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Abstract

Reinforcement learning (RL) over text representations can be effective for finding1

high-value policies that can search over graphs. However, RL requires careful2

structuring of the search space and algorithm design to be effective in this3

challenge. Through extensive experiments, we explore how different design4

choices for text grammar and algorithmic choices for training can affect an RL5

policy’s ability to generate molecules with desired properties. We arrive at a new6

RL-based molecular design algorithm (ChemRLformer) and perform a thorough7

analysis using 25 molecule design tasks, including computationally complex8

protein docking simulations. From this analysis, we discover unique insights9

in this problem space and show that ChemRLformer achieves state-of-the-art10

performance while being more straightforward than prior work by demystifying11

which design choices are actually helpful for text-based molecule design.12

1 Introduction13

Molecular discovery can have a significant impact on our society, however, the vast search space14

makes it challenging to find high-value molecules. The potential of reinforcement learning (RL)15

methods to discover new, high-value molecules has resulted in a series of research work performed16

by RL researchers focusing on learning policies as graph neural networks (GNNs) [You et al., 2018,17

Zhou et al., 2019, Jin et al., 2020, Fu et al., 2022, Yang et al., 2021, Bengio et al., 2021]. In this18

formulation, the RL policy is trained to add atoms and bonds to a molecular graph representation.19

In this formulation there is a one-to-one mapping between molecules and their graph representation,20

making it easier to construct state and action spaces with Markovian dynamics. However, the action21

space in the graph formulation is vast as it consists of the product of candidate attachment positions22

and candidate attachment sequences. Graph-based data structures (such as adjacency matrices,23

trees, etc.) are a powerful representation used to describe a number of design problems, including24

social networks [Tan et al., 2019], transportation networks [Wang and Tang, 2021], recommendation25

systems [Chen et al., 2021b], and combinatorial optimization problems [Khadka et al., 2020, Miret26

et al., 2022] have been popular in this design space. However, GNNs are often difficult to train27

[Chen et al., 2022] and cannot readily take advantage of large-scale text data sets that effectively28

describe molecular structures and properties.29

In order to take advantage of the richness of text-based representations for molecules, one can30

formulate the molecular search problem as the construction of tokens in a sequence that become31

a molecular text. The molecular texts formulated by common text-based representations, such as32

SMILES [Weininger, 1988] and SELFIES [Krenn et al., 2020], can then be converted into molecular33

graphs with cheminformatics libraries [Landrum et al., 2013] using their respective encoding and34

decoding rules. However, the text-based representation can be more difficult to formulate as an35

MDP since there is not always an exact one-to-one mapping between texts and molecules. In36
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fact, the text-to-molecule conversion can be many-to-one, where the complexity of the dynamics37

in the MDP given by many-to-one mappings is non-trivial. On the other hand, the action space in38

molecular text design can be significantly reduced given the rules of text construction imposed by39

a given representation. Moreover, formulating molecule discovery as sequence-generation has the40

potential to capitalize on recent successes in natural language modeling [Brown et al., 2020a].41

In this paper, we perform a detailed empirical study of molecular discovery using text-based RL42

across more than 25 molecular properties relevant for drug-discovery, including docking simulation43

for molecular ligands [Garcı́a-Ortegón et al., 2022, Huang et al., 2022] and develop our own44

algorithm (MoLRL) based on state-of-the-art literature as shown in Table 1. In our experiments, we45

evaluate two molecular text representations (SMILES, SELFIES) and the use of three neural network46

architectures (Multi-Layer Perceptron [Bengio et al., 2003], Recurrent Neural Network [Schmidt,47

2019], Transformer [Vaswani et al., 2017]) pretrained on 5 datasets of varying quality and sizes.48

We create ChemRLformer that achieves the highest performance across these tasks while being49

much simpler than previous text-based RL algorithms [Blaschke et al., 2020a, Gao et al., 2022].50

Via our detailed ablation study, we construct ChemRLformer and find that pretraining on aligned51

datasets can significantly improve performance across all molecular design tasks, even exceeding52

the performance of agents pretrained on 100 times larger datasets. We also show that targeted53

algorithmic design, such as hill-climbing in the replay buffer and regularization, further increases54

the performance of ChemRLformer. To the best of our knowledge, ChemRLformer is the largest55

analysis of text-based RL methods for molecule discovery.56

Table 1: Table showing conceptual comparisons of various text based molecular optimization
methods. MoLRL combines the most successful elements of prior work.

Method Text Representation RL Architecture Pretraining Algorithmic Components

Literature Methods

SMILES-VAE [Gómez-Bombarelli et al., 2018] SMILES ✗ VAE ✓ Maximum Likelihood
SMILES-LSTM [Brown et al., 2019] SMILES ✗ LSTM ✓ Maximum Likelihood

BOSS [Moss et al., 2020] SMILES ✗ VAE ✗ Bayesian Optimization
REINVENT [Blaschke et al., 2020a] SMILES ✓ GRU ✓ Replay buffer, KL

REINVENT 2.0 [Blaschke et al., 2020b] SMILES ✓ GRU ✓ HC-Replay buffer, Log p, KL
STONED [Nigam et al., 2021] SELFIES ✗ FC ✗ Genetic algorithm

Pasithea [Shen et al., 2021] SELFIES ✗ FC ✗ Deep dreaming

ChemRLformer (Ours) SMILES, SELFIES ✓ Transformer, FC ✓ Replay buffer, KL

2 Related Work57

RL for Design and Discovery: Many methods in diverse fields leverage RL to help augment a prior58

design method to improve performance [Yu et al., 2018, Schaff et al., 2019]. Other methods have59

explicitly included the design process in the RL loop by training design problems together [Chen60

et al., 2021a, Ha, 2019, Luck et al., 2020, Kumar et al., 2022] with most prior work focusing on61

robot and agent design, not molecular design. Our molecular design work creates an autoregressive62

structure that grows the size of the state as the agent acts in the environment.63

