
CIBench: Evaluating Your LLMs with a Code Interpreter Plugin

Anonymous ACL submission

Abstract

While LLM-Based agents, which use external001
tools to solve complex problems, have made002
significant progress, benchmarking their ability003
is challenging, hindering a clear understanding004
of their limitations. In this paper, we propose005
an evaluation framework, named CIBench , to006
comprehensively assess LLMs’ ability to uti-007
lize code interpreters for data science tasks.008
Our evaluation framework includes an evalu-009
ation dataset and two evaluation modes. The010
evaluation dataset is constructed using an LLM-011
human cooperative approach and simulates an012
authentic workflow by leveraging consecutive013
and interactive IPython sessions. The two eval-014
uation modes assess LLMs’ ability with and015
without human assistance. We conduct exten-016
sive experiments to analyze the ability of 19017
LLMs on CIBench and provide valuable in-018
sights for future LLMs in data science tasks.019

1 Introduction020

Empowered by the emerging abilities of Large021

Language Models (LLMs), numerous agents, such022

as MetaGPT (Hong et al., 2023), ToolLLM (Qin023

et al., 2023), LangChain (Chase, 2022), Auto-024

GPT (Significant Gravitas), and QwenAgent (Bai025

et al., 2023), have surfaced to harness these gen-026

eralist models for utilizing external tools like web027

browsing, document retrieval and code interpreter028

in tackling complex real-world problems. Specif-029

ically, agents with a code interpreter leverage the030

advanced programming skills of LLMs through a031

natural language interface, facilitating the creation032

of new workflows that are both effortless and ef-033

ficient. However, measuring the agent’s ability to034

use code interpreters remains challenging, hinder-035

ing a clear understanding of their limitations.036

In this study, we focus on assessing the profi-037

ciency of LLMs in leveraging code interpreters038

to address data science problems across several039

distinct domains, like data analysis, visualiza-040

20

40

60

80

Mathematics and Statistics

Mo
de

lin
g

Data Manipulation

Data Visualization

Im
ag

e P
ro

ce
ss

ing

Natural Language Processing

InternLM2-7b
Qwen-14B
Mistral-8x7b
InternLM2-20B

Yi-34B
Deepseek-67B
Llama2-70b
Qwen-72B

Figure 1: Performance of open-sourced LLMs with code
interpreters across different module categories. Refer to
Tab.1 for category details. LLMs perform poorly in the
modeling modules (Pytorch, TensorFlow, etc.).

