to select samples from a considerably larger pool of unlabelled instances, U = {xu}Uu=1,
for labelling by an oracle based on a predefined query strategy in an iterative manner, until a fixed
budget of labels, B, are obtained. With a low budget, the selected samples may not be able to
appropriately represent the underlying data distribution, so the predictor trained from them is likely
unreliable. Query strategies that do not rely on the predictor are often more robust Hacohen et al.
(2022).

2.1.1 OBJECTIVE

The goal of AL is to find a query strategy q to identify an instance xu in the unlabelled pool U for an
oracle to annotate, in order to optimise the predictor f̂ : X → Ŷ based on the set L∪{xu}, where L
is a given set of labelled points that can be empty initially, and Ŷ denotes the set of predicted labels:

xu = q(U ,L; γ) (1)

In the low-budget regime of AL that is the focus of this work, we posit that we are unlikely to have
a labelled validation set for reliably tuning the query strategy hyper-parameters γ, or subsequent
model hyper-parameters. Therefore, our objective is to find an efficient query strategy q for AL in a
low-budget regime that uses a self-contained criterion for both hyper-parameter search and instance
selection — saving us from requiring a potentially costly validation set.

2.2 RELATED WORK

Fig. 1 shows the overlap among two popular problems: clustering and AL. Clustering intersects with
AL when it is done incrementally or in a greedy way regarding adding new cluster centres. Some
Herding-based algorithms Bae et al. (2024; 2025); Yehuda et al. (2022) belong to this intersection.

2.2.1 SILHOUETTE

Silhouette Rousseeuw (1987) is a method of interpreting and validating the consistency within clus-
ters of data. It is a popular performance metric for evaluating clustering methods or a tool for
choosing the optimal number of clusters. Unfortunately, directly finding a solution that maximises
the Silhouette is computationally prohibitive, even with the simplified medoid Silhouette Van der
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K-medoids
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Figure 1: Venn diagram show-
ing the overlap between AL and
clustering. Clustering intersects
with AL when it is done incremen-
tally or in a greedy way regarding
adding new cluster centres.
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Example 2.

Figure 2: Two examples of calculating Equation (4) for sample xi

with different candidates xu. The red dots represent the labelled
points, and the blue dots are the unlabelled points. The green dots
are the currently selected xu, which gathers a group of unlabelled
data C3. Choosing different xu results in different configurations
and scores for the sets Cl.

Laan et al. (2003); Lenssen & Schubert (2024; 2022). As a combinatorial problem with no closed-
form solution, it also needs to calculate and store pairwise distances. The complexity remains the
bottleneck of its application.

2.2.2 INTERACTIVE ACTIVE LEARNING

We can categorise AL methods into interactive methods and model-agnostic methods. Interactive
approaches Haimovich et al. (2024); Bressan et al. (2024); Wu et al. (2022) rely on task-specific
model predictions/uncertainties to guide sample selection. Most of the interactive approaches rely
on feedback from downstream models other than clustering methods. For example, margin-based
AL selects the sample for which the classifier is least confident in its prediction by measuring the
margin between the top two predicted class probabilities Bressan et al. (2024); Wang & Singh
(2016). Entropy-based AL measures uncertainty using the entropy of the predicted probability dis-
tribution Wu et al. (2022); Siddiqui et al. (2020). When labelled data are scarce, model feedback
often fails to provide more useful information than noise. Interactive methods are primarily effective
in high-budget settings Hacohen et al. (2022) combined with complex parametric models.