Molecular Discovery Using Sequence-Based Methods: Sequence-based methods treat molecular64

design as a sequence of tokens that get concatenated in order. Generative models for sequence-based65

methods span a diverse range, including variational autoencoders (VAEs) [Gómez-Bombarelli et al.,66

2018, Alperstein et al., 2019], recurrent neural networks (RNNs) [Gupta et al., 2018, Bjerrum and67

Threlfall, 2017, Grisoni et al., 2020, Flam-Shepherd et al., 2022] and transformer models[Wang68

et al., 2019, Fabian et al., 2020, Edwards et al., 2022a, Zeng et al., 2022, Taylor et al., 2022]. The69

general procedure for all the above methods is to perform self-supervised generative learning to70

sample molecules similar to the original dataset. MoLRL can also make use of pretrained generative71

models, which we then fine-tune using reinforcement learning to produce enhanced molecules.72

Molecular Discovery Using Search-Based Methods: Although sequence-based molecule73

generation methods often provide a more structured way of learning molecular distributions, search-74

based methods generally have the advantage of being able to directly find molecules based on75

a desired property. Although a wide range of graph-based RL methods [You et al., 2018, Zhou76

et al., 2019, Jin et al., 2020, Fu et al., 2022, Yang et al., 2021, Bengio et al., 2021] for optimizing77

molecules exist, graph-based state representations introduce significant complexity to the RL78

problem formulation, both in the transition dynamics and action space. By contrast, text-based79
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methods are simpler and also relatively under-explored, motivating our focus on these methods in80

this work. Moreover, recent work [Cieplinski et al., 2021, Gao et al., 2022] has shown that an older81

text-based method REINVENT [Olivecrona et al., 2017] outperforms more complex graph-based82

RL methods. Some limited extensions to Olivecrona et al. [2017] have been explored, including83

experimenting with a newer molecular grammar designed for robust molecule generation [Gao et al.,84

2022]. However, there has been limited work proposing the use of language models and text-based85

RL for molecular discovery. Additionally, there have been limited efforts to incorporate recent86

advancements from the language modeling domain into these methods. For example, the a character-87

level LSTM network architecture used in Olivecrona et al. [2017], has not been revisited despite88

significant recent advances in sequence modeling [Vaswani et al., 2017, Brown et al., 2020b].89

3 Background90

The algorithms detailed in this paper are built on top of a foundation of reinforcement learning,91

text-based molecule representations, and language modeling.92

Reinforcement Learning: Reinforcement learning can be used to learn policies for sequential93

decision-making problems. Policies are optimized based on an environment that is described as94

a Markov Decision Process (MDP). A discrete MDP is defined by the tuple ⟨S,A, T , r, γ⟩ where95

S is the state space, A is the action space, T : S × A × S ′ → [0, 1] is the transition function,96

r : S ×A → R is the reward function and γ is the discount rate.97

For actions at ∈ A and states st ∈ S, the goal of reinforcement learning is to learn a policy πθ(at|st)98

which maps states to actions, such that:99

πθ(at|st) = argmax
θ

Ep(τ |θ)

[
T∑

t=0

γtr(st, at)

]
(1)

where p(τ |θ) is the distribution over trajectories induced by πθ and the transition function T .100

Text representations for molecules: Molecules are most naturally described using a graph101

structure of atoms and bonds. However, graph-based deep learning models can be difficult to train,102

especially at large scale [Dwivedi et al., 2022, Geisler et al., 2023]. Recent works have proposed a103

variety of text representations for molecules [Weininger, 1988, Krenn et al., 2020, Heller et al., 2013,104

Krenn et al., 2022, Cheng et al., 2023], each having their distinct advantages and shortcomings.105

In this study, we focus on the two most commonly used representations: SMILES [Weininger,106

1988] and SELFIES [Krenn et al., 2020]. Any text representation for molecules consists of a set107

of valid tokens, which may represent individual atoms or special characters that imply the presence108

of certain structures, as well as the encoding and decoding rules needed to convert between the text109

representation and the graph representation of a molecule. Valid texts under a grammar are those110

which respect both the vocabulary and the encoding/decoding rules for that grammar and, hence, can111

be converted into a graph representation of a molecule. SELFIES, which was developed in response112

to the tendency for SMILES-based deep learning models [Gó mez-Bombarelli et al., 2018, Jin et al.,113

2018] to generate invalid molecular texts, has the useful property of providing a conversion for any114

text into a graph corresponding to a molecule, provided the tokens in the text respect the SELFIES115

vocabulary. For example, the text representation of Benzene in SMILES is C1=CC=CC=C1 while116

in SELFIES one possible representation is [C][=C][C][=C][C][=C][Ring1][=Branch1].117

Language modeling: Language modeling often relies on the self-supervised task of next-token118

prediction for model pretraining. The general framework for next-token prediction is to train a119

model to predict the next token in a sequence autoregressively, i.e. given the previous tokens in the120

sequence (left context). Many architectures to handle sequential data have been proposed: Recurrent121

Neural Networks (RNNs) [Hochreiter and Schmidhuber, 1997, Rumelhart and McClelland, 1987]122

are a class of models used in sequence modeling which use recursive connections in hidden layers123

to accumulate the left context for next-token prediction. Transformers are a more recent architecture124

that instead use a self-attention mechanism [Vaswani et al., 2017] to capture dependencies between125

all tokens in a sequence. For next-token prediction tasks, attention masking is used to enforce left126

context, meaning that representations for tokens later in the sequence are only allowed to attend to127

previous tokens in the sequence. In Section 4 we outline how we pretrain an autoregressive sequence128

model to predict sequences of known molecules.129
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Figure 1: Autoregressively generating a benzene molecule.: An autoregressive model for
sequence generation can be viewed as an RL policy where the actions at are the next tokens to
append to the sequence and the state is the concatenation of all actions taken up to time t − 1. A
special end-of-sequence token can terminate the episode early at time T . The text at time sT is then
converted into a molecule based on the text-representation grammar and then scored according to a
scoring function that measures the alignment of the molecule with the desired properties informed
by the application. Hydrogen atoms are added at the end to complete the structure.

