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ABSTRACT

Estimating treatment effects on composite outcomes is challenging, particularly
in high-stake decision making domains such as healthcare where multiple re-
lated outcomes jointly inform clinical decisions. Existing approaches often sim-
plify this problem by collapsing multiple component outcomes into a single tar-
get, overlooking the underlying structure, introducing modeling bias, and limit-
ing interpretability. In this work, we propose CROME (Causal Representation
for Composite Qutcome via Multi-task Estimation), a framework that leverages
representation learning, multi-task learning (MTL), and covariate-balancing tech-
niques to predict component-level potential outcomes, which are then aggregated
through a user-specified utility function. CROME jointly learns a shared rep-
resentation across tasks along with outcome-specific prediction heads, enabling
accurate and interpretable estimation of treatment effects on composite outcomes.
Our theoretical results show that CROME achieves lower generalization error,
under mild conditions, than MTL without shared representation and single-task
baselines. Empirical results on synthetic and semi-synthetic datasets inspired
by the Infant Health and Development Program (IHDP) and an electronic health
records (EHR) dataset in oncology confirm the advantages of our approach over
existing methods including enhanced accuracy and interpretability. Our frame-
work provides a principled and flexible solution for causal inference in complex,
multi-outcome clinical settings, with broad applicability across patient-reported
and EHR-derived data.

1 INTRODUCTION

Patient-reported outcomes (PROs) (Deshpande et al., 2011 Rothman et al.| 2007} |Lohr & Zebrack,
2009; Johnston et al.l 2019; |[Fayers & Machin, |2013) are health reports given directly by patients
about how they feel and how a treatment affects their daily life. They play an important role in eval-
uating treatment efficacy by capturing patients’ perspectives on symptoms, functioning, and quality
of life. In clinical research domains such as oncology and chronic disease management, multiple
PROs are often aggregated into a composite outcome (Cordoba et al., |2010; McKenna & Heaney,
2020; [Freemantle et al.l 2003} |Gewandter et al., 2021} |Wells et al.,|2021) to provide a holistic mea-
sure of patient well-being. These composite outcomes are typically defined through a utility function
(Luckett et al., [2021)) that reflects clinical priorities or patient preferences and are increasingly used
as primary endpoints in trials. However, estimating causal effects on composite outcomes remains
challenging, particularly when component outcomes share complex latent structure or when the data
are noisy, as in electronic health record (EHR) settings (Chauhan et al., [2025]).

A central difficulty lies in the fact that composite outcomes obscure the underlying structure and
heterogeneity of their component outcomes. Directly modeling the composite can lead to misspeci-
fied models and poor generalization, particularly when the function linking components is complex.
Moreover, PROs and EHR-derived features often share latent structure across outcomes, making it
inefficient to estimate each component separately. These challenges call for new methodological
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advances that both respect the structural relationships among component outcomes and leverage
shared information across prediction tasks.

To address these challenges, we propose CROME—a novel framework for Causal Representation
Learning for Composite Outcomes via Multi-Task Estimation. Our key contributions are as follows:

* New framework for composite outcome modeling: We introduce a multi-task learning
architecture with a shared encoder and task-specific heads as well as covariate-balancing
regularization to predict individual potential outcomes. These predictions are composed
using a user-defined utility function, allowing flexible and interpretable modeling of the
treatment effect on composite outcome.

* Theoretical guarantees for generalization error in treatment effect estimation: We de-
rive generalization bounds for the treatment effect estimation on composite outcome via
CROME and prove that CROME vyields tighter error bounds than both single-task and
multi-task learning without shared representation baselines under mild conditions, particu-
larly in settings with correlated outcomes.

* Clinically meaningful interpretability: By predicting each component outcome and ex-
plicitly modeling their aggregation, CROME enables decomposition of the treatment effect
on composite outcome into component-level contributions, facilitating interpretation at both
individual and cohort levels.

* Extensive empirical validation: We evaluate CROME on synthetic benchmarks, IHDP,
and semi-synthetic EHR data, showing that it consistently outperforms several baselines in
accuracy, and interpretability of treatment effect estimation.

2 RELATED WORKS

Causal learning and treatment effect estimation. A large body of research has focused on estimat-
ing CATE from observational data. Classical approaches include meta-learners (Kiinzel et al., 2019;
Nie & Wager,|2021), doubly robust methods (Kennedyl, 2023), tree-based techniques such as Causal
Forests (Athey & Wager, 2019) and Bayesian Additive Regression Trees (BART) (Chipman et al.,
2010), as well as neural network-based architectures including TARNet and CFRNet (Shalit et al.,
2017). More recent innovations explore generative modeling and embedding-based frameworks to
enhance treatment effect estimation (Makino et al., 2022} Rivera et al., [2023; [Wu et al.| [2024). In
parallel, causal representation learning has emerged as a promising approach for mitigating bias by
learning balanced or invariant representations of covariates, building upon the foundational potential
outcomes framework (Rubinl [1974; Rosenbaum & Rubin, [1983)). Notable advances include inter-
ventional and invariant representation learning approaches (Sun et al., 2024; |Chauhan et al., 2025}
Ahuja et al.l 2023 Scholkopf et al., |2021), which aim to capture causal structure while improving
predictive accuracy.

Causal effect estimation and multi-task learning. Multi-task learning (MTL) has been widely
studied to improve generalization by leveraging shared information across related prediction
tasks (Zhang & Yang, 2021; Maurer et al} [2016). In the context of causal inference, recent ef-
forts (Alaa & Van Der Schaar, 2017; |Aglietti et al.| |2020; Jiang et al., |2023)) have explored using
MTL frameworks to enhance treatment effect estimation. By jointly modeling multiple related treat-
ments, MTL can reduce sample complexity and exploit latent structure, thereby improving estima-
tion efficiency and robustness.

Despite advances in causal representation and multi-task learning, their integration for estimating
treatment effects on composite outcomes is underexplored. Composite outcomes—utilities over
multiple endpoints—pose structural and clinical challenges. We propose a covariate-balancing
aware, multi-task causal representation framework that shares representations across outcomes and
aligns inference with the utility, improving accuracy and interpretability.

3 PRELIMINARIES AND NOTATIONS

To fix ideas, consider a binary treatment setting with covariates z € X', where X" denotes the covari-
ate space. The treatment assignment is represented by a binary variable A € {0,1}, where A =1
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denotes treatment and A = 0 denotes control. For each component outcome k € {1,..., K},
we denote by Yy (a) € R the potential outcome under treatment level a. The corresponding pre-

dicted potential outcome based on covariates z is denoted Yk(“) (z). We also define the compos-
ite potential outcome under treatment a as U(a) = u(Yi(a),...,Yk(a)), where u : R — R
is a user-specified utility function that maps component outcomes into a scalar. Its estimate is
given by U@ (z) = u(f’l(a)(x), e YI((u) (x)). The CATE on the composite outcome is defined as
7(z) = E[U(1) — U(0) | ], the average treatment effect (ATE) is defined as 7 = E[U (1) — U(0)],
and their corresponding estimators are 7(z) = UM (z) — U (z) and 7 = 31, #(x;)/n where
n is the number of observations. We assume the utility function « is L, -Lipschitz with respect to
the /1 norm. A natural and widely used example of a user-specified utility function is the Boolean
composite function: U(a) =1 — Hszl(l — Y (a)), where Yi(a) € {0,1} is a binary indicator of
whether component outcome & occurs under treatment a. This utility captures whether any of the
component events occurs under treatment a, and is equivalent to the logical "OR” operation over
the individual outcomes. That is, U(a) = 1 if at least one Yj(a) = 1, and U(a) = 0 only if all
outcomes are zero. We show that the Boolean composite function is 1-Lipschitz in the Appendix
A. Additionally, we also assume the strong ignobility (Rosenbaum & Rubin| [1983)) and positivity
assumptions.

