
What needs to go right for an induction head?
A mechanistic study of in-context learning circuits and their formation

Aaditya K. Singh 1 Ted Moskovitz 1 Felix Hill 2 Stephanie C. Y. Chan * 2 Andrew M. Saxe * 1

Abstract
In-context learning is a powerful emergent ability
in transformer models. Prior work in mechanis-
tic interpretability has identified a circuit element
that may be critical for in-context learning – the
induction head (IH), which performs a match-and-
copy operation. During training of large trans-
formers on natural language data, IHs emerge
around the same time as a notable phase change
in the loss. Despite the robust evidence for IHs
and this interesting coincidence with the phase
change, relatively little is known about the diver-
sity and emergence dynamics of IHs. Why is there
more than one IH, and how are they dependent on
each other? Why do IHs appear all of a sudden,
and what are the subcircuits that enable them to
emerge? We answer these questions by studying
IH emergence dynamics in a controlled setting by
training on synthetic data. In doing so, we develop
and share a novel optogenetics-inspired causal
framework for modifying activations throughout
training. Using this framework, we delineate the
diverse and additive nature of IHs. By clamping
subsets of activations throughout training, we then
identify three underlying subcircuits that interact
to drive IH formation, yielding the phase change.
Furthermore, these subcircuits shed light on data-
dependent properties of formation, such as phase
change timing, already showing the promise of
this more in-depth understanding of subcircuits
that need to “go right” for an induction head.

1. Introduction
Large language models (LLMs) trained on internet scale
corpora (Brown et al., 2020) showcase a remarkable abil-

*Equal contribution 1Gatsby Computational Neuroscience Unit,
University College London 2Google DeepMind. Correspondence
to: Aaditya K. Singh <aaditya.singh.21@ucl.ac.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ity to perform in-context learning (ICL), adapting to new
inputs and tasks at test time. Given the increasing preva-
lence of LLMs, safety researchers have sought to understand
the mechanisms underlying important phenomena like ICL.
One approach in the service of this goal is mechanistic inter-
pretability: reverse engineering the computations performed
by a model. Olsson et al. (2022) identified the induction
circuit, which may be responsible for many of transformers’
ICL abilities.

An induction circuit is a two-layer circuit (Figure 1a) com-
prised of a “previous token head” in an earlier layer, fol-
lowed by the eponymous “induction head”. Previous token
heads are attention heads responsible for attending to the
previous token and copying it into the attending token’s
residual stream.1 Induction heads then perform a match-
and-copy operation, looking for a match between a query
derived from the current token and key derived from the out-
put of the previous token head. Critically, induction circuits
typically emerge in a sharp phase change in the loss (e.g.,
Figure 3), which is often believed to be due to the interac-
tion between two heads in different layers (Nanda, 2022).
Presumably, neither the previous token nor the induction
head are useful on their own for minimizing the loss.

Recent empirical work on ICL in transformers has intro-
duced more nuances (Min et al., 2022; Wei et al., 2023b),
with Singh et al. (2023) even finding that ICL can be a tran-
sient phenomenon that disappears with overtraining. These
results establish a need to more thoroughly understand in-
duction circuits, especially the dynamics of formation during
training. Reddy (2023) begins to address this question using
progress measures, which track correlational relationships
between intermediate activations during training. We in-
stead use a causal approach, termed clamping, which allows
us to directly determine the circuits and dynamics that are
causally affecting formation. Through these experiments,
we bring to light a new set of mechanisms governing learn-
ing dynamics.

1The residual stream was a term introduced by Elhage et al.
(2021) and refers to the embeddings after each layer that further
layers “read” input from. Layers can be viewed as reading from
and writing back into this stream. The term “stream” is meant to
emphasize the residual skip connections.

1

What needs to go right for an induction head?

0 1
embed embed embed embed embed

image embed label label

0 0 1 1

Previous token
head

Induction head

0

1 0 1

0 3 0

3 0 3

0 1 1

. . .

4 3 3

. . .

a) b)
querycontext

(2 exemplar-label pairs)
target
output

QKV

image embed image embed

context (2 exemplar-label pairs) query

Network
output: 0 1 0

Figure 1. a) Schematic of an induction circuit, involving a previous token head in Layer 1 and an induction head in Layer 2. The side-by-
side labels and exemplars in the residual stream after Layer 1 are meant to indicate that information about both is superimposed (perhaps
in different subspaces). We highlight3the “matching” (green) and “copying” (blue) operations that span the two layers. Historically, focus
has been devoted to the “match” operation. One of our key results is to demonstrate the important interactions from the “copy” operation.
b) Example training sequences built from the Omniglot dataset and inspired by classical few-shot meta-training. The context consists of
two exemplar-label pairs, where the exemplars are from different classes. The query exemplar comes from the same class as one of the
exemplars in context. The in-context labels are randomly chosen. Every exemplar can appear with every possible label in every possible
position, forcing the transformer to use ICL to minimize the training loss. Validation sequences either use held out class exemplars or held
out pairs of labels.

In this work, we take inspiration from the field of optoge-
netics in neuroscience, which allows precise causal manipu-
lations of neural activity (Boyden et al., 2005). Here, we de-
velop a novel framework for causally modifying activations
throughout model training. These causal-through-training
clamping analyses extend beyond prior work, allowing us to
easily study interactions between subcircuits and isolate the
underlying factors that drive induction circuit formation. We
utilize this framework to analyze induction circuit formation
in transformers trained to solve a simple few-shot learning
(FSL) task inspired by prior work (Chan et al., 2022; Lake
et al., 2015). As with any work towards a mechanistic
understanding of dynamics, we first provide a thorough in-
vestigation of the induction circuits in a network trained
on this task, shedding light on the dependence (and inde-
pendence) of induction heads upon each other (Section 3).
We find that multiple induction heads form, contributing
additively to minimize the loss. Furthermore, we observe
emergent redundancy, despite not applying regularization
techniques such as dropout (Hinton et al., 2012), mirror-
ing findings on larger-scale language models (Michel et al.,
2019; Voita et al., 2019). We also find the wiring between in-
duction heads and previous token heads to be many-to-many,
rather than one-to-one. Next, we focus on the dynamics of
formation (Section 4), where we use clamping (causal ma-
nipulations of activations throughout training) to identify
three, smoothly evolving underlying subcircuits whose in-
teraction may be causing the seemingly discontinuous phase
change. Specifically, the third key evolving subcircuit is re-

sponsible for copying input labels to the output (highlighted
in blue, Figure 1a), a function that was often believed to be
easy (with most prior work focusing on the “match” opera-
tion instead, where an induction circuit has to find the right
token to attend to). Finally, we show how data properties
influence the timing of the phase change, and how this shift
in induction circuit formation can be better understood by
individually understanding the data-dependent formation of
each of our identified subcircuits.

As a resource to the community, we open-source our
codebase at https://github.com/aadityasingh/
icl-dynamics, providing a tool for modifying activa-
tions throughout training and conducting further causal anal-
yses of transformers’ circuit elements. Our work and tooling
represents an important step in mechanistic understanding of
training dynamics, applied here to induction circuit forma-
tion, and we hope it spurs further progress on understanding
how different computations in transformers are learned.

2. Methods
2.1. Experimental setup

We train transformer models on a FSL task. Sequences are
series of exemplar-label pairs, followed by a query exemplar
(see Figure 1b). Exemplars come from the Omniglot dataset

3We also gray out the previous token head operation for copying
label tokens. This behavior does not robustly emerge as it isn’t
necessary since we only train on sequences of a fixed length.

2

https://github.com/aadityasingh/icl-dynamics
https://github.com/aadityasingh/icl-dynamics

What needs to go right for an induction head?

def example_pattern_preserving_ablation(model, sequence, preserve, ablate):

 # preserve - list of (layer, head) pairs to preserve patterns on

 # ablate - list of (layer, head) pairs to ablate

 base_cache = model.call_with_all_aux(sequence, cache=None, cache_mask=None)

 cache = jax.tree_map(jnp.zeros_like, base_cache)

 cache_mask = jax.tree_map(partial(jnp.zeros_like, dtype=bool), base_cache)

 # preserve head patterns

 for layer, head in preserve:

 cache[layer][head]['attn_pattern'] = base_cache[layer][head]['attn_pattern']

 cache_mask[layer][head]['attn_pattern'] = True

 # perform other ablation, example: turning off heads

 for layer, head in ablate:

 cache[layer][head]['out'] = 0

 cache_mask[layer][head]['out'] = True

 return model(sequence, cache=cache, cache_mask=cache_mask)

Figure 2. Example pseudocode demonstrating a pattern preserving ablation using our framework.

(Lake et al., 2015), a common benchmark for FSL also used
by prior work on ICL in transformers (Chan et al., 2022;
Singh et al., 2023). Omniglot consists of 1600 classes of 20
exemplars. Most of our experiments use a simplified dataset
with a random set of C = 50 classes and E = 1 exemplar
per class, which we found sufficient to elicit the relevant
phenomena. To obtain input embeddings, we feed Omniglot
images through an ImageNet-pretrained, frozen Resnet18
encoder (He et al., 2015; Russakovsky et al., 2015).

To isolate FSL capabilities, we use the standard meta-
training setup where labels are randomized for each se-
quence. Specifically, each sequence can be viewed as a
2-way, 1-shot classification problem (see Figure 1b). Labels
are randomly selected from L one-hot labels. To obtain in-
put embeddings, we use a standard learnt embedding layer.

In our default setting4 (C = 50, E = 1, L = 5), we have a
total of 78400 unique training sequences (Appendix C). On
this data, we train causal, 2-layer attention-only transformer
models, as used by prior work (Olsson et al., 2022), to
study induction circuit formation. Model and optimizer
hyperparameters can be found in Appendix A.

To test generalization, we consider two test sets over held-
out classes and relabelings. Specifically, for “test (exem-
plars)”, we evaluate performance on a random, held-out set
of Ctest = 100 classes, which verifies the generality of the
“match” operation of induction circuits. For “test (relabel)”,
we hold out and test on a fixed percentage (20%) of pairs
of labels. This ensures that, while all labels are seen during
training, not all pairs are. This test set verifies the generality
of the “copy” operation of induction circuits.

2.2. An artificial-optogenetics framework

One of the contributions of this work is a novel training
and analysis framework that easily exposes activations, and
allows causal manipulations throughout training (as opposed

4In Section 5, we vary these parameters to more deeply study
the dependence of induction head formation on data properties.

to only after training, as in prior work). The framework
enables a wide range of analyses—in this work, we use it to
conduct targeted analyses of induction circuit formation via
clamping. Our codebase is implemented in Equinox/JAX
(Kidger & Garcia, 2021; Bradbury et al., 2018), natively
supports up to 50x speed-ups with jax.jit,5 and is open-
source.

In contrast to the standard practice of having modules with
a forward function implemented as call , we have an
underlying call with all aux method which returns a
pytree of all intermediate activations. The call method
wraps call with all aux and returns just the output.
During the training process, call is used. For analysis,
call with all aux can be easily used to expose all
intermediate activations.