4 ChemRLformer Generating molecular strings via reinforcement learning130

The molecular design space is complex but the benefit from finding improved options is great. In131

this section, we describe ChemRLformer and how combining language models and tools from RL132

produces a sota algorithm.133

MDP for molecule generation: The vocabulary and grammar for text representations of134

molecules can be interpreted as an MDP as described in Section 3, where the states st correspond to135

a variable length text of accumulating tokens, and the actions at correspond to vocabulary defined136

by the text-representation. The transition function is a deterministic function where the action at137

taken by the agent is appended to the end of the state st resulting in st+1 using the dynamics138

st+1 = [st, at] ← T (st, at). However, the corresponding transition function induced in the graph139

representation of molecules is more complex as it is determined by the encoding/decoding rules of140

the chosen text representation. For example, in the SMILES grammar, a random concatenation of141

tokens may not correspond to a valid molecule, while the SELFIES grammar is constructed such142

that any ordering of its tokens is encoded as a valid molecule.143

Finally, the reward functionR scores molecules according to their alignment with desired chemical144

properties, which can involve complex material simulations. The underlying property computation145

of the reward function further informs the dynamics of the MDP imposed by text representation.146

For example, docking scores are used to estimate the binding affinity between ligands and protein147

targets. We discuss reward functions for molecules in more detail in section Section 5.148

Pretraining policies for molecule discovery. To advance effectively within this vast search space,149

we make use of datasets containing a large number of drug-like molecules in text format [Irwin et al.,150

2012, Sterling and Irwin, 2015b, Mendez et al., 2019]. This data is used to train an autoregressive151

model to predict tokens that conform to the grammar for drug-like molecules, instead of the random152

texts that are generated from a randomly initialized policy, thereby significantly simplifying the153

exploration problem. In particular, we pretrain a network pϕ on the self-supervised objective of154

next-token prediction. Although large language models can be trained with other objectives, such as155

corrupted text reconstruction [Edwards et al., 2022b], these models are not a good fit for our purposes156

since they cannot generate diverse and valid molecules without access to carefully designed prompts.157

min
θ

EA∼D

[
H∑
t=1

− log pθ(at = At | At−1, · · ·A0)

]
. (2)

In practice a minibatch of sequences {A1, · · · , Am} are sampled from the prior dataset D to158

evaluate the loss function in Equation 2, and the parameters are trained using gradient descent.159
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4.1 RL for molecule generation160

To generate a molecule, a ChemRLformer policy πθ(at | st) is allowed to autoregressively sample161

tokens for a fixed number of timesteps H . The start state s0 is always a beginning-of-sequence token162

[BOS], and the agent can terminate early by taking the end-of-sequence action [EOS]. Figure 1,163

shows how an RL policy can construct a Benzene molecule. Since we are only interested in the164

properties of the final molecule, there are no intermediate rewards and the goal of the RL policy is to165

maximize the expected scalar reward corresponding to the final constructed molecule, r(sT ). Thus,166

assuming a discount rate γ = 1, Equation 1 can be rewritten more simply as:167

max
θ

EsT∼πθ [r(sT )] (3)

where sT = [BOS][a0][a1] · · · [EOS], is sampled autoregressively from the policy.

Our experiments use the policy gradient algorithm [Sutton et al., 1999b] to train the RL168

policy because it is known to achieve state-of-the-art performance amongst RL for molecular169

optimization [Olivecrona et al., 2017]. Deep RL policies are able to learn the non-linear global170

structures of molecular texts which, as we show in section 5, enables them to generalize to novel171

and diverse molecules. However, training RL policies from scratch is time-consuming and can172

make the exploration problem infeasibly difficult. Next, we explain how we adapt recent language173

modelling techniques to pretrain the RL policy.174

RL fine-tuning The pretrained model can directly be used to sample novel drug-like molecules.175

These molecules, however, are not optimized for any particular property. Note that given our176

definition of the state st as the concatenated history of all previous actions, this pretrained network177

is exactly analogous to the policy network in Equation 1. Hence, by initializing πθ = pϕ, and178

θ = ϕ, we can fine-tune this pretrained network by optimizing Equation 1 via the policy gradient179

algorithm - REINFORCE [Sutton et al., 1999a]. We need only to define a reward function r(sT )180

which scores molecules according to their alignment with the desired properties. In the following181

experiments, we show that this fine-tuning is vital for ChemRLformer to sample better molecules.182

We also highlight the importance of pretraining and study how the size and quality of the prior data183

affect the downstream ability of RL to search for high-value molecules.184

5 Experimental Results185

Our proposed algorithm ChemRLformer uses the best combinations of choices resulting from186

assessing the performance across three dimensions: (1) what pretraining factors are important to187

improve RL for molecular discovery (Section 5.2), (2) how the use of recent text-based molecule188

grammars facilitates downstream RL exploration (Section 5.3); and, lastly, (3) which specific189

algorithmic changes are necessary to improve RL performance (Section 5.4).190

5.1 Experimental Setup191

Tasks. We evaluate ChemRLformer against five different docking targets [Alhossary et al., 2015]192

(fa7, parp1, 5ht1b, jak2, and braf) previously explored in the literature [Yang et al., 2021, Lee193

et al., 2023]. The docking scores used to estimate the binding affinity between ligands and194

protein targets are a complex function of the global molecular structure and have been proposed as195

chemically relevant benchmarks for molecule design algorithms [Cieplinski et al., 2021, Tripp et al.,196