tion, and machine learning. These tasks neces- 041

sitate that LLMs exhibit advanced capabilities 042

in instruction following, reasoning, and program- 043

ming. Despite this, existing benchmarks, including 044

GSM8K (Cobbe et al., 2021), MATH (Hendrycks 045

et al., 2021), HumanEval (Chen et al., 2021), and 046

MBPP (Austin et al., 2021), primarily assess the 047

models’ abilities to solve mathematical or coding 048

problems solely. These benchmarks, while valu- 049

able for measuring specific competencies, fail to 050

fully represent the LLMs’ aptitude for building 051

complex workflows involving code interpreters in 052

practical applications. 053

More recent efforts aim to bridge the existing 054

gap by constructing novel benchmarks for code 055

interpreters, particularly tailored to mathematical 056

problems and data analysis tasks (Bai et al., 2023; 057

1

Hu et al., 2024). Despite considerable advance-058

ments, the prevailing studies either focus on single-059

turn question assessments or have a limited scope060

in data science. The substantial insights they pro-061

vided inadequately mirror the dynamic, interactive,062

and multi-turn nature of real-world scenarios in063

which agents employ code interpreters.064

To address these shortcomings, we introduce a065

novel evaluation framework that encompasses a066

novel benchmark and innovative assessment pro-067

tocols to provide a comprehensive evaluation of068

LLMs’ ability to use code interpreters. Notably, the069

benchmark is devised in a distinctive LLM-human070

cooperative approach, integrating generated tasks071

autonomously produced by LLMs alongside tem-072

plate tasks meticulously crafted by human experts,073

as depicted in Fig. 2. It ingeniously simulates au-074

thentic workflow scenarios by leveraging interac-075

tive IPython sessions, which entail sequential, in-076

terconnected questions and concentrate on popular077

Python modules such as Matplotlib, Pandas, and078

PyTorch. Moreover, we deploy two newly devised079

evaluation modes coupled with a series of fine-080

grained metrics to methodically gauge LLMs’ abil-081

ity in code interpreter manipulation. This approach082

promises to yield valuable insights to inform future083

enhancements and optimizations.084

Specifically, we build the evaluation dataset by085

initially identifying ten highly prevalent Python li-086

braries within the domain of data science. Then,087

the generated tasks are realized by prompting ad-088

vanced LLM, such as GPT-4, to generate instruc-089

tions and code snippets within Jupyter Notebook090

format. Each notebook is structured to contain a se-091

quence of 10 to 15 progressive steps, with increas-092

ing levels of complexity. To mitigate any inherent093

biases or limitations in the LLM-generated content,094

we introduce template tasks that are specifically095

designed by human experts based on common pat-096

terns observed in the LLM-generated tasks and on-097

line resources. The template tasks can incorporate098

multiple interchangeable datasets for evaluation.099

Those designs ensure that the benchmark encapsu-100

lates both diversity and quality, thereby offering a101

comprehensive and balanced assessment of code102

interpreter capabilities.103

To thoroughly assess the LLMs’ performance on104

our benchmark, we have instituted two distinct eval-105

uation modes: the end-to-end mode and the oracle106

mode. In the end-to-end mode, LLMs are tasked107

with a holistic problem-solving process where they108

must reason through given instructions and gen-109

erate corresponding code. This requires them to 110

iteratively refine their output based on feedback 111

from the code interpreter, as they attempt to solve 112

multiple consecutive questions that build upon one 113

another. Additionally, the oracle mode simulates 114

guided learning by providing the LLM with the 115

correct code snippet when it fails. This immediate 116

feedback mimics human guidance and equips the 117

model to use this accurate example for tackling 118

subsequent tasks in the same context. Furthermore, 119

we introduce two types of metrics: the process- 120

oriented (i.e., tool-call rate, executable rate) and 121

output-oriented (i.e., numeric accuracy, text score, 122

visualization score), to provide a comprehensive 123

analysis of the model’s performance. 124

Based on our evaluation framework, we con- 125

duct extensive experiments and analysis using 19 126

LLMs. The results indicate that LLMs struggle 127

to utilize PyTorch- and TensorFlow-like modules 128

(Fig.1), and the best-open-sourced LLMs lag be- 129

hind GPT-4 by 6.8%. In summary, our contribu- 130

tions are three-fold: 131

• We build a new benchmark for agents with 132

code interpreters using an LLM-human cooperative 133

method. It consists of interactive IPython sessions 134

with interconnected questions on key data science 135

libraries, simulating dynamic multi-turn problem- 136

solving in practical workflows. 137

• We devise unique assessment strategies involving 138

both end-to-end and oracle modes. We also intro- 139

duce evaluation metrics that span both process and 140

output quality, offering a comprehensive gauge of 141

LLMs’ coding prowess within the benchmark. 142

• We conduct thorough experiments with 19 LLMs 143

to analyze their performance on our benchmark. 144

The results indicate that LLMs perform poorly in 145

the modeling category modules and open-sourced 146

LLMs are inferior to GPT-4 by a large margin. 147

2 CIBench 148

To benchmark LLM’s ability to leverage code in- 149

terpreters for addressing data science problems, 150

we propose a novel evaluation framework (Fig.2), 151

which comprises a diverse evaluation dataset and 152

two newly devised evaluation modes. The evalua- 153

tion dataset is generated through an LLM-human 154

cooperative approach and simulates authentic work- 155

flow scenarios for solving sequential and intercon- 156

nected tasks. Given the evaluation dataset, we ad- 157

here to the ReAct protocol (Yao et al., 2023) to 158

generate reasoning traces and invoke code inter- 159

preters alternately. And, we allow LLMs to attempt 160

2

• Show Image

• Linear plot

• Convolution
• ……

…

…

• Load data

• Correlation

• Regression

• ……

Python Modules

Topic Candidates

ReAct

(Human)

Thought:…
Act: …
Interpreter:…

Evaluation

• Tool Call Rate
• Executable Rate
• Numerical Accuracy
• Text Score
• Visualization Score

Tasks Refinement

Template Tasks

Generated Tasks

Online resource

• Load data

• Missing value

• Correlation

• ……

Dataset

Figure 2: Overview of CIBench. CIBench first selects Python modules to generate candidate topics and then
generates tasks based on these modules and the selected topic. Additionally, it summarizes the template tasks and
filters out incorrect questions to enhance quality. Given the evaluation dataset and optional human assistance, we
utilize the ReAct protocol to generate reasoning traces and invoke code interpreters alternately. Finally, the LLM’s
ability is assessed using two modes and five metrics, providing a holistic evaluation.

to solve tasks multiple times, enabling exploration161

of their self-debugging capabilities based on feed-162

back from the code interpreter. Finally, we propose163

two evaluation modes: the end-to-end mode and the164

oracle mode, to comprehensively measure LLM’s165

ability with and without human interaction.166

In the following sections, we will detail the con-167

struction of the dataset in Sec.2.1 and the evaluation168

modes and metrics in Sec.2.2.169

2.1 Evaluation Dataset170

Python Modules Selection We carefully choose171

modules that pertain to the fields of data science.172

It encompasses a wide array of topics such as data173

cleansing, visualization, model development, nat-174

ural language processing, image analysis, mathe-175

matical computations, and statistical methods. The176

modules we have selected are detailed in Tab.1.177

Topic Candidates Generation After selecting178

modules, we employ GPT-4 to summarize 50 topics179

for each module, to encapsulate the vast majority180

of the module’s functionalities, thereby offering181

precise guidance for the subsequent generation of182

more targeted questions. The specific prompts used183

in this process are elaborated in Appendix B.184

Tasks Generation and Refinement We sample185

a module and topic, then prompt GPT-4 to generate186

questions and code based on the prompt in Fig.3.187

The prompt is designed to enable GPT-4 to generate188

a Jupyter notebook with sequential steps and vari- 189

ous outputs, including numeric answers, structured 190

output, and visualizations, mirroring real-world 191

scenarios. Despite our request for concise descrip- 192

tions, the generated content may lack conciseness 193

and continuity. To address this, we undertake it- 194

erative refinement of these tasks. This process in- 195

volves presenting both good and bad cases, along 196

with additional modifications, to enhance the qual- 197

ity of questions and reduce ambiguity. Details of 198

prompts used for refinement are in Appendix B. 199

Template Tasks Although the topics covered in 200

the IPython are diverse, the datasets for each ex- 201

periment are often similar and commonly used in 202

machine learning tutorials (e.g., Titanic and Iris 203

datasets). This could potentially diminish the valid- 204

ity of the benchmark as models may have already 205

been extensively trained on these datasets. To ad- 206

dress this concern, we introduce an additional step 207

to enhance the variety of the benchmark. 208

Firstly, based on the generated tasks and exist- 209

ing high-quality notebooks and tutorials available 210

in each Python library documentation, we sum- 211

marize the template tasks, such as data loading, 212

filtering missing values, and analyzing the corre- 213

lation between data. With minor modifications, 214

these template tasks can be applied to a range of 215

datasets. Next, we diversify the benchmark by col- 216

lecting new datasets through two approaches: 1) 217

we prompt GPT-4 to generate datasets for differ- 218

3

Table 1: Selected Python modules and their categories.

Category Python Modules

Data Cleaning and Manipulation Pandas
Data Visualization Matplotlib, Seaborn
Modeling Scikit-learn, PyTorch, TensorFlow, LightGBM
Natural Language Processing NLTK
Image Processing OpenCV-Python
Mathematics and Statistics SciPy

Question Generation

Prompt:
Please create jupyter notebook experiment based on Python module {}. Please follow these rules:
1. The experiment should be conducted in a jupyter notebook manner, but use the markdown
format.
2. The experiment should only use Python code.
3. The experiment has around 10-15 continuous steps, from the easiest to the hardest.
4. The step description should be concise.
5. The step description should be precise and contain exact parameter names and values to instruct.
6. Each step requires Python code to solve and the executed result should be the numeric answer,
structured output, or visualized result.
7. Please use ‘matplotlib’ to visualize if necessary.
8. DO NOT have any steps to save or write any output files.
9. Please provide an input data file with an external link.
The experiment topic is {}. You should generate the experiment file without any other statements.