To allow for editing/ablating activations throughout
training (or just post-hoc, as done in prior work),
call with all aux accepts cache and cache mask
arguments, which have the same shape as the output pytree
of call with all aux. These caches can be used to
insert activations into the network, e.g. clamping activations
at particular values during training. Combined with the
functional, automatic differentiation of JAX, these caches
can be input- and model-dependent, while still allowing
for proper gradient routing. For example, Figure 2 shows
how easy it is to implement the “pattern-preserving6 abla-
tion” of prior work (Olsson et al., 2022). Importantly, our
framework allows implementing such causal manipulations
throughout training, which enables us to isolate the dynam-
ics of subcircuit formation (Section 4.2). While prior work7

was restricted to conducting mechanistic analyses on check-

5See Appendix B for details.
6Here “patterns” are used to refer to the post-softmax attention

scores from one token to others.
7We note that some prior work in vision (Ranadive et al., 2023)

or masked language models (Chen et al., 2024) has attempted to
causally manipulate learning, but primarily through the use of reg-
ularizing losses. Our framework permits more direct interventions
(on activations) throughout training.

3

What needs to go right for an induction head?

lo�� p����a�

p�a�� c���ge

b)

a)

Figure 3. a) Train and test loss curves. Transformers exhibit strong
generalization to unseen classes (orange) and label pairs (green).
The loss dynamics reveal a plateau (which may be indicative of a
saddle point), where the model is randomly guessing between the
two labels present in context (so it has 50% accuracy, instead of the
chance level of 20% when there are L = 5 labels). Then, there’s
a phase change in the loss which corresponds to the formation of
induction circuits, reproducing the finding of Olsson et al. (2022).
b) Induction head strength for each Layer 2 head plotted over time.
Induction head strength is defined as the attention weight given to
the correct label token minus that to the incorrect token. All heads
appear to have some induction-like behavior, with Head 3 being
the strongest and emerging first.

points from training, providing only correlational evidence,
our framework allows causal interventions on learning dy-
namics (see Appendix D.2 for further discussion).

3. Induction head emergence and diversity
We first establish that training transformers as described
in Section 2.1 leads to ICL abilities and induction head
emergence. Figure 3a shows loss dynamics. Initially, the
transformer reaches a plateau (perhaps indicative of a saddle
point) where its accuracy is ≈50% (a loss of log 2). This
corresponds to the network having learned to randomly se-
lect from the two labels in context,8 rather than the full set
of all possible labels (L = 5). Then, a sudden phase change
in the loss leads to near-0 loss and near-perfect accuracy
on the task (99.99%). At this point, we also observe strong
generalization to unseen exemplars and unseen label pairs,

8The model tends to place equal weight on the two labels, rather
than randomly putting high weight on one.

indicating the transformer has learnt a general ICL mecha-
nism and is not simply memorizing the training sequences.

We find that the phase change in the loss corresponds to the
formation of induction circuits. We measure the “induction
strength” of a head, a common progress measure, as a differ-
ence in attention weights from the query token: [attention to
the correct in-context label token] - [attention to the incor-
rect in-context label token]. For example, on the sequence
“A 0 B 1 A”, this would be the difference [attention weight
from 5th token to 2nd token] - [attention weight from 5th
token to 4th token]. We see that the emergence of induction
heads corresponds to the phase change in the loss.

To verify that Layer 2 induction heads instead of Layer 1
heads are primarily contributing to task performance, we use
our artificial optogenetics framework to ablate the residual
connection between Layer 1 heads and the output. We
do this by setting Layer 2 activations (attention patterns
and values vectors) to those from an un-ablated forward
pass (keeping induction circuits intact) and then ablating
Layer 1 head outputs. Such an ablation leads to a negligible
change in loss and accuracy (which drops by 0.01% to
99.98%), indicating that Layer 1 heads are not responsible
for task performance. When we apply this ablation across
checkpoints, we see that earlier in training, Layer 1 heads
are contributing to minimizing the loss (perhaps through
the use of skip-trigrams; Elhage et al., 2021), but no longer
towards the end (Appendix Figure 12).

3.1. The additive nature of induction heads

One of the notable features of Figure 3b is the fact that many
heads become strong induction heads. What purpose do all
these heads serve? Are they necessary to solve the task?

To answer these questions, we consider two types of ab-
lations of the fully trained network (Figure 4a). The first
type of ablation is similar to prior mechanistic work (Olsson
et al., 2022), where we ablate a given head and observe
the effect on network performance (triangles, Figure 4a).
However, we found that this type of ablation was not very in-
formative, and even potentially misleading, as ablating any
head except the strongest leads to an almost unobservable
decrease in task performance. Next, we considered an abla-
tion inspired by work on head pruning (Michel et al., 2019),
where all Layer 2 heads are turned off and only one head
is turned on (circles, Figure 4a). This ablation allows us to
identify the positive contribution of each head to the task. 9

As seen in Figure 4a, the latter ablation (circles) reveals a

9There are some intuitive connections to the commonly used
logit lens (nostalgebraist, 2020). However, we emphasize that
our method relies on causal ablations only and takes into account
LayerNorm, which is often a thorn for interpretability research.
We measure task performance with the ablation applied, instead of
a change in logits.

4

What needs to go right for an induction head?

b)

a)

Figure 4. a) Effect of various ablations on accuracy (effects on
loss are shown in Appendix Figure 13). Ablating any single head
(triangles) leads to virtually no decrease in task performance, with
the exception of Head 3, which leads to a 1% decrease. Ablating
all but a specific head (circles) isolates how useful that specific
head is, which correlates well to the induction strength (x-axis),
the metric from Figure 3b. Importantly, ablating Head 3 (pink
triangle) performs very similar to ablating everything except Head
3 (pink circle), which indicates the other heads function additively,
and together can make up for the deletion of Head 3. b) Training
loss curves when training from scratch with only a single head
from Layer 2 active (and the rest ablated). Black dotted line is the
loss profile from the training run in Figure 3. Colors chosen to
match Figure 3b. Each Layer 2 head on its own can learn to solve
the task, though the timing of the phase change shifts and learning
is slower.

clearer picture of the importance of induction heads, show-
ing the correlation between induction head strength (which
is calculated using attention scores), and task performance.

We see that despite Head 3 being able to mostly solve the
task on its own (achieving an accuracy of 98%), other single
heads can still achieve strong performance. Furthermore,
heads seem to have an additive effect, most clearly demon-
strated10 by comparing the pink triangle (which corresponds
to ablating Head 3) and pink circle (which corresponds to
only keeping Head 3). Both achieve around 98% accuracy,
indicating that the other, weaker heads together can make
up for the loss of Head 3. These results echo similar find-
ings in head pruning (Michel et al., 2019) and layer-wise

10We provide further evidence in Appendix G Figure 14.

redundancy of language models (McGrath et al., 2023).11

Our analysis builds on this work and cautions against the
use of purely knock-out ablations in mechanistic analyses,
which may overlook redundancies and incorrectly dismiss
network pieces as not implementing a certain function.

3.2. Networks use additional capacity for faster training,
even if it is not necessary

Given the additive qualities observed above, a natural ques-
tion is—does the network need multiple induction heads to
learn to solve the task? We know that we can ablate many
heads and not hurt performance at the end of training, but
perhaps these heads play a crucial role during training? To
answer these question, we use our artificial optogenetics
framework to ablate all Layer 2 heads but one throughout
training. We do this for each Layer 2 head and show train
loss curves in Figure 4b (all networks trained from the same
random initialization). We find that final networks attain the
same near-perfect train performance as the network trained
with 8 heads in Layer 2 (black dotted line in Figure 4b, blue
line in Figure 3), but with slightly slower dynamics (delayed
phase change timing). Thus, it seems the network may make
use of the additional capacity during training to learn faster,
even though it is not strictly necessary for the task.

These experiments connect to notions of lottery tickets12

(Frankle & Carbin, 2018; Nanda, 2023). Specifically, we
note that different Layer 2 heads exhibit phase changes at
different times (but all eventually learn to solve the task).
Head 3 is the “quickest to learn” in Figure 4b, which may
also be the reason it becomes the strongest when training
with all heads (Figure 3b)—perhaps heads are racing to
minimize the loss, similar to the mechanism in Saxe et al.
(2022). Once Head 3 emerges, though, the ordering of phase
changes in Figure 4b does not match emergence in the full
network (Figure 3b)—e.g., Head 1 is the second to emerge
and second strongest, but the third slowest when trained on
its own. Additive interactions could be causing Head 1 to
be learned sooner, due to the presence of Head 3 (we further
explore such interactions in Appendix H).

3.3. Previous token heads influence induction heads in a
many-to-many fashion

Prior work (Olsson et al., 2022) has stressed the two-layer
nature of induction circuits, where induction heads in later
layers rely on the output of previous token heads in earlier
layers to attend to the correct token. By inspecting attention
patterns, we identify three previous token heads in Layer 1:
Heads 1, 2, and 5. Through a series of ablation analyses, we

11Such redundancy is also a common observation in neuro-
science (Hennig et al., 2018).

12Lottery tickets typically refer to sub-networks sufficient to
solve the task determined largely by initialization.

5

What needs to go right for an induction head?

find that each of these heads is enough to elicit above-chance
accuracy in at least one of the strongest induction heads in
Layer 2 (see Appendix Figure 11b). These results indicate
a many-to-many wiring between previous token heads and
induction heads, with previous token heads operating redun-
dantly (just as induction heads operate redundantly to solve
the task). Full details are provided in Appendix E.

4. Three interacting subcircuits give rise to the
phase change in induction head formation

We now turn our attention to the dynamics of induction
circuit formation. Prior work (Jermyn & Shlegeris, 2022) in-
dicates that reverse-S phase changes in the loss are often due
to multiple interacting components. Below, we delineate the
necessary computations that comprise an induction circuit,
then study their formation dynamics in isolation using our
artificial optogenetics framework.

4.1. Terminology for this section

For clarity, we isolate and define the 5 key computations
involved in an induction circuit, as illustrated in Figure 5c.
In Section 4.2, we’ll show that these 5 computations can be
grouped into the 3 primary interacting subcircuits.

Step 1 (PT-attend) Layer 1 head attends to previous token.

Step 2 (PT-copy) Layer 1 head copies previous token value
into the current token’s residual stream.

Step 3 (Routing Q/K/V) Layer 2 head reads Q/K/V13 from
the correct subspaces of the residual stream: Q from the
residual, K from the output of the Layer 1 head, and V from
the residual or from other Layer 1 heads.14

Step 4 (IH-Match) Layer 2 head matches Q to “same” K.

Step 5 (IH-copy) Layer 2 copies the value to the output.

Steps 1 and 2 comprise what’s canonically known as a pre-
vious token head, while Steps 3-5 form the induction head.
The “match operation” (Figure 1a, blue) consists of Steps
1, 2, 3qk, 4. The “copying operation” (Figure 1a, green)
consists of Steps 3v, 5.

4.2. Clamping computations to understand the causal
effects of subcircuits on dynamics

Now that we’ve defined these computations, we ask: how
do the learning dynamics of each of these computations
causally influence the learning dynamics of the full model?
Can we explain seemingly discontinuous qualitative phase

13Q/K/V are the query, key, and value in the attention computa-
tion of a transformer (Vaswani et al., 2017).

14Unlike Olsson et al. (2022), we observe non-trivial V-
composition in our networks. See Appendix E for details.

changes, such as the induction circuit formation, in terms of
subcircuits with smoother, exponential learning dynamics?