Modeling, Empirical Loss, and Balance Regularization. Denote the observed data by
{(zi,ai, yi1, - -, yix )}, where z; € X is the covariate vector, a; € {0, 1} is the treatment, and
yir = Y (a;) is the observed value of the k-th outcome component for unit ¢; assume n > K. Each

(counterfactual) component outcome is predicted via Yk(a) (x) = féa)((l)(x)), where @ : X — RP is

a shared representation (encoder) and f,ga) :RP 5 Risa task-specific head. LetZ, = {i : a; = a}
and ng = |Z,|. With aloss ¢(-, -) that is L-Lipschitz in ¢, the empirical loss for predicting Y} (a) is

E,Ea) = i > er, ! (f/k(a)(a:i), yik). The overall predictive loss across outcomes and samples is

c(@, {f0, VM) = Ly s E(Yk(ai)(mi), yik) . To mitigate distributional imbalance
between treated and control groups in the latent space, we add a balance regularizer that penalizes
divergence between the representations of treated and control units. Let H,, := {®(z;) : i € Z,}
for a € {0,1}. Define Rpa := D(H1,Ho), where D can be chosen such as the maximum mean
discrepancy (MMD):

2

MMD?(H1, Ho) =

)

H
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with feature map ¢ (e.g. linear kernel or Gaussian RBF) into a Reproducing Kernel Hilbert Space.
Model training is then proceeds by min ®, (fO DK Liotal> and Loy is the final training objec-
’ k JEk k=1

tive augments the predictive loss with this balance term:

K
Lo = L(P, {f£0)7 f/il)}szl) + A Rbal = Z(g,io) + 5,9)) + A Rbals
k=1

where A > 0 trades off predictive accuracy and representation balance.

Function Classes and Complexity. We now introduce the function classes used in our general-
ization analysis. Let J denote the hypothesis class for independently modeling outcome Y (a)
without a shared representation. Let H;, denote the class for head functions f]ga) applied after the
shared encoder ®, which is drawn from class G. For single-task composite models, the correspond-
ing hypothesis class is denoted JF,,. To characterize model capacity, we use empirical Rademacher.
The empirical Rademacher complexity of a function class F over a dataset {1, ...,y } is given

by:
Rn(F):=E,

1 n
sup — o f(xz;)|, o;~ Uniform{—1,+1}.
fermn ; ]

The complexity measure will be used in our generalization analysis to compare shared representation
learning with alternative modeling approaches.
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Task-Averaged Risk and Complexity of Shared Representations. To quantify the complexity of
the shared representation, define a random set 7 (X) as:

H(X) = {(®a(Xr)) : © € G},

where X}; is the covariate for unit ¢ and outcome k&, and ® is the d-th coordinate of the encoder
output. The Gaussian average of this class is:
in] )

where vgg; ~ N(0,1) are i.i.d. standard normal variables. For many function classes (e.g., kernel

machines or deep neural nets), the Gaussian average is of order O(vnK). Additionally, we define
the normalized representation norm as:

1 S 1 1
sup ——||®(X)|| = —= su — Dg(Xpi)2.
oo 1000 = o St

G(H(X)) :=E |sup Z'deiq)d(in)

PEG ki

dki

This task-averaged perspective allows us to derive generalization bounds that reflect both empirical
error and capacity control, setting the stage for our main theoretical results.

4 MAIN RESULTS

4.1 CROME WORKFLOW

To estimate the treatment effect on composite outcome, we propose CROME, which is a principled
multi-task learning algorithm that jointly models multiple component outcomes using a shared rep-
resentation. The central idea is to learn an encoder ® that maps raw covariates ¢ € X to a shared

latent space, from which outcome-specific predictors f,ga) estimate the potential outcomes Yy (a) un-
der each treatment arm a € {0, 1}. These predictions are then aggregated through a user-specified
utility function wu(-) to obtain the composite potential outcomes U(a). The final treatment effect

estimate is computed as the difference 7(z) = U™ (x) — U©) (). The training procedure mini-
mizes the empirical loss over all observed component outcomes using a multi-task architecture with
parameter sharing across tasks.

The overall workflow of CROME is illustrated in Figure 2. This approach stands in contrast to
single-task models, which directly regress the composite outcome on covariates and often fail to
capture the structured relationships among individual components. The detailed steps of the pro-
posed method are outlined in Algorithm 1 in Appendix B. The algorithm combines modular pre-
diction of component-level outcomes with flexible utility-based aggregation, enabling accurate and
interpretable estimation of treatment effects on composite outcomes.

4.2 GENERALIZATION ERROR BOUND

We then provide theoretical guarantees on the generalization performance of CROME. In particular,
we analyze how representation sharing affects the treatment effect estimation error, and establish
conditions under which our approach enjoys tighter generalization bounds compared to both inde-
pendent task learning and direct composite prediction.

Theorem 1 (Generalization Bound of CROME). Let each potential outcome Y/k(a) be modeled as

Yk(a)(ac) = flia)(q)(x)), where ® € G is a shared representation function, flga) € Hy, is the head
for the k-th outcome under treatment a € {0,1}, and let the composite outcome be defined as
U(a) =uw(Y1(a),...,Yk(a)), where w is L, -Lipschitz. Then, with probability at least 1 — § over a
sample of size n, the expected treatment effect estimation error satisfies:

Ex[6(7(X), 7(X))]

K —
2c; LG(H(X 2 K - 32K log(4/6
SM(Z&9+#U+“ (L) | 200VR o 5 ?/U7
S

n
k=1
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Figure 1: Comparison of multi-task representation learning approach versus single-task learning
approach workflows for estimating treatment effects on composite outcomes. Top: The single-
task model directly learns to predict the composite outcome without leveraging individual outcome
structures. This approach may suffer from lower interpretability and degraded accuracy, especially
when component outcomes contain informative and complementary signals. Bottom: Our pro-
posed CROME learns a shared representation from patient covariates and predicts each individual
outcome component via outcome-specific heads. The composite outcome is then constructed via
a utility function over the predicted components, enabling interpretable and accurate estimation of
treatment effects. The multi-task approach explicitly exploits this structure, leading to better perfor-
mance.

where £ ,ga) is the empirical risk for outcome k under treatment a, c1 and co are universal constants,
and @ is the quantity

Q= sup —E sup » ( T (W)
y#y’ ”y yH fEHk; ’ z !

We provide the proof of Theorem 1 in Appendix A. This result offers a generalization bound for
estimating treatment effects on the composite outcome within a multi-task learning framework that
employs a shared representation. The central insight is that, when the composite outcome is de-
fined by an L,-Lipschitz utility function over multiple potential outcomes, the error in estimating
treatment effects can be tightly controlled by ensuring accurate prediction of each component out-
come. By leveraging task-specific prediction heads f,ga) applied to a common representation ®(z),
the model enables parameter sharing across tasks and reduces overall model complexity. The gener-
alization bound in Theorem 1 highlights two principal contributors to the expected treatment effect
error: (i) the sum of empirical risks ), Elga) across all outcomes and treatment arms, and (ii) the
complexity terms associated with the function classes used to learn the shared encoder and outcome-
specific heads. These complexity terms include a Gaussian complexity term G(H(X)), a spectral
norm term supg ||®(X)]|, and a log-based confidence penalty 4/log(1/0)/n.