Figure 3: An example prompt of task generation.

ent templates, and GPT-4 allows for the flexible219

specification of characteristics and data attributes;220

2) we include the newest datasets from last year.221

These datasets offer authenticity and diversity, sig-222

nificantly reducing the likelihood that the model223

has previously encountered this data.224

Quality Control Due to the inherent limitations225

of LLMs, it’s challenging to guarantee perfect accu-226

racy in question descriptions and result correctness.227

To enhance the quality of the benchmark, we em-228

ploy several experts and utilize a code interpreter229

for manual double-checking. Our approach ensures230

that questions are written by a real user and vari-231

ous factors such as runtime are carefully controlled.232

For a comprehensive overview of the rules govern-233

ing quality control, please refer to Appendix B. The234

statistics of the dataset are shown in Appendix A.2.235

2.2 Evaluation Modes and Metrics236

Evaluation Modes As shown in Fig.4,237

CIBench includes the end-to-end and oracle mode.238

It not only assesses the model’s proficiency in239

autonomously resolving continuous problems240

but also assesses its capacity in conjunction with241

human interaction. In end-to-end mode, the model 242

must solve the problem by itself. Each subsequent 243

response is contingent upon the model’s previous 244

outcomes, necessitating self-correction based on 245

code interpreter feedback. What’s more, to reflect 246

the real-world scenarios where human assistance is 247

available, we introduce oracle mode to incorporate 248

human-generated ground truth code as context, 249

helping the model to address subsequent tasks. 250

Conceptually, oracle mode emulates a few-shot 251

testing scenario or in-context learning. It provides 252

the model with comprehensive and accurate 253

context to facilitate a more precise solution. 254

Evaluation Metrics In two evaluation modes, we 255

introduce two types of evaluation metrics: process- 256

oriented and output-oriented, to provide a com- 257

prehensive analysis of the model’s performance. 258

Process-oriented metrics focus on the correct in- 259

vocation of tools and the successful compilation 260

and execution of code. These metrics include the 261

Tool Call Rate, which measures the proportion of 262

instances where the model correctly follows the 263

instructions to invoke a code interpreter, and the 264

4

LLM:
Thought: We should use ‘Pandas’ to solve this step.

```python
import pandas as pd
data = pd.read_csv(path)
```

Act: Invoking code interperter.

Human Response (Ground Truth):

```python
import pandas as pd
path = xxx
data = pd.read_csv(path)
data.columns
```

User:
Load the dataset from path xxx.csv,
display the column names and ...

User:
Create a scatterplot with a regression
line to visualize the relationship between ……

System:
NameError: name ‘path’ is not defined.

System:
(Output of ground truth code)

User:
Load the dataset from path xxx.csv,
display the column names and ...

User:
Create a scatterplot with a regression
line to visualize the relationship between ……

End-to-End Mode Oracle Mode

Figure 4: Evaluation modes: In end-to-end mode, the LLM addresses the user’s question (bottom) within the context
of its response, while in oracle mode, it answers the user’s question (bottom) within the context of ground truth.

Executable Rate, which indicates the percentage of265

code that is executed without any errors.266

On the other hand, output-oriented metrics fo-267

cus on the outcomes of the model. These metrics268

include Numeric Accuracy, which assesses the ac-269

curacy of the numerical results; Text Score, which270

measures the quality of the structural text output271

using the Rouge metric (Lin, 2004); and Visualiza-272

tion Score, which evaluates the quality of visual273

output. Instead of using GPT-4V like Qwen-Agent,274

which is expensive and ineffective, we propose275

using structural similarities (Wang et al., 2004) be-276

tween predictions and ground truth images as the277

visualization score. These metrics provide a holis-278

tic evaluation of the LLM’s capabilities.279

3 Experiments280

3.1 Experiments Setup281

To provide a thorough analysis, we evaluate 19 chat282

models, including popular open-sourced LLMs and283

the private GPT-4, using the CIBench benchmark.284

During inference, we allow LLMs to attempt up285

to 3 times. The specific versions of Python mod-286

ules utilized in the code interpreter are provided287

in Appendix A.1. All experiments are conducted288

using NVIDIA A100 GPU within the OpenCom-289

pass (Contributors, 2023) evaluation platform.290

3.2 Main Results291

We roughly categorize the models into different292

groups based on their scales to facilitate better com-293

parison. Overall, as depicted in Tab.2, MistralAI294

and InternLM have emerged as frontrunners in both295

the 7B and 13-20B categories. Following closely296

behind is Qwen. In the 70B group, DeepSeek- 297

67B secures the top position with an overall score 298

slightly lower than that of InternLM2-20B. The 299

API model GPT-4 outperforms all other models, 300

especially in end-to-end mode, highlighting the 301

significant potential for improvement in current 302

open-source models. What’s more, larger models 303

tend to exhibit superior performance across vari- 304

ous metrics, in line with established trends (Brown 305

et al., 2020; Kaplan et al., 2020; Wei et al., 2022). 306

Moreover, models within the same series (such as 307

Mistral, InternLM, Qwen, etc.) consistently main- 308

tain relatively stable rankings within their respec- 309

tive parameter groups, underscoring the stability 310

and efficacy of our approach. 311

When comparing the end-to-end mode and ora- 312

cle mode, it becomes evident that the oracle mode 313

surpasses the end-to-end mode across all metrics. 314

This observation suggests that LLMs can achieve 315

better results with human interaction, hinting at a 316

promising avenue for integrating LLMs to assist 317

humans in data science. The experiment demos are 318

shown in Appendix C. 319

3.3 More Analysis 320

Reasoning Analysis Focusing on numerical re- 321

sults and structural text output, CIBench provides 322

an effective means to evaluate the model’s reason- 323

ing ability. To validate this, we average numeric 324

accuracy and text score in two evaluation modes, 325

then conduct a correlation analysis between this 326

reasoning metric and existing reasoning bench- 327

marks, such as HumanEval (Chen et al., 2021) and 328

GSM8k (Cobbe et al., 2021). As illustrated in Fig.5, 329

5

Table 2: Main results of CIBench. Tool, Exe, Num, Text, and Vis denote the tool call rate, executable rate, numeric
accuracy, text score, and visualization score respectively. bold denotes the best score among the same model scale.
Average is the mean of Num, Text, and Vis in two modes..

Model
END-TO-END MODE ORACLE MODE

Average
Tool Exe Num Text Vis Tool Exe Num Text Vis

LLaMA2-7B 37.8 17.9 3.3 7.3 4.3 90.6 50.7 24.4 31.5 37.5 18.1
Yi-6B 81.8 52.4 21.2 26.1 33.2 97.6 63.1 28.0 39.3 46.4 32.4
ChatGLM3-6B 67.5 45.5 19.3 21.1 24.1 98.5 59.9 31.8 33.1 37.3 27.8
DeepSeek-7B 80.2 53.8 16.9 21.9 35.6 94.8 68.2 41.0 64.7 47.4 37.9
Vicuna-7B 89.7 53.8 15.8 28.3 28.9 100.0 65.2 29.8 61.0 43.4 34.5
Qwen-7B 99.3 73.4 30.1 57.3 40.9 99.8 76.8 49.1 66.3 53.2 49.5
Mistral-7B 99.5 72.3 35.1 57.2 44.4 99.9 77.6 48.8 58.1 51.5 49.2
InternLM2-7B 99.3 70.0 44.6 44.3 47.4 100.0 79.0 53.8 81.1 54.9 54.3

