
Continuous Doubly Constrained Batch
Reinforcement Learning

Rasool Fakoor1, Jonas Mueller1, Kavosh Asadi1, Pratik Chaudhari1,2, Alexander J. Smola1
1Amazon Web Services, 2University of Pennsylvania

fakoor@amazon.com

Abstract

Reliant on too many experiments to learn good actions, current Reinforcement
Learning (RL) algorithms have limited applicability in real-world settings, which
can be too expensive to allow exploration. We propose an algorithm for batch RL,
where effective policies are learned using only a fixed offline dataset instead of
online interactions with the environment. The limited data in batch RL produces
inherent uncertainty in value estimates of states/actions that were insufficiently
represented in the training data. This leads to particularly severe extrapolation
when our candidate policies diverge from one that generated the data. We propose
to mitigate this issue via two straightforward penalties: a policy-constraint to
reduce this divergence and a value-constraint that discourages overly optimistic
estimates. Over a comprehensive set of 32 continuous-action batch RL benchmarks,
our approach compares favorably to state-of-the-art methods, regardless of how the
offline data were collected.

1 Introduction

Figure 1: Batch RL with CDC vs. No CDC. Left: Stan-
dard actor-critic overestimates Q-values whereas CDC
estimates are well controlled. Right: Wild overestima-
tion leads to worse-performing policies whereas CDC
performs well.

Deep RL algorithms have demonstrated impres-
sive performance in simulable digital environ-
ments like video games [41, 54, 55]. In these
settings, the agent can execute different policies
and observe their performance. Barring a few ex-
amples [37], advancements have not translated
quite as well to real-world environments, where
it is typically infeasible to experience millions
of environmental interactions [11]. Moreover,
in presence of an acceptable heuristic, it is in-
appropriate to deploy an agent that learns from
scratch hoping that it may eventually outperform
the heuristic after sufficient experimentation.

The setting of batch or offline RL instead offers a more pertinent framework to learn performant
policies for real-world applications [34, 57]. Batch RL is widely applicable because this setting does
not require that: a proposed policy be tested through real environment interactions, or that data be
collected under a particular policy. Instead, the agent only has access to a fixed dataset D collected
through actions taken according to some unknown behavior policy πb. The main challenge in this
setting is that data may only span a small subset of the possible state-action pairs. Worst yet, the
agent cannot observe the effects of novel out-of-distribution (OOD) state-action combinations that,
by definition, are not present in D.

A key challenge stems from the inherent uncertainty when learning from limited data [28, 36]. Failure
to account for this can lead to wild extrapolation [17, 29] and over/under-estimation bias in value

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

estimates [22, 23, 32, 58]. This is a systemic problem that is exacerbated for out-of-distribution
(OOD) state-actions where data is scarce. Standard temporal difference updates to Q-values rely on
the Bellman optimality operator which implies upwardly-extrapolated estimates tend to dominate
these updates. As Q-values are updated with overestimated targets, they become upwardly biased
even for state-actions well-represented in D. In turn, this can further increase the upper limit of
the extrapolation errors at OOD state-actions, which forms a vicious cycle of extrapolation-inflated
overestimation (extra-overestimation for short) shown in Figure 1. This extra-overestimation is much
more severe than the usual overestimation bias encountered in online RL [22, 58]. As such, we
critically need to constrain value estimates whenever they lead to situations that look potentially ’too
good to be true’, in particular when they occur where a policy might exploit them.

Likewise, naive exploration can lead to policies that diverge significantly from πb. This, in turn, leads
to even greater estimation error since we have very little data in this un(der)-explored space. Note
that this is not a reason for particular concern in online RL: after all, once we are done exploring a
region of the space that turns out to be less promising than we thought, we simply update the value
function and stop visiting or visit rarely. Not so in batch RL where we cannot adjust our policy based
on observing its actual effects in the environment. These issues are exacerbated for applications
with a large number of possible states and actions, such as the continuous settings considered in this
work. Since there is no opportunity to try out a proposed policy in batch RL, learning must remain
appropriately conservative for the policy to have reasonable effects when it is later actually deployed.
Standard regularization techniques are leveraged in supervised learning to address such ill-specified
estimation problems, and have been employed in the RL setting as well [12, 50, 62].

This paper adapts standard off-policy actor-critic RL to the batch setting by adding a simple pair of
regularizers. In particular, our main contribution is to introduce two novel batch-RL regularizers:
The first regularizer combats the extra-overestimation bias in regions that are out-of-distribution.
The second regularizer is designed to hedge against the adverse effects of policy updates that
severly diverge from πb(a|s). The resultant method, Continuous Doubly Constrained Batch RL
(CDC) exhibits state-of-the-art performance across 32 continuous control tasks from the D4RL
benchmark [14] demonstrating the usefulness of our regularizers for batch RL.

2 Background
Consider an infinite-horizon Markov Decision Process (MDP) [48], (S,A, T, r, µ0, γ). Here S is
the state space, A ⊂ Rd is a (continuous) action space, T : S × A × S → R+ encodes transition
probabilities of the MDP, µ0 denotes the initial state distribution, r(s, a) is the instantaneous reward
obtained by taking action a ∈ A in state s ∈ S, and γ ∈ [0, 1] is a discount factor for future rewards.

Given a stochastic policy π(a|s), the sum of discounted rewards generated by taking a series of
actions at ∼ π(·|st) corresponds to the return Rπt =

∑∞
i=t γ

i−tr(si, ai) achieved under policy
π. The action-value function (Q-value for short) corresponding to π, Qπ(s, a), is defined as the
expected return starting at state s, taking a, and acting according to π thereafter, Qπ(s, a) =
Est∼T,at∼π [

∑∞
t=0 γ

trt | (s0, a0) = (s, a)]. Qπ(s, a) obeys the Bellman equation [5]:

Qπ(s, a) = r(s, a) + γEs′∼T (·|s,a),a′∼π(·|s′) [Qπ(s′, a′)] (1)

Unlike in online RL, no interactions with the environment is allowed here, so the agent does not have
the luxury of exploration. D is previously collected via actions taken according to some unknown
behavior policy πb(a|s). In this work, we assume D consists of 1-step transition: {(si, ai, ri, s′i)}ni=1
where no further sample collection is permitted. In particular, our method, like [60, 63], only needs a
dataset consisting of a single-step transitions and does not require complete episode trajectories. This
is valuable, for instance, whenever data privacy and sharing restrictions prevent the use of the latter
[34]. It is also useful when combining data from sources where the interaction is still in progress, e.g.
from ongoing user interactions.