Under review as a conference paper at ICLR 2026

To better understand the implications of Theorem 1, we next consider two propositions that formal-
ize how shared representation learning compares to alternative modeling strategies. Proposition 1
shows that, under a mild complexity condition, CROME achieves a strictly tighter generalization
bound than MTL without shared representation. Proposition 2 further demonstrates that the same
approach can outperform single-task models that directly predict the composite outcome, which
typically fail to leverage structure among the components and require larger function classes.

Proposition 1 (CROME vs. MTL without Shared Representation). Under the conditions of Theo-
rem 1, consider an alternative model where each potential outcome is estimated independently as

Yk(a)(z) = ,Ea) (x), where f,ga) € Fy. Then, with probability at least 1 — 9,

- 3210(4/9)
Ex [(7(X), 7(X))] < L - (Z (5,21) L EO | Rn(fk)) + n}() ,
k=1
If the following inequality holds:
ALGH(X) | c2QVE
n

n

K
sup ||®(X)| < R (F
sup [#C0] < 3 Ra)

=1

then the generalization bound in Theorem 1 is strictly tighter than that of the independent model.

We provide the proof of Proposition 1 in Appendix A. This result formally establishes that the gener-
alization bound for the shared representation model can be strictly tighter than that of an independent
modeling strategy, under a realistic and theoretically grounded condition. The essential insight is
that learning with shared representations allows for parameter sharing across multiple outcome pre-
diction tasks, which reduces the overall function class complexity. In the independent modeling
setting, each outcome-specific predictor is learned using a separate hypothesis class F, leading to
a total complexity that grows linearly with the number of outcomes: Zszl R (Fr). In contrast,
the shared representation model factorizes the hypothesis space into a common encoder ¢ € G

and lightweight task-specific heads féa) € Hy, resulting a Gaussian complexity G (H(X)) and the
spectral norm term.

This condition is plausible in many settings because it compares the complexity of a shared multi-
task model (left-hand side) with that of training K independent models (right-hand side). The
Gaussian complexity G(H(X)) and the spectral norm term scale sub-linearly with K, typically
as O(v'K), due to shared parameters and regularized representation learning. In contrast, the total
Rademacher complexity of K separate models grows linearly as O(K), since each task introduces
a new set of parameters. Therefore, especially in settings with moderate or large K and correlated
outcomes—such as in healthcare or multi-label prediction—the shared representation model can
achieve strictly lower overall complexity.

Next, we compare CROME with single-task learning approaches that directly predict the composite
outcome. Let ¢(®) ¢ Hcomp denote a single-task model trained to estimate the composite potential
outcome under treatment arm a € {0,1}. The empirical risk of this model under treatment a is
given by:

Elop = %Ze CRIEHRATIP
i=1

where U;(a) = u(Yi1(a),...,Yix(a)) is the true composite outcome for unit i. The estimated
treatment effect from this single-task model is then defined as:

7A-comp('r) = g(l)('r) - g(O) (17)7
where g(!) (x) and ¢(%) () are the model’s predictions for the treated and control conditions, respec-
tively.
Proposition 2 (CROME vs. Single-Task Learning). Under the assumptions of Theorem 1, consider
a single-task model that directly predicts the composite outcome via U® (z) = ¢(®)(z), where
gl e Hecomp- Then, with probability at least 1 — 0,
32log(4/9)

B [ Feomp (X), 7O < E Dy + E0p 2+ Rus(Heomp) + 1/ 2 2.
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If the composite utility function u is Boolean composite function and the following inequality holds:

ALGHUX)) | 2QVE s R0l < R (Heom),
n n Peg

then the shared multi-task model from Theorem 1 yields a strictly tighter generalization bound than
the single-task composite model.

We provide the proof of Proposition 2 in Appendix A. The condition in Proposition 2 captures the
intuition that CROME can yield significantly lower generalization complexity than directly model-
ing the composite outcome. The left-hand side reflects the complexity of learning a shared encoder
® and K lightweight task-specific heads, while the right-hand side measures the complexity of a
single-task model tasked with approximating the full composite mapping 2 — U(a) in one shot.
Since the composite outcome function implicitly entangles all K outcomes through a potentially
nonlinear utility function u, the hypothesis class Homp must be expressive enough to capture all
interactions—resulting in a much larger Rademacher complexity. In contrast, the shared representa-
tion model decomposes this problem into simpler subproblems, each with more tractable complex-
ity, while leveraging parameter sharing. Therefore, the inequality holds in many practical settings,
especially when K is moderate to large or when component outcomes are conditionally dependent.

4.3 INTERPRETABILITY VIA DECOMPOSITION OF TREATMENT EFFECTS ON COMPOSITE
OUTCOME

An important advantage of CROME is its ability to provide interpretable insights into how each
component outcome contributes to the treatment effect on composite outcome. Specifically, by
modeling each individual outcome Y} (a) separately, we can attribute the estimated treatment effect
on the composite outcome 7(x) to the contributions from each component outcome. To interpret
the treatment effect on composite outcome, we consider a first-order approximation based on the
Lipschitz property or differentiability of u(-). If u is differentiable, then using Taylor expansion we

approximate:
K

o) Y 28 (0 @) - 70 @)
i Yk

where ¥ is an intermediate point between the two predicted vectors. This decomposition expresses
the treatment effect on composite outcome as a sum of component-level treatment effects, weighted
by the sensitivity of the utility function to each outcome. In practice, this decomposition enables
visualization of individual-level component contributions using tools such as heatmaps, or stacked
bar charts (See Section 5.2). These tools can illustrate not only the magnitude but also the direction
(positive or negative) of each component’s influence on the treatment effect on composite outcome.
Such interpretability is especially valuable in healthcare, where clinicians need to understand which
clinical events are driving the overall effect and why a treatment may or may not be beneficial for a
given patient.

Y

5 EXPERIMENT

5.1 TREATMENT EFFECT ESTIMATION ON COMPOSITE OUTCOME

We evaluate our method across three benchmark synthetic and semi-synthetic datasets designed to
test different aspects of treatment effect estimation on composite outcome. The data description and
data-generating processes for all three datasets are described in detail in Appendix D.

Synthetic Data. We generate synthetic datasets with nonlinear shared latent structures among 4
component binary outcomes. Those 4 component outcomes are then composed into a binary com-
posite outcome using the Boolean OR utility function.

IHDP. The Infant Health and Development Program (IHDP) (Hill, |2011) dataset is a standard semi-
synthetic benchmark based on an observational study of early interventions for low-birthweight
infants, with real covariates and treatment assignments. We generate 4 binary component outcomes
given the covariate and treatment assignment and aggregate them using the Boolean OR utility
function to construct a composite outcome.
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Cancer EHR. The cancer EHR dataset is constructed from de-identified real-world clinical features
collected from breast cancer patients at Penn Medicine. The treatment of interest is the chemother-
apy. We simulate 4 binary patient-reported outcomes including fatigue, pain interference, anxiety,
sleep disturbance. Then we aggregate them into a binary composite outcome using the Boolean OR
utility function.

Baselines. We compare CROME against a comprehensive set of state-of-the-art baselines for treat-
ment effect estimation, organized into the following categories. Tree-based methods include Causal
Forest (Athey & Wager, |2019) and BART (Chipman et al., 2010). Double machine learning and
doubly robust learners comprise DML (Chernozhukov et al., 2018) and DR-Learner (Kennedy,
2023). Meta-learners include S-Learner, T-Learner, and X-Learner (Kiinzel et al., [2019). Neu-
ral network-based causal representation learning models cover TARNet (Shalit et al., 2017), CFR-
Net (Shalit et al.l 2017)), and DragonNet (Shi et al., [2019). Causal multi-task learning methods
include CMGP (Alaa & Van Der Schaar, |2017) and CMDE (Jiang et al.| [2023). Additionally, we
include two composite-specific baseline variants: Single-Task Comp, which directly predicts the
composite endpoint, and Multi-Task No Rep, which models component outcomes separately with-
out shared representation. All baselines are extended to the multi-outcome setting by adding one
output head for every (outcome, treatment) pair.