2022]. In addition to the docking targets, we also evaluate on 22 pharmaceutically-relevant oracle197

functions [Huang et al., 2021, Gao et al., 2022, Brown et al., 2019] (pytdc tasks), which include198

tasks such as optimizing proxies of bioactivity, similarity to target molecules, and combinations of199

multiple physiochemical drug properties.200

Evaluation metrics. We design our evaluation procedure with the final goal of identifying the201

best candidates to test in a wet lab. To discover such high-value candidate molecules, we use sota202

simulators that assign rewards to molecules by performing complex docking simulations [Alhossary203

et al., 2015] or using proxy models and chemical rules [Huang et al., 2021]. Previous works limit the204

number of molecules sampled during evaluation to around 3000 for docking tasks [Garcı́a-Ortegón205

et al., 2022, Yang et al., 2021, Lee et al., 2023] and 10000 for pytdc tasks [Gao et al., 2022, Brown206

et al., 2019] due to the computational cost associated with these reward simulators. We allow up to207
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25000 unique oracle calls and up to 40000 total oracle calls (allowing repeats). We argue this better208

reflects the lower cost and availability of computing resources relative to wet-lab resources. From209

all the sampled molecules, the average score of the top-k (k = 1, 10, 100) molecules is used as a210

performance metric. These top groups are an estimate of the algorithm’s ability to discover a group211

of top-quality candidates that could be given to a wet lab for thorough testing. We report pytdc212

scores on a normalized basis between zero and one by default. Next, we normalize all docking213

scores by dividing them by -20 in our experiments. Additionally, we report diversity, defined as the214

averaged internal distance of the top 100 molecules, and redundancy, defined as the total number of215

oracle calls that an agent makes for an already evaluated molecule.216

Pretraining. We study how the quality and size of prior data affect the downstream RL217

performance of ChemRLformer by pretraining a GPT [Radford et al., 2018] style transformer model218

on five datasets of varying sizes and quality and using the pretrained model as an initialization for the219

RL agent’s policy network. See Table 2 for the name, size, and description of all datasets used in our220

work. We also rank all datasets based on their quality on docking and pytdc tasks. We determine221

the quality of a dataset by the performance of molecules sampled from the model pretrained on that222

dataset. The quality of ChemRLformer’s pretrained model is evaluated using the top-100 molecules223

sampled by the pretrained model under the same evaluation setup in Appendix A.2. By default, these224

open-sourced datasets contain a large number of drug-like molecules in SMILES format. For our225

experiments, we also convert all datasets to the SELFIES format. Lastly, three different architectures226

are compared: fully-connected (FC), recurrent (RNN) - a GRU and transformer - GPT style227

autoregressive model, and compare them on downstream RL tasks.

Table 2: Description of molecular datasets used for pretraining: Datasets are ranked according
to procedure described in Section 5.1. Two datasets have the same rank if their average performance
lies inside one standard error of the other. The datasets are drawn from a subset of the Zinc [Sterling
and Irwin, 2015b, Irwin et al., 2022] and ChemBL [Gaulton et al., 2012] databases.

Dataset Size Docking Rank Pytdc Rank Description

CHEMBL 1.2 M 1 1 Manually curated database of bioactive
molecules with drug-like properties [Gaulton et al., 2012].

ZINC 250K 250 K 2 2 ZINC database molecules curated for their
pharmaceutical relevance and popularity [Gao et al., 2022].

ZINC 1M 1 M 3 3 Random molecules from ≈ 1.5 billion
ZINC 10M 10 M 3 4 molecules from the ZINC database [Sterling and Irwin, 2015a].
ZINC 100M 100 M 3 4 ZINC 1M ⊂ ZINC 10M ⊂ ZINC100M.

228

All of our experiments on pytdc tasks are run across 5 random seeds. Since docking simulations are229

expensive and time consuming, we run all docking experiments across 3 random seeds. Experiments230

with different seeds use the same pretrained model which is only pretrained once for every dataset.231

Additional details about the task rewards, evaluation metrics, and the pretraining datasets and models232

are discussed in Appendix A.1, A.2, and A.3 respectively.233

5.2 How does prior data affect the final performance of ChemRLformer?234

In this section, we pretrain the REINFORCE policy on datasets of varying size and quality235

from Table 2. Our datasets vary from small (250K) to very large (100M) sizes. Due to the236

parallelizability of training on larger datasets, we use the transformer policy architecture for all237

experiments in this section. In natural language processing (NLP), pretraining transformer models238

on large and diverse unlabelled datasets have been found to perform well on downstream tasks239

using few-shot labeled data [Brown et al., 2020b]. Yet, our results in Figure 2b indicate that the240

quality of the prior dataset matters more than its size. Figure 2, shows that the distribution of the241

ChEMBL dataset is more aligned with both the pytdc and the docking tasks. As a result, the RL242

agent pretrained on the ChEMBL dataset outperforms all other agents, including the ones trained on243

100 times more data.244

Results may seem surprising from an NLP perspective, but they make sense when viewed from an245

RL perspective. Pretraining using next token prediction Equation (2), is analogous to behavior246

cloning in this context, where the performance depends largely on the quality of the offline247

dataset [Ross et al., 2011, Ho and Ermon, 2016]. These results suggest that ChemRLformer might248
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RL performance on Augmented Docking after pretrainingDocking after pretraining

(b) performance on SMILES-based molecular docking with pertaining (right) and with pretrainig and RL
(right). Section 5.2 describes augmented docking setting with additional experiments shown in Appendix A.3.