LLaMA2-13B 95.9 67.5 12.7 22.4 21.2 99.3 70.2 35.8 34.3 36.7 27.2
Baichuan2-13B 64.4 48.9 5.0 3.7 19.3 97.0 63.9 39.3 70.6 44.5 30.4
Vicuna-13B 90.3 65.1 31.5 53.3 38.3 100.0 67.7 40.8 66.7 41.8 45.4
Qwen-14B 92.1 75.1 45.1 59.4 48.4 100.0 85.4 53.3 74.0 60.3 56.8
Mistral-8x7B 99.8 89.0 38.1 69.1 51.9 99.9 90.5 59.0 87.9 64.7 61.8
InternLM2-20B 98.9 87.3 56.3 72.6 51.3 99.3 86.3 65.6 87.0 63.0 66.0

Yi-34B 88.5 64.7 38.7 40.2 44.4 100.0 77.0 53.3 71.0 51.2 49.8
LLaMA2-70B 99.2 66.9 21.4 34.6 30.1 99.7 70.2 36.9 43.2 42.9 34.9
DeepSeek-67B 99.8 89.4 46.6 68.8 60.4 100.0 91.0 64.3 75.2 68.5 64.0
Qwen-72B 99.0 88.8 52.0 67.7 56.9 99.7 92.3 66.7 76.5 59.2 63.1

GPT-4-0613 99.7 98.4 66.8 75.7 65.5 99.8 97.8 70.7 84.2 73.6 72.8

20 30 40 50 60 70
CIBench Reasoning

0

10

20

30

40

50

60

70

Hu
m

an
ev

al
 P

as
s@

1

P<0.01

(a)
Score
Fitted Line
1 Std Dev

20 30 40 50 60 70
CIBench Reasoning

30

40

50

60

70

80

GS
M

8k
 S

co
re

P<0.01

(b)
Score
Fitted Line
1 Std Dev

Figure 5: CIBench Reasoning v.s. Humaneval Pass@1 and Gsm8K.

a significant correlation (p < 0.01) is revealed. This330

indicates that CIBench can serve as an alternative331

reasoning benchmark, providing a comprehensive,332

multi-dimensional evaluation that overcomes the333

limitations of current benchmarks.334

Visualization Metric Analysis To validate the335

effectiveness of our proposed visualization metric,336

we follow QwenAgent (Bai et al., 2023) and use337

GPT-4V to assess visualization scores on a sub-338

set of CIBench tasks. The prompt is provided in339

Appendix D. As shown in Fig.7, despite structural 340

similarities being derived from low-level features, 341

there is a strong correlation between them and GPT- 342

4V scores, demonstrating remarkable consistency 343

between the two metrics. Therefore, we can utilize 344

structural similarities as a simplified visualization 345

metric to subject GPT-4V for effective analysis. 346

Debug Ability Analysis In the ReAct protocol, 347

we allow LLMs to try to solve tasks multiple times. 348

6

1 2 3 4
Max Trial

90

95

100
Ra

te
Tool Call Rate

1 2 3 4
Max Trial

60

70

80

90
Executable Rate

1 2 3 4
Max Trial

40

50

Numeric Accuracy

InternLM2-7B InternLM2-20B Mistral-7B Mistral-8x7B

1 2 3 4
Max Trial

40

50

60

70
Text Score

1 2 3 4
Max Trial

40

45

50

Visualization Score

Figure 6: Ablation of trial times in ReAct protocol.

20 25 30 35 40 45 50 55 60
GPT-4V Scores

25

30

35

40

45

50

55

60

65

St
ru

ct
ur

al
 S

im
ila

rit
y

Score
Fitted Line

Figure 7: Structural Similarities v.s. GPT-4V Scores.

During each trial, the model can use feedback from349

the code interpreter to rectify any bugs in the gen-350

erated code. To assess the LLMs’ ability to au-351

tonomously correct bugs, we vary the number of352

trials. As shown in Fig.6, increasing the number of353

trials correlates with improvements across all met-354

rics. Significantly, there is a notable enhancement355

when the number of trials reaches two, particularly356

evident in metrics such as tool rate and executable357

rate. The slight decrease in InternLM2-20B’s Tool358

Call Rate may be attributed to random failures of359

the code interpreter. This suggests that the LLM360

can autonomously rectify bugs to a certain extent.361

In our experiments, to balance evaluation time and362

performance, we set the number of trials to three.363

Different Category Modules Analysis We an-364

alyze the abilities of various LLMs with different365

category modules (Tab.1). As depicted in Fig. 1,366

LLMs excel in solving mathematics and statistics367

tasks using SciPy modules but struggle with com-368

plex modeling tasks that require advanced coding369

and reasoning abilities. We hope that future LLMs370

will excel in modeling tasks.371

Error Mode Analysis In the evaluation of372

CIBench, we identify four prevalent types of errors373

in the code generated by the model. These errors374

are categorized as follows: 1) Instruction Follow-375

ing Errors: These encompass instances where the376

Lla
ma2

-1
3B

Vic
un

a-1
3B

Qw
en

-1
4B

Mi
xt

ra
l-8

x7
B

Int
er

nL
M2

-2
0B

Yi-
34

B
Lla

ma2
-7

0B
De

ep
Se

ek
-6

7B
Qw

en
-7

2B
GP

T-4
-0

61
3

0

10

20

30

40

50

60

70 Chinese
English

Figure 8: Chinese CIBench v.s. English CIBench .