Experimental Settings. For all experiments, we trained CROME using an 80%/10%/10% split of
the data into training, validation, and test sets, respectively. Hyperparameters were selected via a
grid search over hidden layer widths {32,64, 128} and learning rates {10~3,10~*}, choosing the
configuration that minimized validation loss on the composite outcome. Models were trained using
the Adam optimizer with early stopping based on validation loss, and a maximum of 200 training
epochs. All experiments were implemented in Python 3.9.13 and conducted on a machine equipped
with an Intel Xeon CPU (24 cores, 32 GB RAM) and an NVIDIA GeForce RTX 3080 GPU (10 GB
VRAM), using CUDA 12.6 and NVIDIA driver version 560.94. Additional environment details are
provided in Appendix F.

Primary Results. Table [I| reports the average absolute estimation error (|7 — 7|) with standard
errors across 1,000 simulation runs on synthetic, [IHDP, and Cancer EHR datasets. CROME con-
sistently achieves the lowest estimation error across all settings. On synthetic data, CROME attains
the lowest in-sample error (0.0020 £ 0.0002) and out-of-sample error (0.0107 & 0.0002), outper-
forming strong baselines including CMGP and DML. On IHDP, CROME achieves 0.0052 + 0.0001
in-sample and 0.0108 % 0.0001 out-of-sample error, again improving upon both classical and neu-
ral methods such as TARNet, DragonNet, and CMGP. The advantage persists in the EHR setting,
where CROME reaches 0.0071 £ 0.0001 in-sample and 0.0107 4= 0.0002 out-of-sample error. Com-
pared to the single-task composite model and the multi-task model without representation sharing,
CROME yields substantial improvements. These results highlight the benefit of CROME for accu-
rate and reliable estimation of treatment effects on composite endpoints. Additional experimental
results and ablation studies—varying the number of component outcomes and the choice of utility
function—together with runtime analyses are provided in Appendix E.

Synthetic Data IHDP Cancer EHR

Model In-sample Error ~ Out-of-sample Error  In-sample Error ~ Out-of-sample Error  In-sample Error ~ Out-of-sample Error
TARnet 0.0046 4 0.0020  0.0198 + 0.0037 0.0063 £ 0.0030  0.0147 & 0.0027 0.0112 £ 0.0083  0.0112 + 0.0083
CFRnet 0.0330 4 0.0081  0.0371 + 0.0068 0.0362 £ 0.0295  0.1393 + 0.0281 0.0135 +0.0104  0.1216 &+ 0.0122
Dragonnet 0.0257 4+ 0.0042  0.0088 + 0.0007 0.0391 £ 0.0138  0.0653 + 0.0403 0.0659 £ 0.0381  0.0680 + 0.0867
BART 0.0117 4 0.0002  0.0145 + 0.0003 0.0144 £ 0.0002  0.0629 =+ 0.0002 0.0351 £ 0.0001  0.0690 + 0.0001
Causal Forest 0.0160 4 0.0001  0.0305 + 0.0002 0.0136 £ 0.0002  0.0151 = 0.0003 0.0131 £ 0.0002  0.0143 4 0.0003
DML 0.0051 4 0.0003  0.0151 + 0.0001 0.0078 £ 0.0002  0.0260 = 0.0003 0.0384 4 0.0002  0.0512 = 0.0001
DR-Learner 0.0096 & 0.0002  0.0230 + 0.0001 0.0046 £ 0.0002  0.0311 % 0.0001 0.0359 £ 0.0002  0.0107 + 0.0001
S-Learner 0.0080 & 0.0003  0.0119 + 0.0003 0.0174 £ 0.0002  0.0139 =+ 0.0002 0.0114 £ 0.0001  0.0141 % 0.0002
T-Learner 0.0124 4 0.0002  0.0237 + 0.0002 0.0108 £ 0.0002  0.0356 4 0.0003 0.0152 4 0.0002  0.0168 + 0.0001
X-Learner 0.0142 4 0.0001  0.0318 + 0.0003 0.0127 £ 0.0003  0.0281 =+ 0.0003 0.0134 £ 0.0001  0.0194 + 0.0002
CMDE 0.0164 4 0.0057  0.0672 + 0.0210 0.0089 £ 0.0067  0.1036 & 0.0073 0.0100 £ 0.0065  0.1197 4 0.0071
CMGP 0.0043 4 0.0013  0.0681 + 0.0028 0.0225 £ 0.0029  0.1217 4 0.0016 0.0185 £ 0.0026  0.1202 =+ 0.0074
Single-Task Comp  0.0073 £ 0.0001  0.0261 £ 0.0002 0.0059 £ 0.0001  0.0236 =4 0.0001 0.0208 £ 0.0004  0.0248 £ 0.0005
Multi-Task No Rep  0.0034 + 0.0003  0.0128 + 0.0002 0.0046 £ 0.0002  0.0162 £ 0.0002 0.0081 £ 0.0001  0.0185 £ 0.0002
CROME 0.0020 + 0.0002  0.0107 + 0.0002 0.0052 + 0.0001  0.0108 + 0.0001 0.0071 £ 0.0001  0.0107 + 0.0002

Table 1: Average absolute estimation error (|7 — 7|)

datasets.

across synthetic, IHDP, and Cancer EHR
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5.2 INTERPRETABILITY VIA COMPONENT-WISE DECOMPOSITION

Beyond accuracy, interpretability is crucial in clinical applications, particularly when working with
complex EHR data. CROME enables decomposition of the treatment effect on composite outcome
into contributions from individual outcome components, providing actionable insights into which
outcome components are most affected by treatment at both the individual and population levels.

Heatmap of Component Contributions To the Treatment Effect on Composite Outcomes Stacked Bar Plot of Component Contribution to Treatment Effect on Composite Qutcome
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(a) Heatmap of component contributions to treatment  (b) Stacked bar plot of normalized component contri-
effect on composite outcome. butions across individuals.

Figure 2: Visualization of component-level treatment effect contributions.

To illustrate our framework’s interpretability, we visualize the component-level treatment effect
contributions using two complementary tools: a heatmap and a stacked bar plot. The heatmap
(Figure 24) displays the contribution of 4 PROs—namely Pain Interference, Fatigue, Anxiety, and
Sleep Disturbance—to the overall treatment effect on the composite outcome for individual patients.
Each row corresponds to a patient, and columns represent the four component outcomes (first four
columns) and the composite outcome (final column). Cell colors encode both the magnitude and di-
rection of each component’s contribution: warmer (red) tones indicate positive effects (i.e., treatment
alleviates symptoms), while cooler (blue) tones indicate negative effects (i.e., treatment worsens
symptoms). Within the Cancer EHR context, red signifies symptom improvement (e.g., reductions
in Pain Interference or Fatigue), whereas blue suggests symptom deterioration. This visualization
enables granular, patient-level interpretation and reveals heterogeneous treatment response patterns.
For instance, some patients benefit primarily through reductions in fatigue and sleep disturbance,
while others exhibit limited improvements in physical or emotional functioning.