2.2.3 MODEL-AGNOSTIC ACTIVE LEARNING

Model-agnostic methods often outperform interactive methods in a low-budget regime Bae et al.
(2024; 2025), and are sometimes combined with non-parametric clustering methods as downstream
task-oriented models. It does not use information from downstream model outputs. Model-agnostic
methods aim to select examples from the unlabelled pool that are most representative of the under-
lying data distribution, under the assumption that strong performance on these “typical” examples
will generalise effectively to the broader unseen dataset. Some methods formulate the problem as
maximising their defined “coverage”. For example, ProbCover Yehuda et al. (2022) seeks a la-
belled set that maximises the proposed “coverage” defined by balls centred at these labelled points.
The method is however highly sensitive to the heuristically chosen ball radius Bae et al. (2024).
MaxHerding Bae et al. (2024) proposes a smoother Gaussian similarity-based coverage, while in-
troducing a less sensitive hyper-parameter of the Gaussian kernel radius. Our algorithm can be
considered to be in this class; however, we do not rely on a labelled validation set. Combined with
a 1-NN classifier, we achieve a validation-set-free setting. One important process in AL methods
that often gets downplayed is hyper-parameter tuning. There is a lack of a consistent way to tune
hyper-parameters, and low-budget setting amplifies this caveat.

3 PROPOSED ALGORITHMS

Model-agnostic AL often relies on a good measure of data density. Inspired by a popular perfor-
mance metric for clustering, Silhouette Vendramin et al. (2010), we propose the GSS. We adopt a
greedy algorithm to maximise the aggregated medoid Silhouette. Each point will have an associated
Silhouette value; the final metric is given by appropriately aggregating them. A traditional way to do
so is through a micro-average; that is simply calculating the mean of Silhouette values over all data
points. We however use a macro-average strategy for aggregation as it has been shown empirically to
be more robust against varying data distribution Pavlopoulos et al. (2024). The Silhouette values are
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firstly averaged within each cluster, and then the results are averaged over clusters. In the AL sce-
nario, we progressively add an instance to the labelled set for generating the largest macro-averaged
medoid Silhouette, one by one, until we reach the budget limit B.

Each unlabelled point xu is associated with a score Su, which is the macro-averaged medoid Silhou-
ette score. Our main algorithm is to label a point maximising the macro-averaged medoid Silhouette:

Su =
1

L+ 1

L+1∑
l=1

S(Cl), (2)

where Cl is a set of unlabelled data points {xi}|Cl|
i=1 , in which each sample xi satisfies:

argminx̃∈L dγ(xi, x̃) = x̃l. |Cl| is the number of samples in the set Cl. x̃l is the l-th sample
in the labelled data set L. dγ(·, ·) is a distance function for two samples parametrised by γ. The
medoid Silhouette S(Cl) for each Cl is defined as the average medoid Silhouette for all instances in
the cluster Cl:

S(Cl) =
1

|Cl|
∑
xi∈Cl

s(xi). (3)

The medoid Silhouette for an instance xi is formulated as:

s(xi) = 1− a(xi)

b(xi)
, s.t. a(xi) = min

x̃∈L
dγ(xi, x̃), b(xi) = min2

x̃∈L
dγ(xi, x̃), (4)

where min2 denotes the operator that returns the second-smallest value. In other words, the medoid
Silhouette for an instance is defined by its distance to the closest and second-closest labelled sam-
ples. From the above definition, we know 0 ≤ s(xi) ≤ 1, and a larger Silhouette encourages larger
gaps between different Cl and points gather tighter within each Cl. Figure 2 shows two examples for
the calculation of Equation (4) for a sample xi. A naive algorithm for searching a point maximising
the macro-averaged medoid Silhouette is detailed in Algorithm 1.

3.1 COMPLEXITY ANALYSIS AND THE ACCELERATED ALGORITHM

In practical applications such as AL, Algorithm 1 is performed iteratively until a prefixed budget is
reached. Since the complexity O(DU2) on calculation of pairwise distance is inevitable, we do not
include this term in the analysis here. Despite using a simplified version of Silhouette, Algorithm 1

Algorithm 1 Silhouette Search
Input: γ, L = {x̃l}Ll=1, U = {xu}Uu=1,
Output: x∗ ∈ U , S∗

γ .
1: for xu ∈ U do
2: for xi ∈ U\xu do
3: a(xi) = min

x̃∈L∪xu

dγ(xi, x̃),

4: b(xi) = min2
x̃∈L∪xu

dγ(xi, x̃).

5: end for
6: S(Cl) = 1

|Cl|
∑

xi∈ Cl

1− a(xi)
b(xi)

7: Cl = {xi|argmin
x̃∈L∪xu

dγ(xi, x̃) = x̃l}

8: Su = 1
L+1

L+1∑
l=1

S(Cl)

9: end for
10: x∗ = arg max

xu∈U
Su.