To motivate our analysis, we extend the toy model from
Jermyn & Shlegeris (2022) to the case of three interacting
vectors.15 Specifically, we have three vectors a, b, and
c that are learnt using a simple mean-squared error loss,
corresponding to learning their values via a tensor product:

L(a,b, c) = 1

2

∑
i,j,k

(
atruei btruej ctruek − aibjck

)2
The interaction between the evolution of a, b, and c gives
rise to a phase change in dynamics (black, Figure 5a) fol-
lowing a loss plateau caused by a saddle point (see proof
in Appendix F). If we clamp c to its final value, learning
is faster (blue, Figure 5a), but the co-evolution of a and b
still results in a phase change. If we clamp b and c (purple,
Figure 5a), we isolate a smooth exponential loss curves cor-
responding to the formation dynamics of a. This toy model
gives us the intuition that phase changes may be caused by
two or more subcircuits that, when learned on their own,
evolve exponentially, but when co-evolving, induce phase
changes. Furthermore, these subcircuits could be isolated by
clamping all the other interacting components throughout
training. Notably, it’s not clear how to use existing inter-
pretability techniques, such as progress measures (Nanda
et al., 2023; Reddy, 2023), to uncover these subcircuits
(Appendix D.2).

We apply these insights from the toy model to understand-
ing the key underlying subcircuits in an induction circuit.
Specifically, we aim to isolate subcircuits where each indi-
vidual subcircuit does not exhibit a phase change in its learn-
ing dynamics, like variables a,b, and c in the toy model. We
restrict ourselves to considering the induction circuit with
induction head Layer 2 Head 3, a minimal setting where
we observe a phase change in the loss dynamics (see Fig-
ure 4b). In Section 5, we will show how understanding these
subcircuits can help us understand the data-dependence of
phase change timing, affirming the importance of discover-
ing smoothly-learned underlying subcircuits.

To isolate these subcircuits, we iteratively clamp the compu-
tations delineated in Section 4.1 at the activation level,16 us-
ing our artificial optogenetics framework. Results are shown
in Figure 5b. We start by clamping Step 1 (PT-attend), the
previous token head attention pattern (an oft-used progress
measure for IH formation). We train a network where one17

15Our tensor product formalism for analyzing sub-circuits could
be extended beyond 3. We chose 3 as we ended up finding 3
primary subcircuits contributing to induction circuit formation.
We also assume that atrue,btrue, ctrue ̸= 0.

16Specifics of our implementation are provided in Appendix
D.1.2 and why fixing weights to those at the end of training is not
sufficient (see Appendix D.1.1).

17We also conducted experiments where multiple previous token

6

What needs to go right for an induction head?

b)

a)

0 1

0 1

Previous
token
head

Induction head

0

4
5

1
2

3q3k3v

c)

1
2

Figure 5. a) Loss dynamics when clamping various variables in
the toy model presented in Section 4.2. Black shows the learning
dynamics when no variable is clamped. Only when all other
interacting components (b, c) are clamped does the loss curve
become exponential. b) Loss dynamics when clamping various
computations outlined in Section 4.1. Black shows the training
dynamics of the full network with nothing clamped. c) Induction
circuit schematic (from Figure 1a), with computation steps labeled.
Arrow colors chosen to illustrate which steps are additionally
clamped.

of the Layer 1 heads is clamped from the start of training
to a perfect PT-attend pattern. We see the loss dynamics
still exhibit a phase change (orange), with a similar pro-
file, indicating the rest of the computations (2-5) contain
interacting subcircuits. Next, we clamp the full Layer 1
computation (PT-attend and PT-copy) and ensure that the
superimposed residual and output of Layer 1 are disentan-
gled (see Appendix D.1.2 for details). We find that the
dynamic profile of the loss shifts substantially (red). While
a phase change is still observed, it is much sharper, lasting
only ≈ 7.5e4 iterations (compared to 2e5, black). This sug-
gests that the formation of Layer 1 attention+output circuits
is likely a key sub-component, but there are still interacting
sub-components in Steps 3, 4, and 5.

We take this analysis further and clamp the entire match
operation (green in Figures 1a, Figure 5), so only the copy
operation (blue, Figure 1a) is being learned. We see this
loss profile is smoothly exponential, suggesting there are no
sub-components hidden within it. We then do the opposite,
clamping the copy operation and focusing on the dynam-
ics of match operation formation. We see a small saddle
point followed by a quick phase change (lasting ≈ 0.5e5
iterations), indicating that the match operation should be
decomposed further. We do so by clamping both layer 1 and
copy components (Steps 1, 2, 3v, 5), which results in a more
exponential loss profile (purple, Figure 5).

Given these results, we believe the phase change is primarily
determined by three interacting subcircuits:

Subcircuit A: Layer 1 Attending to previous token and
copying it forward. Comprised of PT-attend and PT-copy
(Steps 1 and 2).

Subcircuit B: IH QK Match Matching queries to keys in
the induction head. Comprised of Routing Q, Routing K
and IH-match (Steps 3qk and 4).

Subcircuit C: Copy Copying of input label to output. Com-
prised of Routing V and IH-copy (Steps 3v and 5).

Prior work has often hypothesized the first and second com-
ponents; our analysis verifies these intuitions and critically
identifies the third interacting component through the use of
clamping (causal manipulations of activations throughout
training).

5. Subcircuits can explain data-dependent
shifts in phase change timing

To demonstrate the relevance of the identified subcircuits,
we turn towards explaining changes in the timing of the
phase change as we modify various data properties. Pre-

heads were provided and observed similar loss dynamics. See
Appendix D.1.2.

7

What needs to go right for an induction head?

0.0

0.5

1.0

1.5
Lo

ss
Normal training Subcircuit B evolution Subcircuit C evolution Subcircuits B, C evolution

classes
50
100
200

0.0 0.5 1.0 1.5 2.0
sequences seen ×106

0.0

0.5

1.0

1.5

Lo
ss

0 1 2 3
sequences seen ×105

0 1 2 3
sequences seen ×105

0 1 2 3
sequences seen ×105

labels
5
10
15

Figure 6. Data-dependent learning dynamics of the induction circuit and assorted subcircuits. Top row shows curves as the # of classes is
increased, bottom row shows curves as the # of labels is increased. Left-most column shows training loss over time without any clamps on
subcircuits. Middle two columns looks at the evolution of individual subcircuits identified in Section 4.2, by clamping the other two
subcircuits. Right-most column shows evolution of a composite circuit (by only clamping Subcircuit A). Middle two plots clearly show
how different subcircuits depend on different data properties, and how this can explain the overall difference in learning dynamics.

vious work has shown that such data properties can affect
the dynamics and emergence of ICL (Chan et al., 2022;
Raparthy et al., 2023; Reddy, 2023; Yu et al., 2023). Specif-
ically, we consider two possible variations: increasing the
number of classes C or the number of labels L.

In Figure 6, we find that increasing both the number of
classes and number of labels lead to a delay in the formation
of induction heads, mostly seen as a shift in the timing of
the phase change (leftmost column, Figure 6). This may
be because the task becomes more challenging due to the
higher data diversity. To better understand what leads to this
delay, we look at the effect of these data properties on the
formation of some of the subcircuits identified in Section 4,
specifically Subcircuits B and C (middle two columns, Fig-
ure 6). We find that increasing the number of classes makes
learning IH QK Match (Subcircuit B) harder while not in-
creasing the difficulty of Copy (Subcircuit C), thus implying
that a delay in Subcircuit B formation causes the delayed
phase change. On the other hand, we find that when in-
creasing the number of labels, IH QK Match is learnt as
quickly, while copying becomes way harder, indicating that
a delay in Subcircuit C formation causes the delayed phase
change. These results make intuitive sense—more classes
may necessitate learning a higher precision QK matching
operation (Subcircuit B), and more labels may necessitate
learning a higher precision copying operation (Subcircuit
C). Our analysis enables this rigorous decomposition of the
phase change of the full model into delays of formation of
interacting subcircuits.

To emphasize the importance of considering these subcir-
cuits individually, we consider the joint evolution of both
Subcircuits B and C (which we can track by clamping Sub-
circuit A, analogous to the red line in Figure 5b). This
would correspond to just looking at an induction head’s
formation, when a network is provided with previous token

heads (and disentangled outputs of Layer 1). We find that
both # classes and # labels seems to affect these dynamics,
thus not providing as much clarity on how these different
properties might differentially affect learning dynamics. De-
composing into the individual subcircuits that we identified
in Section 4.2 provides a better understanding of how data
properties differentially increase the difficulty of induction
circuit formation, leading to delayed phase changes.

Finally, we note that learning of the individual subcircuits
is substantially faster than that of the overall dynamics. By
considering data-dependent effects on individual subcircuits,
we may be able to predict network behavior without having
to train for long amounts of time, waiting for a phase change.

6. Related work
In-context learning From its discovery as an emergent abil-
ity in LLMs (Brown et al., 2020), ICL has become a focus
of study in NLP (Min et al., 2022; Wei et al., 2023b;a) and
in synthetic settings (von Oswald et al., 2023; Chan et al.,
2022; Xie et al., 2021). The recent findings of transience
from Singh et al. (2023) especially motivated our work,
which led to our choice of using a similar setup. Future
work could extend our analyses to other setups, like linear
regression or natural language tasks.

Induction circuits were first found by Elhage et al. (2021),
then further investigated in many settings (Olsson et al.,
2022; Wang et al., 2023). Reddy (2023) also considers the
dynamics of formation, but uses the correlational approach
of progress measures. We chose to focus on causal meth-
ods (see Appendix D.2) such as clamping, enabling us to
discover a different set of 3 subcircuits governing induction
circuit learning dynamics (Section 4.2).

Tooling for mechanistic interpretability With the increas-
ing prevalence of LLMs and corresponding safety concerns,

8

What needs to go right for an induction head?

mechanistic interpretability has seen a number of toolkits
released. Primary open-source frameworks include Trans-
formerLens (Nanda & Bloom, 2022), nnsight (Fiotto-
Kaufman), and pyvene (Wu et al., 2024). All of these
frameworks are built on PyTorch, allow studying and ma-
nipulating activations from model checkpionts, and natively
support many open-source LLMs. In some cases (Fiotto-
Kaufman) they even allow intervention on gradients, but it’s
unclear if any of these frameworks can be used to manipulate
activations during training with proper propagation of gradi-
ents, which is a crucial and unique feature of our framework.
Furthermore, while our library does not support as large a
breadth of use cases, we hope the vibrant open-source JAX
community will find a mechanistic interpretability frame-
work based in JAX and natively supporting compilation
useful (including major speedup benefits), similar to the up-
take of the Rust circuit library (Goldowsky-Dill et al.,
2023) by Rust users. The only JAX framework the authors
are aware of is Tracr (Lindner et al., 2023), which allows
researchers to quickly construct transformers that imple-
ment certain RASP programs: a complementary focus from
TransformerLens, nnsight, pyvene, Rust circuit
and our JAX-based artificial optogenetics framework.