The stacked bar plot (Figure [2b) visualizes how each component outcome contributes to the treat-
ment effect on composite outcome at the individual level. Each bar represents a single patient,
and all bars are normalized to have the same total height, enabling direct comparison across indi-
viduals. The segments within each bar indicate the relative contribution of each patient-reported
outcome—Pain Interference, Fatigue, Anxiety, and Sleep Disturbance—such that their proportions
sum to one. Negative contributions (below the x-axis) indicate that a component outcome wors-
ened due to treatment, while positive contributions (above the x-axis) indicate improvement. This
visualization reveals heterogeneous response patterns: for example, some individuals show strong
improvement primarily through reductions in fatigue and sleep disturbance, while others display
mixed effects across outcomes. This plot complements the heatmap by offering a holistic, compo-
sitional view of how treatment benefits (or harms) are distributed across multiple outcomes for each
patient.

6 DISCUSSION AND CONCLUSION

CROME opens new directions for treatment effect estimation in settings with complex, multi-
dimensional outcome structures, particularly in healthcare where composite outcomes are com-
mon. By enabling interpretable, component-level decomposition of treatment effects and supporting
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flexible utility-based aggregation, CROME offers a principled approach for personalized decision-
making. Its strong empirical performance and generalizability make it a promising tool for broader
applications beyond healthcare. Future extensions could incorporate time-varying treatments, lon-
gitudinal data, and domain-adaptive learning for multi-center EHR systems.
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A PROOFS OF MAINS RESULTS

To establish our main theoretical results, we introduce a set of analytical tools that connect multi-
task prediction accuracy with bounds on treatment effect estimation error. These tools are central
to proving Theorem 1, which provides generalization guarantees for estimating treatment effects
on composite outcome under a shared representation learning framework. Specifically, we leverage
results from statistical learning theory—particularly bounds involving empirical risk and complex-
ity measures such as Rademacher and Gaussian averages—to control the excess risk incurred by
learning both the shared encoder and the task-specific heads.

Building on this foundation, Proposition 2 and Proposition 3 formalize the advantages of the shared
representation model over two natural baselines: (i) independent models that learn each outcome
task separately, and (ii) a single-task model that directly predicts the composite outcome. By com-
bining Lipschitz continuity of the utility function with generalization theory for multi-task learning,
we show that our proposed approach achieves strictly tighter error bounds under reasonable assump-
tions about the complexity of the function classes involved.

For convenience, we summarize all key mathematical symbols and notation used throughout the
paper in Table[2]

Symbol Description

X Covariate space; x € X denotes an input (e.g., EHR features).

Ae€{0,1} Binary treatment indicator; A = 1 for treatment, A = 0 for control.

Yi(a) € R Potential outcome for component k£ under treatment a.

)Afk(a) (x) Predicted potential outcome for component % under treatment a.

U(a) Composite outcome under treatment a, defined as u(Y7 (a), ..., Yi(a)).

U@ (z) Predicted composite outcome, u(Y; ™ (z), ..., V" (2)).

7(x) Conditional average treatment effect: E[U (1) — U(0) | z].

7(x) Estimated CATE: U™ (z) — UO) (x).

Teomp (Z) Estimated CATE using a single-task model trained on the composite out-
come.

U Utility function combining K component outcomes; assumed L, -Lipschitz
w.r.t. ¢ 1-

E,ga) Empirical loss for predicting Y% (a).

Ec(gl)np Empirical loss for predicting the composite outcome U (a) using a single-
task model.

Fk Hypothesis class for outcome Y}, (a) with independent modeling.

Hi, Hypothesis class for the task-specific head for outcome k.

G Hypothesis class for shared representation function ®(x).

Fu Hypothesis class for directly modeling the composite outcome U (a).

Ru(F) Empirical Rademacher complexity of class F.

Gs(F) Empirical Gaussian complexity of class F.

£(-) Loss function used for training (e.g., cross-entropy, squared loss).

D(x) Shared representation of input z, ® : X — RP.

,ia) Prediction head for component k under treatment a, mapping R” — [0, 1].
Rbal Balance regularizer which quantifies how different the learned representa-

tion distributions are between the treated and control groups

Table 2: Summary of key notation used throughout the paper.

Lemma 1 (Treatment Effect Error Bound via Component Prediction). Let U(a) =

u(Y1(a),...,Yx(a)) denote a composite outcome defined via a utility function u : RX — R,
and let U@ () = u(Yl(a) (x),... ,f/}((a)(a:)) be the predicted composite outcome. Assume that u is

L,,-Lipschitz with respect to the {1 norm. Then for all v € X,

12
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e

((#(@)m(@) < Lo Y (U0 @), EVQ) | 1)) + 6050 (@), E[Yi(0) | 2)))

k=1
where 7(z) = E[U(1) — U(0) | 2] and #(z) = UMD (z) — U ().

Proof. Lett(xz) = E[U(1)—U(0) | ] denote the true conditional treatment effect on the composite

outcome, and let 7(z) = UM (x) — U (x) be the estimated counterpart. We aim to bound the
discrepancy ¢(7(x), 7(x)) using the prediction errors for the individual component outcomes.

By the triangle inequality for general loss functions (e.g., when £ is convex and satisfies the triangle
inequality), we have:

(3 (), 7(2)) = £ (0D (@) = 0O (), B[U () | 2] ~ E[U(0) | )
< UOO (@), EU() | 2) + 60O (), EU() | 2)).

Now consider each term of the form (U™ (z),E[U(a) | x]) for a € {0,1}. Since the

composite outcome is defined as U(a) = u(Yi(a),...,Yx(a)) and its estimate is U(®)(z) =
u(f’l(a)(x), . ,Yl(f) (z)), and assuming u is L, -Lipschitz with respect to the ¢; norm, we apply
the Lipschitz property:

(0 (@), E[U(a) | a]) = ((1 (2), .- Vi (@), u (B (a) | ... E[Yi(a) | a]))
K
% (7 @), EYi(a) | 1) -
Substituting back into the earlier bound:

(3 (2),7(@) < Lo Z( (7 @), B(1) | a]) + € (7 @), BYi(0) | ) ).

which completes the proof. O

Corollary 1 (Boolean Composite Case). IfU(a) =1— Hle (1-Yx(a)), then uis 1-Lipschitz and
the bound becomes:

=

i (a Z (’Y(l) E[Y;,(1) | x]‘ + ‘Yk(o)(x) — E[Y%(0) | x]D .
k=1

Proof. Let the composite outcome be defined as

K

U(a) = u(Yi(a),...,Yi(a)) =1 - [] (1 - Yi(a)),

k=1
which corresponds to the Boolean ”OR” function on the outcomes (i.e., U(a) = 1 if any Y, (a) = 1).
We want to verify that the utility function u : [0, 1]% — [0, 1], given by
K

u(yr, .- yk) =u(y) =1- H(l = Yk),

k=1
is 1-Lipschitz with respect to the ¢; norm where y = (y1, ..., YK )
To do this, we compute the partial derivative of u with respect to each coordinate:

ou
E H(l —Y)-

itk

13
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Since each y; € [0, 1], it follows that 0 < é%; < 1, and thus:

ZH 1-y;) gil K.

k=1 j#k k=1

K
IVu(y)ll, =

3yk

But more precisely, since u is differentiable on [0, 1]%, and each partial derivative is in [0, 1], we
have:
K
u(y) — — e = vkl <) e — vl = lly — ¥'l1.-
k=1

Hence, u is 1-Lipschitz with respect to the ¢; norm.