model deviates from or disregards provided instruc- 377

tions, reflecting a lack of adherence to specified 378

guidelines; 2) Hallucination Errors: This cate- 379

gory pertains to the phenomenon of the model gen- 380

erating code that contains hallucinated elements, 381

such as utilizing undefined parameters or refer- 382

encing irrelevant variables; 3) Reasoning Errors: 383

These errors occur when the model encounters com- 384

plex problems, often resulting in logical errors in 385

the generated code. Such errors offer valuable in- 386

sights into the model’s ability to handle intricate 387

tasks in code generation; 4) Code Errors: Basic 388

errors in code generation fall under this category. 389

While these errors may sometimes appear trivial, 390

they signify potential deficiencies in the model’s 391

code-generation process. These identified errors 392

effectively underscore the current limitations of 393

LLMs in terms of their coding capabilities, provid- 394

ing valuable insights for the ongoing development 395

of CIBench. Detailed examples of these errors are 396

presented in Appendix E. 397

Cross Language Analysis To benchmark the 398

LLMs’ ability in Chinese, we created a Chinese 399

version of CIBench by translating the template 400

tasks into Chinese. This allows us to evaluate 401

the Code Interpreter performance in Chinese. As 402

shown in Fig.8, we observe that: 1) most models 403

7

exhibit a slight decrease in Chinese CIBench com-404

pared to their English counterparts.; 2) the strong405

InternLM2-20B and Qwen-72B drop a lot on Chi-406

nese CIBench, compared to the English version.407

Further research and development efforts are neces-408

sary to address these discrepancies and improve the409

performance of LLMs in multilingual scenarios.410

4 Related Works411

CIBench is an evaluation framework that assesses412

LLMs’ (Touvron et al., 2023; Bai et al., 2023;413

DeepSeek-AI, 2024; Chiang et al., 2023) ability414

to utilize external code interpreters for solving data415

science tasks. Therefore, we focus on present-416

ing work related to invoking code interpreters and417

benchmarks related to data science.418

4.1 Model with Plugins419

LLM-based agents use external tools via APIs to420

solve complex tasks and have been regarded as421

a promising direction (Chase, 2022; Qin et al.,422

2023; Significant Gravitas; Schick et al., 2023;423

Hong et al., 2023; Wu et al., 2023). Specifically,424

(Li et al., 2023b; Hong et al., 2023; Qian et al.,425

2023) develop efficient workflows to coordinate426

multi-agent systems for automatic programming.427

(Schick et al., 2023; Chase, 2022; Qin et al., 2023;428

Gao et al., 2023) equip LLMs with external tools,429

such as search engines, calculators, and code inter-430

preters, to augment LLMs’ problem-solving ability.431

Among these tools, the code interpreter can pro-432

mote LLMs’ reasoning and coding ability and has433

gradually gained attention in works like (Ying et al.,434

2024; Zhou et al., 2023; Zhuang et al., 2023).435

In line with the above works, we aim to develop436

an evaluation framework to benchmark LLMs’ abil-437

ity with code interpreters for solving data science438

tasks, providing insights for future work to promote439

LLMs for better realistic utilization.440

4.2 Related Benchmarks441

Various benchmarks (Cobbe et al., 2021; Chen442

et al., 2021; Qin et al., 2023; Bai et al., 2023)443

have been proposed to measure LLMs’ reason-444

ing, coding, and tool utilization ability. Classic445

benchmarks, such as GSM8K (Cobbe et al., 2021),446

MATH (Hendrycks et al., 2021), HumanEval (Chen447

et al., 2021), and MBPP (Austin et al., 2021), fo-448

cus on evaluating the mathematical reasoning or449

code capability of LLMs. ToolBench (Qin et al.,450

2023) and MS-Agent Bench (Li et al., 2023a) aim451

to evaluate LLMs’ capability in effectively utilizing452

various tools and generating accurate and contex- 453

tually appropriate responses. However, the above 454

benchmarks cannot measure LLMs’ ability in data 455

science tasks, which require instruction following, 456

coding, and tool utilization abilities. To address 457

this gap, QwenAgent (Bai et al., 2023) introduces 458

a benchmark for data science, focusing mainly 459

on mathematical problems and data visualization. 460

Meanwhile, (Hu et al., 2024) introduces DABench, 461

which evaluates various concepts with individual 462

questions assigned to each dataset. However, this 463

approach does not effectively mimic practical sce- 464

narios where interconnected questions are raised. 465

In contrast to (Bai et al., 2023; Hu et al., 2024), 466

CIBench simulates a real-world data science work- 467

flow by leveraging sequential interactive IPython 468

sessions and covers most concepts in data science 469

by including commonly used Python modules. Fur- 470

thermore, we devise two evaluation modes and five 471

metrics to holistically evaluate LLMs’ abilities. 472

5 Limitation 473

Our work has three main limitations: 1) CIBench is 474

currently limited to Python, despite it could be ex- 475

tended to include other programming languages 476

using a similar methodology; 2) the evaluation met- 477

ric of CIBench has limitations in measuring certain 478

data science tasks, such as "training a model with 479

PyTorch" and tasks involving randomness; 3) the er- 480

ror mode analysis lacks quantitative results, which 481

may require manual verification, hindering a better 482

understanding the most severe errors for LLMs. 483

6 Conclusion 484

We propose a novel benchmark, named CIBench , 485

to comprehensively assess LLMs’ ability to lever- 486

age code interpreters for complex data science 487

tasks. It includes an evaluation dataset covering 488

widely used Python modules in data science and 489

two evaluation modes measuring LLMs’ ability 490

with and without human assistance. The evaluation 491

dataset is constructed using an LLM-human cooper- 492

ative approach, leveraging interactive IPython ses- 493

sions to simulate realistic scenarios in data science. 494

Thorough experimental analysis with 19 LLMs on 495

CIBench indicates that LLMs perform poorly in 496

modeling category modules, with the best open- 497

sourced LLM lagging behind GPT-4 by 6.8%. We 498

hope that our detailed analysis provides valuable 499

insights for future work to enhance LLMs’ ability 500

in data science tasks. 501

8

References502

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten503
Bosma, Henryk Michalewski, David Dohan, Ellen504
Jiang, Carrie Cai, Michael Terry, Quoc Le, and505
Charles Sutton. 2021. Program synthesis with large506
language models.507

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,508
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei509
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,510
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,511
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,512
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong513
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-514
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,515
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,516
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-517
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang518
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang519
Zhu. 2023. Qwen technical report.520

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie521
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind522
Neelakantan, Pranav Shyam, Girish Sastry, Amanda523
Askell, Sandhini Agarwal, Ariel Herbert-Voss,524
Gretchen Krueger, Tom Henighan, Rewon Child,525
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,526
Clemens Winter, Christopher Hesse, Mark Chen, Eric527
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,528
Jack Clark, Christopher Berner, Sam McCandlish,529
Alec Radford, Ilya Sutskever, and Dario Amodei.530
2020. Language models are few-shot learners.531

Harrison Chase. 2022. LangChain.532

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming533
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-534
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,535
Greg Brockman, Alex Ray, Raul Puri, Gretchen536
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-537
try, Pamela Mishkin, Brooke Chan, Scott Gray,538
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz539
Kaiser, Mohammad Bavarian, Clemens Winter,540
Philippe Tillet, Felipe Petroski Such, Dave Cum-541
mings, Matthias Plappert, Fotios Chantzis, Eliza-542
beth Barnes, Ariel Herbert-Voss, William Hebgen543
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie544
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,545
William Saunders, Christopher Hesse, Andrew N.546
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan547
Morikawa, Alec Radford, Matthew Knight, Miles548
Brundage, Mira Murati, Katie Mayer, Peter Welinder,549
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya550
Sutskever, and Wojciech Zaremba. 2021. Evaluating551
large language models trained on code.552

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,553
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan554
Zhuang, Yonghao Zhuang, Joseph E Gonzalez,555
et al. 2023. Vicuna: An open-source chat-556
bot impressing gpt-4 with 90%* chatgpt quality.557
https://vicuna.lmsys.org.558

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,559
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias560

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 561
Nakano, Christopher Hesse, and John Schulman. 562
2021. Training verifiers to solve math word prob- 563
lems. 564

OpenCompass Contributors. 2023. Opencompass: 565
A universal evaluation platform for foundation 566
models. https://github.com/open-compass/ 567
opencompass. 568