11: S∗
γ = max

xu∈U
Su.

Algorithm 2 Silhouette Search (Accelerated)
Input: γ, L = {x̃l}Ll=1, U = {xu}Uu=1, Distance
Matrix D ∈ RU×U for the labelled points in L,
Output: x∗ ∈ U , S∗

γ .

1: ∀xu ∈ U , calculate:

d(1) = [d
(1)
1 , ..., d

(1)
U ]⊤, d

(1)
i = min

x̃∈L
dγ(xi, x̃),

d(2) = [d
(2)
1 , ..., d

(2)
U ]⊤, d

(2)
i = min2

x̃∈L
dγ(xi, x̃).

2: D = min(D,d(2)1⊤) ▷ element-wise min

3: S=1−min( D
d(1)1⊤ , d(1)1⊤

D ) ▷ element-wise division

4: ∀u, calculate Su using S,

5: x∗ = arg max
xu∈U

Su.

6: S∗
γ = max

xu∈U
Su.
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takes O(LU2) time with U unlabelled and L labelled points, to select just one sample. Noting that
we only need to update the medoid Silhouette for a point when the new labelled point is within the
top-2 closest points of it, we propose an accelerated version of Algorithm 1 as described in Algo-
rithm 2. This helps reduce the complexity of Algorithm 1 to O(U2). Line 2 of Algorithm 2 helps
identify points that are within the top-2 closest points of each row, and then line 3 calculates medoid
Silhouette for all samples in the unlabelled set using the fact that medoid Silhouette values are upper
bounded by 1. i-th column of S gives the medoid Silhouette values for all unlabelled samples, when
xi in the unlabelled set is selected as a new instance to label. Macro-average aggregation is also
applied in line 4, similar to Algorithm 1 using Eq. equation 2 and Eq. equation 3. We report the
comparison of running time in the Appendix.

3.2 GOLDEN-SECTION SEARCH STRATEGY FOR OPTIMISATION WITH HYPER-PARAMETER

Algorithm 3 Golden-Section Search
Input: Interval [a, b], tolerance ε > 0, the golden ra-
tio’s reciprocal r = 0.618.
Output: Optimal x∗ with γ ∈ [a, b].
Initialise: c = b− r(b− a), d = a+ r(b− a)
Evaluate: S∗

c and S∗
d with Algo. 2

1: while |b− a| > ε do
2: if S∗

c > S∗
d then

3: Set b← d
4: Set d← c, S∗

d ← S∗
c

5: Set c← b− r(b− a), evaluate S∗
c with

Algo. 2
6: else
7: Set a← c
8: Set c← d, S∗

c ← S∗
d

9: Set d← a+ r(b− a), evaluate S∗
d with

Algo. 2
10: end if
11: end while
12: let γ = a+b

2
, obtain x∗ and S∗

γ with Algo. 2.

It is common that the distance function will in-
volve some hyper-parameters, like γ. In the
low-budget regime AL, obtaining a labelled
validation set is infeasible. As a result, conven-
tional hyper-parameter tuning methods, which
typically rely on such validation data, are ill-
suited for AL under this constraint. The medoid
Silhouette naturally acts as a selection criterion
for selecting the γ, eliminating the need for a
labelled validation set.

Because of the discreteness of medoid Silhou-
ette, we leverage the golden-section search al-
gorithm to search for the locally optimal hyper-
parameter γ together with the best instance to
label. The hyper-parameter is optimised by
gradually narrowing down the query interval to
where the locally optimal value sits in. The al-
gorithm is detailed in Algorithm 3.

3.3 GREEDY SILHOUETTE SEARCH (GSS) ALGORITHM

Each round of AL could involve the selection of a set of T instances instead of one. In this scenario,
Algorithm 2 could be run T times to obtain a sum of Silhouette, and Algorithm 3 is implemented
in a way that minimises this sum selecting T instances instead of one. The instances are selected
one-after-one in a greedy manner, hence the name “Greedy” Silhouette Search. Such a greedy
strategy makes using Silhouette as a guidance for active labelling feasible. Being a combinatorial
problem, considering multiple instances to optimise Silhouette jointly and iteratively with hyper-
parameters is computationally infeasible. In a multiple-round AL setting, the GSS is able to choose
different hyper-parameters in each round, reflecting the change of number on labelled instances
better compared to methods with static hyper-parameters.