Now applying Lemma 1 with L,, = 1 and ¢(a, b) = |a — b|, we obtain:

K
#@) = r@)| < Y (150 @) — EM() |2l + ¥ (@) = E[Yi(0) | 2]},
k=1
as desired. O

To assess representation quality, we define the task-averaged population risk under treatment a as:

EGL (@, fr,. o ) = ZE(XY)NMk (£ (2(X)), E[Yi(a)| X)),

and the corresponding minimal achievable risk is:

g;vg( )_<I>EQH§"1;CHE’H ga(uvé(q)aflwﬂvfl()'

Having defined the relevant complexity measures and population risks, we are now positioned to
analyze the generalization performance of the shared representation model. Specifically, we aim
to bound the difference between the task-averaged population risk of the learned model and the
best achievable risk within the hypothesis classes G and {Hk}szl. The following result, adapted
from Maurer et al.|(2016), establishes a high-probability upper bound on the excess risk in terms of
the Gaussian complexity of the representation class and the empirical norm of the induced feature
maps. This result forms the foundation for our generalization analysis of treatment effect estimation
on composite outcome.

Theorem 2 (Maurer et al.| (2016)). Let i1, - , ux and Fy, be as above, and assume 0 € G and
f(0) =0 forall f € Fy. Then for § > 0 with probability at least 1 — & in the draw of Z ~ TIE_,
we have
ALG(U(X)) | cx@supacg |[€X)| | [Sn(d/s)

nK WK nK '

where c1 and cy are universal constants, and @) is the quantity

E(EZZ](i)’fla afK) avg(a) <

Q=sup—Esup 3 ().
vy v — yH fer; () Y

The proof of Theorem 2 can be found in Maurer et al.|(2016). We now provide the proof of Theorem
1.

Proof of Theorem 1. We begin by applying Lemma 1, which relates the treatment effect estimation
error to the prediction errors on each potential outcome component via the Lipschitz property of the
utility function u. Specifically, since u is L, -Lipschitz with respect to the £; norm, we have:

£(#(@) 7(@) = ¢ (0D (@) = 0O (), E[U(1) ~ U(0) | a]) < L, Sy (Vi (@), ElYi(a) | a]) .

k=1a=0

14
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Taking the expectation over the covariate distribution  ~ D on both sides yields:

Ex [((#(X),7(X))] < Ly ZK: le Ex [¢(V\(X),EVi (@) X])] .

k=1a=0

Now, under the model assumption that Y ( ) = fk ( (x)), we apply the generalization bound
for shared representation multi-task learmng due to Maurer et al.| (2016). For each treatment arm
a € {0,1}, this bound implies that, with probability at least 1 — 0, the task-averaged expected loss
satisfies:

K _
1 (@ (g (a clLG 7—[) c2Q supgeg || P(X)]| 8log(4/0)
— Y Exl[¢ )| X)) < — .

Multiplying both sides by K converts the average back into a full sum over tasks:
K K
a o) aLG(H K S 8K log(4/6
> Ex U (@(0), BN @] £ 3 el + X 4 i Y wup o) + | FEE,
k=1 k=1

Now summing over both treatment arms a € {0, 1}:

3 ST Ex (M (@(X)), EYi(a)| X])]

a=0 k=1
K

<30 (80 4 £0) + 29900 |y YK up o)) 42|80
1 k k n n &cg n

Finally, plugging this back into the earlier bound on treatment effect error, we obtain:
Ex[6(7(X), 7(X))]

K
: © 4 o), 2aLGH) | 20QVE 2 32K log(4/6)
< Lu (Z (67 +&7) + =25+ = sup [|2(X)]| + - :

k=1

This completes the proof of Theorem 1. O

Proof of Proposition 1. From Theorem 1, the shared representation model satisfies, with probability
at least 1 — ¢:

Ex [(7(X), 7(X))]
K
<L, (Z (60 4 £0) + ZALOH)  200QVE sup [ ()] + W) |

n
k=1

Now consider an independent modeling strategy, where each outcome f/k(a) is modeled using its own

function f,ga) € Fi. Applying standard Rademacher generalization bounds for each £ and treatment
a € {0, 1}, we have, with probability at least 1 — ¢ over the training data:
~(a @ 8log(4/6
Ex [600%)(X), B (@) X))] < £ + Ra(F) + 1) S0

Summing over all k£ and both treatment arms and using the treatment effect error decomposition
from Proposition 3 (the Lipschitz utility result), we obtain:

Ex[0(7(X), 7(X))] < Lu- Z(EX[ V(X)) BN (DIXD)] + Ex |67 (%), El¥i(0) X))
K
<L, S (D +£2 2R, (F) + 3210%(4/5))
> [ :

K
L, (Z (& + & + 2Ru(F) + 3210g(4/5)K>.

n
k=1
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Now comparing the two generalization bounds:

* The shared representation model has complexity:

261 LG(H) + 2C2Q\/I?
n

o(X
- sup [[(X) |

deg

* The independent model has complexity:

Hence, if the following condition holds:

ClLG(H) + CQQ\/[?
n

n

K
sup [S(X)]| < 3 Ra(Fu),
sup ()] < 32

then the generalization bound for the shared representation model is strictly tighter than that of the
independent model, completing the proof. O

Proof of Proposition 2. Let the single-task model directly predict the composite outcome using
g e Heomp, SO that:

U(“)(x) = g(“)(x), and  Teomp () = g(l)(m) - g(o)(x).

The prediction error of the treatment effect on the composite outcome can be bounded using standard
Rademacher-based generalization results:

Ex [((eomp(X), 7(X))] = Ex[£(g™V (X) — ¢V (X), 7(X))]
< Ex[6(g™(X), UW)] + Ex[¢(¢"” (X), U(0))]

321log(4/6
< EGdo + E + 2R (Heomp) + M,

comp n

where 5§312,p denotes the empirical loss under treatment a for predicting the composite outcome:

= 130 (4. V@)

i=1

and R, (Hcomp) is the empirical Rademacher complexity of the function class Hcomp used to model
the composite outcome directly.

Now, consider the multi-task shared representation approach as described in Theorem 1. That model

predicts each component outcome Yk(a) (x) = f,ga) (®(x)), and the composite estimate is constructed
as:

0@ (z) = u (?f“) (),..., v (x)) :
where v is an L,,-Lipschitz utility function.
Theorem 1 guarantees that, with probability at least 1 — J:
Ex [£(7(X), 7(X))]
. (i ( O 521)) L 2aLG(H) | QCQ%\/R aup B[+ 32K10g(4/6)> |
€

n n
k=1

For a fixed number of outcomes K, the total empirical loss incurred by the multi-task model,
Z,If:l (S,go) + 8,51)), is often lower than the empirical loss for the single-task model trained di-

rectly on the composite outcome, Ec((?%p + SC((},LP. This is because directly predicting the composite
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outcome involves learning a more complex, often nonlinear and non-smooth mapping u(-), whereas
the multi-task model only needs to fit simpler binary labels. Additionally, modeling each com-
ponent outcome separately allows better exploitation of structure, leading to improved empirical
performance and generalization. Since L,, = 1 for Boolean composite function, comparing the two
bounds, we conclude that if:

L K X
alG®) | CQQH\F sup [|®(X)[| < R (Heomp);
oeg

n

which is saying that the reduced complexity in the shared model can more than compensate for the

larger v K confidence term, then the multi-task shared representation model enjoys a strictly tighter
generalization bound for estimating the treatment effect than the single-task composite predictor.
O

B CROME ALGORITHM

Algorithm 1 outlines the full CROME procedure with two stages: training and estimation. During

training, CROME jointly learns a shared representation ® and task-specific heads { f,ga)} to pre-
dict component-level potential outcomes under each arm. For each minibatch, the model computes
®(x;), applies the appropriate head to obtain predictions, and aggregates per-task losses into a single
objective minimized via backpropagation. With a loss ¢ (e.g., cross-entropy or squared error) that is
L-Lipschitz in ¢, the per-task empirical loss is

= 3 E(f,ga)(é(a:,»)), yk> . k=1,....K, a€c{0,1}.

n
¢ ez,

£ =

To mitigate distributional imbalance between treated and control groups in the latent space, we add a
balance regularization term that penalizes divergence between the distributions of ®(X) for A =1
and A = 0. Let H1 = {®(x;) : ¢ € 71 } and Ho = {P(x;) : i € Ty}, and define

Roa = D(H1,Ho),

where D can be instantiated as the MMD with a characteristic kernel k:
1

MMDQ(Hl,Ho):? > k(@(z,;),cb(x,-/))Jr% > K®(x)), B(y)) - 2 DO (), 2(xy)).

nn
1 e, 0,40 10 5c7, jezs

The training objective is the balance-augmented empirical loss

K
Lot = Z(Elgo) +5,g1)) + ARba, A>0,
k=1

which trades off predictive accuracy and representation balance.