DeepSeek-AI. 2024. Deepseek llm: Scaling open- 569
source language models with longtermism. 570

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 571
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 572
ham Neubig. 2023. Pal: Program-aided language 573
models. In International Conference on Machine 574
Learning, pages 10764–10799. PMLR. 575

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 576
Arora, Steven Basart, Eric Tang, Dawn Song, and 577
Jacob Steinhardt. 2021. Measuring mathematical 578
problem solving with the math dataset. 579

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 580
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven 581
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023. 582
Metagpt: Meta programming for multi-agent collabo- 583
rative framework. arXiv preprint arXiv:2308.00352. 584

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin 585
Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming Zhu, 586
Yao Cheng, et al. 2024. Infiagent-dabench: Evalu- 587
ating agents on data analysis tasks. arXiv preprint 588
arXiv:2401.05507. 589

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. 590
Brown, Benjamin Chess, Rewon Child, Scott Gray, 591
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 592
Scaling laws for neural language models. 593

Chenliang Li, Hehong Chen, Ming Yan, Weizhou Shen, 594
Haiyang Xu, Zhikai Wu, Zhicheng Zhang, Wen- 595
meng Zhou, Yingda Chen, Chen Cheng, Hongzhu 596
Shi, Ji Zhang, Fei Huang, and Jingren Zhou. 2023a. 597
Modelscope-agent: Building your customizable 598
agent system with open-source large language mod- 599
els. 600

Guohao Li, Hasan Abed Al Kader Hammoud, Hani 601
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 602
2023b. Camel: Communicative agents for" mind" 603
exploration of large scale language model society. 604
arXiv preprint arXiv:2303.17760. 605

Chin-Yew Lin. 2004. Rouge: A package for automatic 606
evaluation of summaries. In Text summarization 607
branches out, pages 74–81. 608

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, 609
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong 610
Sun. 2023. Communicative agents for software de- 611
velopment. arXiv preprint arXiv:2307.07924. 612

9

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2309.16609
http://arxiv.org/abs/2005.14165
https://github.com/langchain-ai/langchain
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
http://arxiv.org/abs/2401.02954
http://arxiv.org/abs/2401.02954
http://arxiv.org/abs/2401.02954
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan613
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,614
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,615
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,616
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-617
cilitating large language models to master 16000+618
real-world apis.619

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta620
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola621
Cancedda, and Thomas Scialom. 2023. Toolformer:622
Language models can teach themselves to use tools.623
arXiv preprint arXiv:2302.04761.624

Significant Gravitas. AutoGPT.625

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-626
bert, Amjad Almahairi, Yasmine Babaei, Nikolay627
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti628
Bhosale, et al. 2023. Llama 2: Open founda-629
tion and fine-tuned chat models. arXiv preprint630
arXiv:2307.09288.631

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simon-632
celli. 2004. Image quality assessment: from error633
visibility to structural similarity. IEEE Transactions634
on Image Processing, 13(4):600–612.635

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,636
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,637
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.638
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy639
Liang, Jeff Dean, and William Fedus. 2022. Emer-640
gent abilities of large language models.641

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,642
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,643
Xiaoyun Zhang, and Chi Wang. 2023. Auto-644
gen: Enabling next-gen llm applications via multi-645
agent conversation framework. arXiv preprint646
arXiv:2308.08155.647

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak648
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.649
React: Synergizing reasoning and acting in language650
models.651

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou,652
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,653
Kuikun Liu, Ziyi Wang, et al. 2024. Internlm-math:654
Open math large language models toward verifiable655
reasoning. arXiv preprint arXiv:2402.06332.656

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun657
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi658
Song, Mingjie Zhan, et al. 2023. Solving challenging659
math word problems using gpt-4 code interpreter660
with code-based self-verification. arXiv preprint661
arXiv:2308.07921.662

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and663
Chao Zhang. 2023. Toolqa: A dataset for llm ques-664
tion answering with external tools. arXiv preprint665
arXiv:2306.13304.666

A Dataset Details 667

A.1 Module Version Settings 668

The version of Python modules used in code inter- 669

preters is listed in Tab.3. 670

Table 3: The module version settings in CIBench.

Module Version

Pandas 1.5.3
Matplotlib 3.7.2
Seaborn 0.13.0
Scikit-learn 1.2.1
PyTorch 1.13.1
TensorFlow 2.14.0
LightGBM 4.1.0
NLTK 3.8
PyTorch 1.131
OpenCV-Python 4.8.1.78
SciPy 1.11.2

A.2 Dataset Statistics 671

The CIBench comprises generation tasks, template 672

tasks, and Chinese template tasks, which produce 673

three types of output: numerical, text, and visu- 674

alization. The statistics of CIBench are shown in 675

Tab.4. 676

Table 4: Dataset statistics of CIBench. "generation",
"template", and "template_cn" represent generation
tasks, template tasks, and Chinese template tasks, re-
spectively. Other refers to the questions that only re-
quire successful execution without any output compari-
son.

Subset Num Text Vis Other Total

generation 210 76 466 208 960
template 147 20 161 142 470

template_cn 147 20 161 142 470

total 504 116 788 492 1900

B Construction Prompts and Rules 677

Topic Generation The prompt used for topic 678

generation is shown in Fig. 11. 679

Question Refinement The prompts used for 680

question refinement are shown in Fig. 12, 13. 681

Quality Control Rules We include manual qual- 682

ity checking in the final steps due to limitations in 683

the LLMs’ ability to control runtime or file size. 684

The rules used for quality control are shown in 685

Fig.14. 686

10

http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://github.com/Significant-Gravitas/AutoGPT
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629

C Experiment Example Demo687

An example of the experiment is shown in Fig. 9688

and Fig. 10.689

D Subjective Visualization Evaluation690

The prompt used for subjective visualization scor-691

ing is shown in Fig.15.692

E Dataset Error Analysis693

In the evaluation of CIBench, we identify four694

prevalent types of errors in the code generated by695

the model. These errors are categorized as fol-696

lows: 1) Instruction Following Errors (Fig.16):697

These encompass instances where the model devi-698

ates from or disregards provided instructions, re-699

flecting a lack of adherence to specified guidelines;700

2) Hallucination Errors (Fig.17): This category701

pertains to the phenomenon of the model generat-702

ing code that contains hallucinated elements, such703

as utilizing undefined parameters or referencing704

irrelevant variables; 3) Reasoning Errors (Fig.18):705

These errors occur when the model encounters com-706

plex problems, often resulting in logical errors in707

the generated code. Such errors offer valuable in-708

sights into the model’s ability to handle intricate709

tasks in code generation; 4) Code Errors (Fig.19):710

Basic errors in code generation fall under this cat-711

egory. While these errors may sometimes appear712

trivial, they signify potential deficiencies in the713

model’s code-generation process. These identified714

errors effectively underscore the current limitations715

of LLMs in terms of their Code Interpreter capabil-716

ities, providing valuable insights for the ongoing717

development of CIBench.718

F Human Annotator719

In our paper, the authors also serve as annotators for720

CIBench. These annotators are tasked with creating721

template tasks for various data science challenges,722

ensuring coverage of a wide range of concepts in723

the field. Importantly, our data collection process724

for these tasks is unbiased and does not involve any725

private information.726

G Ethical Consideration727

We use GPT-4 and online resources to construct728

our benchmark. The benchmarks are carefully pro-729

cessed by experts to exclude any private informa-730

tion. Additionally, we utilize ChatGPT for text731

refinement and to correct any typographical errors 732

during the writing process. 733

11

Figure 9: Example of successful experiment.