Figure 2: On the left pretrained performance on SMILES-based ChemRLformer. Higher-quality
datasets, such as ChemBL lead to higher-performance for both pytdc and augmented docking. On
the right is the performance after RL training. RL has a substantial benefit for pytdc tasks, while for
docking tasks an augmented docking score is used to avoid reward hacking, see Figure 4 for details.

benefit from better pretraining objectives, that go beyond simple imitation learning, when trained on249

large and diverse offline datasets [Kumar et al., 2023, Farebrother et al., 2023].250

5.3 Text representations and architectures for ChemRLformer251

Starting with a REINFORCE agent, we isolate the effect of various text representations for252

molecules and policy network architectures on performance. All experiments in this section use253

ZINC-250k dataset for pretraining. Similar results obtained for other datasets are shared in the254

following sections. Whenever we show normalized results across different experiments, we add the255

individual plots in Appendix C.1.256

Text representations. In Figure 3 we compare ChemRLformer agents using different257

architectures and tasks across environments that base their dynamics on SELFIES and SMILES.258

The results show normalized scores across all architectures. Consistent with prior work [Gao et al.,259

2022] we find that SMILES-based polices generally outperforms SELFIES-based policies. On all260

pytdc tasks and architectures, ChemRLformer agents based on SMILES consistently achieve better261

rewards when compared to SELFIES-based agents across all reward metrics. Although more subtle,262

we observe a similar theme in the docking tasks where SMILES achieves higher rewards than263

SELFIES on all top-K metrics. Another consistent theme in the results is that even though the264

diversity of top-100 molecules obtained by SELFIES is higher, the redundancy of SELFIES agents265

is higher as well. This means that SELFIES-based ChemRLformer agents explore a much smaller266

region of the molecular space. These results suggest that the rules which allow SELFIES strings to267

always be converted into a valid molecule can actually be detrimental to the agent’s exploration and268

search for high-value molecules, more details in Appendix C.1.269

Architectures. The results in Figure 4 show that the transformer and RNN have similar270

performance on all tasks. On the pytdc tasks, FC achieves worse performance than other271

architectures specially made to handle strings, as expected. However, on docking tasks, FC272

obtains unusually high rewards. We find that this method performs a type of reward function273

hacking [Amodei et al., 2016, Skalse et al., 2022, Everitt, 2019] by exploiting a corner case of274

the docking-based reward function which provides high rewards for long strings of Carbon and275

Nitrogen atoms together. To evade the reward hacking of docking scores, we constructed an276

augmented docking score function with commonly used oracles (QED and SA scores) based on277
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Figure 3: Comparison between SELFIES and SMILES: The SELFIES representation makes
it relatively difficult for ChemRLformer agents to explore effectively leading to generally lower
performance on pytdc and docking while scoring higher on diversity. Scores are reported for the
transformer model and are averaged across all reward functions.

previous work [Lee et al., 2023] (See Appendix A.3 for more details). This finding shows that the278

REINFORCE agent can search the space well and, in this case, can be used to expose issues with279

the current design of reward functions.280
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Figure 4: Comparison of different policy architectures: No single architecture clearly
outperforms for molecular ChemRLformer. Although FC does better on the docking tasks, our
analysis shows that it learns to exploit the docking function as opposed to designing high-value
molecules. More details about ways to tackle this issue are given in Appendix C.3. Additional
experiments for comparing transformers and RNNs are shown in Appendix C.5. These experiments
use the smiles text representation.

5.4 Revisiting RL Algorithm Design Choices for ChemRLformer.281

Previous experiments identify key design and algorithmic choices for efficient text-based RL. But282

recent text-based RL algorithms [Olivecrona et al., 2017, Bjerrum et al., 2023, Thomas et al.,283

2022] also employ many additional algorithmic components like replay buffers, hill climbing, KL284

regularisation towards the pretrained policy, and likelihood penalties. We perform an ablation285

study across these components to understand which ones are beneficial for the performance of286

ChemRLformer. All experiments in this section are performed on pytdc tasks, using an RNN287

architecture as it is most commonly used in text-based RL. See Appendix C.4 for experiments with288

other architectures and reward functions.289

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

PYTDC
Hill Climb Replay Buffer Replay Buffer No Replay Buffer

Figure 5: Hill climbing buffer lead to 13%
improvement in Top-100 rewards.

Replay buffers and hill climbing. In290

off-policy deep RL, a replay buffer is291

generally used to store and reuse previous292

trajectories for training. Although text-based293

RL algorithms are trained on-policy, prior294

work has proposed using a replay buffer to295

improve performance [Mnih et al., 2013].296

Standard replay buffers throw away the oldest297

trajectories as newer ones arrive. But many298

text-based RL algorithms propose to use hill-299

climb replay buffers, that randomly sample a batch of molecules from the highest scoring molecules300

seen so far and add them to the current mini batch. In Figure 5, we see that using the hill-climb301

buffer results in a significant performance boost for ChemRLformer, whereas using a standard302

buffer does not contribute much. Notably, the use of a hill-climb replay buffer reduces diversity303
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and increases redundancy quite substantially. The following two experiments involve combining304

regularisation terms with the RL objective in Equation 3. The coefficients on these extra terms can305

largely affect the final performance. To make a fair comparison, we perform hyper-parameter tuning306

over six different values for every new regularisation term with details provided in Appendix B.307

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

sc
or

e

PYTDC
KL Prior No KL Prior

Figure 6: Our experiments show little difference in
performance for multiple KL regularization terms.

Should the policy to stay close to the308

pretrained model? Pretrained models carry309

information on how to build valid drug-like310

molecules. To ensure that ChemRLformer311

agents do not stray far away from the space of312

valid drug-like molecules during exploration,313

Olivecrona et al. [2017], Gao et al. [2022]314

constrain the KL divergence between the policy315

and the pretrained model by adding a KL316

penalty to the policy gradient loss function in317

Equation (3). Prior works show that adding this penalty helps the agent achieve better sample318

efficiency [Gao et al., 2022]. Yet, our results in Figure 6 suggest that, when you increase the319

number of oracle calls in simulation, adding this penalty does not yield any additional benefit while320

substantially increasing the GPU memory requirement, especially when using larger models. Since321

invalid molecules correspond to zero rewards, the ChemRLformer agent is able to learn to avoid322

invalid structures on its own merit.323

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

sc
o
re
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Figure 7: Different likelihood penalization
for exploration. Log P regularization is a
better choice for efficient exploration for
ChemRLformer.