We aim to learn an optimal policy π∗ that maximizes the expected return, denoting the corresponding
Q-values for this policy as Q∗ = Qπ

∗
. Q∗ is the fixed point of the Bellman optimality operator

[5]: T Q∗(s, a) = r(s, a) + γEs′∼T (·|s,a) [maxa′ Q
∗(s′, a′)]. One way to learn π∗ is via actor-critic

methods [27], with policy πφ and Q-value Qθ, parametrized by φ and θ respectively.

Learning good policies becomes far more difficult in batch RL as it depends on the quality/quantity
of available data. Moreover, for continuous control the set of possible actions is infinite, making it

2

nontrivial to find the optimal action even for online RL. One option is to approximate the maximization
above by only considering finitely many actions sampled from some π. This leads to the Expected
Max-Q (EMaQ) operator of Ghasemipour et al. [18]:

T Q(s, a) := r(s, a) + γEs′∼T (·|s,a)

[
max
{a′k}

Q(s′, a′k)
]
. (2)

Here a′k ∼ πφ(·|s′) for k = 1, ..., N , i.e. the candidate actions are drawn IID from the current
(stochastic) policy rather than over all possible actions. When drawing only a single sample from πφ,
this reduces to the standard Bellman operator (in expectation). Conversely, when N →∞ and πφ
has support over A, this turns into the Bellman optimality operator. We learn Q by minimizing the
standard 1-step temporal difference (TD) error. That is, we update at iteration t

θt ← argmin
θ

E(s,a)∼D

[(
Qθ(s, a)− T Qθt−1(s, a)

)2]
(3)

Throughout, the notation E(s,a)∼D denotes an empirical expectation over dataset D, whereas expec-
tations with respect to π are taken over the true underlying distribution corresponding to policy π.
Next, we update the policy by increasing the likelihood of actions with higher Q-values:

φt ← argmax
φ

Es∼D,â∼πφ(·|s)
[
Qθt(s, â)

]
(4)

using off-policy gradient-based updates [53]. Depending on the context, we omit t from Qθt and πφt .

2.1 Extrapolation-Inflated Overestimation

When our Q-values are estimated via function approximation1 (with parameters θ), the Q-update
can be erroneous and noisy [58]. Let Qθt(s, a) denote the estimates of true underlying Q∗(s, a)
values at iteration t of a batch RL algorithm that iterates steps (3) and (4), with πφt denoting the
policy that maximizes Qθt . For a proper learning method, we might hope that the estimation error,
ER := Qθt(s, a)−Q∗(s, a), has expected value = 0 and variance σ > 0 for particular states/actions
(the expectation here is over the sampling variability in the dataset D and stochastic updates in our
batch RL algorithm). However even in this desirable scenario, Jensen’s inequality nonetheless implies
there will be overestimation error OE := E[maxaQθt(s, a)]−maxaQ

∗(a, s) ≥ 0 for the actions
currently favored by πφt . Here the expectation is over the randomness of the underlying datasetD and
the learning algorithm. OE will be strictly positive when the estimation errors are weakly correlated
and will grow with the ER-variance σ [32, 58]. Under the Bellman optimality or EMaQ operator,
these inflated estimates are used as target values in the next Q-update in (3), which thus produces a
Qθt+1(s, a) estimate that suffers from overestimation bias, meaning it is expected to exceed the true
Q value even if this was not the case for initial estimate Qθt(s, a) [13, 16, 22, 23, 30, 33, 58].

In continuous batch RL, ER may have far greater variance (larger σ) for OOD states/actions poorly
represented in the dataset D, as our function approximator Qθt may wildly extrapolate in these
data-scarce regions [25, 34]. This in turn implies the updated policy πφt will likely differ significantly
from πb and favor some action â = argmaxaQθt(s, a) that is OOD [17]. The estimated value of
this OOD action subsequently becomes the target in the Q-update (3), and its OE will now be more
severe due to the larger σ [7]. Even though we only apply these Q-updates to non-OOD (s, a) ∈ D
whose ER may be initially smaller, the severely overestimated target values can induce increased
overestimation bias in Qθt+1

(s, a) for (s, a) ∈ D. In a vicious cycle, the increase in Qθt+1
(s, a) for

(s, a) ∈ D can cause extrapolated Qθt+1
estimates to also grow for OOD actions (as there is no data

to ground these OOD estimates), such that overestimation at s, a ∈ D is further amplified through
additional temporal difference updates. After many iterative updates, this extra-overestimation can
eventually lead to the disturbing explosion of value estimates seen in Figure 1.

Several strategies address overestimation [13, 16, 22, 23, 30, 33]. Fujimoto et al. [17] proposed
a straightforward convex combination of the extremes of an estimated distribution over plausible
Q values. Given a set of estimates Qθj for j = 1, ...M , they combine both the maximum and the
minimum value for a given (s, a) pair:

Qθ(s, a) = νmin
j
Qθj(s, a) + (1− ν) max

j
Qθj(s, a) (5)

1While overestimation bias has been mainly studied in regard to function approximation error [13, 16, 23,
33, 58], Hasselt [22] shows that overestimation can also arise in tabular MDPs due to noise in the environment.

3

Here ν ∈ (0, 1) determines how conservative we wish to be, and the min/max are taken across M
Q-networks that only differ in their weight-initialization but are otherwise (independently) estimated.
For larger ν > 0.5, Q may be viewed as a lower confidence bound for Q∗ where the epistemic
uncertainty in Q estimates is captured via an ensemble of deep Q-networks [9].

3 Methods

Our previous discussion of extra-overestimation suggests two key sources of potential error in batch
RL. Firstly, a policy learned by our algorithm might be too different from the behavior policy, which
can lead to risky actions whose effects are impossible to glean from the limited data. To address this,
we propose to add an exploration-penalty in policy updates that reduces the divergence between our
learned policy πφ and the policy πb that generated the data. Secondly, we must restrict overestimation
in Q-values, albeit only where it matters, that is, only when this leads to a policy exploiting overly
optimistic estimates. As such, we only need to penalize suspiciously large Q-values for actions
potentially selected by our candidate policy πφ (e.g. if their estimated Q-value greatly exceeds the
Q-value of actually observed actions).

