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Abstract

Exploiting data invariances is crucial for efficient learning in both artificial and biological
neural circuits, but can neural networks learn apposite representations from scratch? Con-
volutional neural networks, for example, were designed to exploit translation symmetry,
yet learning convolutions directly from data has so far proven elusive. Here, we show how
initially fully-connected neural networks solving a discrimination task can learn a convolu-
tional structure directly from their inputs, resulting in localised, space-tiling receptive fields
that match the filters of a convolutional network trained on the same task. By carefully
designing data models for the visual scene, we show that the emergence of this pattern is
triggered by the non-Gaussian, higher-order local structure of the inputs, which has long
been recognised as the hallmark of natural images. We provide an analytical and numerical
characterisation of the pattern-formation mechanism responsible for this phenomenon in
a simple model and find an unexpected link between receptive field formation and tensor
decomposition of higher-order input correlations.

Keywords: Neural networks — convolution — receptive fields — invariance — emergent
properties — symmetry

Introduction

Exploiting invariances in the inputs is crucial for constructing efficient representations and
accurate predictions in neural circuits. In neuroscience, translation invariance is at the heart
of models of the visual system (DiCarlo et al., 2012; Yamins et al., 2014; Kar and DiCarlo,
2021; Spoerer et al., 2017), while in machine learning, convolutional neural networks are
designed to exploit translation invariance (LeCun et al., 1990; Scherer et al., 2010). While
the two hallmarks of convolutions, namely localised receptive fields that tile the input space,
can be implemented with fully-connected neural networks, learning convolutions directly
from inputs in a fully-connected network has so far proven elusive (Urban et al., 2017;
d'Ascoli et al., 2019) without elaborate pruning (Pellegrini and Biroli, 2021) or regularisation
strategies (Neyshabur, 2020). Whether convolutions can be learnt from scratch has thus
been a central problem in neuroscience and machine learning since the seminal work by
Olshausen and Field (1996) on unsupervised learning.

Here, we show how initially fully-connected neural networks solving a discrimination
task can learn a convolutional structure directly from their inputs, resulting in localised,
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Figure 1: The emergence of convolutional structure in fully-connected neural
networks is driven by higher-order input correlations. A Two-layer, fully-
connected neural network with K neurons in the hidden layer. B Networks are
trained on inputs drawn from a translation-invariant random process, eq. (1).
The task is to discriminate inputs with different correlation lengths. C Receptive
fields (RF) of some representative neurons taken from a network with K = 100
neurons after training. Half the neurons develop localised receptive fields: the
magnitude of their weights is significantly different from zero only in a small
region of the input space. The other neurons have oscillatory weights. D Inverse
Participation Ratio (IPR) of each neuron during training. The IPR is large for
localised RF, but remains small for oscillatory RF. E Gaussian control dataset:
the network is trained on a mixture of two Gaussians, each having zero mean
and the same covariance as inputs in B. F Receptive fields after training the
network on the Gaussian control data. G Inverse participation ratio (IPR), of
the receptive fields of a network trained on Gaussian data.

space-tiling receptive fields. By carefully designing data models for the visual scene, we
show that this phenomenon relies on the non-Gaussian, higher-order local structure of
the inputs, which has long been recognized as the hallmark of natural images (Bell and
Sejnowski, 1996). We characterise receptive field formation analytically and numerically,
revealing an unexpected link with tensor decomposition of higher-order input cumulants.
The receptive fields learnt by the fully-connected networks match the filters found by train-
ing a convolutional network on the same task. These results provide a new perspective on
the development of low-level feature detectors in various sensory modalities, and pave the
way for the study of higher-level invariances in cortical processing.

Results

A high-dimensional dataset with tunable higher-order moments We train two-
layer networks (fig. 1A) on a minimal model of natural images capable of capturing higher-
order spatial correlations. We generated two-dimensional inputs inputs x = (xij) by first
drawing a random vector z = (zij) from a centered Gaussian distribution with a covariance
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that renders the input distribution translation invariant along both dimensions. Each pixel
in the synthetic image xij is then computed as

xij = ψ (gzij) /Z(g) (1)

where ψ(·) is a symmetric, saturating non-linear function such as the error function, g > 0 is
a gain factor, and the normalisation constant Z(g) ensures that pixels have unit variance for
all values of g (see appendix A for details). Intuitively, the gain factor controls the sharpness
in the images: a large gain factor results in images with sharp edges and important non-
Gaussian statistics (fig. 1B), while images with a small gain factor are close to Gaussians
in distribution. The task consists in discriminating inputs with short (ξ−) vs long (ξ+)
correlation length. Crucially, inputs have sharp edges, which is a visual indication of higher-
order spatial correlations which cannot be captured by a simpler Gaussian model. Indeed,
as we show in fig. 1E, samples from a Gaussian distribution with the same covariance as
the inputs appear blurry in comparison.