3.4 THEORETICAL ANALYSIS

We analyse the bound on the expected error of the 1-NN classifier with the proposed GSS algorithm.
1-NN operates in a fully non-parametric fashion, depending only on distances to the labelled set,
with no supplementary inductive bias introduced.

Theorem 1. Let d be a distance function and min2 denotes the operator that returns the second-
smallest value. ∀θ ∈ [0, 1], the expected error of the 1-NN classifier f̂ is bounded as:

E[1f(x)̸=f̂(x)] ≤ (1− Pr
x
(

min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ)) + Pr

x
(

min
x̃:f(x)̸=f(x̃)

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ). (5)

5
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Proof.

E[1f(x) ̸=f̂(x)] = Pr
f(x)̸=f̂(x)

(
min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
> θ) + Pr

f(x)̸=f̂(x)
(

min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ)

≤ Pr
x
(

min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
> θ) + Pr

f(x)̸=f̂(x)
(

min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ).

For any given x , there are two cases:

1. f(x) = f̂(x). In this case, Prf(x)̸=f̂(x)(
min
x̃∈L

d(x,x̃)

min2
x̃∈L

d(x,x̃) ≤ θ) = 0, and Prx(
min

x̃:f(x)̸=f(x̃)
d(x,x̃)

min2
x̃∈L

d(x,x̃) ≤ θ) ≥

0. We have:

Pr
f(x)̸=f̂(x)

(
min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ) ≤ Pr

x
(

min
x̃:f(x)̸=f(x̃)

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ).

2. f(x) ̸= f̂(x). Let n ∈ L denotes the nearest neighbour to sample x, then we have the predicted
labelled f̂(x) = f̂(n). Because n is in the labelled set, thus we have f̂(n) = f(n). Since f(x) ̸=
f̂(x), which implies that f̂(x) = f̂(n) = f(n) ̸= f(x). Thus,

Pr
f(x) ̸=f̂(x)

(
min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ) = Pr

x
(

min
x̃∈L,f(x) ̸=f(x̃)

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ) ≤ Pr

x
(

min
x̃:f(x)̸=f(x̃)

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ).

Combine the two cases, and we conclude the proof:

E[1f(x)̸=f̂(x)] ≤ Pr
x
(

min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
> θ) + Pr

x
(

min
x̃:f(x)̸=f(x̃)

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ)

= (1− Pr
x
(

min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ)) + Pr

x
(

min
x̃:f(x) ̸=f(x̃)

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ).

Discussion Theorem 1 shows that minimising the medoid Silhouette value contributes to a better
classification performance with 1-NN. The first term in the RHS of the inequality is related to the
medoid Silhouette to be optimised, and the second term is non-increasing with adding labelled
samples. A term similar to min

x̃:f(x) ̸=f(x̃)
d(x, x̃) also appears in theoretical findings of some related

work Yehuda et al. (2022); Bae et al. (2024), but this term prevents the error bound therein being
asymptotic to zero with the number of labelled points goes to infinity. Our bound shows such an
asymptotic property and is thus more practical. More details are in the Appendix.

4 EXPERIMENTS

We apply the GSS on AL learning tasks to verify its effectiveness and compare it with a few state-
of-the-art model-agnostic AL methods. We follow the previous work Bae et al. (2024) to measure
classification performance using a 1-NN classifier. This aligns with the low-budget active learning
regime, where the model validation is difficult. Ablation study shows the usefulness of each design
element.