7. Discussion
Our work analyzed induction circuits in two-layer attention-
only transformers trained on a synthetic ICL task with a
focus on the dynamics of formation. We took inspiration
from the original discovery of induction circuits (Olsson
et al., 2022) and thus focused on smaller models. While
a limitation of our work is the small scale compared to
frontier foundation model interpretability (e.g., Wang et al.,
2022; Merullo et al., 2024; Palit et al., 2023), we chose this
setting due to academic compute constraints and a hope
to dive deeper in terms of understanding. Our focus on
dynamics, as well as our training setup, was inspired by
recent work from Singh et al. (2023) asserting that emergent
ICL may be a dynamical phenomenon in settings where
multiple competing solutions are possible to solve the task.

Through our analysis, we discovered multiple answers to
what does and doesn’t need to “go right” for an induction
head. We found that induction heads operate additively,
with multiple heads used to learn the ICL task more quickly
despite not being necessary to solve it. This theme of redun-
dancy carried to previous token heads, which we found to
exhibit a many-to-many wiring pattern to induction heads.
Next, we used the novel clamping methodology to iden-
tify three smoothly-evolving subcircuits whose interaction
may explain the phase change in induction circuit formation.
Furthermore, this better understanding helped us explain
data-distribution-dependent changes in phase change tim-
ing. Of specific interest here was the quicker timelines of

subcircuit formation when isolated, which could serve as
useful intuition for understanding the effects various data
ablations in large model training may have on the learning
dynamics, without having to train full networks on each
data ablation from scratch. In terms of specific subcircuits
we identified, our work demonstrated the crucial role of the
copy subcircuit in explaining data-distributional dependent
delays in phase change timing (bottom row, Figure 6). This
added understanding may have implications for practition-
ers when selecting a vocabulary size for LLMs: while larger
vocabulary sizes are often preferred due to their increased
compression ratio (and thus longer effective context), they
may make copying more challenging, thereby delaying in-
duction head formation.

Turning back towards our original motivation from the tran-
sience of emergent ICL in transformers (Singh et al., 2023),
we hope this improved understanding of key subcircuits
within induction circuits, as well as novel analysis tools, can
in future shed light on why ICL may fade with overtraining.

Beyond our specific results on induction heads, our work
contributes a JAX-based artificial optogenetics framework
which supports compilation (yielding nearly a 50x speedup
on our hardware, see Appendix B) and can be used to mod-
ify activations during training with proper gradient flow,
a methodology we term clamping. This framework per-
mits causal analyses of learning dynamics, whereas prior
work mostly applied causal analyses to end networks or
checkpoints from normal training (see Appendix D.2 for
a comparison). We view our work as taking the first steps
with this approach, and are excited to see how future work
may combine our clamping methodology with other causal
mechanistic interpretability techniques, such as path patch-
ing (Wang et al., 2022; Conmy et al., 2023) or causal media-
tion analysis (Vig et al., 2020; Geiger et al., 2021; Cao et al.,
2021; Geva et al., 2023; Finlayson et al., 2021), through-
out training for better understanding of transformer circuit
learning dynamics.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
We’d like to thank DJ Strouse, Kira Düsterwald, Jirko
Rubruck, Andrew Lampinen, Roma Patel, Dan Roberts,
Andrey Gromov, and Taylan Cemgil for useful discussions
and feedback on early drafts.

A.K.S. and T.M. are funded by the Gatsby Charitable foun-

9

What needs to go right for an induction head?

dation. This work was supported by a Schmidt Science
Polymath Award to A.S., and the Sainsbury Wellcome Cen-
tre Core Grant from Wellcome (219627/Z/19/Z) and the
Gatsby Charitable Foundation (GAT3850). A.S. is a CI-
FAR Azrieli Global Scholar in the Learning in Machines &
Brains program.

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization,

2016.

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and
Deisseroth, K. Millisecond-timescale, genetically tar-
geted optical control of neural activity. Nature Neu-
roscience, 8(9):1263–1268, September 2005. ISSN
1097-6256, 1546-1726. doi: 10.1038/nn1525. URL
https://www.nature.com/articles/nn1525.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.
URL https://proceedings.neurips.cc/
paper files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf.

Cao, N. D., Schmid, L., Hupkes, D., and Titov, I. Sparse
interventions in language models with differentiable
masking. CoRR, abs/2112.06837, 2021. URL https:
//arxiv.org/abs/2112.06837.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh,
A., Richemond, P., McClelland, J., and Hill, F. Data
distributional properties drive emergent in-context
learning in transformers. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 18878–18891. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/
paper files/paper/2022/file/

77c6ccacfd9962e2307fc64680fc5ace-
Paper-Conference.pdf.

Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M. L., and
Saphra, N. Sudden drops in the loss: Syntax acquisition,
phase transitions, and simplicity bias in mlms, 2024.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards automated circuit
discovery for mechanistic interpretability, 2023.

Cooney, A. [proposal] improve performance with
torch.compile, 2023. URL https://github.com/
neelnanda-io/TransformerLens/issues/
413.

DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupati-
raju, S., Bruce, J., Buchlovsky, P., Budden, D., Cai,
T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C.,
Godwin, J., Jones, C., Hemsley, R., Hennigan, T., Hes-
sel, M., Hou, S., Kapturowski, S., Keck, T., Kemaev,
I., King, M., Kunesch, M., Martens, L., Merzic, H.,
Mikulik, V., Norman, T., Papamakarios, G., Quan, J.,
Ring, R., Ruiz, F., Sanchez, A., Sartran, L., Schnei-
der, R., Sezener, E., Spencer, S., Srinivasan, S., Stano-
jević, M., Stokowiec, W., Wang, L., Zhou, G., and Vi-
ola, F. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/google-deepmind.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Finlayson, M., Mueller, A., Gehrmann, S., Shieber, S. M.,
Linzen, T., and Belinkov, Y. Causal analysis of syntactic
agreement mechanisms in neural language models. CoRR,
abs/2106.06087, 2021. URL https://arxiv.org/
abs/2106.06087.

Fiotto-Kaufman, J. nnsight: The package for interpret-
ing and manipulating the internals of deep learned mod-
els. . URL https://github.com/JadenFiotto-
Kaufman/nnsight.

Frankle, J. and Carbin, M. The lottery ticket hy-
pothesis: Training pruned neural networks. CoRR,
abs/1803.03635, 2018. URL http://arxiv.org/
abs/1803.03635.

Geiger, A., Lu, H., Icard, T., and Potts, C. Causal abstrac-
tions of neural networks. CoRR, abs/2106.02997, 2021.
URL https://arxiv.org/abs/2106.02997.

10

https://www.nature.com/articles/nn1525
http://github.com/google/jax
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2112.06837
https://arxiv.org/abs/2112.06837
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://github.com/neelnanda-io/TransformerLens/issues/413
https://github.com/neelnanda-io/TransformerLens/issues/413
https://github.com/neelnanda-io/TransformerLens/issues/413
http://github.com/google-deepmind
https://arxiv.org/abs/2106.06087
https://arxiv.org/abs/2106.06087
https://github.com/JadenFiotto-Kaufman/nnsight
https://github.com/JadenFiotto-Kaufman/nnsight
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2106.02997

What needs to go right for an induction head?

Geva, M., Bastings, J., Filippova, K., and Globerson, A.
Dissecting recall of factual associations in auto-regressive
language models, 2023.

Goldowsky-Dill, N., MacLeod, C., Sato, L., and Arora, A.
Localizing model behavior with path patching, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Hennig, J. A., Golub, M. D., Lund, P. J., Sadtler, P. T.,
Oby, E. R., Quick, K. M., Ryu, S. I., Tyler-Kabara,
E. C., Batista, A. P., Yu, B. M., and Chase, S. M.
Constraints on neural redundancy. eLife, 7:e36774,
2018. doi: 10.7554/eLife.36774. URL https://
elifesciences.org/articles/36774.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. Improving neural networks by
preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012. URL http://arxiv.org/
abs/1207.0580.

Jermyn, A. and Shlegeris, B. Multi-component
learning and s-curves, 2022. URL https:
//www.alignmentforum.org/posts/
RKDQCB6smLWgs2Mhr/multi-component-
learning-and-s-curves.

Kidger, P. and Garcia, C. Equinox: neural networks in JAX
via callable PyTrees and filtered transformations. Differ-
entiable Programming workshop at Neural Information
Processing Systems 2021, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Lake, B. M., Salakhutdinov, R., and Tenenbaum,
J. B. Human-level concept learning through prob-
abilistic program induction. Science, 350(6266):
1332–1338, 2015. doi: 10.1126/science.aab3050.
URL https://www.science.org/doi/abs/
10.1126/science.aab3050.

Lindner, D., Kramár, J., Rahtz, M., McGrath, T., and Miku-
lik, V. Tracr: Compiled transformers as a laboratory for
interpretability. arXiv preprint arXiv:2301.05062, 2023.

McGrath, T., Rahtz, M., Kramar, J., Mikulik, V., and Legg,
S. The hydra effect: Emergent self-repair in language
model computations, 2023.

Merullo, J., Eickhoff, C., and Pavlick, E. Circuit component
reuse across tasks in transformer language models, 2024.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? CoRR, abs/1905.10650, 2019.
URL http://arxiv.org/abs/1905.10650.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
arXiv preprint arXiv:2202.12837, 2022.

Nanda, N. A comprehensive mechanistic interpretabil-
ity explainer & glossary, Dec 2022. URL https:
//neelnanda.io/glossary.

Nanda, N. 200 concrete open problems (COP) in
MI: Analysing training dynamics, 2023. URL
https://www.alignmentforum.org/posts/
hHaXzJQi6SKkeXzbg/200-cop-in-mi-
analysing-training-dynamics.

Nanda, N. and Bloom, J. Transformerlens.
https://github.com/neelnanda-io/
TransformerLens, 2022.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability, 2023.

nostalgebraist. interpreting gpt: the logit lens, 2020. URL
https://www.alignmentforum.org/posts/
AcKRB8wDpdaN6v6ru/interpreting-gpt-
the-logit-lens.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. In-context learn-
ing and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

Palit, V., Pandey, R., Arora, A., and Liang, P. P. Towards
vision-language mechanistic interpretability: A causal
tracing tool for blip, 2023.

PyTorch. We just introduced pytorch 2.0 at the
#pytorchconference, introducing torch.compile!,
2022. URL https://x.com/PyTorch/status/
1598708792598069249?s=20.

Ranadive, O., Thakurdesai, N., Morcos, A. S., Leavitt, M.,
and Deny, S. On the special role of class-selective neurons
in early training, 2023.

11

http://arxiv.org/abs/1512.03385
https://elifesciences.org/articles/36774
https://elifesciences.org/articles/36774
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://www.alignmentforum.org/posts/RKDQCB6smLWgs2Mhr/multi-component-learning-and-s-curves
https://www.alignmentforum.org/posts/RKDQCB6smLWgs2Mhr/multi-component-learning-and-s-curves
https://www.alignmentforum.org/posts/RKDQCB6smLWgs2Mhr/multi-component-learning-and-s-curves
https://www.alignmentforum.org/posts/RKDQCB6smLWgs2Mhr/multi-component-learning-and-s-curves
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.science.org/doi/abs/10.1126/science.aab3050
https://www.science.org/doi/abs/10.1126/science.aab3050
http://arxiv.org/abs/1905.10650
https://neelnanda.io/glossary
https://neelnanda.io/glossary
https://www.alignmentforum.org/posts/hHaXzJQi6SKkeXzbg/200-cop-in-mi-analysing-training-dynamics
https://www.alignmentforum.org/posts/hHaXzJQi6SKkeXzbg/200-cop-in-mi-analysing-training-dynamics
https://www.alignmentforum.org/posts/hHaXzJQi6SKkeXzbg/200-cop-in-mi-analysing-training-dynamics
https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://x.com/PyTorch/status/1598708792598069249?s=20
https://x.com/PyTorch/status/1598708792598069249?s=20

What needs to go right for an induction head?