Learning convolutions directly from stimuli We trained two-layer neural networks
on this task using vanilla stochastic gradient descent, achieving test accuracy > 90%. We
plot the weight vector, or receptive field (RF), of several hidden neurons of the trained
networks in fig. 1C. The RF of half of the neurons are localised : they only have a few
synaptic weights whose magnitude is significantly larger than zero in a small region of in-
put space. Neurons that detect short-range correlations develop different representations,
instead converging to highly oscillatory patterns. We can quantify the localisation of re-
ceptive fields by computing the Inverse Participation Ratio (IPR) of their weight vector

w = (wi), IPR(w) =
(∑D

i=1w
4
i

)
/
(∑D

i=1w
2
i

)2
. The IPR quantifies the amount of non-zero

components of a vector and is commonly used in quantum mechanics and random matrix
theory (Metz et al., 2010). We plot the IPR of all neurons during training in fig. 1D. Lo-
calised neurons develop a large IPR over the course of training, while the IPR of neurons
with oscillatory receptive fields remains very small. Crucially, we found that the RFs of
this fully-connected network are spread over the entire input range (fig. S1A) and that they
match the filters of a two-layer convolutional network trained on the same task (fig. S1).

Learning convolutions requires higher-order input cumulants As a control, we
trained the same networks on a task where inputs for each class are Gaussian with the
same covariance as the original data (fig. 1B). These inputs are still translation-invariant,
but lack the non-trivial higher-order statistics. Networks trained on these control inputs
do not form localised receptive fields (fig. 1F), instead converging to oscillatory patterns.
The kurtosis of all neurons stays also close to zero throughout learning (fig. 1G). Taken
together, these results show that both translation invariance and non-trivial higher-order
statistics are needed to learn localised receptive fields from scratch.

Existing theories of learning in neural networks fail to capture the formation
of receptive fields The dynamics of (deep) linear networks depends only on the input-
input and the input-label covariance matrices Saxe et al. (2014) and can therefore not
capture the formation of receptive fields, which is driven by non-Gaussian fluctuations in
the inputs. Similarly, an analysis of the learning dynamics using the Gaussian Equivalence
Theorem (Goldt et al., 2020; Hu and Lu, 2020; Goldt et al., 2021; Mei and Montanari, 2021)
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Figure 2: Non-gaussianity drives pattern-formation in a simplified model of gra-
dient descent dynamics. A Pictorial illustration of CP decomposition (Kiers,
1998; Kolda and Bader, 2009), a tensor decomposition technique where a tensor
(here a three-way tensor) is decomposed into a weighted sum of rank-1 tensors.
B, C Synaptic weight vectors w (blue) obtained from integrating the GF equa-
tion for small (B) and large (C) values of the gain parameter. The corresponding
inputs are shown as insets. In grey, we show the ten leading CP factors uk of the
fourth-order cumulant ∆T for both datasets, eq. (2). Parameters: 1-dimensional
inputs, D = L = 100, K = 1, ξ− = 0, cumulants estimated from a dataset with
P = αD inputs, α = 100, learning rate η = 0.01, bias fixed at b = −1.

breaks down precisely when localised receptive fields form, highlighting the non-Gaussian
nature of their formation. We discuss this issue in more detail in appendix B.