12

Figure 10: Example of successful experiment. Continue of Fig. 9.
13

Topic Generation

Prompt:
Please create 50 different topics base on Python module {}. These topics can cover the majority of
functionality of this module.

Figure 11: An example prompt of topic generation.

Question Refinement

Prompt:
Based on the experiment document and each step, please refine these steps into specific instructions
for code writing to solve a real world question.
Provide parameter settings if needed, ensuring that the execution results are identical for any
reasonable person attempting to write the code.
Please refrain from directly mentioning the name of the API, just target on purpose and give
parameter settings.
Please also summarize the required external dataset if applicable.

Bad case step:

1. "Remove the ’Cabin’ column from the dataframe due to its numerous missing values. Make
sure to specify that you are removing a column and that the change should be permanent."
Too wordy, "Remove the ’Cabin’ column and make the change permanent." should be fine.

2. "Identify and count how many values are missing in each column of the dataframe. Use a chain
of two functions: the first checks if each value is null, and the second adds up these null instances
for each column."
Too specific, "Count how many values are missing in each column of the dataframe. Print the
count." should be fine.

Good case step:

1. "Convert the ’Sex’ column to numerical values. Map ’male’ to 0 and ’female’ to 1." Concise,
clear instruction.

Your output format should be as follows starting with import necessary libraries:
[Optional] Dataset Link:
[Optional] Dataset Description:

Step 1. xx
code blcok
Step 2. xx
code blcok
...

Figure 12: An example prompt of question refinement.

14

Another Question Refinement

Prompt:
Given the above experiment document. Do the following modification:
1. Remove all the installation steps.
2. Remove all the file saving steps.
3. Elaborate the steps to be more specific with number and inputs that the execution results are
identical for any reasonable person attempting to solve this step.
4. Reorder the steps.

Response with the new experiment document.

Figure 13: Another example prompt of question refinement.

Quality Control Rules

Check Rules:

• Assure the questions is written from the perspective of a real user.

• Assure file path informed in the head for all the experiment required external files.

• Control the runtime, and each step should ideally produce results within 1 minute.

• Control the file size, the file used for single experiment should ideally not exceed 50M.

• Assure the output is valid and unambiguous as ground truth.

Figure 14: Rules used for manual dataset quality control.

15

Subjective Visualization Scoring Prompt

Prompt:
You are an assistant skilled in assessing visualization capabilities.
In the capacity of a fair judge, you will evaluate the quality of images drawn by an AI model
generating code for visualization-related problems. We will provide you with a code visualization
problem and an image drawn by the code created by the AI model you need to assess. When you
start your assessment, you must adhere to the following process:
1. Rate the visualization capability with a score between 1 and 10 for the image, returning only the
number without any additional descriptions.
2. Your scoring needs to be as rigorous as possible, and it should follow the scoring rules below:
Overall, the higher the quality of the model’s response, the higher the score.

A score of 1 to 2 is given when the image cannot reflect the given instruction content at all.
A score of 3 to 4 is given when the image can partly reflect the given instruction content, but there
is a significant lack of specific detail expression.
If the image basically meets the given instructions, but the aesthetic quality of the image is average
without any outstanding features, this kind of rating can get a score of 5 to 6.
When the image matches the given instructions well, and shows some aesthetic appeal, such as
some originality in color matching and shape design, this kind of rating can get a score of 7 to 8.
Only when the image completely matches the given instructions, covers all the details in the
instructions, and performs excellently in terms of aesthetics, can this kind of rating get a score of 9
to 10.

[Visualization Problem]:{question}

Figure 15: An example prompt of subjective visualization scoring prompt.

16

Following error

User:
Detect corners using the Shi-Tomas corner detector with max-corners=50, min-distance=0.5 and
blocksize=10, mark the corners with circles on the image. The radius and thickness of the circle
are 5 and 1. Show the marked image.Please use opencv and numpy modules.
Assistant:
Detect corners using Shi -Tomasi corner detector
corners = cv2.goodFeaturesToTrack(equalized_image ,

maxCorners=max_corners ,
qualityLevel=quality_level ,
minDistance=min_distance ,
blockSize=block_size)

Mark the corners with circles on the image
marked_image = equalized_image.copy()
for corner in corners:

x, y = corner.ravel()
cv2.circle(marked_image , (int(x), int(y)), 5, (255, 0, 0), -1)

Draw a blue filled circle at each corner

Show the marked image
plt.imshow(marked_image , cmap=’gray’)
plt.axis(’off’) # Turn off axis numbers and ticks
plt.show()

System:
NameError Traceback (most recent call last)
Cell In[6], line 2

1 # Detect corners using Shi -Tomasi corner detector
----> 2 corners = cv2.goodFeaturesToTrack(equalized_image , maxCorners=max_corners ,
qualityLevel=quality_level , minDistance=min_distance , blockSize=block_size)

4 # Mark the corners with circles on the image
5 marked_image = equalized_image.copy()

NameError: name ’max_corners ’ is not defined

User: Define the CrossEntropyLoss function and the Adam optimizer. Train the model for 3
epochs. Display the loss for the last epoch(Keep to two decimal places).
Assistant:
import torch.optim as optim

criterion = nn.CrossEntropyLoss ()
optimizer = optim.Adam(model.parameters (), lr =0.001)

epochs = 3
for epoch in range(epochs):

model.train()
running_loss = 0.0
for inputs , labels in train_loader:

inputs , labels = inputs.to(device), labels.to(device)

optimizer.zero_grad ()

outputs = model(inputs)
loss = criterion(outputs.squeeze(), labels.float ())
loss.backward ()
optimizer.step()

running_loss += loss.item()

final_loss = round(running_loss/len(train_loader), 2)
print(final_loss)

System:
933.55
933.45
933.09

Figure 16: Examples of Following error

17

Hallucination error

User:
Build a vocabulary of all the tokens and assign an index to the vocabulary. Display the index of the
word "happy". Please use nltk modules.
Assistant:
Check the vocabulary
vocab
Display the index of the word "happy"
word_to_index.get(’happy’, ’Word not found in vocabulary ’)