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M.,
and Raileanu, R. Generalization to New Sequen-
tial Decision Making Tasks with In-Context Learning,
December 2023. URL http://arxiv.org/abs/
2312.03801. arXiv:2312.03801 [cs].

Reddy, G. The mechanistic basis of data dependence and
abrupt learning in an in-context classification task, 2023.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge, 2015.

Saxe, A. M., Sodhani, S., and Lewallen, S. The neural race
reduction: Dynamics of abstraction in gated networks,
2022.

Shalizi, C. R. ”attention”, ”transformers”, in neural
network ”large language models”, 2024. URL http:
//bactra.org/notebooks/nn-attention-
and-transformers.html#identification.

Singh, A. K., Chan, S. C. Y., Moskovitz, T., Grant, E., Saxe,
A. M., and Hill, F. The transient nature of emergent
in-context learning in transformers, 2023.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Ro-
former: Enhanced transformer with rotary position em-
bedding. CoRR, abs/2104.09864, 2021. URL https:
//arxiv.org/abs/2104.09864.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D.,
Singer, Y., and Shieber, S. M. Causal mediation anal-
ysis for interpreting neural NLP: the case of gender

bias. CoRR, abs/2004.12265, 2020. URL https:
//arxiv.org/abs/2004.12265.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. In Ko-
rhonen, A., Traum, D., and Màrquez, L. (eds.), Pro-
ceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 5797–5808,
Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1580. URL
https://aclanthology.org/P19-1580.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov, M.
Transformers learn in-context by gradient descent, 2023.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: a circuit for
indirect object identification in gpt-2 small, 2022.

Wang, L., Li, L., Dai, D., Chen, D., Zhou, H., Meng, F.,
Zhou, J., and Sun, X. Label words are anchors: An
information flow perspective for understanding in-context
learning, 2023.

Wei, J., Hou, L., Lampinen, A., Chen, X., Huang, D., Tay,
Y., Chen, X., Lu, Y., Zhou, D., Ma, T., and Le, Q. V.
Symbol tuning improves in-context learning in language
models, 2023a.

Wei, J., Wei, J., Tay, Y., Tran, D., Webson, A., Lu, Y., Chen,
X., Liu, H., Huang, D., Zhou, D., et al. Larger language
models do in-context learning differently. arXiv preprint
arXiv:2303.03846, 2023b.

Wu, Z., Geiger, A., Arora, A., Huang, J., Wang, Z., Good-
man, N. D., Manning, C. D., and Potts, C. pyvene: A
library for understanding and improving PyTorch mod-
els via interventions. 2024. URL arxiv.org/abs/
2403.07809.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Yu, K. P., Zhang, Z., Hu, F., and Chai, J. Efficient In-Context
Learning in Vision-Language Models for Egocentric
Videos, November 2023. URL http://arxiv.org/
abs/2311.17041. arXiv:2311.17041 [cs].

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock
and the pizza: Two stories in mechanistic explanation of
neural networks, 2023.

12

http://arxiv.org/abs/2312.03801
http://arxiv.org/abs/2312.03801
http://bactra.org/notebooks/nn-attention-and-transformers.html#identification
http://bactra.org/notebooks/nn-attention-and-transformers.html#identification
http://bactra.org/notebooks/nn-attention-and-transformers.html#identification
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2004.12265
https://aclanthology.org/P19-1580
arxiv.org/abs/2403.07809
arxiv.org/abs/2403.07809
http://arxiv.org/abs/2311.17041
http://arxiv.org/abs/2311.17041

What needs to go right for an induction head?

A. Additional model details
We train causal, 2-layer attention-only transformer models, as used by prior work (Olsson et al., 2022), to study induction
circuit formation. Similar to prior work (Chan et al., 2022; Singh et al., 2023), we only train to minimize the cross entropy
loss on the last token – the predicted label for the query exemplar. We use RoPE (Su et al., 2021) for positional encoding
and a model dimension of 64, with 8 heads per layer. As is common for transformers outside of interpretability work, we are
able to use LayerNorm (Ba et al., 2016) when reading in from the residual stream to an attention block – LayerNorm is often
excluded in interpretability work because it complicates standard analyses (Elhage et al., 2021), but our causal framework
works by modifying activations instead of inspecting weights or assuming linearity, circumventing the issues.

For optimization, we use Adam (Kingma & Ba, 2015) from the optax library (DeepMind et al., 2020), with parameters
β1 = 0.9, β2 = 0.999. We use a constant learning rate of 1e− 5 and a batch size of 32 sequences.

B. Computational cost to run experiments
All experiments were run on a 2018 MacBookPro with a 6-Core Intel Core i7 processor and 16GB of RAM. Standard
training runs (e.g., Figure 3) took ≈ 7 minutes each to complete (for 1e6 sequences seen). Clamped runs were more
expensive per iteration (as some clamps require multiple forward passes), but overall took even less time since they converge
in fewer sequences, note x-axis in Figure 5. This speed was possible due to the use of jax.jit, without which each
training run would take ≈ 330 minutes on the same hardware. Though PyTorch has recently added torch.compile to
impart similar functionality (PyTorch, 2022), interpretability frameworks based in PyTorch are currently not compatible
with torch.compile due to their use of hooks (Cooney, 2023). Our JAX-based framework is natively compatible
with jax.jit, as the call with all aux formalism uses PyTrees, which could possibly mean speed-ups for other
interpretability researchers (as it did for us).

C. Dataset size calculation
For a dataset of C classes, E exemplars, L labels, and assuming a fraction F of relabelings being used for training, our total
dataset size is (

C

2

)
· F ·

(
L

2

)
· E3 · 2 · 2 · 2 = 2FE3C(C − 1)L(L− 1) ⇒ 1.6C(C − 1)L(L− 1)

for our settings where E = 1 and F = 0.8 are fixed.

D. Additional details on clamping
D.1. Implementation details of clamping for induction head formation

In Section 4.2, we detail the methodology and inspiration for clamping various subcircuits. In this subsection, we detail the
specifics of implementation of each of the clamped steps.

D.1.1. CLAMPING WEIGHTS VS ACTIVATIONS: COMPLICATIONS DUE TO ROUTING

We first demonstrate that clamping isn’t as easy as just fixing weights during training. Recall that we want to clamp
computation steps (Section 4.1) that comprise an induction circuit. There are many ways (in terms of weights) the network
can implement some of these computation steps, as many of them involve reading from and/or writing into a subspace of the
residual stream (e.g., Steps 2 and 3). Arbitrary rotations could be applied to these subspaces.18 The specific subspaces used
appear to be initialization dependent, as shown in Figure 7.

We consider fixing the weights of Layer 1 to match those of networks pre-trained on our task, but from different initializations.
Specifically, we train networks on our task from different initialization seeds (which we will refer to as seeds19 5, 6, 7).
All networks learn induction circuits, with multiple previous token heads appearing in Layer 1. We then train a network
initialized from seed 5 with the residual stream after Layer 1 clamped to the residual stream after Layer 1 of one of the fully
trained networks (equivalent to fixing all the weights up to this point). Note that these activations are fixed for a given input,

18This has been referred to the as identification failures by some (Shalizi, 2024).
19These values are arbitrary and are the first three we tried. We didn’t use seed 0 as this was the seed for our data sampler.

13

What needs to go right for an induction head?

so gradients are only flowing to Layer 2 of the model (as desired, since we are clamping Layer 1 to be an externally “perfect”
Layer 1 based on weights). The clamped Layer 1 is theoretically perfectly performing Steps 1 and 2. However, we can see
that there is substantial variance when the weights used are from the same seed as that used for the Layer 2 initialization
(red, Figure 7) versus when the weights used are from a different seed (blue or green, Figure 7). These results point to the
importance of Step 3, routing, and tell us that fixing weights may not be the best way to clamp subcircuits as it may be
confounded by the specific methodology used (specifically, which network the weights come from).

0 1 2 3 4 5 6
sequences seen ×105

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Loss dynamics when using fixed Layer 1 weights
from different initializations

Standard training
Fixed Layer 1 weights from seed 5
Fixed Layer 1 weights from seed 6
Fixed Layer 1 weights from seed 7

Figure 7. Loss curves when fixing Layer 1 weights to be those found at the end of training with various seeds. We see that when using
the Layer 1 weights from the end of training off of the same initialization seed (seed 5) learning is way quicker, indicating that specific
implementations of computations 1 and 2 in Section 4.1 are tightly coupled to initialization. Furthermore, these results suggest that fixing
weights is not the ideal form of clamping as it is very susceptible to correlations between the chosen weights and network initialization.

D.1.2. ACTIVATION CLAMPS THAT WE USED

Building off this insight, we instead implement our clamps at the activation level. While this does restrict the set of useful
clamps we may apply, all the clamps used in Section 4.2 can be expressed at the activation level. We detail each clamp
below:

Clamping Step 1 (PT-attend) We fix the attention pattern of a Layer 1 head to always attend to its previous token (with
post-softmax value 1), corresponding to clamping Step 1 from Section 4.1. In Section 4.2, we clamped Layer 1 Head 2’s
attention pattern. In Figure 8, we show the effect of this clamp applied to different sets of Layer 1 heads. We find that overall
there is little difference, unless all heads are clamped, in which case learning is severely slowed. We hypothesize that some
Layer 1 heads speed up learning of copy circuits (which is consistent with the findings of V-composition in Appendix E) –
by forcing all Layer 1 heads to have the previous token attention pattern, we slow this mechanism. We didn’t investigate this
further, however, as this was not the focus of our work, and instead used a clamp on just one previous token head for our
main experiments.

Clamping Steps 1, 2 (layer 1) To implement this clamp while taking into account the concerns related to routing from
Appendix D.1.1, we consider how Layer 1 outputs are used by Layer 2. We utilize two forward passes through the network.
In the first, we set the input to Layer 2 to be equivalent to the output from previous token heads and perfect query routing.
For example, for the sequence “A 0 B 1 A”, this would look like “A A 0 B A”, where we note that the first token cannot
attend to a previous token (hence it still has ‘A’), the next 3 tokens attend to previous tokens (so ‘0 B 1’ becomes ‘A 0 B’),
and the query token still routes from the input (‘A’). We directly pass the embeddings of these tokens to Layer 2, and cache
the patterns. Then, we do a second forward pass using these patterns, except now we clamp the input to Layer 2 to match
the input to the network (“A 0 B 1 A”) which is what the value routing should be reading from. We note that this clamp is
making the task a bit easier for the network as the vectors that Routing QK needs to read from and Routing V needs to read
from are not additively superimposed, but these routing steps need to learn to read from the correct subspaces. We opted for

14

What needs to go right for an induction head?