3.1 Q-Value Regularization

While sequential interaction with the environment is a strong requirement that limits the practical
applicability of online RL (and leads to other issues like exploration vs. exploitation), it has one
critical benefit: although unreliable extrapolation of Q-estimates beyond the previous observations
happens during training, it is naturally corrected through further interaction with the environment.
OOD state-actions with wildly overestimated values are in fact likely to be explored in subsequent
updates, and their values then corrected after observing their actual effect.

In contrast, extra-overestimation is a far more severe issue in batch RL, where we must be confident
in the reliability of our learned policy before it is deployed. The issue can lead to completely useless
Q-estimates. The policies corresponding to these wildly extrapolated Q-functions will perform poorly,
pursuing risky actions whose true effects cannot be known based on the limited data in D (Figure 1
shows an example of how extra-overestimation can lead to the disturbing explosion of Q-value
estimates).

To mitigate the key issue of extra-overestimation in Qθ(s, a), we consider three particular aspects:
• An overall shift in Q-value is less important. A change from, say Qθ(s, a) to Qθ(s, a)+c(s)

changes nothing about which action we might want to pick. As such, we only penalize the
relative shift between Q-values.

• An overestimation ofQθ(s, â) which still satisfiesQθ(s, â)� Qθ(s, a) for well-established
a, s ∈ D will not change behavior and does not require penalization.

• Lastly, overestimation only matters if our policy is capable of discovering and exploiting it.

We use these three aspects to design a penalty for Q-value updates to be more pessimistic [7, 25].

∆(s, a) :=

[
max

â∈{a1,...aN}∼πφ(.|s)
Qθ(s, â)−Qθ(s, a)

]2
+

(6)

where s, a ∈ D. We can see that the first requirement is easily satisfied, since we only compare
differences Qθ(s, â)−Qθ(s, a) for different actions, given the same state s. The second aspect is
addressed by taking the maximum between 0 and Qθ(s, â)−Qθ(s, a). As such, we do not penalize
optimism when it does not rise to the level where it would effect a change in behavior. Lastly, taking
the maximum over actions drawn from the π rather than from the maximum over all possible actions
ensures that we only penalize when the overestimation would have observable consequences. As such,
we limit ourselves to a rather narrow set of cases. As a result, we add this penalty to the Q-update:

θt← argmin
θ

E(s,a)∼D

[(
Qθ(s, a)− T Qθt−1

(s, a)
)2

+ η ·∆(s, a)

]
(7)

Anatomy of the extra-overestimation penalty ∆. Our proposed ∆ penalty in (6) mitigates extra-
overestimation bias by hindering the learned Q-value from wildly extrapolating large values for OOD

4

state-actions. Estimated values of actions previously never seen in (known) state s ∈ D are instead
encouraged to not significantly exceed the values of the actions a whose effects we have seen at
s. Note that the temporal difference update and the extra-overestimation penalty ∆ in (7) are both
framed on a common scale as a squared difference between two Q-functions.

How ∆ affects θ becomes evident through its derivative:

∇θ∆(s, a) =

{(
∇θQθ(s, â)−∇θQθ(s, a)

)
ε if ε > 0

0 otherwise
(8)

Here â := arg max{âk}Nk=1
Qθ(s, âk) again taken over N actions sampled from our current policy

π, and ε := Qθ(s, â)−Qθ(s, a). ∆ only affects certain temporal-differences where Q-values of
(possibly OOD) state-actions have higher values than the (s, a) ∈ D. In this case, ∆ not only
reduces Qθ(s, â) by an amount proportional to ε, but this penalty also increases the value of the
previously-observed action Qθ(s, a) to the same degree. ∆ thus results in a value network that favors
previously observed actions. We will generally want to choose a large conservative value of η in
applications where we know either: that the behavior policy was of high-quality (since its chosen
actions should then be highly valued), or that only a tiny fraction of the possible state-action space is
represented in D, perhaps due to small sample-size or a restricted behavior policy (since there may
be severe extrapolation error).

3.2 Policy Regularization

In batch RL, the available offline dataD can have varying quality depending on the behavior policy πb
used to collect the data. Since trying out actions is not possible in batch settings, our policy network
is instead updated to favor not only actions with the highest estimated Q-value but also the actions
observed in D (whose effects we can be more certain of). Thus we introduce an exploration penalty
to regularize the policy update step: φ← argmaxφ Es∼D,â∼πφ(·|s)

[
Qθ(s, â)

]
− λ · D(πb, πφ).

In principle, various f -divergences [10] or Integral Probability Metrics [42] could employed in D(·, ·).
In practice, we limit our choice to quantities that do not require estimating the behavior policy πb.
This leaves us with the reverse KL-divergence and IPMs in Hilbert Space [2]. If we further restrict
ourselves to distances that do not require sampling from πφ, then only the reverse KL-divergence
remains. We thus estimate

KL(πb, πφ) = Ea∼πb(·|s)[log πb(a|s)]− Ea∼πb(·|s)[log πφ(a|s)] (9)

∝ −Ea∼πb(·|s)[log πφ(a|s)] ≈ − 1

m

m∑
i=1

log πφ(ai|s) (10)

whenever ai ∼ πb(·|s). This is exactly what happens in batch RL where we have plenty of data
drawn from the behavior policy, albeit no access to its explicit functional form. Note the first entropy
term in (9) can be ignored when we aim to minimize the estimated KL in terms of πφ (as will be
done in our exploration penalty). Using (10), we can efficiently minimize an estimated reverse KL
divergence without having to know/estimate πb or sample from πφ.