System:
NameError Traceback (most recent call last)
Cell In[2], line 2

1 # Check the vocabulary
----> 2 vocab

3 # Display the index of the word "happy"
4 word_to_index.get(’happy ’, ’Word not found in vocabulary ’)

NameError: name ’vocab ’ is not defined

User:
Define a LightGBM model with max_depth=4, n_estimators=120, learning_rate=0.01 and
num_leaves=31. Train the model with Evaluation Metric=’logloss’. Please use LightGBM
modules.
Assistant:
import lightgbm as lgb

Define the LightGBM model
model = lgb.LGBMClassifier(max_depth=4, n_estimators =120, learning_rate =0.01, num_leaves =31)

Train the model with evaluation metric as ’logloss ’
model.fit(X_train , y_train , eval_set =(X_test , y_test), eval_metric=’logloss ’, early_stopping_rounds =20)

System:
TypeError Traceback (most recent call last)
Cell In[3], line 7

4 model = lgb.LGBMClassifier(max_depth=4, n_estimators =120, learning_rate =0.01,
num_leaves =31)
6 # Train the model with evaluation metric as ’logloss ’

----> 7 model.fit(X_train , y_train , eval_set =(X_test , y_test), eval_metric=’logloss ’,
early_stopping_rounds =20)

TypeError: LGBMClassifier.fit() got an unexpected keyword argument ’early_stopping_rounds ’

Figure 17: Examples of Hallucination error

18

Reasoning error

User:
Split the dataset into training and testing sets using 0.2 as the test size, then define the train_loader
and test_loader. Set batch size as 64. Please use pytorch and sklearn modules.
Assistant:
from sklearn.model_selection import train_test_split
import torch
from torch.utils.data import DataLoader , TensorDataset

Split the dataset into training and testing sets
X = df[’text’]. values
y = df[’sentiment ’]. values
X_train , X_test , y_train , y_test = train_test_split(X, y, test_size =0.2, random_state =42)

Define the train_loader and test_loader
def create_data_loader(X, y, batch_size):

X_tensor = torch.tensor(X)
y_tensor = torch.tensor(y, dtype=torch.long)
dataset = TensorDataset(X_tensor , y_tensor)
data_loader = DataLoader(dataset , batch_size=batch_size)
return data_loader

batch_size = 64
train_loader = create_data_loader(X_train , y_train , batch_size)
test_loader = create_data_loader(X_test , y_test , batch_size)

System:
TypeError Traceback (most recent call last)
Cell In[4], line 19

16 return data_loader
18 batch_size = 64

---> 19 train_loader = create_data_loader(X_train , y_train , batch_size)
20 test_loader = create_data_loader(X_test , y_test , batch_size)

Cell In[4], line 12
11 def create_data_loader(X, y, batch_size):

---> 12 X_tensor = torch.tensor(X)
13 y_tensor = torch.tensor(y, dtype=torch.long)
14 dataset = TensorDataset(X_tensor , y_tensor)

TypeError: can ’t convert np.ndarray of type numpy.object_. The only supported types are: float64 ,
float32 , float16 , complex64 , complex128 , int64 , int32 , int16 , int8 , uint8 , and bool.

User:
Group and aggregate data by weight and calculate the average of each numerical group. Find out
how many attributes have a negative correlation with weight.Please use pandas modules.
Assistant:
Group and aggregate data by weight and calculate the average of each numerical group
grouped_data = df.groupby(’Weight ’).mean()

Find attributes with negative correlation with weight
negative_correlation_count = (grouped_data.corr ()[’Weight ’] < 0).sum()
negative_correlation_count

System:
KeyError Traceback (most recent call last)
File anaconda3/envs/prod -torch1 .13/ lib/python3 .10/site -packages/pandas/core/indexes/base.py:3802,
in Index.get_loc(self , key , method , tolerance)

3801 try:
-> 3802 return self._engine.get_loc(casted_key)

3803 except KeyError as err:

File anaconda3/envs/prod -torch1 .13/ lib/python3 .10/site -packages/pandas/_libs/index.pyx:138, in
pandas._libs.index.IndexEngine.get_loc ()

File anaconda3/envs/prod -torch1 .13/ lib/python3 .10/site -packages/pandas/_libs/index.pyx:165, in
pandas._libs.index.IndexEngine.get_loc ()

File pandas/_libs/hashtable_class_helper.pxi:5745, in
pandas._libs.hashtable.PyObjectHashTable.get_item ()

File pandas/_libs/hashtable_class_helper.pxi:5753, in
pandas._libs.hashtable.PyObjectHashTable.get_item ()

KeyError: ’Weight ’

Figure 18: Examples of Reasoning error

19

Code error

User:
Generate a pair plot for all the numerical columns, using color = "pastel".Please use seaborn
modules.
Assistant:
sns.pairplot(df, kind=’scatter ’, plot_kws ={’color’:’pastel ’})
plt.show()

System:
ValueError Traceback (most recent call last)
File anaconda3/envs/prod -torch1 .13/ lib/python3 .10/site -packages/matplotlib/axes/_axes.py:4372, in
Axes._parse_scatter_color_args(c, edgecolors , kwargs , xsize , get_next_color_func)

4371 try:
-> 4372 mcolors.to_rgba_array(kwcolor)

4373 except ValueError as err:

File anaconda3/envs/prod -torch1 .13/ lib/python3 .10/site -packages/matplotlib/colors.py:471, in
to_rgba_array(c, alpha)

470 if isinstance(c, str):
--> 471 raise ValueError(f"{c!r} is not a valid color value .")

473 if len(c) == 0:

ValueError: ’pastel ’ is not a valid color value.

User:
Blur the initial image by applying a Gaussian filter with a sigma value of 3. Sigma is the standard
deviation for the Gaussian kernel, which controls the amount of blur. Then display the smoothed
image.
Assistant:
smooth = ndimage.gaussian_filter(image , sigma =3)
plt.imshow(smooth)
plt.show()

System:
NameError Traceback (most recent call last)
Cell In[48], line 2

1 smooth = ndimage.gaussian_filter(image , sigma =3)
----> 2 plt.imshow(smooth)

3 plt.show()

NameError: name ’plt ’ is not defined

Figure 19: Examples of Code error

20

	Introduction
	CIBench
	Evaluation Dataset
	Evaluation Modes and Metrics

	Experiments
	Experiments Setup
	Main Results
	More Analysis

	Related Works
	Model with Plugins
	Related Benchmarks

	Limitation
	Conclusion
	Dataset Details
	Module Version Settings
	Dataset Statistics

	Construction Prompts and Rules
	Experiment Example Demo
	Subjective Visualization Evaluation
	Dataset Error Analysis
	Human Annotator
	Ethical Consideration