Regularizing the policy’s likelihood for exploration.324

RL agents classically face an exploration-exploitation325

dilemma, which can lead to agents getting stuck in326

sub-optimal local maxima when not well balanced.327

ChemRLformer agents are not immune to this dilemma.328

Upon encountering good, but sub-optimal molecules, an329

agent may adjust its policy to increase the likelihood330

of sampling these sub-optimal molecules and, without331

sufficient exploration, fail to discover higher-value332

regions of policy space. This can be particularly333

detrimental during the initial learning stages.334

To combat this issue, entropy regularisation, which adds a log π(s) term to the RL loss, has been335

proposed [Haarnoja et al., 2018]. This encourages the RL policy to explore states with lower336

likelihood values. Similarly [Olivecrona et al., 2017] adds a Log p regularizer, which penalizes337

higher likelihood values by adding a −1/ log π(s) term to the RL loss. In Figure 7, our results338

show that although an entropy regularizer leads to lesser redundancy, the Log p regularizer boosts339

performance significantly by exploring more efficiently. The Log p regularizer only penalizes the340

agent for being extremely certain (likelihood tends to−−−−→ 1) about its actions, and is mostly agnostic for341

lower likelihood values. This penalty is a much better choice for ChemRLformer as it only activates342

when stuck in a local optimum of molecular space.343

6 Conclusion and Future Work344

We present ChemRLformer that resulted from our empirical study of multiple algorithmic345

components of text-based molecular design. For future practitioners, our method suggests the346

following philosophy: (1) Using SMILES is a better choice than SELFIES. (2) When collecting347

data for pretraining, the quality of molecules matter much more than the number of molecules.348

(3) Both transformer and RNN architectures achieve similar performance across all tasks using349

current datasets. (4) Incorporating components such as a hill-climb buffer and Log P regularization350

yields substantial performance improvements. Conversely, introducing KL regularization or opting351

for more intricate actor-critic algorithms may result in diminished performance, at the cost of more352

hyperparameters and memory resources. While our analysis addresses many questions, it also shows353

that RL agents were able to hack the reward functions suggesting that there is space to improve on354

the metrics used for molecule quality.355
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Thomas Blaschke, Josep Arús-Pous, Hongming Chen, Christian Margreitter, Christian Tyrchan, Ola377

Engkvist, Kostas Papadopoulos, and Atanas Patronov. Reinvent 2.0: an ai tool for de novo drug378

design. Journal of chemical information and modeling, 60(12):5918–5922, 2020a.379
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Outline of Appendices. In Appendix A we provide details about the experimental setup.612

In Appendix B we describe our hyperparameter tuning strategy. In Appendix C we include613

additional results from our experiments.614

A Experimental setup615

In this section, we provide additional details about the tasks, evaluation metrics and pretraining616

models and data used in our work.617

A.1 Tasks618

Pydtc tasks. These tasks are a set of 21 pharmaceutically-relevant oracle functions, which have619

been commonly used in prior work [Brown et al., 2019, Gao et al., 2022, Huang et al., 2021] for620

evaluating performance across molecular discovery algorithms:621

• QED: A quantitative estimate of drug-likeness calculated using a set of rules.622

• DRD2, GSK3β, and JNK3: Classical machine learning models (SVMs and random forests)623

that provide an estimate of properties like target affinity or susceptibility towards a disorder.624

• Celecoxib, Troglitazone, and Thiothixene rediscovery: An estimate of smiles text625

similarity, based on tanimoto metric, towards a target molecule.626

• Albuterol and Mestranol similarity: Generate molecules similar to a target molecule.627

• Isomers c7h8n2o2 and isomers c9h10n2o2pf2cl: Generate molecules corresponding to a628

target molecular formula.629

• Median1 and Median2: Generate molecules that are maximally similar to several target630

molecules.631

• Osimertinib mpo, fexofenadine mpo, ranolazine mpo, perindopril mpo, amlodipine mpo,632

sitagliptin mpo, zaleplon mpo: Generate molecules that maximize multiple properties of a633

targeted drug.634

• valsartan smarts: Generate molecules that contain a certain SMARTS pattern and certain635

physicochemical properties.636

Most of these tasks are from the GuacaMol benchmark [Brown et al., 2019]. All oracles are637

calculated using the Python API provided by Therapeutics Data Commons [Huang et al., 2021]638

and more details for these tasks can be found on their website.639

Docking tasks. We used QuickVina 2 [Alhossary et al., 2015] for calculating docking scores using640

the same default configuration parameters as prior works [Yang et al., 2021, Lee et al., 2023]. For641

example, we used exhaustiveness = 1, and modes = 10. We choose 5 different protein targets642

to calculate docking scores: fa7 (FA7), parp1 (PARP-1), 5ht1b (5-HT1B), jak2 (JAK-2), and braf643

(BRAF). These targets were chosen by [Yang et al., 2021, Lee et al., 2023] because the docking644

simulators for these targets work fairly well when compared to the ground truth. In our experiments645

in Section 5.3, we found that text-based RL algorithms were easily able to produce chemically646

trivial molecules that have very high docking scores. To understand the complexity of computing647

docking scores, we report the time taken to dock 1000 molecules in parallel using 12 CPUs table 3.648

We also provide the time taken to run the RL algorithm on these 1000 molecules after their docking649

scores are available.650

Table 3: Time complexity of docking score evaluation : More than half the running time is spent evaluating
the docking scores.

Number of molecules Docking time RL update time

1000 130 seconds 74 seconds
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Augmented docking tasks. In our results for the standard docking tasks (Figure 3 and Figure 4),651

we found that using the simulated docking scores as rewards did not lead to chemically relevant652

molecules. Text-based RL algorithms were able to exploit their state and action spaces to design653

chemically trivial molecules that have very high docking scores. To tackle this issue of undesirable654

reward hacking, we tried a reward function based on prior works [Garcı́a-Ortegón et al., 2022, Lee655

et al., 2023] that combine objectives for drug-like, and synthesizable molecules with docking scores.656

We call tasks corresponding to this new reward function as augmented docking tasks. Concretely,657

we chose the same reward function from [Lee et al., 2023]658

r(s) = −DS(s)/20× QED(s)× (10− SA(s))/9, (4)