Lemma 1 argmax
πφ

Es,a∼πφ [Qθ(s, a)]− λ · Es
[
D
(
πφ(·|s), πb(·|s)

)]
is given by

πφ(s|a) =
πb(a|s)
Z

exp
(Qθ(s, a)

λ

)
if D is the forward KL divergence = KL(πφ(·|s), πb(·|s))

πφ(s|a) =
πb(a|s)

Z −Qθ(s, a)/λ
if D is the reverse KL divergence = KL(πb(·|s), πφ(·|s))

where Z ∈ R is a normalizing constant in each case. Lemma 1 shows that using either forward
or reverse KL-divergence as an objective, we recover πφ = πb in the limit of λ → ∞. This is to
be expected. After all, in this case we use the distance in distributions (thus policies) as our only
criterion, and we prefer reverse KL to avoid having to estimate πb. CDC thus employs the following
policy-update (where the reverse KL is expressed as a log-likelihood as in (10))

φ← argmax
φ

Es∼D,â∼πφ(·|s)
[
Qθ(s, â)

]
+ λ · E(s,a)∼D

[
log πφ(a|s)

]
(11)

5

The exploration penalty helps ensure our learned πφ is not significantly worse than πb, which is
far from guaranteed in batch settings without ever testing an action. If the data were collected
by a fairly random (subpar) behavior policy, then this penalty (in expectation) acts similarly to a
maximum-entropy term. The addition of such terms to similar policy-objectives has been shown to
boost performance in RL methods like soft actor-critic [21].

Note that our penalization of exploration stands in direct contrast to online RL methods that specifi-
cally incentivize exploration [4, 44]. In the batch RL, exploration is extremely dangerous as it will
only take place during deployment when a policy is no longer being updated in response to the effect
of its actions. Constraining policy-updates around an existing data-generating policy has also been
demonstrated as a reliable way to at least obtain an improved policy in both batch [17, 63] and online
[51] settings. Even moderate policy-improvement can often be extremely valuable (the optimal policy
may be too much ask for with data of limited size or coverage of the possible state-actions). Reliable
improvement is crucial in batch settings as we cannot first test out our new policy.

Remark 1 (Behavioral cloning occurs as λ→∞) Regularized policy updates with strong regular-
ization (large λ) is in the limit imitation learning. In fact, this is the well-known likelihood based
behavioral cloning algorithm used by [47].

If the original behavior policy π∗b was optimal (e.g. demonstration by a human-expert), then behavioral
cloning should be utilized for learning from D [43]. However in practice, data are often collected
from a subpar policy that we wish to improve upon via batch RL rather than simple imitation learning.

3.3 CDC Algorithm
Algorithm 1 Continuous Doubly Constrained Batch RL

1: Initialize policy πφ and Qs: {Qθj}Mj=1

2: Initialize Target Qs: {Qθ′j : θ′j ← θj}Mj=1

3: for t in {1, . . . , T} do
4: Sample B = {(s, a, r, s′)} ∼ D
5: For each s, s′ ∈ B: sample N actions {âk}Nk=1 ∼

πφ(·|s), {a′k}Nk=1∼ πφ(·|s′)
6: Qθ- value update:

y(s′, r) := r + γmax
a′k

[
Qθ′(s

′, a′k)
]

(Q given by Eq 5)

∆j(s, a) :=
([

max
âk

Qθj (s, âk)−Qθj (s, a)
]
+

)2
θj ← argmin

θj

∑
(s,a,s′)∈B

[(
Qθj (s, a)− y(s′, r)

)2
+ η ·∆j(s, a)

]
for j = 1, ...,M

7: πφ - policy update:
φ← argmax

φ

∑
(s,a)∈B,â∼πφ(·|s)

[
Qθ(s, â) + λ · log πφ(a|s)

]
8: Update Target Networks:

θ′j ← τθj + (1− τ)θ′j ∀j ∈M
9: end for

Furnished with the tools for Q-value and policy
regularization proposed in previous sections, we
introduce CDC in Algorithm 1. CDC utilizes
an actor-critic framework [27] for continuous
actions with stochastic policy πφ and Q-value
Qθ, parameterized by φ and θ respectively. Our
major additions to that ∆ penalty that mitigates
overestimation bias by reducing wild extrapo-
lation in value estimates and the exploration
penalty (log πφ) that discourages the estimated
policy from straying to OOD state-actions very
different from those whose effects we have ob-
served in D.

Although the particular form of CDC presented
in Algorithm 1 optimizes a stochastic policy
with the off-policy updates of [53] and temporal
difference value-updates using (3), we empha-
size that the general idea behind CDC can be
utilized with other forms of actor-critic updates
such as those considered by [12, 16, 21]. In
practice, CDC estimates expectations of quanti-
ties introduced throughout via mini-batch estimates derived from samples taken from D, and each
optimization is performed via a few stochastic gradient method iterates.

To account for epistemic uncertainty due to the limited data, the value update in Step 6 of Algorithm 1
uses Qθ from (5) in place of Qθ. In CDC, we can simply utilize the same moderately conservative
value of ν = 0.75 used by [17], since we are not purely relying on the lower confidence bound Qθ to
correct all overestimation. For this reason, CDC is able to achieve strong performance with a small
ensemble of M = 4 Q-networks (used throughout this work), whereas [18] require larger ensembles
of 16 Q-networks and an extremely conservative ν = 1 in order to achieve good performance.

To correct extra-overestimation within each of the M individual Q-networks, Algorithm 1 actually
applies a separate extra-overestimation penalty ∆j specific to each Q-network. The steps of our
proposed CDC method are detailed in Algorithm 1. In blue, we highlight the only modifications CDC
makes to a standard off-policy actor-critic framework that has been suitably adapted for continuous
batch RL via the aforementioned techniques like EMaQ [18] and lower-confidence bounds for Q-

6

values [17]. Throughout, we use η = 0 & λ = 0 to refer to this baseline framework (without our
proposed penalties), and note that majority of modern batch RL methods like CQL [29], BCQ [17],
BEAR [28], BRAC [63] are built upon similar frameworks.

Although each of our proposed regularizers can be used independently and their implementation
is modular, we emphasize that they complement each other: the Q-Value regularization mitigates
extra-overestimation error while the policy regularizer ensures candidate policies do not stray too
far from the offline data. Ablation studies show that the best performance is only achieved through
simultaneous use of both regularizers (Figure 2a, Table S1). Note that CDC is quite simple to
implement: each penalty can be added to existing actor-critic RL frameworks with minimal extra
code and the addition of both penalties involves no further complexity beyond the sum of the parts.

Theorem 1 For Qθ in (5), let TCDC : Qθt → Qθt+1
denote the operator corresponding to the Qθ-

updates resulting from the tth iteration of Steps 6-7 of aAlgorithm 1. TCDC is a L∞ contraction under
standard conditions that suffice for the ordinary Bellman operator to be contractive [3, 6, 8, 56].