0 1 2 3 4 5 6 7 8
sequences seen ×105

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Lo
ss

Loss dynamics when using fixed Layer 1 weights
from different initializations

Standard training
Clamped L1H2 pattern
Clamped L1H6 pattern
Clamped L1H1,2,5 pattern
Clamped all L1H* pattern

Figure 8. Effect of different implementations of the previous token attention pattern clamp (clamping computation Step 1, using the
terminology of Section 4.1). We see that most versions of the clamp have little effect on dynamics (just slight left or right shifts in the
phase change), with the exception of clamping all heads in Layer 1. We suspect this may be due to some Layer 1 heads V-composing with
Layer 2 heads to make copy circuits easier to learn.

this option as it makes it even more telling that there are some subcircuit interactions in the remaining steps after applying
this clamp.

Clamping Steps 1, 2, 3qk, 4 (match) We implement this by fixing the attention pattern of a Layer 2 head (we picked
Layer 2 Head 3 as described in Section 4.2) to be that of a perfect induction head – 1 to the correct label token and 0 to all
other tokens. The aim of this clamp is to make sure the correct label is matched to (thus isolating the copy operation), which
this implementation suffices to do.

Clamping Steps 3v, 5 (copy) We implement this clamp by considering the attention logits to the two labels in-context at
a given induction head (we picked Layer 2 Head 3 as described in Section 4.2) and setting the output logits to them. For
example, on the sequence “A 0 B 1 A”, the attention logits from the query token ‘A’ to the label tokens ‘0’ and ‘1’ would be
the output logits for labels 0 and 1. The other output logits are set to −1e9. The aim of this clamp is to make sure labels are
perfectly copied (thus isolating the match operation), which this implementation suffices to do.

Clamping Steps 1, 2, 3v, 5 We implement this clamp by combining the clamp for Steps 1, 2 (layer 1), and the clamp for
Steps 3v, 5 (copy). As each of these clamps are disjoint, it’s easy to apply both, serving the inteded purpose.

D.2. Contrasting clamping to progress measures

One prevailing current method in mechanistic interpretability for understanding training dynamics is to use progress measures.
Progress measures track quantities through the normal training process, often using causal ablations of intermediate network
checkpoints.20 Despite this causal nature per checkpoint, we note that progress measures are actually correlational metrics,
as the learning dynamics of the quantities they track may or may not be influencing the learning dynamics of the overall
network. As such, we find our clamping method (Section 4.2) to be more useful for uncovering underlying subcircuits.

We first illustrate this with the toy model explored in Section 4.2. To track the evolution of “subcircuit” a, we might consider
various progress measures. The first problem we run into is that a,b, c are only specified up to scalars – if (a,b, c) is a
solution, so is (−a,−b, c). We find this to be an interesting toy analog to the rotations problem described in Appendix D.1.1.
Given this, we might consider tracking the squared cosine distance between a and atrue. Another progress measure we

20Our results in Figure 3b and Figure 12 are examples of progress measures, with the latter involving a causal ablation per checkpoint.

15

What needs to go right for an induction head?

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

Train loss
Clamped variable

None
b, c

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Progress measure 1:
1 dcos(atrue, a)2

0 200 400 600 800 1000
Iterations

0.0

0.1

0.2

0.3

0.4

Progress measure 2:
Loss with b = ± btrue, c = ± ctrue

Figure 9. Progress measures vs clamping in a toy model. Black curve indicates standard training, as in Figure 5a. Leftmost plot shows the
training loss. Right two plots show two different progress measures for the learning of a. We note that clamping (purple curve, leftmost
plot) gives a clearer signal of the relevant subcircuit than progress measures in standard training (black curves, right two plots).

may consider, which offers a direct analog to clamping, is the loss if b = btrue, c = ctrue.21 Note the difference between
this progress measure and clamping is that with the progress measure, we’re considering the evolution of a during normal
training and setting b = btrue, c = ctrue at every checkpoint. With clamping, we set b = btrue, c = ctrue throughout
training and then consider the evolution of a.

Results are shown in Figure 9. We find that both progress measures considered, cosine distance to true value and loss
assuming b, c fixed to those at the end of training, exhibit a phase change when observed in isolation (black curves, right
two columns, Figure 9). On the other hand, as seen in Figure 5a and reproduced in the leftmost plot of Figure 9 in purple,
the loss curve when training with clamping is smoothly exponential and easily interpretable.

We extend results from the toy model to our setting, and consider progress measures corresponding to two of our clamped
experiments: that of clamping the previous token attention pattern (clamp Step 1, orange curve, Figure 5) and that of
clamping the whole match operation (clamp Steps 1, 2, 3qk, and 4, green curve, Figure 5). We construct analogous
progress measures by perfecting either the previous token head attention pattern or induction head attention pattern for each
checkpoint in standard training and considering the loss. Figure 10 shows the results, with a reproduction of the relevant
curves from Figure 5 for a side-by-side comparison. We can see that the progress measure is informative in the sense that
it identifies the copy subcircuit (Steps 3v, 5) as quicker to learn than the subcircuit consisting of Steps 2, 3qkv, 4, and 5.
However, when just looking at progress measures, both subcircuits appear to still emerge in a phase change, missing out on
the crucial distinction between the two: the copy subcircuit (Steps 3v, 5) does not contain interacting components, whereas
the other subcircuit (Steps 2, 3qkv, 4, and 5) does. These results show the benefit of the clamping approach for underlying
exponentially forming subcircuits whose dynamics of formation causally affect the learning dynamics of the full network.

To conclude, we discuss pros and cons of progress measures versus our clamping approach. Progress measures have the
benefit of only requiring access to network checkpoints after training, reducing the load of the mechanistic interpretability
researcher. For cases of large language models, where training data is often not disclosed even for open-source models
(Touvron et al., 2023), this could be especially appealing. Furthermore, as each progress measure only involves forward
passes on checkpoints, they may be easier to iterate on. On the other hand, progress measures, as demonstrated above,
provide largely a correlational understanding of subcircuits giving rise to dynamical phenomena. Clamping experiments,
though more complex, provide a more causal understanding of learning dynamics. We hope that our results and open-source
artificial optogenetics framework encourages more researchers to consider these types of experiments.

In terms of scaling to large language models, the hope would be that isolated subcircuits evolve quickly enough that the cost
is low enough. Specifically, one can view clamping experiments as requiring about 3x the cost of progress measures per
iteration (due to the forwards and backwards passes). Thus, if the number of iterations needed to train clamped networks is
substantially lower than that of the full network, clamping experiments may actually be cheaper than progress measures.

21Specifically, we consider b = ±btrue, c = ±ctrue and pick the one that yields lower loss (this choice is made to avoid the scaling
issue).

16

What needs to go right for an induction head?

0 1 2 3 4 5 6
sequences seen ×105

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Lo

ss

Loss dynamics when clamping
various steps

"Clamped" steps
1
1, 2, 3qk, 4 (match)

0 1 2 3 4 5 6
sequences seen ×105

Progress measures when perfecting
 various steps

Progress of
Composite sub-circuit
(steps 2, 3qkv, 4, 5)
Copy sub-circuit
(steps 3v, 5)

Figure 10. (Left) Our clamping method applied to studying formation of composite subcircuit consisting of Steps 2, 3qkv, 4, 5 (orange)
and copy subcircuit consisting of Steps 3v, 5 (green). (Right) Progress measures tracking these same circuits. We can see that the clamping
analysis more clearly shows the difference in formation dynamics of these two subcircuits, whereas the progress measure shows a phase
change for both.

E. The role of Layer 1 heads
To establish the causal role of Layer 1 heads to individual induction heads in Layer 2, we did extensive ablation analyses.

Earlier, we found that Layer 1 heads do not substantially contribute to the output logits. To see if they only compose to
Layer 2 heads’ attention patterns (the match subcircuit), we consider a “pattern preserving” ablation (Olsson et al., 2022):
the outputs of Layer 1 heads are completely ablated, but the attention patterns in Layer 2 are fixed to what they would’ve
been had the Layer 1 heads not been ablated. We implement this using our artificial optogenetics framework by using two
passes through the network. In the first, nothing is ablated. The Layer 2 attention patterns from this pass are then put into
the cache. On the second pass through the network, Layer 1 outputs are ablated, and the cache is used to restore the
patterns. We find that accuracy drops substantially (down to 55%), indicating substantial V-composition in our networks. To
study V-composition, we introduce an analogous “value-preserving” ablation where instead of caching attention patterns,
Layer 2 value vectors are cached. When using just a “value-preserving” ablation of all Layer 1 heads (without preserving
patterns), accuracy drops substantially (down to 11%). These results indicate that Layer 1 heads are contributing to both the
match subcircuit (patterns) and the copy subcircuit (values). Of the two, the role in the match circuit does seem to be “more
important”, which aligns with prior work (Olsson et al., 2022).

To verify the observed previous token (PT) heads, we next consider an ablation of these three heads with pattern-preserving
(which should have no effect if they are PT heads) or value-preserving (which should have a huge effect, since patterns
in Layer 2 will get messed up with these heads deleted). Likewise, we consider both types of ablations of the other heads
(Layer 1 heads 0,3,4,6,7). Results are summarized in Table 1. We can clearly see that ablating heads 1,2,5 while preserving
patterns has little effect, indicating these heads primarily compose with the match subcircuit. Likewise, we find the other
heads primarily participate in V-composition for the copy subcircuit.

Table 1. Accuracy after Layer 1 head ablations of various sets of heads. All Layer 2 heads remain active.

Ablated heads Type of ablation:
Pattern-preserving Value-preserving

Layer 1 Heads 1,2,5 (PT heads) 99.85% 69.87%
Layer 1 Heads 0,3,4,6,7 (rest) 34.27% 99.32%

Finally, we wish to establish the connectivity between Layer 1 and Layer 2 heads. To be specific to Layer 2 head, we repeat
each experiment 8 times, once for each Layer 2 head active (and the others are ablated). As in Section 3.1, we first consider
ablating a single previous token head. Results are shown in Figure 11a. We find that when ablating single heads, only
Head 2 seems to have a strong effect. We believe this result is again suffering from the redundancy across heads, so the

17

What needs to go right for an induction head?

importance of heads 1 and 5 is masked. To account for this, we instead consider ablating all but a given Layer 1 head. In
this case, each square in the heatmap can be seen as one path through the network, with only one head in each layer used.
Results are shown in Figure 11b. From these plots, it’s clear that there are multiple active paths in the network:

1. Layer 1 Head 1 → Layer 2 Head 3

2. Layer 1 Head 2 → Layer 2 Heads 1, 2, 3

3. Layer 1 Head 5 → Layer 2 Heads 1 and 3

These results indicate a many-to-many wiring diagram.

We’d also like to take a moment here to emphasize the use of activation-level ablation analyses, as opposed to metrics
calculated on weights. Composition score (Nanda, 2022; Elhage et al., 2021) is one such weight-based metric, calculated as:

score (L1Hi → L2Hj : Q/K/V) =
||WL1Hi

O W
L2Hj

Q/K/V ||F
||WL1Hi

O ||F ||W
L2Hj

Q/K/V ||F

It aims to measure the connection strength between heads in different layers by considering the matrices they use to write
output and read input from the residual stream. In Figure 11c, we plot the composition scores of Layer 1 heads to key and
value matrices of Layer 2 heads. Though the most noteworthy cases of composition are recovered (such as the importance of
Layer 1 Head 2 for K-composition, and Layer 1 Head 6 for V-composition), overall we find the results to be much harder to
interpret than those using our activation-level ablation analyses (Figure 11b).