Where DS is the docking score, QED and SA are quantitative estimates of drug likeness and659

synthesizablity respectively.660

A.2 Evaluation metrics661

Most of the metrics we use are described in detail in Section 5.1. Here, we provide additional662

details about the diversity metric. We calculate the diversity of the top 100 molecules sampled by663

the algorithm, where higher diversity is considered better given that it increases the chances for664

success in further wet lab experiments. In our experiments, we use the diversity evaluator from665

TDC [Huang et al., 2021], which defines the diversity of a set of molecules as the average pairwise666

Tanimoto similarity between Morgan fingerprints of the molecules. See Section 2 of [Benhenda,667

2017] for exact details of how Tanimoto similarity is calculated.668

A.3 Pretraining669

In this section, we provide more details about the pretraining datasets and models used in our670

experiments.671

Pretraining datasets. The ZINC 250k dataset contains approximately 250k molecules from the672

ZINC database [Irwin et al., 2012], chosen for their pharmaceutical relevance, moderate size, and673

popularity [Gao et al., 2022]. The CHEMBL dataset [Mendez et al., 2019] consists of approximately674

2M manually curated drug-like molecules. The other 3 datasets consist of randomly selected675

subsets of the ZINC-15 dataset [Sterling and Irwin, 2015b] that obey some chemically imposed676

mild constraints [Irwin et al., 2022]. We test three subsets of different sizes: (1) ZINC 1M (2) ZINC677

10M, and (3) ZINC 100M, to test the impact of scaling the size of pre-training data. These datasets678

and data-subsets, including their vocabularies, will be shared in an easily accessible format upon679

acceptance.680

Removing outliers and unusual non drug-like compounds helps to keep the vocabulary small and681

improves the quality of the generative model [Blaschke et al., 2020a]. To achieve this, we filter all682

datasets by removing molecules which contain 1) less than 10 or more than 50 heavy atoms and683

2) molecules other than Carbon, Nitrogen, Oxygen, Fluorine, Silicon, Chlorine and Bromine. We684

also canonicalize and sanitize all molecules using RDKIT [Landrum et al., 2013]. For experiments685

that apply SELFIES, we convert all datasets to SELFIES using the Python API provided by [Krenn686

et al., 2020] (Version: 2.1.1).687

Apart from the experiments shown in the main paper, Appendix C.2 contains additional experiments688

comparing text-based RL agents across different pretraining datasets.689

Pretraining models. In Table 4 we provide details about the pretraining modes which we use in690

our experiments. Upon acceptance, we will open-source our code and release the pretrained weights691

to support reproducible research.692

We select network sizes that have been commonly used in RL [Blaschke et al., 2020a, Yarats et al.,693

2021]. Although conducting a study of scaling the model size [Kaplan et al., 2020] is out of the694

scope of our work, we believe that it is a promising direction for future.695

Since the fully connected model can only take fixed length inputs, we always input a molecular text696

padded to a certain maximum length (we used length 100 in our experiments). This padding is done697
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Table 4: Description of model architectures used for pretraining
Model Number of Parameters Description

FC 1.07× 107
FC is a fully connected neural network
with 3 hidden layers of 1024 size each.

RNN 4.17× 106
RNN is a recurrent network which consists of

3 GRU layers of hidden sizes 512 each.

TRANSFORMER 4.78× 106
GPT [Brown et al., 2020b] style transformer with 6 layers,

16 heads and 256 embedding dimensions.

using a special token [PAD] to convey that corresponding tokens should not be considered while698

deciding the value of the text.699

Pretraining experimental details. We pretrain FC, RNN and transformer architectures on the700

ZINC 250K dataset and pretrain a transformer on all other datasets. All models are pretrained using701

the PyTorch [Paszke et al., 2019] framework. All models used an initial learning rate of 1e−3, with702

a cosine learning rate schedule [Loshchilov and Hutter, 2017]. FC and RNNs used a batch size of703

128 and were trained for 10 epochs. All transformers were trained for 5 epochs, with the largest704

batch size that we could fit in the memory of a single NVIDIA RTX A6000 GPU, for example, a705

batch size of 2048 for pretraining the transformer on ZINC 100M dataset. We made sure that all706

models were trained until convergence. On the ZINC 250K SMILES dataset, the FC, the RNN and707

the transformer model achieved a validation loss of 29.417, 22.507, and 22.923 respectively.708

A.4 RL finetuning709

The pretrained model is further trained using the policy gradient algorithm, REINFORCE [Sutton710

et al., 1999b]. Given the reward function r(sH) corresponding to the text sT , this algorithm711

optimizes the loss function712

min
θ

J(θ) = −

[
H∑
t=1

log pθ(at = At | At−1, · · ·A0)r(sH = [A0, · · ·AH ])

]
, (5)

where At is the token sampled by the agent at time-step t.713

B Hyperparameter tuning714

We conduct a common hyperparameter tuning strategy for all experiments. Specifically, we conduct715

hyperparameter tuning for716

• Learning rate for different architectures Figure 4 and text grammars Figure 3.717

• Coefficients for different likelihood regularizations Figure 7.718

• Coefficients for KL regularization loss term Figure 6.719

We select three tasks from the pytdc tasks, i.e., troglitazone rediscovery, sitagliptin mpo, and720

median2 for hyperparameter tuning. For each hyperparameter, we select a set of 5 evenly spaced721

realistic values and run 5 random seeds of RL experiments per hyperparameter value. We select the722

hyperparameter value that achieves the best average score of the top-100 molecules as the final value723

for running all the experiments. We report the hyperparamters used for the policy gradient training724

in table 5.725

C Results726

C.1 Text representations and architectures for RL727

Here, we present additional results from subsection 5.3. Figure 8 shows that SMILES are a better728

molecular grammar when compared to SELFIES across all architectures, for the text based RL729
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Table 5: Hyperparamters
Name Value

Maximum number of unique molecules 25000

Learning rate 5.00× 10−4 RNN and FC
1.00× 10−4 Transformer

Batch size 64

Log p coefficient 5

KL coefficient 1.00× 10−3

algorithms that we consider. Figure 9 compares various architectures, while keeping the molecular730

grammar fixed to SELFIES. The results in Figure 9 reflect our findings in Figure 4 that no single731

architecture clearly outperforms for molecular text-based RL. It also shows the reward hacking732

behavior of the docking tasks by the FC based RL agent.733
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Figure 8: Comparison between SELFIES and SMILES across different architectures. These figures
are the individual plots corresponding to the normalised plot show in Figure 3.
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Figure 9: Comparison of different policy architectures (SELFIES): No single architecture
clearly outperforms for molecular text-based RL. Although FC does better on the docking tasks,
our analysis shows that it learns to exploit the docking function as opposed to designing high-value
molecules.