Datasets We evaluate our algorithms on low-budget AL across four diverse classification datasets:
OptDigits Alpaydin & Kaynak (1998), CIFAR10 Krizhevsky et al. (2009), TrpB Johnston et al.
(2024), and Phishing Websites Mohammad & McCluskey (2012): (1) OptDigits1: a collection of

1The OptDigits dataset is available at the UCI Machine Learning Repository: https://archive.ics.uci.edu/.
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hand-written digit images. It includes 5620 images with 64 features extracted from 32x32 bitmaps
and 10 classes. (2) CIFAR10: a widely-used dataset for image classification in 10 classes. We
follow previous work Yehuda et al. (2022) and use their published processed features. (3) TrpB2: a
protein sequence dataset with 2 classes, however being quite imbalanced (the ratio of the number of
positive and negative classes is around 1:20). We randomly filter negative samples for a balanced
dataset containing 20280 samples in total. We then embed the features using one-hot encoding. (4)
Phishing Websites3: a tabular dataset for phishing websites recognition consisting of two classes.

Implementation Details We set the budget size at each round to 10 for two relatively small
datasets and 10/100 for the others. We adopt a 1-NN classifier based on the labelled set Lt at t-
th iteration, where the predicted label of a sample x is the label of its nearest point in Lt. This
aligns with the low-budget active learning regime where the number of available annotated samples
is very small, and so model validation becomes difficult. We notice that some work uses deep neural
networks such as ResNet-18 as a classifier, but this usually involves a lot of (at least 10% of training
data) labelled data for validation. Unfortunately, it is often not practical under the low-budget setting
of AL. We set the distance function for GSS across all experiments as dγ(xi,xj) = max(0, dij−γ),
where dij = ||xi − xj ||2F . The distance function focuses on samples within the γ radius, similar to
ProbCover Yehuda et al. (2022), but with adding smoothness to values outside the radius γ.

We adopt two strategies in the AL rounds: 1) start straightforward from an empty label set with
all rounds done by the AL method; 2) in the first round, labelled instances are selected using k-
medoids with FasterPAM Schubert & Rousseeuw (2021); in other words, each AL method starts
to work in the second round. For the larger datasets with the second strategy, we increase the
budget in each round to 100 to reveal a clearer trend when labels increase. Note that this could
still be considered low-budget compared to other methods where 10% of datasets is labelled for
tuning parameters Yehuda et al. (2022). Because Silhouette is only valid when there are at least
two labelled points, in the first strategy, we use k-medoids to pick the first 2 points for our method.
All experiments were run with Dell XE9640 cluster system running Linux with Dual Xeon 36-core
8452Y compute nodes, 512GB of RAM and an Nvidia H100 GPU. We report the run time of all
methods in the Appendix.

4.1 BASELINE METHODS

We compare our method to model-agnostic AL methods including: ProbCover Yehuda et al. (2022),
MaxHerding Bae et al. (2024), KernelHerding Chen et al. (2012), MaxHerding-nongreedy Bae et al.
(2024), and Random. We adopt the 1-NN classifier and focus on a low-budget AL setting without a
validation set for hyper-parameter tuning. We follow the original papers to set hyper-parameters for
each baseline. Previous experiments Yehuda et al. (2022); Hacohen et al. (2022); Bae et al. (2025)
show that the model-agnostic AL performs better than interactive AL in low-budget settings and
the latter requires a validation set to tune the model, so we exclude interactive AL here. We run 3
repetitions and plot the mean accuracy for Random. The rest of the methods are deterministic, so
we report the Accuracy (ACC) from a single run. The baselines are (with k(·, ·) the RBF kernel):

• Random Randomly sampling at each iteration.
• ProbCover Pick the sample with the most number of γ-near neighbourhoods, where γ is a

pre-defined radius. Once a sample is selected, itself and its γ-near neighbourhoods are not
considered in the next selection.

• MaxHerding Obtain the (L + 1)-th sample following x̃L+1 ∈
argmaxx̃∈U

1
N

∑N
n=1 max{k(xn, x̃)−maxx′∈L k (xn,x

′) , 0}.
• KernelHerding The (L + 1)-th sample is defined by x̃L+1 ∈
argmaxx̃∈U

1
N

∑N
n=1 k (xn, x̃)− 1

L+1

∑L
l=1 k (x̃l, x̃).