The proof and formal list of assumptions are in Appendix D.1. Together with Banach’s theorem, the
contraction property established in Theorem 1 above guarantees that our CDC updates converge to a
fixed point under commonly-assumed conditions that suffice for standard RL algorithms to converge
[31]. Due to issues of (nonconvex) function approximation, it is difficult to guarantee this in practice
or empirical optimality of the resulting estimates [38, 40]. We do note that the addition of our two
novel regularizers further enhances the contractive nature and stability of the CDC updates when
η, λ > 0 by shrinking Q-values and policy action-probabilities toward the corresponding values
estimated for the behavior policy (i.e. values computed for observations in D). Our CDC penalties
can thus not only lead to less wildly-extrapolated batch estimates, but also faster (and more stable)
convergence of the learning process (as shown in Figure 1, where Standard actor-critic refers to
Algorithm 1 where η = λ = 0).

Theorem 2 Let πφ ∈ Π be the policy learned by CDC, γ denote discount factor, and n denote
the sample size of dataset D generated from πb. Also let J(π) represent the true expected return
produced by deploying policy π in the environment. Under mild assumptions listed in Appendix D,
there exist constants r∗, Cλ, V such that with high probability ≥ 1− δ:

J(πφ) ≥ J(πb)−
r∗

(1− γ)2

√
Cλ +

√
(V − log δ)/n

Appendix D.2 contains a proof and descriptions of the assumptions in this result. Theorem 2 assures
us of the reliability of the policy πφ produced by CDC, guaranteeing that with high probability πφ
will not have much worse outcomes than the behavior policy πb, where the probability here depends
on the size of the dataset D and our choice of policy regularization penalty λ (the constant Cλ is
a decreasing function of λ). In batch settings, expecting to learn the optimal policy is futile from
limited data. Even ensuring any improvement at all over an arbitrary πb is ambitious when we cannot
ever test any policies in the environment, and reliability of the learned πφ is thus a major concern.

Theorem 3 Let OEag = E[maxaQθ(s, a)]−maxaQ
∗(s, a) be the overestimation error in actions

favored by an agent ag. Here Qθ denotes the estimate of true Q-value learned by ag, which may
either use CDC (with η > 0) or a baseline version of Algorithm 1 with η = 0 (with the same value of
λ). Under the assumptions listed in Appendix D.3, there co-exist constants L1 and L2 such that

OECDC ≤ L1 − ηL2 ≤ OEbaseline

This theorem (proved in Appendix D.3) underscores the influence of the η parameter in terms of
containing the overestimation problem in offline Q-learning. Mitigating this overestimation, which
can be done using non-zero η, can ultimately lead into better returns as we show in the experimental
section. In particular, CDC achieves lower overestimation by deliberately underestimating Q-values
for non-observed state-actions (but it limits the degree of downward bias as described in Remark
2). Buckman et al. [7], Jin et al. [25] prove that some degree of pessimism is unavoidable to ensure
non-catastrophic deployment of batch RL in practice, where it is unlikely there will ever be sufficient
data for the agent to accurately estimate the consequences of all possible actions in all states.

Remark 2 (Pessimism is limited in CDC) Extreme pessimism leads to overly conservative policies
with limited returns. The degree of pessimism in CDC remains limited (capped once ∆j = 0), unlike
lower-confidence bounds which can become arbitrarily pessimistic and hence limited in their return.

7

4 Related Work
Aiming for a practical framework to improve arbitrary existing policies, much research has studied
batch RL [34, 36] and the issue of overestimation [22, 23, 58]. [26, 64] consider model-based
approaches for batch RL, and [1] find ensembles partly address some of the issues that arise in batch
settings. To remain suitably conservative, a popular class of approaches constrain the policy updates
to remain in the vicinity of πb via, e.g., distributional matching [17], support matching [28, 63],
imposition of a behavior-based prior [52], or implicit constraints via selective policy-updates [46, 60].
Similar to imitation learning in online setting [24, 43, 47, 49], many of such methods need to explicitly
estimate the behavior policy [17, 18, 28]. Although methods like [46, 60] do not have an explicit
constraint on the policy update, they still can be categorized as a policy constrained-based approach
as the policy update rule has been changed in a such a way that it selectively updates the policy
utilizing information contained in the Q-values. Although these approaches show promising results,
policy-constraint methods often work best for data collected from a high-quality (expert) behavior
policy, and may struggle to significantly improve upon highly suboptimal πb. Compared to the
previous works, our CDC does not need to severely constrain candidate policies around πb, which
reduces achievable returns. Even with a strong policy constraint, the resulting policy is still affected
by the learned Q-value, thus we still must correct Q-value issues. Instead of constraining policy
updates, [29] advocate conservatively lower-bounding estimates of the value function. This allows
for more flexibility to improve upon low-quality πb. [39] considers a pessimistic and conservative
approach to update Q-value by utilizing the marginalized state-action distribution of available data.
Our proposed CDC algorithm is inspired by ideas from both the policy-constraint and value-constraint
literature, demonstrating these address complementary issues of the batch RL problem and are both
required in a performant solution.

5 Experiments

In this section, we evaluate our CDC algorithm against existing methods on 32 tasks from the D4RL
benchmark [14]. We also investigate the utility of individual CDC regularizers through ablation
analyses, and demonstrate the broader applicability of our extra-overestimation penalty to off-policy
evaluation in addition to batch RL. Our training/evaluation setup exactly follows existing work
[14, 17, 28, 29]. See Appendices A, B, and C for a complete description of our experimental pipeline.

Setup. We compare CDC against existing batch RL methods: BEAR [28], BRAC-V/P [63],
BC [63], CQL [29], BCQ [17], RBVE2 [20] , and SAC [21]. This covers a rich set of strong batch
RL methods ranging from behavioral cloning to value-constrained-based pessimistic methods, with
the exception of SAC. SAC is a popular off-policy method that empirically performs quite well in
online RL, and is included to investigate how online RL methods fare when applied to the batch
setting. Note that CDC was simply run on every task using the same network and the original
rewards/actions provided in the task, without any manual task-specific reward-normalization/action-
smoothing. Moreover, all these baseline methods also utilize an ensemble of Q networks as in (5).