Connecting receptive fields to data geometry An analysis of the gradient flow dy-
namics of a simplified model revealed an interesting connection between receptive fields and
data geometry. We studied the learning dynamics of a single neuron with a polynomial acti-
vation function. The gradient flow dynamics of this neuron depends only on the covariance

matrices Cµij = E
[
xµi x

µ
j

]
and the fourth-order moments Tµijk` = E

[
xµi x

µ
j x

µ
kx

µ
`

]
of each input

class µ. Our analysis shows that the 4th-order cumulant ∆Tµ – obtained by subtracting
the Gaussian contribution from Tµ– is crucial for the formation of the RF. A tensor like
∆Tµ can be decomposed into its leading CP factors (Kolda and Bader, 2009), akin to the
eigendecomposition of a matrix,

∆T =

r∑
k=1

γkuk ⊗ uk ⊗ uk ⊗ uk, (2)

where r is the rank of the decomposition (see fig. 2A for an illustration of a third-order
tensor). When training on strongly non-Gaussian inputs with ∆Tµ 6= 0, the single neuron
develops a localised receptive field which mirrors the localisation of the leading CP factors
of ∆Tµ (blue and grey lines in fig. 2B). The CP factors also tile the input space. If instead
inputs are only weakly non-Gaussian, the CP factors, and hence also the weight, oscillate
(fig. 2C).
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Appendix A. Data models

We conduct the experiments reported in fig. 1 on a data set that consists of inputs x that can
be one- or two-dimensional, divided in M distinct classes. Here, we illustrate the different
types of inputs in one dimension.

A data vector of the non-linear Gaussian process (NLGP) is given by xµ =
Z−1(g)ψ (gzµ), where zµ is a zero-mean Gaussian vector of length L and covariance matrix

Cµij =
〈
zµi z

µ
j

〉
= e−(|i−j|/ξ

µ)2 , (A.1)

with i, j = 1, 2, . . . , L. The covariance thus only depends on the distance between sites i
and j, given by |i− j|. The normalisation factor Z(g) is chosen such that Var (x) = 1.
Throughout this work, we took ψ to be a symmetric saturating function ψ (z) = erf (z/

√
2),

for which Z(g)2 = 2/π arcsin
(
g2/(1 + g2)

)
. We also enforce periodic boundary conditions.

We create the Gaussian clone (GP) by drawing inputs from a Gaussian distribution
with mean zero and the same covariance as the corresponding NLGP in each class. The
covariance of the NLGP can be evaluated analytically for ψ (z) = erf (z/

√
2) and reads

〈xµi x
µ
j 〉 =

2

πZ(g)
arcsin

(
g2

1 + g2
Cµij

)
(A.2)

where we have used that fact that Cii = 1. The experiments on Gaussian processes (GP) are
thus not performed on the Gaussian variables z; they are performed on Gaussian random
variables with covariance given in eq. (A.2). In this way, we exclude the possibility that the
change in the two-point correlation function from applying the non-linearity ψ is responsible
for the emergence of receptive fields.

For 1-dimensional inputs, the fact that the covariances of the NLGP and the GP depend
only on the distances between pixels |i− j| implies that they are circulant matrices (Horn
and Johnson, 2012). These matrices display a number of useful properties: they can be
diagonalised using discrete Fourier Transform (DFT), and thus any two circulant matrices
of the same size can be jointly diagonalised and commute with each other. We use this fact
in the analysis of the reduced model to diagonalise the dynamics of the synaptic weights.

We obtain the covariance for 2-dimensional inputs by taking the Kronecker product of
the one-dimensional covariance matrix with itself. For any dimension, we indicate the total
input size by D.

8



Data-driven emergence of convolutional structure in neural networks

Figure S1: Receptive fields of fully-connected networks tile input space and re-
semble the filters learnt by a convolutional neural network. A Centres
(grey) and contour lines (blue) of the whole set of localised RF plotted over the
2-dimensional inputs space. Neurons are taken from the network in fig. 1. B
Overlay of five randomly selected receptive fields from a network trained on a
1D discrimination task, after centering. C Filters of a two-layer convolutional
network trained on the same task as B. Different colours correspond to different
kernel sizes kS , ranging from 9 to 59 pixels. Additional parameters: gain g = 3,
batch learning with P = αD inputs, α = 105, SGD with batch size 1000.