The reason for lower value molecules for SELFIES environments can be explained by the SELFIES734

grammar that induces a flat optimization landscape. Many SELFIES strings can correspond to the735
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same molecule, and in fact, once an invalid action is taken, any subsequent sequence of tokens will736

be ignored on the resulting molecule. This makes exploration of new molecules difficult [Krenn737

et al., 2020, Gao et al., 2022]. On the other hand, the benefit of SELFIES over SMILES in738

eliminating invalid molecule generation is mitigated by our pretraining process, which initializes739

SMILES-based policies with a strong bias toward generating valid molecules. Overall, we find740

that SMILES-based policies, when combined with pretraining, are more effective at exploring and741

finding high-value molecules.742

C.2 Pretraining for RL743

Figure 2 (right) shows the top docking scores obtained by RL agents pre-trained on different datasets744

when trained with on the augmented docking tasks. In Figure 10, we show the actual augmented745

rewards obtained by the RL agent. These results suggest that the augmented docking score is a746

complex reward function as the RL agent is achieved minimal improvement over the prior agent. To747

verify this hypothesis, we increased the molecule budget of the RL agent by 10 times. We indeed748

see that RL agents corresponding to all prior-datasets exhibit considerable improvement. Text-based749

RL algorithms learn to search more efficiently when provided with more compute.750
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Figure 10: This figure shows the augmented rewards obtained by the RL agents (Top) and data
quality (Bottom) of different datasets. See subsection A.1 for how the augmented reward is
calculated.

C.3 Reward Hacking751

Figure 4 and Figure 9 show that text-based RL agents that are trained using fully connected neural752

networks are able to obtain unusually high rewards. This is probably because it is easier for753

FC agents to find actions that exploit the local structure of the reward function as RNNs and754

Transformers are inductively biased to find global solutions. This highlights an undesirable type755

of reward function hacking by the FC agent which provides high rewards for molecules with long756

strings of Carbon and Nitrogen atoms together. Similar to prior work [Lee et al., 2023], we augment757

the docking scores with objectives for drug-like and synthesizable molecules. See Appendix A for758

details of this task and Figure 2 and Figure 10 for results corresponding to this task. Our initial759

results on this task ( Figure 2 and Figure 10) suggested that the augmented reward function was760

more aligned towards chemically relevant molecules. We also noticed that the RL agents were not761

able to improve a lot over the prior baselines for this task. To verify whether the low performance762

of RL agents was because of less training data or the augmented reward function was indeed a more763

realistic and robust reward function, we repeated the experiments in Figure 10 with a ten times764

20



Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

1.00

1.25
sc

or
e

AUGMENTED DOCKING
CHEMBL ZINC 250K ZINC 1M ZINC 10M ZINC 100M

Figure 11: This figure shows the augmented rewards obtained by the RL agents trained for 10 times
more molecules.

higher training budget. Given more data, all RL agents showed considerable improvements over765

the priors. This experiment also revealed that the agents pre-trained on ZINC 1M, ZINC 10M and766

ZINC 100M, were able to exploit the reward function to generate unrealistic yet highly rewarding767

molecules. These molecules have unusually low docking scores (less than -20). Our results highlight768

the need for an aligned and a more robust reward function to generate molecules for docking protein769

targets.770

C.4 Additional results for the importance of algorithmic choices for text-based RL.771

Section 5.4 compares various algorithmic components like replay buffers, hill climbing, KL772

regularisation towards the pretrained policy, and likelihood penalties and show results for PYTDC773

tasks. In this section, we repeat all the experiments from Section 5.4 on augmented docking tasks as774

well and reach the same conclusions. In Figure 14 we see that using the hill-climb buffer results in a775

significant performance boost, whereas using a standard buffer does not contribute much. Figure 15776

shows that Log P regularization is a better choice for efficient exploration when it comes to text-777

based RL algorithms. In Figure 16 show that penalising the policy to move away from the pretrained778

policy does not improve performance.779

C.5 Instability of transformers for online RL.780

Many works [Parisotto et al., 2019] have pointed out the instability of training transformers using781

online reinforcement learning. To understand this in the context of text based RL, we compare a782

transformer and an RNN based agent on the augmented docking task. To probe whether pronounced783

effects of this instability are seen, we train both agents for 10 times more molecules (250K784

molecules). In figure Figure 12, we see that both agents perform comparably across all docking785

targets.786
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Figure 12: A transformer and an RNN based RL agent trained for 10 times more molecules on
augmented docking scores.

Top 1 Top 10 Top 100 Div. Red.
0.00

0.25

0.50

0.75

sc
or

e

Algorithms
PPO REINFORCE (ours) PRIOR

Figure 13: Comparison with another RL algorithm PPO. In control tasks complex algorithms
like PPO [Schulman et al., 2017] are known to outperform the vanilla policy gradient algorithm.
But on the molecular optimization tasks of PyTDC, our results indicate that vanilla policy gradient
algorithms are more stable than actor critic algorithms like PPO and achieve higher performance.
This resonates with the findings of previous work in molecular optimization [Cieplinski et al., 2021,
Gao et al., 2022].
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Figure 14: Do replay buffers help?
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Figure 15: Comparison of different likelihood penalization for efficient exploration
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Figure 16: Is KL regularisation with a prior necessary?
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