Results. Figure 2b and Table 1 illustrate that CDC performs better than the majority of the other
batch RL methods on the D4RL tasks. Across all 32 tasks, CDC obtains normalized return of 1397,
whereas the next-best method (CQL) achieves 1245. In head-to-head comparisons, CDC generates
statistically significantly greater overall returns (Table 1). Unsurprisingly, behavioral-cloning (BC)
works well on tasks with data generated by an expert πb, while the online RL method, SAC, fares
poorly in many tasks. CDC remains reasonably competitive across all tasks, regardless of the
environment or the quality of πb (i.e. random vs. expert).

Next we perform a comprehensive set of ablation studies to gauge the contribution of our proposed
penalties in CDC. Here we run additional variants of Algorithm 1 without our penalties (i.e. η =
λ = 0) , with only our extra-overestimation penalty (λ = 0), and with only our exploration penalty
(η = 0). Figure 2a and Tables S1 show that both penalties are critical for the strong performance
of CDC, with the extra-overestimation penalty ∆ being of greater importance than exploration (see
also Figure 2a). Note that all our ablation variants still employ the lower confidence bound from (5),
which alone clearly does not suffice to correct extra-overestimation.

2Comparison between CDC and the concurrently-proposed RBVE method [20] is relegated to Section A.1.

8

(a) (b)

Figure 2: Difference in (normalized) return achieved by various algorithms vs CDC in 32 D4RL tasks.
X-axis colors indicate environments (see Table 1), and points below the line () indicate worse performance
than CDC. Figure 2a shows that fixing η or λ to zero (i.e. omitting our penalties) produces far worse returns
than CDC (see also Table S1). This ablation study proves that major performance gains for CDC stem from our
novel pair of regularizers, as the only difference between CDC and these ablated variants is either η or λ or both
are set to zero in Algorithm 1 (all other details are exactly the same). Figure 2b compares CDC against existing
batch RL algorithms, where CDC overall compares favorably to each other method in head-to-head comparisons
(see also Table 1). Note these figures can be compared to each other as well.

5.1 Offline Policy Evaluation

Figure 3: How well OPE estimates correlate with ac-
tual return achieved by 20 different policies for each
D4RL task. Due to unmitigated overestimation, FQE
estimates correlate negatively with true returns in 15 of
32 tasks (using ∆ in FQE reduces this to 4).

The true practical applicability of batch RL re-
mains however hampered without the ability
to do proper algorithm/hyperparameter selec-
tion. Table 1 shows that no algorithm universally
dominates all others across all environments or
behavior-policies. In practice, it is difficult to
know which technique will perform best, un-
less one can do proper offline policy evaluation
(OPE) of different candidate policies before their
actual online deployment [15, 45].

OPE aims to estimate the performance of a given policy under the same setting considered here, with
offline data collected by an unknown behavior policy [35, 45]. Beyond algorithm/hyperparameter
comparison, OPE is often employed for critical policy-making decisions where environment interac-
tion is no longer an option, e.g., sensitive healthcare applications [19]. One practical OPE method
for data of the form in D is Fitted Q Evaluation (FQE) [35]. To score a given policy π, FQE iterates
temporal difference updates of the form (3) using the standard Bellman operator from (1) in place of
EMaQ. After learning an estimate Q̂π, FQE simply estimates the return of π via the expectation of
Q̂π(s, a) over the initial state distribution and actions sampled from π.

However, like batch RL, OPE also relies on limited data and thus can still suffer from severe Q-value
estimation errors. To contain the overestimation bias, we can regularize the FQE temporal difference
updates with our ∆ penalty, in a similar manner to (7). Figure 3 compares the performance of
∆-penalization of FQE (with η = 1 throughout) against the standard unregularized FQE. Here
we use both OPE methods to score 20 different policies (learned via different settings) and gauge
OPE-quality via the Pearson correlation between OPE estimated returns and the actual return (over
our 20 policies). We observe higher correlation for FQE + ∆ (0.37 on average) over FQE (0.01 on
average) in the majority of tasks, demonstrating the usefulness of our regularizers. The usefulness of
our regularizers thus extend beyond batch RL and carry to the off-policy evaluation setting.

1The results for CQL are taken from the official author-provided codes [https://github.com/
aviralkumar2907/CQL] of [29]. The published CQL codes are used to produce results for all but Adroit
and FrankaKitchen where the codes are not available. For these latter domains, we simply use the CQL results
reported in the paper of [29].

9

https://github.com/aviralkumar2907/CQL
https://github.com/aviralkumar2907/CQL

Index Task Name SAC BC BRAC-P BRAC-V BEAR BCQ CQL1 λ = 0 & η = 0 CDC
0 halfcheetah-random 29.6 2.1 23.5 28.1 25.5 2.25 16.71 32.8 27.36
1 halfcheetah-medium 40.97 36.1 44.0 45.5 38.6 41.48 38.97 49.51 46.05
2 halfcheetah-medium-replay 26.47 38.4 45.6 45.9 36.2 34.79 42.77 22.72 44.74
3 halfcheetah-medium-expert 3.78 35.8 43.8 45.3 51.7 69.64 39.18 7.12 59.64
4 halfcheetah-expert −0.41 107.0 3.8 −1.1 108.2 97.44 85.49 −0.95 82.05
5 hopper-random 0.8 9.8 11.1 12.0 9.5 10.6 10.37 1.58 14.76
6 hopper-medium 0.81 29.0 31.2 32.3 47.6 65.07 51.79 0.58 60.39
7 hopper-medium-replay 0.59 11.8 0.7 0.8 25.3 31.05 28.67 16.4 55.89
8 hopper-medium-expert 8.96 119.9 1.1 0.8 4.0 109.1 112.46 18.07 86.9
9 hopper-expert 0.8 109.0 6.6 3.7 110.3 75.52 109.97 1.27 102.75