• MaxHerding-nongreedy Choose a batch of b samples by
argmaxS⊂U,|S|=b

1
N

∑N
n=1 maxx′∈L∪S k (xn,x

′).

2The TrpB dataset is available at: https://github.com/csiro-funml/variationalsearch.
3The Phishing Websites dataset is available at the UCI Machine Learning Repository:

https://archive.ics.uci.edu/.
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Figure 3: Accuracy (ACC) of GSS and baselines with all rounds done by AL.
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Figure 4: Accuracy (ACC) of GSS and baselines with the first round done by k-medoids.

4.2 RESULTS AND DISCUSSION

Overall, our proposed GSS method performs best in the experiments as presented in Fig. 3 and 4.
In Fig. 3, with all rounds done by AL, GSS performs inferiorly compared to ProbCover and Kernel-
Herding on CIFAR10. This is potentially due to the performance in the first round, where it performs
second-worst. GSS involves the closest and second closest labelled points, and thus is more sensitive
to noise in the initial round when labelled points are less informative. GSS consistently improves
itself over increasing AL rounds. This demonstrates its robustness and generalisation capability, and
supports our theoretical finding. In contrast, the performance of other methods exhibits notable vari-
ability, highlighting their lack of consistency across different data distributions. This underscores
the sensitivity of these baselines to heuristic hyper-parameter choices and dataset-specific tuning.
On the Phishing Websites dataset, all methods are struggling to keep improving as the number of
labelled instances increases. This is potentially due to the small sample size, and categorical features
therein make this even worse. The kernel-based method relies on the RBF kernel being effective.
When dealing with categorical data, such as in Phishing Websites and TrpB, they exhibit a rather
inconsistent performance, even decreasing as the number of labels increases.

Random method performs consistently across all datasets, because it samples unbiasedly from
the underlying data distribution and the results are smoothed by averaging over 3 runs. The
MaxHerding-nongreedy performs better than Random in the OptDigits dataset, while falling behind
Random in CIFAR10. GSS is the only method that outperforms Random consistently. This aligns
with previous findings Zhu et al. (2019); Siméoni et al. (2021), indicating that under low labelling
budget conditions, achieving significant improvements over random selection remains challenging.

4.2.1 COMPARISON ON IMBALANCED DATASET

Imbalanced class distributions are prevalent in practical applications; we further assess the per-
formance of GSS under such a situation by introducing controlled class imbalance into CIFAR10
dataset. We follow the previous research leveraging the long-tail imbalance generation algorithm Cui
et al. (2019) to generate the imbalanced CIFAR10 dataset. All methods are initialised with 100 la-
bel samples selected by k-medoids. Figure 5 shows the results. We use the Matthews correlation
coefficient (MCC) Chicco & Jurman (2020) as a performance indicator, considering that MCC has
been proven as one of the best metrics to summarise performance under imbalanced data Powers
(2020). All methods perform closely in the early few rounds, and GSS is leading the performance
afterwards. The ability to consistently improve the performance between AL rounds relies on the
ability to adjust hyper-parameters in-between.
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Figure 5: Matthews correla-
tion coefficient (MCC) compar-
ison results of our GSS method
and baselines on the imbalanced
CIFAR10 dataset.
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Figure 6: Performance of GSS on the OptDigits dataset under dif-
ferent settings.

4.3 ABLATION STUDY

To further validate the effectiveness of GSS, we conduct an ablation study on the OptDigits dataset.
In the first round, samples are selected by k-medoids.

4.3.1 HYPER-PARAMETER UPDATED EACH ROUND VS. ONCE

To show the advantage of dynamically updating the hyper-parameter we compare two variants of
GSS: 1) find the optimal hyper-parameter in the second round, and then fix it in subsequent rounds
(hyper-parameter updated once), and 2) find and update the optimal hyper-parameter in each round.

The results in Fig. 6(a) show that dynamically updating the hyper-parameter brings performance im-
provement over a static strategy. With hyper-parameter updated in each round, GSS is able to sense
the change of labelled instance distribution, pick better hyper-parameter, and boost performance.
Fig. 6(a) also shows that the hyper-parameter generally keeps decreasing as the cumulative bud-
get increases. Intuitively, when labelled instances become more and more “crowded”, the distance
function tends to become more sensitive to capture finer details by decreasing γ.