18

What needs to go right for an induction head?

0.1 0.0 0.1

Accuracy change from
ablating Layer 1 head

0.0 0.2 0.4 0.6 0.8 1.0

Accuracy when only one
head in each layer active

0.10 0.12 0.14 0.16

Composition score

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

La
ye

r 2
 H

ea
d

#

Value preserving ablation

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Value preserving ablation

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Key composition

0 1 2 3 4 5 6 7
Layer 1 Head #

0

1

2

3

4

5

6

7

La
ye

r 2
 H

ea
d

#

Pattern preserving ablation

0 1 2 3 4 5 6 7
Layer 1 Head #

0

1

2

3

4

5

6

7

Pattern preserving ablation

0 1 2 3 4 5 6 7
Layer 1 Head #

0

1

2

3

4

5

6

7

Value composition

Figure 11. Layer 1 → Layer 2 head connectivity analyses (three different methods as the three columns). Leftmost column: Effect
of ablating a single Layer 1 head. Each column corresponds to the Layer 2 head that is kept active. In this plot, we plot the deviation
compared to if the given Layer 1 head was not ablated, to emphasize positive/negative differences (here darker blue would mean more
influential). Left plot preserves values, so results will be most affected by Layer 1 heads that contribute to the match subcircuit (previous
token heads). From this, we see that Layer 1 Head 2 is an important previous token head for many of the Layer 2 heads. The right plot
preserves patterns, so results will be least affected by Layer 1 heads that only contribute to the match subcircuit (previous token heads). In
fact, we see that when ablating heads 1, 2, and 5, performance improves, indicating that previous token heads might be interfering with
the network in some cases due to (suboptimal) V-composition. Middle column: Performance of a single pair of heads (one from Layer
1, and one from Layer 2) when preserving Layer 2 values (left) or patterns (right). In this case, we plot the raw accuracy to show how
strong each path through the network is. The color scheme highlights points that go above simple context copying strategies (which has
an accuracy of 50%) in red. We see that Layer 1 Head 2 → Layer 2 Head 3 is the strongest path (when preserving values), leading to
a performance of 90%. The left plot indicates that Layer 1 heads 1, 2, and 5 play a strong role in computing patterns. The right plot
indicates that Layer 1 Head 6 has the most important V-composition to Layer 2 heads. Rightmost column: For comparison, we include
the composition score (Nanda, 2022; Elhage et al., 2021) of Layer 1 head output projections to key and value input matrices in Layer 2.
We again use a bwr colorscheme to highlight pairs with higher than average composition scores. While the main forms of composition are
still visible (K-composition from Layer 1 Head 2 to Layer 2 Head 1/3, and V-composition from Layer 1 Head 6 to Layer 2 Head 3), we
note that the results are overall way noisier. This suggests that the activation modification approach used in the middle column, made easy
to implement by our artificial optogenetics framework, may provide clearer signals than weight-based approaches on circuit wiring.

19

What needs to go right for an induction head?

F. Proof of saddle point in toy model
We include a brief proof that a = b = c = 0 is a saddle point for the toy model, leading to the long loss plateau before the
phase change.

Recall, the loss being minimized is:

L(a,b, c) = 1

2

∑
i,j,k

(
atruei btruej ctruek − aibjck

)2
,

and we assume atrue,btrue, ctrue ̸= 0.

We then have:

∂L(a,b, c)
∂ai

= −
∑
j,k

(
atruei btruej ctruek − aibjck

)
bjck = 0,

∂L(a,b, c)
∂bj

= −
∑
i,k

(
atruei btruej ctruek − aibjck

)
aick = 0,

∂L(a,b, c)
∂ck

= −
∑
i,j

(
atruei btruej ctruek − aibjck

)
aibj = 0,

if a = b = c = 0. Moving forward, we will abbreviate derivations using the symmetry between a, b, c.

The value of the loss function at this point is:

L(0) = 1

2

∑
i,j,k

(
atruei btruej ctruek

)2
While we know this point is neither a global maximum (∞) nor a global minimum (0) of the loss function, we now need to
show it’s a saddle point (and not a local minimum/maximum).

F.1. Hessian test inconclusive for 3 or more interacting variables

A first attempt to show it’s a saddle point (and not a local minimum/maximum) would be to use the determinant of the
Hessian. We note that such a proof does work in the two vector case (the determinant of the Hessian is negative in that case),
but for the 3-variable case, the determinant of the Hessian is also 0. We show this below:

The Hessian can be seen as a 3× 3 block matrix:

H =

Haa Hab Hac

Hba Hbb Hbc

Hca Hcb Hcc

 ,

and we can work out the individual terms below:

∂2L(a, b, c)
∂a2i

=
∑
j,k

(bjck)
2 = 0

∂2L(a, b, c)
∂ai∂ai′

= 0, i ̸= i′

so Haa = Hbb = Hcc = 0. For the cross terms, we have:

∂2L(a, b, c)
∂ai∂bj

=
∑
k

2aibjc
2
k − atruei btruej ctruek ck = 0

Here, the presence of ck forces the these partials to 0, making the Hessian a matrix of all 0’s. Note in the two variable case
(if we remove c), the Hessian would have positive off-diagonal elements and it becomes easy to show the determinant is
negative.

20

What needs to go right for an induction head?

F.2. Directions of positive and negative slope

Since the Hessian test doesn’t work, we can instead attempt to identify two directions, one in which the function will
increase in a small neighborhood and one in which it will decrease in a small neighborhood. These are easy to construct by
picking i′, j′, k′ s.t. atruei′ btruei′ ctruei′ ̸= 0 (such indices are guaranteed to exist since atrue,btrue, ctrue ̸= 0).

Specifically, consider the direction of d− = ⟨0, ..., 0, atruei′ , 0, ..., 0, btruej′ , 0, ..., 0, ctruek′ , 0, ..., 0⟩. We can see that a small
ε > 022 perturbation along this direction will reduce the loss:

L(0+ εd−) =
1

2

∑
i,j,k

(
atruei btruej ctruek − aibjck

)2
=

1

2

(
atruei′ btruej′ ctruek′ − ε3atruei′ btruej′ ctruek′

)2
+

1

2

∑
i ̸=i′,j ̸=j′,k ̸=k′

(
atruei btruej ctruek

)2
=

1

2

(
atruei′ btruej′ ctruek′

)2
(ε6 − 2ε3) +

1

2

∑
i,j,k

(
atruei btruej ctruek

)2
⇒ lim

ε→0
L(0+ εd−)− L(0) = 1

2

(
atruei′ btruej′ ctruek′

)2
(ε6 − 2ε3) ≈ −ε3

(
atruei′ btruej′ ctruek′

)2
< 0

Thus, a direction with a negative directional derivative exists.

Similarly, we consider d+ = ⟨0, ..., 0,−atruei′ , 0, ..., 0, btruej′ , 0, ..., 0, ctruek′ , 0, ..., 0⟩. We can see that a small ε > 0
perturbation along this direction will increase the loss:

L(0+ εd+) =
1

2

∑
i,j,k

(
atruei btruej ctruek − aibjck

)2
=

1

2

(
atruei′ btruej′ ctruek′ + ε3atruei′ btruej′ ctruek′

)2
+

1

2

∑
i ̸=i′,j ̸=j′,k ̸=k′

(
atruei btruej ctruek

)2
=

1

2

(
atruei′ btruej′ ctruek′

)2
(ε6 + 2ε3) +

1

2

∑
i,j,k

(
atruei btruej ctruek

)2
⇒ lim

ε→0
L(0+ εd+)− L(0) = 1

2

(
atruei′ btruej′ ctruek′

)2
(ε6 + 2ε3) ≈ ε3

(
atruei′ btruej′ ctruek′

)2
> 0

Thus, we’ve identified two directions, one which increases the loss and one which decreases the loss, indicating that
a = b = c = 0 must be a saddle point. Note, if we find the directional derivative in either of these directions, it’s still 0
(due to the factor of ε3 not vanishing, even if we divide by ε to get the derivative)—we simply show the derivation to show
the differing sign. We also note that this argument extends beyond 3 interacting vectors.

This argument can also give some intuition as to why the saddle point is “harder to escape” in the case of 3 interacting
vectors (as evidenced by the longer loss plateau in the black curve versus the blue curve in Figure 5a). Here, we have a
factor of ε3 rather than ε2 (in the two vector case). The intuition extends: if the number of components is increased further
(beyond 3), the saddle point will get harder and harder to escape.

G. Assorted supplementary figures
While writing the main paper, we tried to maintain a coherent narrative that highlights the main results and intuitions we
want readers to take away. For the in-the-trenches researcher, we provide some additional results that we thought were
interesting.

22Note, the positivity assumption is not necessary. In fact, if we allow ε to take either sign, we can just use one direction to see the
saddle point (due to the factor of ε3). However, for the case of an even number of components (e.g., N = 4 instead of N = 3), we
do need two separate directions (since εN will always be positive if N is even). To make this proof general, we thus provide the two
directions and focus on positive ε.

21

What needs to go right for an induction head?

0.00

0.05

0.10

0.15

Tr
ai

n
lo

ss
 d

el
ta

Ablating L1 -> output connection across checkpoints

0.0 0.2 0.4 0.6 0.8 1.0
sequences seen 1e6

0.0

0.5

1.0

1.5

2.0
Tr

ai
n

lo
ss

 d
el

ta
Ablating L2 -> output connection across checkpoints

Figure 12. a) Change in loss after ablating connection from Layer 1 heads to output (unembedding) layer. Lower change indicates that
Layer 1 head to output connections are less important. The ablation was applied independently to each checkpoint from the training run
shown in Figure 3 and can thus be viewed as a progress measure. We can see that before the phase change, Layer 1 heads are contributing
to the loss, but as induction heads form and the loss goes to 0 at the end of training, Layer 1 heads do not contribute to the output in a
direct way. b) Same as a), but instead the connection from Layer 2 heads to output (unembedding) layer is ablated. Through training,
importance of Layer 2 heads is increasing, especially after the phase change that corresponds to induction head formation.

0.0 0.2 0.4 0.6 0.8 1.0
Induction head strength

0.0

0.5

1.0

1.5

2.0

Lo
ss

Loss at end of training after various ablations
No ablation
Ablate all Layer 2 heads
except the given head
Ablate only the given head

Figure 13. Same as Figure 4a, but plotting loss instead of accuracy. We include this plot for completeness, and used the accuracy version
as we felt it was clearer for the main text.

22

What needs to go right for an induction head?

1 2 3 4 5 6 7
heads active

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

Activating increasingly large subsets of
Layer 2 heads in order of decreasing

strength, starting with head 3 (strongest)

1 2 3 4 5 6 7
heads active

0.0

0.2

0.4

0.6

Lo
ss

Activating increasingly large subsets of
Layer 2 heads in order of decreasing

strength, starting with head 1 (2nd strongest)

Figure 14. Another way of seeing the additive effect of induction heads. We first order the heads by strength (this happens to be
[3,1,2,7,5,0,4,6] in our case, see Figure 3b). Then, we consider an ablation where only a certain number of heads (x-axis) are left
active. In the left plot, we start with Head 3, so the points from left to right indicate [only Head 3 active], [Heads 3 and 1 active], [Heads
3 and 1 and 2 active], and so on. The right plot is the same, except we never activate Head 3 (the strongest head). The monotonically
decreasing loss in both plots indicate that heads have an additive effect on each other. Dotted line indicates loss of full network (no
ablations). Note: the y-axis on the right is scaled larger since Head 3 (the strongest head) is never active (so losses are higher).