10 walker2d-random 1.3 1.6 0.8 0.5 6.7 4.31 2.77 2.96 7.22
11 walker2d-medium 0.81 6.6 72.7 81.3 33.2 52.03 71.03 0.33 82.13
12 walker2d-medium-replay 0.04 11.3 −0.3 0.9 10.8 13.67 19.95 3.81 22.96
13 walker2d-medium-expert 4.09 11.3 −0.3 0.9 10.8 67.26 90.55 2.65 70.91
14 walker2d-expert 0.05 125.7 −0.2 −0.0 106.1 87.59 103.6 −0.1 87.54
15 antmaze-umaze 0.0 65 50 70 73 88.52 90.12 22.22 91.85
16 antmaze-umaze-diverse 0.0 55 40 70 61 61.11 11.11 0.0 62.59
17 antmaze-medium-play 0.0 0 0 0 0 0.0 40.74 0.0 55.19
18 antmaze-medium-diverse 0.0 0 0 0 0 0.0 40.74 0.0 40.74
19 antmaze-large-play 0.0 0 0 0 0 1.85 0.0 0.0 5.19
20 antmaze-large-diverse 0.0 0 0 0 0 0.0 0.0 0.0 11.85
21 pen-human −1.15 34.4 8.1 0.6 −1.0 66.88 37.5 −3.43 73.19
22 pen-cloned −0.64 56.9 1.6 −2.5 26.5 50.86 39.2 −3.4 49.18
23 hammer-human 0.26 1.5 0.3 0.2 0.3 0.91 4.4 0.26 4.34
24 hammer-cloned 0.27 0.8 0.3 0.3 0.3 0.38 2.1 0.26 2.37
25 door-human −0.34 0.5 −0.3 −0.3 −0.3 −0.05 9.9 −0.16 4.62
26 door-cloned −0.34 −0.1 −0.1 −0.1 −0.1 0.01 0.4 −0.36 0.01
27 relocate-human −0.31 0 −0.3 −0.3 −0.3 −0.04 0.2 −0.31 0.73
28 relocate-cloned −0.11 −0.1 −0.3 −0.3 −0.2 −0.28 −0.1 −0.15 −0.24
29 kitchen-complete 0.0 33.8 0 0 0 0.83 43.8 0.0 58.7
30 kitchen-partial 0.0 33.8 0 0 13.1 9.26 49.8 0.0 42.5
31 kitchen-mixed 0.0 47.5 0 0 47.2 18.43 51 0.0 42.87

Total Score 116.28 984.4 383.4 434.5 844.0 1060.46 1245.2 173.67 1396.99

p-value vs. CDC 7.0e-07 1.6e-03 5.3e-07 3.9e-06 1.1e-04 6.1e-04 3.6e-02 1.8e-06 -

Table 1: Return achieved in deployment of policies learned via different batch RL methods. The return
in each environment here is normalized using (12) as originally advocated by [14]. For each method: we
perform a head-to-head comparison against CDC across the D4RL tasks, reporting the p-value of a (one-sided)
Wilcoxon signed rank test [61] that compares this method’s return against that of CDC (over the 32 tasks). Here
λ = 0 & η = 0 is variant of Algorithm 1 without our penalties where it proves that major performance gains for
CDC stem from our novel pair of regularizers.

6 Discussion

Here we propose a simple and effective algorithm for batch RL by introducing a simple pair of
regularizers that abate the challenge of learning how to act from limited data. The first constrains the
value update to mitigate extra-overestimation error, while the latter constrains the policy update to
ensure candidate policies do not stray too far from the offline data. Unlike previous work, this paper
highlights the utility of simultaneous policy and value regularization in batch RL. One can envision
other combinations of alternative policy and value regularizers that may perform even better than the
particular policy/value penalties used in CDC. That said, our CDC penalties are particularly simple to
incorporate into arbitrary actor-critic RL frameworks, and operate synergistically as illustrated in the
ablation studies. Comprehensive experiments on standard offline continuous-control benchmarks
suggest that CDC compares favorably with state-of-the-art methods for batch RL, and our proposed
penalties are also useful to improve offline policy evaluation. The broader impact of this work will
hopefully be to improve batch RL performance in offline applications, but we caution that unobserved
confounding remains another key challenge in real-world data that was not addressed in this work.

10

References
[1] R. Agarwal, D. Schuurmans, and M. Norouzi. An optimistic perspective on offline reinforcement

learning. In International Conference on Machine Learning, 2020.

[2] Y. Altun and A. Smola. Unifying divergence minimization and statistical inference via convex
duality. In International Conference on Computational Learning Theory, pages 139–153.
Springer, 2006.

[3] A. Antos, R. Munos, and C. Szepesvari. Fitted Q-iteration in continuous action-space MDPs.
In Advances in Neural Information Processing Systems, 2007.

[4] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing
Systems, volume 29, pages 1471–1479, 2016.

[5] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[6] D. P. Bertsekas and S. Shreve. Stochastic optimal control: the discrete-time case. Athena
Scientific, 2004.

[7] J. Buckman, C. Gelada, and M. G. Bellemare. The importance of pessimism in fixed-dataset
policy optimization. In International Conference on Learning Representations, 2021.

[8] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Reinforcement learning and dynamic
programming using function approximators, volume 39. CRC press, 2010.

[9] R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman. Ucb exploration via q-ensembles. arXiv
preprint arXiv:1706.01502, 2017.

[10] I. Csiszár and P. Shields. Information theory and statistics: A tutorial. Foundations and Trends
in Communications and Information Theory, 1(4):417–528, 2004. ISSN 1567-2190. doi:
10.1561/0100000004.

[11] G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforcement learning.
In ICML Reinforcement Learning for Real Life (RL4RealLife) Workshop, 2019.

[12] R. Fakoor, P. Chaudhari, and A. J. Smola. P3O: policy-on policy-off policy optimization. In
Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019,
page 371, 2019.

[13] R. Fakoor, P. Chaudhari, and A. J. Smola. Ddpg++: Striving for simplicity in continuous-control
off-policy reinforcement learning. arXiv:2006.15199, 2020.

[14] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv:2004.07219, 2020.

[15] J. Fu, M. Norouzi, O. Nachum, G. Tucker, Z. Wang, A. Novikov, M. Yang, M. R. Zhang,
Y. Chen, A. Kumar, C. Paduraru, S. Levine, and T. L. Paine. Benchmarks for deep off-policy
evaluation, 2021.

[16] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 1587–1596. PMLR, 2018.

[17] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International Conference on Machine Learning, pages 2052–2062, 2019.

[18] S. K. S. Ghasemipour, D. Schuurmans, and S. S. Gu. Emaq: Expected-max q-learning operator
for simple yet effective offline and online rl. arXiv:2007.11091, 2021.

[19] O. Gottesman, J. Futoma, Y. Liu, S. Parbhoo, L. Celi, E. Brunskill, and F. Doshi-Velez. Inter-
pretable off-policy evaluation in reinforcement learning by highlighting influential transitions.
In Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 3658–3667. PMLR, 2020.