At the estimation stage, the learned ® and { f,g,a)} produce component-level potential outcomes for
a new input z, Yk(a) (z) = féa)(q)(x)). A user-defined utility u composes these into composite

potential outcomes U(*) = u(f’l(a) (x),..., f/]((a) (x)) and the individual-level treatment effect is
#z) = oW _ )

This modular structure enables flexible and interpretable estimation of treatment effects on compos-
ite outcomes while promoting balance in the learned representation.

C INTERPRETABILITY VIA DECOMPOSITION OF TREATMENT EFFECT ON
COMPOSITE OUTCOME: BOOLEAN UTILITY FUNCTION

A key advantage of our multi-task framework is its ability to provide interpretable estimates of
treatment effects on composite outcome by decomposing them into contributions from individual
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Algorithm 1 CROME with Target Regularization

1: Input: Observed data {(z;,a;,vi1,--.,Yir)}", Utility function v : RE — R, balancing
regularization parameter A > 0.

2: Output: 7(x).
3: Initialize parameters of ® and { f,ga)}
4: for each epoch do
5: for each minibatch {(x;, a;, i1, ..., vix)} do
6: Compute shared representations h; = ®(z;)
7: Separate treated and control representations:
le{hi\ai:1}7 Hoz{hi|ai:0}
8: for cachtask k =1,..., K do
9: Predict outcome gf,‘j) = fk,a")(hi)
10: Compute loss £, = E(ﬁg;”, Yik)
11: end for
12: Compute target regularization loss (e.g., MMD or Wasserstein distance):
Ryva = BalanceLoss(H1, Ho)
13: Compute total loss:
K
L= i+ X Rpa
k=1
14: Update all parameters to minimize £
15: end for
16: end for

17: Estimation of Treatment Effects:

18: for each test point x do

19: h=®(x)

20: y,ﬁ“) = éa)(h) forall k and a € {0,1}
20 U@ =u(@®,...,55)

2: F(x)=U00 -Uy®

23: end for

outcome components. This interpretability is crucial in clinical applications where understanding
which specific outcomes drive treatment effects can inform patient-level decision making.

We choose the Boolean OR utility function as the default composite outcome in our experiments be-
cause it aligns with a common clinical decision-making criterion: treatment is considered beneficial
if it improves at least one of several key outcomes. This formulation captures the intuition behind
many composite endpoints used in practice, such as reducing any among multiple symptoms (e.g.,
fatigue, pain, or anxiety) in patient-reported outcomes. Additionally, the OR function is simple,
interpretable, and provides a natural testbed to validate whether the model can effectively capture
non-additive dependencies among component outcomes.

Let Yi(a) € {0,1} denote the k-th binary potential outcome under treatment a € {0,1}, and

}A’éa) (z) € [0, 1] be the model’s predicted outcome. We define the composite outcome under treat-
ment a using the Boolean OR utility function:

K

K
U(@)=1- [T - Ya(@), 09@=1-T] (1-%"@).

k=1 k=1

This function equals 1 if at least one Y3 (a) = 1, and 0 otherwise. The estimated treatment effect on
the composite outcome is:

7(x) = U(l)(a:) - U(O)(m).

18
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To interpret 7 () in terms of component contributions, we apply a first-order Taylor expansion to the
function u(y) = 1 — Hkl,(zl(l — yg) around a reference point § = (41, - . ., ¥k ) (e.g., the midpoint
between }A’,fl) (z) and Yk(o) (2)). The partial derivative of u with respect to y is:

ou
87yk = H(l — ;).

J#k

Thus, the treatment effect can be approximated by:

K
o)~ | T[a-u)- (3@ -7 @)

k=1 |j#k

This expression quantifies how each individual outcome contributes to the overall treatment effect
on composite outcome, with weights depending on the predicted probability of other events not oc-
curring. Importantly, this enables intuitive interpretation: components with higher marginal effects
and fewer competing risks contribute more prominently to the composite.

This decomposition allows us to visualize 7(x) as a sum of interpretable terms. For example, we
can use:

* Heatmaps to compare contribution patterns across patients,
+ Stacked bar plots to break down 7 () by component.

Such interpretability tools facilitate transparent, patient-specific decision-making and highlight the
added value of modeling each outcome explicitly rather than collapsing information into a single
binary target.

D DATASETS

D.1 SYNTHETIC DATA

We simulate a synthetic dataset consisting of n. = 1, 000 units, each with d = 10 covariates X € R?,
a binary treatment assignment A € {0, 1}, and K binary component outcomes Y1, ..., Yx € {0, 1}.
Covariates are independently drawn from a standard Gaussian distribution, X; ~ N (0,1;), and
treatment is assigned randomly, A; ~ Bernoulli(0.5). For each outcome k, potential outcomes under
treatment and control are generated through a nonlinear model that combines linear effects (X ' 3;),

nonlinear effects (via tanh(X "+;)), and heterogeneous treatment effects (via tanh(X "6;)). A

global treatment effect shift 7,0pa €nsures a nonzero average treatment effect. Binary outcomes Yigco)

and Yiscl) are determined by thresholding the logits at the 40th percentile, introducing variation across
outcomes. A composite outcome U (a) is then constructed using a user-defined utility function (e.g.,
Boolean OR, weighted sum, or tanh of a weighted sum). The individual treatment effect is defined
as 7; = Ul(l) — Ul(O)

D.2 IHDP

We adapt the semi-synthetic IHDP dataset (Hill, 2011) for composite outcome estimation. Covari-
ates are derived from the real Infant Health and Development Program observational study, covering
maternal and child characteristics. The dataset includes n = 747 units and d = 25 covariates.
Treatments are randomly reassigned as A; ~ Bernoulli(0.5) to remove confounding. Component
outcomes are generated using the same nonlinear model as in the synthetic data, and composite out-
comes are constructed using a specified utility function. This setting preserves real-world covariate
complexity while allowing controlled evaluation of treatment effects.

D.3 CANCER EHR
We use a Cancer EHR dataset constructed from real-world clinical features of breast cancer patients

at Penn Medicine. The dataset contains 7 = 1, 000 patients and d = 22 covariates, including labo-
ratory measurements such as neutrophil counts, lymphocyte counts, and liver function tests. Binary
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treatment is defined as the chemotherapy. As with IHDP, we simulate X component outcomes us-
ing nonlinear models based on covariates and treatment status. In Section 5, we generate K = 4
patient-reported outcomes including fatigue, pain interference, anxiety, and sleep disturbance. Com-
posite outcomes are aggregated through a predefined utility function to form a binary endpoint. This
setting mimics the complexity of EHR-based causal inference under noisy feature spaces.