4.3.2 GSS WITH VS. WITHOUT MACRO-AVERAGE STRATEGY

We examine the performance of GSS with either macro-average strategy or micro-average strategy
(w/o macro avg). With micro-average strategy, the medoid Silhouette is simply averaged across all
unlabelled instances, without considering the number of instances in each cluster (similar to letting
|Cl| = 1 in Eq. equation 3). As shown in Fig. 6(b), when only 20 instances are selected, the macro-
average strategy is not better than the micro-average strategy, likely because the number of labelled
points is too small to capture useful information over noise. The performance of macro-average
strategy improves fast and surpasses micro-average strategy after the cumulative budget is larger
than 20, leaving a performance gap in-between, which shows the effectiveness of it.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

We consider the problem of identifying data to label by using an incremental clustering approach,
instead of the more traditional active learning approaches. We introduce Greedy Silhouette Search,
making the costly Silhouette metric feasible for automating active labelling under a low budget. It
guides both sample selection and hyper-parameter configuration, saving us from requiring a labelled
validation set for hyper-parameter tuning. The proposed GSS is supported by a bound on classifica-
tion error (Theorem 1) and empirically on four benchmark datasets. Our automatic hyper-parameter
choice (without any labelled validation dataset) results in an expected reduction in the effect radius.

GSS has its limitations similar to the original Silhouette. It prefers data distributed in a convex-
shape, and may not perform well if the data clusters have irregular shapes or are of varying sizes,
though we alleviate the latter by adopting a macro-averaging strategy. Our future research direction
is to learn a metric or kernel to better represent the underlying data distribution.
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6 REPRODUCIBILITY STATEMENT

The paper, appendix material, and attached code fully disclose all the information needed to re-
produce the main experimental results of the paper, such that the conclusions of the paper can be
reproduced by an external party.
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A APPENDIX

A.1 THE BOUND ON THE ACCURACY OF A 1-NN

MaxHerding Bae et al. (2024) defines their bound on the accuracy of 1-NN classifier f̂ as:

E[1f(x)̸=f̂(x)] ≤ (1− E
x
[max
x̃∈L

k(x, x̃)])

+ E
x
[ max
x̃:f(x)̸=f(x̃)

k(x, x̃)].
(6)

E
x
[maxx̃∈L k(x, x̃)] in the first term is the proposed “generalised coverage” to be maximised. The

second term E
x
[maxx̃:f(x) ̸=f(x̃) k(x, x̃)] > 0 is data dependent and does not change with the AL

process. In other words, it does not go better than the constant E
x
[maxx̃:f(x)̸=f(x̃) k(x, x̃)] even with

number of labelled points going to infinity.

Recall that in Theorem 1 of our paper, the expected error of the 1-NN classifier f̂ is bounded from
above by:

E[1f(x)̸=f̂(x)] ≤ (1− Pr
x
(

min
x̃∈L

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ))

+ Pr
x
(

min
x̃:f(x)̸=f(x̃)

d(x, x̃)

min2
x̃∈L

d(x, x̃)
≤ θ).

(7)

Similarly, the first term in the RHS of the inequality is related to the medoid Silhouette to be op-

timised. Now consider Prx(
min

x̃:f(x)̸=f(x̃)
d(x,x̃)

min2
x̃∈L

d(x,x̃) ≤ θ). The numerator is a constant similar to that in

MaxHerding. With adding labelled samples, min2
x̃∈L

d(x, x̃) is non-increasing, and can be decreasing

if we sample x from a continuous distribution and not to add repeated labelled points. This gives
rise to the desired asymptotic property when the number of labelled points increases.

A.2 COMPARISON OF RUNNING TIME IN SECONDS

We report the running time of the experiments for the first strategy (start straightforward from an
empty label set with all rounds done by AL methods). ProbCover is the most efficient non-random
method because of the simple euclidean distance used therein, and the strategy to remove points
gradually. MaxHerding is slower than KernelHerding because the introduced “max kernel function”
involves extra max operation. The nongreedy version of it is even slower due to the complexity
in set optimisation. GSS shows comparable complexity to KernelHerding and MaxHerding, and is
faster as the number of AL round goes up.