11

[20] C. Gulcehre, S. G. Colmenarejo, Z. Wang, J. Sygnowski, T. Paine, K. Zolna, Y. Chen, M. Hoff-
man, R. Pascanu, and N. de Freitas. Regularized behavior value estimation, 2021.

[21] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv:1801.01290, 2018.

[22] H. V. Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems 23,
pages 2613–2621, 2010.

[23] H. v. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double Q-learning.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, page
2094–2100. AAAI Press, 2016.

[24] T. Hester, M. Vecerík, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, A. Sendonaris, G. Dulac-
Arnold, I. Osband, J. P. Agapiou, J. Z. Leibo, and A. Gruslys. Learning from demonstrations
for real world reinforcement learning. CoRR, abs/1704.03732, 2017.

[25] Y. Jin, Z. Yang, and Z. Wang. Is pessimism provably efficient for offline RL? arXiv preprint
arXiv:2012.15085, 2020.

[26] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel : Model-based offline
reinforcement learning. arXiv:2005.05951, 2020.

[27] V. Konda and J. Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and K. Müller, editors,
Advances in Neural Information Processing Systems, volume 12, pages 1008–1014. MIT Press,
2000.

[28] A. Kumar, J. Fu, G. Tucker, and S. Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping
Error Reduction. arXiv:1906.00949, Nov. 2019.

[29] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative Q-Learning for Offline Reinforce-
ment Learning. arXiv:2006.04779, June 2020.

[30] A. Kuznetsov, P. Shvechikov, A. Grishin, and D. Vetrov. Controlling overestimation bias
with truncated mixture of continuous distributional quantile critics. In H. D. III and A. Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 5556–5566. PMLR, 13–18 Jul 2020.

[31] M. G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of Machine Learning
Research, 4:1107–1149, 2003.

[32] Q. Lan, Y. Pan, A. Fyshe, and M. White. Maxmin q-learning: Controlling the estimation bias of
q-learning. In International Conference on Learning Representations, 2019.

[33] Q. Lan, Y. Pan, A. Fyshe, and M. White. Maxmin q-learning: Controlling the estimation bias of
q-learning. In International Conference on Learning Representations, 2020.

[34] S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In M. Wiering and M. van
Otterlo, editors, Reinforcement Learning: State-of-the-Art, pages 45–73. Springer, 2012.

[35] H. Le, C. Voloshin, and Y. Yue. Batch policy learning under constraints. In Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 3703–3712. PMLR, 2019.

[36] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline Reinforcement Learning: Tutorial, Review,
and Perspectives on Open Problems. arXiv:2005.01643, May 2020.

[37] Y. Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

[38] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In International Conference on Learning
Representations, 2016.

12

[39] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill. Provably good batch off-policy
reinforcement learning without great exploration. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 1264–1274. Curran Associates, Inc., 2020.

[40] G. Matheron, N. Perrin, and O. Sigaud. The problem with ddpg: understanding failures in
deterministic environments with sparse rewards. arXiv preprint arXiv:1911.11679, 2019.

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[42] A. Müller. Integral probability metrics and their generating classes of functions. Advances in
Applied Probability, 29(2):429–443, 1997. ISSN 00018678.

[43] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic
perspective on imitation learning. Foundations and Trends in Robotics, 7(1-2):1–179, 2018.

[44] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos. Count-based exploration
with neural density models. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 2721–2730. PMLR,
06–11 Aug 2017.

[45] T. L. Paine, C. Paduraru, A. Michi, C. Gulcehre, K. Zolna, A. Novikov, Z. Wang, and
N. de Freitas. Hyperparameter selection for offline reinforcement learning. arXiv preprint
arXiv:2007.09055, 2020.

[46] X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. CoRR, abs/1910.00177, 2019.

[47] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural computation, 3(1):88–97, 1991.

[48] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
USA, 1st edition, 1994. ISBN 0471619779.

[49] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In G. J. Gordon, D. B. Dunson, and M. Dudík, editors,
AISTATS, volume 15 of JMLR Proceedings, pages 627–635. JMLR.org, 2011.

[50] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International conference on machine learning, pages 1889–1897, 2015.

[51] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[52] N. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe, R. Hafner,
N. Heess, and M. Riedmiller. Keep doing what worked: Behavior modelling priors for offline
reinforcement learning. In International Conference on Learning Representations, 2020.

[53] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, pages 387–395. PMLR, 2014.

[54] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search. Nature, 529:484–503,
2016.

[55] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018. ISSN 0036-8075. doi: 10.1126/science.aar6404.

13

[56] C. Szepesvári. Efficient approximate planning in continuous space markovian decision problems.
AI Communications, 14(3):163–176, 2001.

[57] P. Thomas, G. Theocharous, and M. Ghavamzadeh. High confidence policy improvement. In
International Conference on Machine Learning, pages 2380–2388. PMLR, 2015.

[58] S. Thrun and A. Schwartz. Issues in using function approximation for reinforcement learning.
In Proceedings of the 1993 Connectionist Models Summer School, pages 255–263. Lawrence
Erlbaum, 1993.

[59] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network
architectures for deep reinforcement learning. In International conference on machine learning,
pages 1995–2003. PMLR, 2016.

[60] Z. Wang, A. Novikov, K. Zolna, J. T. Springenberg, S. Reed, B. Shahriari, N. Siegel, J. Merel,
C. Gulcehre, N. Heess, and N. de Freitas. Critic regularized regression. arXiv:2006.15134,
2020.

[61] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83,
1945.

[62] R. J. Williams and J. Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991.

[63] Y. Wu, G. Tucker, and O. Nachum. Behavior Regularized Offline Reinforcement Learning.
arXiv:1911.11361, 2019.

[64] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization. arXiv:2005.13239, 2020.

14

	Introduction
	Background
	Extrapolation-Inflated Overestimation

	Methods
	Q-Value Regularization
	Policy Regularization
	CDC Algorithm

	Related Work
	Experiments
	Offline Policy Evaluation

	Discussion
	Experiment Details
	Comparing CDC with RBVE (Gulcehre et al. gulcehre2021regularized)

	Details of our Methods
	Fitted Q Evaluation Details

	D4RL Benchmark
	Proofs and Additional Theory
	Proof of Theorem 1.
	Proof of Theorem 2.
	Proof of Theorem 3.