E ADDITIONAL EXPERIMENTS AND ABLATION STUDIES

E.1 ABLATION STUDY: VARYING THE UTILITY FUNCTION

To assess the flexibility of CROME with respect to different composite outcome constructions, we
evaluate performance under two distinct utility functions: weighted_sum and tanh_reward.
Table reports the average absolute estimation error (|7 — 7|) across the Synthetic, IHDP, and EHR
datasets for each utility type.

We define these utility functions as follows. Let Y7,...,Yx € {0,1} be the K binary component
outcomes. Then,

K
uwsum(Yh R YK) = Zkaka
k=1

K
umnh(Yl, ey YK) = tanh <Z kak> ,

k=1

where we use equal weights wy, = 1/K for all k.

The results demonstrate that CROME maintains strong performance across both utility formulations.
The weighted_sum function yields lower in-sample and out-of-sample errors on the Synthetic and
EHR datasets, while tanh_reward performs slightly better on IHDP out-of-sample error. These
findings highlight the adaptability of our framework to different forms of outcome aggregation,
confirming its robustness in settings where the choice of utility function reflects varying clinical or
domain-specific priorities.

All models were trained using the Adam optimizer with early stopping based on validation loss, and
the number of training epochs was fixed to 200 across all experiments for consistency.

Utility Type Synthetic Data IHDP Cancer EHR
In-sample Out-sample In-sample Out-sample In-sample Out-sample

weighted_sum  0.00177 0.00359 0.00365 0.01243 0.00091 0.00974
tanh_reward 0.00619 0.00094 0.00552 0.00832 0.00885 0.00557

Table 3: Comparison of CROME under different utility functions. We report average absolute
estimation error (|7 — 7|) for Synthetic, IHDP, and Cancer EHR datasets.

E.2 ABLATION STUDY: VARYING THE NUMBER OF COMPONENT OUTCOMES

We conduct an ablation study to investigate how the number of component outcomes (K) affects
the performance of CROME compared to two baseline models: Single-Task Comp and Multi-Task
No Rep. As shown in Table d]and Figure 3] we vary K from 2 to 10 and evaluate average absolute
estimation error (|7 — 7|) across synthetic, IHDP, and Cancer EHR datasets.

Across all settings, CROME consistently achieves the lowest error among the three models, demon-
strating the advantage of shared representation learning in multi-task causal inference. Notably,
both CROME and Multi-Task No Rep benefit from increasing the number of component outcomes,
with estimation errors steadily decreasing as K increases. In contrast, Single-Task Comp exhibits
worsening performance as K grows, likely due to its inability to explicitly model the underlying
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component-level structure. These results highlight the importance of decompositional modeling and
task-level representation sharing when estimating treatment effects on composite outcomes. All
models were trained using the Adam optimizer with early stopping based on validation loss, and the
number of training epochs was fixed to 200 across all experiments for consistency.

Model Num Components Synthetic Data IHDP Cancer EHR
In-sample Error ~ Out-sample Error  In-sample Error ~ Out-sample Error  In-sample Error ~ Out-sample Error
Single-Task Comp 2 0.035 0.040 0.025 0.020 0.060 0.058
3 0.065 0.090 0.050 0.060 0.050 0.055
5 0.080 0.110 0.080 0.100 0.045 0.048
10 0.120 0.160 0.110 0.130 0.070 0.072
Multi-Task NoRep 2 0.020 0.030 0.015 0.017 0.040 0.035
3 0.015 0.025 0.010 0.013 0.035 0.030
5 0.010 0.020 0.007 0.009 0.025 0.020
10 0.005 0.010 0.005 0.006 0.015 0.012
CROME 2 0.018 0.025 0.012 0.015 0.020 0.018
3 0.012 0.020 0.009 0.012 0.015 0.013
5 0.008 0.015 0.006 0.008 0.010 0.008
10 0.004 0.008 0.003 0.005 0.005 0.004

Table 4: Ablation study varying the number of component outcomes (X) from 2 to 10. We report

average absolute estimation error (|7 — 7|) across synthetic, IHDP, and EHR datasets.

Ablation: Synthetic Data

logso(Estimation Error)

Ablation: IHDP

logso(Estimation Error)

Ablation: EHR

O 5 6 7 ]
Number of Component Outcomes (K)

(a) Synthetic Data

0 5 6 7 ]
Number of Component Outcomes (K)

(b) IHDP

9 10

0 5 6 7 8
Number of Component Outcomes (K)

(c) Cancer EHR

Figure 3: Ablation study showing log-scale estimation error as a function of the number of compo-
nent outcomes (K) across Synthetic, [IHDP, and Cancer EHR datasets.

Num Components (X) Runtime (seconds)

2 7.26

3 8.40

5 10.83
10 16.58
20 28.81
50 67.14
100 121.62

Table 5: Runtime of CROME (in seconds) as a function of the number of component outcomes (k).

Additionally, to evaluate the scalability of CROME with respect to the number of component out-
comes K, we report the average training runtime for varying K € {2, 3,5, 10,20, 50, 100} in Ta-
ble[5] As expected, the runtime increases with larger K due to the additional outcome-specific heads
and increased computational complexity. Nevertheless, the growth in runtime remains manageable,
with CROME training in approximately 7 seconds for K = 2 and around 2 minutes for K = 100.
These results suggest that CROME is computationally feasible even in settings involving a large
number of outcome components.
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F ADDITIONAL EXPERIMENTAL DETAILS

F.1 IMPLEMENTATION DETAILS FOR BASELINE MODELS

Most baseline models in our experiments were implemented using the econml Python package
developed by Microsoft Research, which provides a standardized framework for treatment effect
estimation. This includes meta-learners such as S-, T-, and X-Learners, doubly robust methods and
double machine learning such as DR-Learner and DML, and tree-based approaches such as Causal
Forests.

For BART, we used the PyMC implementation available at https://www.pymc.io/
projects/bart/en/latest/. TARNet and CFRNet were implemented using code from
the original repository at https://github.com/clinicalml/cfrnet, while DragonNet
was implemented using https://github.com/claudiashi57/dragonnet. The CMGP
and CMDE baselines were implemented using the repository provided by the authors at https:
//github.com/Jzy95310/ICK.

To ensure fair comparison, all models were adapted to our experimental setup with consistent data
splits, evaluation metrics, and training procedures.

F.2 TRAINING SCRIPT AND EXAMPLE COMMAND FOR CROME

The file s1_model.py contains the core implementation of CROME, including model compo-
nents, utility aggregation functions, and training procedures. To train CROME on a dataset with
covariates X, binary treatment assignments A, and component outcomes Y, users can instantiate
the dataset and model, then call the training function as follows:

from sl_model import CausalMultiTaskDataset, MultiTaskCausalModel,
# Prepare data (numpy arrays)
dataset = CausalMultiTaskDataset (X, A, Y)

dataloader = Dataloader (dataset, batch_size=64, shuffle=True)

# Initialize model
model = MultiTaskCausalModel (input_dim=X.shape[l], hidden_dim=64,

num_outcomes=K, utility='weighted_sum’

utility_weights=[1.0]*K)

# Train the model
train_model (model, dataloader, num_epochs=200, lr=le-3)

This example uses the Adam optimizer with a fixed learning rate of 10~3, trains for 200 epochs, and
assumes equal weights across outcome components. The utility type can be changed to "or" or
"tanh_reward" as needed. The model supports estimation of individual-level treatment effects
using model .predict_counterfactuals_individual ().
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