Table 2: Running time on Phishing Websites dataset.

Round GSS (Ours) Prob
Cover

Max
Herding

Kernel
Herding

MaxHerding
-nongreedy Random

1 3.5114 0.0240 4.0287 1.8295 58.5903 0.0012
2 3.6371 0.0227 3.8697 1.9387 56.7523 0.0013
3 3.0638 0.0215 3.7760 1.9336 85.6938 0.0013
4 2.8642 0.0221 3.8004 1.9306 58.0654 0.0013
5 2.7693 0.0216 3.6947 1.9293 57.7699 0.0013
6 2.8099 0.0214 3.6473 1.9329 59.5970 0.0013
7 2.8547 0.0211 3.6123 1.9502 59.8355 0.0012
8 2.7197 0.0212 3.5978 1.9370 89.9733 0.0013
9 2.3847 0.0213 3.5448 1.9186 89.6281 0.0013

10 2.9946 0.0221 3.5668 1.9124 60.0225 0.0012
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Table 1: Running time on OptDigits dataset.

Round GSS (Ours) Prob
Cover

Max
Herding

Kernel
Herding

MaxHerding
-nongreedy Random

1 1.0974 0.0199 0.7763 0.3988 10.8670 0.0005
2 1.0447 0.0217 0.8247 0.4006 10.6583 0.0006
3 0.6832 0.0214 0.7890 0.4103 10.7127 0.0006
4 0.6673 0.0213 0.7525 0.3903 10.5323 0.0006
5 0.7533 0.0227 0.7202 0.4087 10.5832 0.0006
6 0.6786 0.0213 0.7281 0.4104 10.5034 0.0006
7 0.6805 0.0212 0.7123 0.4287 10.4795 0.0006
8 0.6442 0.0218 0.7045 0.4319 10.5425 0.0006
9 0.6831 0.0215 0.6973 0.4149 10.3649 0.0006

10 0.7710 0.0214 0.6913 0.4006 10.4116 0.0006

Table 3: Running time on TrpB dataset.

Round GSS (Ours) Prob
Cover

Max
Herding

Kernel
Herding

MaxHerding
-nongreedy Random

1 13.9187 0.1775 13.7053 6.0163 26.2610 0.0023
2 11.0669 0.2287 13.1580 6.4557 28.7492 0.0026
3 9.8945 0.0950 12.6008 6.4612 27.5707 0.0025
4 9.2774 0.3687 12.2238 6.6284 27.9558 0.0025
5 8.5968 0.1561 12.0822 6.3777 27.4611 0.0026
6 8.1340 0.2381 12.0328 6.4165 27.8891 0.0026
7 8.0193 0.2369 12.0449 6.5375 26.5342 0.0026
8 7.9281 0.1094 12.0381 6.4834 28.8684 0.0026
9 7.7948 0.1115 11.8515 6.4559 26.3114 0.0025

10 7.9075 0.0938 12.0690 6.4883 27.8513 0.0026

Table 4: Running time on CIFAR10 dataset.

Round GSS (Ours) Prob
Cover

Max
Herding

Kernel
Herding

MaxHerding
-nongreedy Random

1 147.9980 0.6567 92.7664 47.5405 412.0120 0.0065
2 115.1394 0.6106 94.0380 50.9838 405.3778 0.0067
3 99.7956 0.5977 91.7539 51.0448 537.2294 0.0071
4 93.5841 0.5630 91.1137 51.6196 949.1273 0.0074
5 90.2527 0.5456 91.8859 51.5399 405.9316 0.0073
6 83.8906 0.5119 90.2955 51.4680 408.3155 0.0073
7 84.6417 0.5430 89.2639 51.7447 403.8474 0.0072
8 82.2778 0.4952 89.7910 51.8867 273.1389 0.0072
9 81.2419 0.4889 90.2507 51.9105 404.5455 0.0072

10 77.0552 0.4796 92.3652 51.7752 269.7230 0.0073
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