0 2 4 6
sequences seen ×105

0.0

0.5

1.0

1.5

2.0

Lo
ss

Train

0 2 4 6
sequences seen ×105

Lo
ss

Test (relabel)

0 2 4 6
sequences seen ×105

Lo
ss

Test (exemplar)

1.0

0.5

0.0

0.5

1.0

Cl
am

pe
d

IH
 S

tre
ng

th

Figure 15. Clamping through training with an imperfect match circuit. For this figure, we clamped the attention pattern of a single Layer 2
head to look like a noisy induction head (the other heads were left active) to see how “strong” an induction head needs to be before it
induces the exponential learning dynamics seen when clamping to maximum strength (green line, Figure 5). For example, when “Clamped
IH strength” is 0.4, this corresponds to attention of 0.7 to the correct label token and 0.3 to the incorrect label token, and 0 to all other
tokens. We vary the noisiness in the induction head and see how this effects dynamics. The darkest red curve (perfect match) corresponds
to just learning a copy subcircuit (as in Figure 5, green line), exhibiting a smooth exponential decay pattern. As the strength is turned
down to 0, we see the learning dynamics shift from exponential to slow exponential to the usual phase change when the IH strength is
clamped to 0 (as this head is ignored, and the network learns using the other Layer 2 heads). When we fix the induction strength to -1,
meaning the head is only paying attention to the wrong token, we recover an exponential curve. This is an example of the network using an
“anti-induction” head (a phenomenon we sometimes observed if L = 2): the mechanism here is the network is copying both labels from
context and then subtracting out the wrong label. This is an example of a slightly different (and perhaps more complicated) circuit for
implementing ICL in our task, similar to how (Zhong et al., 2023) discovered two different circuits for modular addition. We hypothesize
that the reason this “anti-induction” circuit doesn’t emerge naturally when L > 2 is because imperfect versions of “anti-induction” heads
(e.g., “Clamped IH strength” = −0.8) are less robust to different label pairs (middle plot, light-dark blue curves), which may make it a
circuit element that is feasible but not learnable (under this task setup).

H. The “residual heads” hypothesis
In Section 3.1, we provide evidence that induction heads function additively with redundancy across heads. Combining this
insight with the ordering of head emergence in Figure 3b, we hypothesize that other induction heads form to minimize the
residual of the loss left after earlier heads form (e.g. Head 3). We didn’t include this hypothesis in the main paper as it’s not
the focus of our work, and we find evidence supporting and opposing it. As scientists, we hope these mixed results can serve
as a launch point for further study, and thus choose to include them here.

23

What needs to go right for an induction head?

One simple way to test this hypothesis would be to consider the mistakes made by the individual Layer 2 heads, when all
other Layer 2 heads are turned off. Let’s consider Head 2 and Head 3 for example. Head 3 on its own achieves an accuracy
of 98%, outputting the wrong answer for 1553 of the 78400 training sequences. Head 2’s accuracy is 75%. If Head 2 is
fitting to the residual, we might expect Head 2’s accuracy on the sequences that Head 3 fails to solve to be above its baseline
of 75%, meaning it’s preferentially stronger on the problems where Head 3 is mistaken. On the other hand, it could be that
the sequences missed by Head 3 are simply “harder”, in which case we would expect an accuracy less than its baseline. In
Table 2, we find that the latter is more likely to be the case, so this piece of evidence is against the residual heads hypothesis.

Table 2. Accuracy when ablating all but a given Layer 2 head on the subset of problems that are incorrect when ablating all but Layer 2
Head 3 (the one with highest induction score). Second row contains the accuracies over the whole dataset for comparison (which matches
the circles in Figure 4a).

Accuracy Head 0 Head 1 Head 2 Head 4 Head 5 Head 6 Head 7

On the subset 24.08% 64.78% 71.67% 32.97% 56.41% 16.61% 46.10%
Overall 40.32% 76.51% 75.12% 42.85% 64.65% 29.16% 58.85%

Next, we present some evidence that supports the hypothesis. Namely, we consider perfecting each induction head’s match
circuit (by setting its attention pattern to the perfect pattern that gives attention 1 to the correct token and 0 to all other
tokens), which allows us to quantify the quality of its copy circuit. Then, we can examine the mistake rate of the copy circuit
for different labels, and see these values across heads. Our results are summarized in Figure 16. Specifically, we do find
some specialization of output classes: Head 3 has a higher mistake rate for copying labels 1 and 3, while heads 1 and 5
have virtually 0 mistake rate on these, indicating that they may have specialized to these examples. This result supports the
“residual heads” hypothesis.

If we repeat the analysis of Table 2, we find some promising evidence in this “perfected match” condition (Table 3). These
results suggest that, when it comes to the copying subcircuit, induction heads forming later in training preferentially focus
on copying labels that earlier formed induction heads are worse at. As a result, these earlier heads do not have to “fix their
mistakes” as much as if they were trained on their own, connecting to our results in Section 3.2. This result is inconclusive
with respect to the “residual heads” hypothesis, as it only pertains to Head 1, and not the other heads.

Finally, we build off the result in Figure 4b, and try to take the argument further. Given that Head 3 is the quickest to learn
and does in fact emerge first in the full network (Figure 3b), we consider training networks where all but two heads are
ablated: Head 3 and each of the other 7 heads (one at a time). Loss curves are shown in Figure 17. By training with Head
3 and just one other head, we see loss curves are way closer to the actual training curve. However, the ordering of phase
changes still does not match the ordering of emergence and strengths in Figure 3b, perhaps due to higher order interactions
(e.g., between three heads or more). Given the current results though, this piece of evidence is against the “residual heads”
hypothesis.

Given all these pieces of evidence, for and against, we cannot convincingly argue for or against the “residual heads”
hypothesis. We hope this investigation (including negative results) can inform future work researching this hypothesis.

I. Reproducibility across model initializations
Our code, as well as notebooks reproducing findings on multiple initialization seeds (5 seeds) can be found at https:
//github.com/aadityasingh/icl-dynamics. We found little to no differences when training seed (responsible
for data ordering) was varied. Here, we summarize qualitatively the results that differ slightly across init seeds and the ones

Table 3. Same as Table 2, except we also “perfect” each induction head’s match circuit (as done in Figure 16), so we can view this table as
only considering the mistakes in each induction head’s copy circuit. There are only 58 examples that the “perfected match” layer 2 Head 3
gets wrong, so this table only considers the accuracy of other “perfected match” heads on these 58 examples. Note the overall accuracies
in this Table match the squares in Figure 16.

Accuracy Head 0 Head 1 Head 2 Head 4 Head 5 Head 6 Head 7

On the subset 24.14% 86.21% 20.69% 22.41% 50.00% 0.00% 44.83%
Overall 50.01% 82.80% 82.73% 62.10% 65.42% 28.46% 70.70%

24

https://github.com/aadityasingh/icl-dynamics
https://github.com/aadityasingh/icl-dynamics

What needs to go right for an induction head?

a)
0.0 0.2 0.4 0.6 0.8 1.0

Induction head strength
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Effect of perfecting match circuit for various heads

No ablation
Perfected match
Computed match

b)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Output class

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Re
la

tiv
e

fra
ct

io
n

of
 m

ist
ak

es

Output specificity of induction head copy circuits,
quantified by relative mistake rate

Layer 2
Head #

0
1
2
3
4
5
6
7

c)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Output class
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect match accuracy of a given head
broken down by output label

Layer 2
Head #

0
1
2
3
4
5
6
7

Figure 16. a) Induction heads are imperfect copiers. We consider the network from the end of training in Figure 3 and perform the
ablate-all-but-head-X ablation used for the circles in Figure 4. We then use our artificial optogenetics framework to “perfect” each head’s
attention pattern (so it would have an induction strength of 1). While this increases the accuracy for most heads, the accuracy is still far
from perfect, indicating that inducion heads at the end of training are imperfect copiers. b) We dive deeper and find label dependence in
the imperfect copying. Specifically, here we plot the relative mistake rate by output label for each head. Line opacity is equal to induction
head strength, to emphasize the more prominent induction heads. Interestingly, Head 3 is relatively worse at copying labels 1 and 3, but
heads 1 and 5 compensate for this. Notably, in Figure 3, heads 1 and 5 appear after Head 3. We postulate that heads 1 and 5 are thus
compensating for the mistakes that Head 3 makes. Future work could further explore such a “residual heads” hypothesis in more depth. c)
For completeness, we include accuracy vs output class. We note that Head 3 with a “perfect” attention pattern overall does make very few
mistakes, as we’d expect given its high accuracy in a). Notably, what plot b shows is that Head 3 with a “perfect” attention pattern, when
it does make mistakes, tends to do so on classes 1 and 3.

that don’t (rather than providing 4 · 6 = 30 new figures).

Figure 18 summarizes a reproduction of some of the results of Section 3.1. Specifically, strongest heads (determined via
induction strength) are mostly able to solve the task. We find that the connection to the neural race (Saxe et al., 2022) mostly
holds across seeds (first discussed in Section 3.2, though the correlation is not as strong as other metrics related to induction
strength. Our main results on sub-circuit discovery (Figure 5) hold across seeds. The scaling result (Figure 6) reproduces
across most seeds, though sometimes in standard training we see learning with 15 labels to be as quick as learning with 10
labels. For further details, we refer readers to the notebooks in our codebase.

25

What needs to go right for an induction head?

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.0

0.5

1.0

1.5

2.0
Train loss curves when only using a single Layer 2 head

Layer 2 Head #
0
1
2
4
5
6
7
All

Figure 17. A follow-up to Figure 4b where we consider training with only a pair of Layer 2 heads active: Head 3 and one other head.
Interestingly, loss curves snap to almost the true training loss curve. The relative ordering of phase changes is not indicative of the order
of emergence (see Figure 3).

0.5 1.0
Accuracy

0.2

0.4

0.6

0.8

In
du

ct
io

n
st

re
ng

th

0 1 2
Loss

0.5 1.0
Learning

time
1e6

Seed
5
6
7
8
9

Figure 18. Reproducing some of the results of Section 3.1 across seeds. Specifically, we plot the induction strength of all 8 L2 heads
across 5 seeds (40 points) versus various other metrics on individual heads: accuracy and loss if all other L2 heads are ablated (analogous
to circles in Figure 4a,13), as well as the “learning time”, which we define as the number of sequences seen such that the loss drops
below 0.4 · log 2 when training with a single head (a summary statistic for Figure 4b). As we can see, induction head strength is well
correlated with accuracy and loss (lower loss is better, and corresponds to stronger heads) across seeds. We see that learning time (and
thus, connections to the neural race reduction (Saxe et al., 2022)) is correlated to strength across seeds (faster learning times correlate to
stronger heads), but not as strongly. Future work could investigate these ideas of circuits “racing” to minimize the loss further.

26