Appendix B. The limits of Gaussian equivalence in describing the
formation of receptive fields

How can we capture the formation of receptive fields theoretically? There exist precise
theories for learning in neural networks with linear activation functions Baldi and Hornik
(1989); Le Cun et al. (1991); Krogh and Hertz (1992); Saxe et al. (2014, 2019a); Advani
et al. (2020). However, the dynamics of even a deep linear network with several layers will
only depend on the input-input and the input-label covariance matrices, i.e. the first two
moments of the data Saxe et al. (2014). This formalism thus cannot capture the formation of
receptive fields, which is driven by non-Gaussian fluctuations in the inputs. An exact theory
describing the learning dynamics is available for non-linear two-layer neural networks with
large input size D → ∞ and a few neurons K ∼ O(1) in the hidden layer Saad and Solla
(1995); Biehl and Schwarze (1995). In this limit, one can derive a set of ordinary differential
equations that predict the evolution of the (prediction mean-squared) test error pmse of a
network, when training on Gaussian mixture classification Refinetti et al. (2021). In fig. S2,
we show the pmse of a network with K = 8 neurons trained on the Gaussian control task
(blue lines) and verify that this theory yields matching predictions (blue crosses).

This type of analysis has recently been extended from mixtures of Gaussians to more
complex input distributions thanks to the phenomenon of “Gaussian equivalence”, whereby
the performance of a network trained on non-Gaussian inputs is still well captured by an
appropriately chosen Gaussian model for the data. This Gaussian equivalence was used
successfully to analyse random features Liao and Couillet (2018); Seddik et al. (2019); Mei
and Montanari (2021) and neural networks with one or two layers, even when inputs were
drawn from pre-trained generative models Goldt et al. (2020); Hu and Lu (2020); Goldt
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Figure S2: Existing theories of learning in neural networks break down during the
formation of receptive fields. Prediction mean-squared error of a network
with K = 8 neurons trained on non-linear Gaussian inputs (NLGP, eq. (1),
orange) and on the Gaussian control task (GP, blue) with length scales ξ+ =
2ξ−= 16. The pmse is calculated using held-out test data during the simulation
(solid lines). We also show the test error of the network trained on GP, but
evaluated on NLGP data (GP / NLGP, red). The crosses give the pmse obtained
from evaluating an analytical expression describing the error of an equivalent
Gaussian model (see text). While the analytical expression accurately predicts
the error in the beginning of training (blue shaded area), it breaks down for the
network trained on NLGP around time 102. This is precisely the time at which
the weights start to localise, as measured by the average IPR of the localised
weights (inset, green). Simultaneously, the excess kurtosis of the pre-activations
of the network decreases (inset, orange). Additional parameters: 1-dimensional
task with D = L = 400, learning rate η = 0.05. Curves averaged over twenty
runs.

et al. (2021); Loureiro et al. (2021). In fig. S2, we plot the test error of a network trained on
NLGP data together with the theoretical prediction obtained from applying the Gaussian
Equivalence Theorem Goldt et al. (2021) (GET). Initially, the theoretical predictions from
the GET (orange crosses) agree with the test error measured in the simulation (orange
line), but the theory breaks down around time ≈ 102, when predictions start deviating
from simulations.

The breakdown of the Gaussian theory coincides with the localisation of the receptive
fields, as measured by their IPR (green line in the inset of fig. S2). The increased localisation
of the weights also coincides with a change in the statistics of the pre-activations of the
hidden neurons, λ ∼

∑
iwixi: the excess kurtosis of λ (orange line) is initially close to zero,
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meaning that λ is approximately Gaussian, but decreases as the weights localise, indicating
a transition to a non-Gaussian distribution.

We can finally see from fig. S2 that the network is only influenced by the second-order
fluctuations in both the NLGP and the GP at the beginning of training, since the pmse for
models trained on NLGP and GP initially coincide. Likewise, a network trained on GP and
evaluated on NLGP test data has the same test accuracy as the network trained directly on
NLGP in the early stages of learning (red line). The higher-order moments of the NLGP
inputs start influencing learning only at a later stage, when the IPR of the weight vectors
increases and the Gaussian theory breaks down. This sequential learning of increasingly
higher-order statistics of the inputs is reminiscent of how neural networks learn increasingly
complex functions during training. Simplicity biases of this kind have been analysed in
simple models of neural networks Schwarze and Hertz (1992); Saad and Solla (1995); Engel
and Van den Broeck (2001); Saxe et al. (2019b); Rahaman et al. (2019) and have been
demonstrated in modern convolutional networks Kalimeris et al. (2019). The sequential
learning of increasingly higher-order statistics and the ensuing breakdown of the GET to
describe learning is a result of independent interest which we will investigate further in
future work.
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