Collaborative Learning in the Jungle
(Decentralized, Byzantine, Heterogeneous,
Asynchronous and Nonconvex Learning)

El-Mahdi ElI-Mhamdi * Sadegh Farhadkhani *
Ecole Polytechnique IC School, EPFL
Palaiseau, France Lausanne, Switzerland
el-mahdi.el-mhamdi@polytechnique.edu sadegh.farhadkhani®@epfl.ch
Rachid Guerraoui * Arsany Guirguis * Lé-Nguyén Hoang *
IC School, EPFL IC School, EPFL IC School, EPFL
Lausanne, Switzerland Lausanne, Switzerland Lausanne, Switzerland

rachid.guerraoui@epfl.ch arsany.guirguis@epfl.ch le.hoang@epfl.ch

Sébastien Rouault *
IC School, EPFL
Lausanne, Switzerland
sebastien.rouault@epfl.ch

Abstract

We study Byzantine collaborative learning, where n nodes seek to collectively
learn from each others’ local data. The data distribution may vary from one node
to another. No node is trusted, and f < n nodes can behave arbitrarily. We prove
that collaborative learning is equivalent to a new form of agreement, which we call
averaging agreement. In this problem, nodes start each with an initial vector and
seek to approximately agree on a common vector, which is close to the average of
honest nodes’ initial vectors. We present two asynchronous solutions to averaging
agreement, each we prove optimal according to some dimension. The first, based on
the minimum-diameter averaging, requires n > 6 f 4+ 1, but achieves asymptotically
the best-possible averaging constant up to a multiplicative constant. The second,
based on reliable broadcast and coordinate-wise trimmed mean, achieves optimal
Byzantine resilience, i.e., n > 3 f + 1. Each of these algorithms induces an optimal
Byzantine collaborative learning protocol. In particular, our equivalence yields new
impossibility theorems on what any collaborative learning algorithm can achieve
in adversarial and heterogeneous environments.

1 Introduction

The distributed nature of data, the prohibitive cost of data transfers and the privacy concerns all call
for collaborative machine learning. The idea consists for each machine to keep its data locally and to
“simply”” exchange with other machines what it learned so far. If all machines correctly communicate
and execute the algorithms assigned to them, collaborative learning is rather easy. It can be achieved
through the standard workhorse optimization algorithm: stochastic gradient descent (SGD) [37],
which can be effectively distributed through averaging [26].

* Authors are listed alphabetically.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

But in a practical distributed setting, hardware components may crash, software can be buggy,
communications can be slowed down, data can be corrupted and machines can be hacked. Besides,
large-scale machine learning systems are trained on user-generated data, which may be crafted
maliciously. For example, recommendation algorithms have such a large influence on social medias
that there are huge incentives from industries and governments to fabricate data that bias the learning
algorithms and increase the visibility of some contents over others [6, 33]. In the parlance of
distributed computing, “nodes" can be Byzantine [28], i.e., they can behave arbitrarily maliciously, to
confuse the system. Given that machine learning (ML) is now used in many critical applications (e.g.,
driving, medication, content moderation), its ability to tolerate Byzantine behavior is of paramount
importance.

In this paper, we precisely define and address, for the first time, the problem of collaborative learning
in a fully decentralized, Byzantine, heterogeneous and asynchronous environment with non-convex
loss functions. We consider n nodes, which may be machines or different accounts on a social media.
Each node has its own local data, drawn from data distributions that may greatly vary across nodes.
The nodes seek to collectively learn from each other, without however exchanging their data. None of
the nodes is trusted, and any f < n nodes can be Byzantine.

Contributions. We first precisely formulate the collaborative learning problem. Then, we give our
main contribution: an equivalence between collaborative learning and a new more abstract problem
we call averaging agreement. More precisely, we provide two reductions: from collaborative learning
to averaging agreement and from averaging agreement to collaborative learning. We prove that both
reductions essentially preserve the correctness guarantees on the output. The former reduction is the
most challenging one to design and to prove correct. First, to update nodes’ models, we use averaging
agreement to aggregate nodes’ stochastic gradients. Then, to avoid model drift, we regularly “contract”
the nodes’ models using averaging agreement. To prove correctness, we bound the diameter of honest
nodes’ models, and we analyze the effective gradient [12]]. We then carefully select a halting iteration,
for which correctness can be guaranteed.

Our tight reduction allows to derive both impossibility results and optimal algorithms for collaborative
learning by studying the “simpler” averaging agreement problem. We prove lower bounds on the
correctness and Byzantine resilience that any averaging agreement algorithm can achieve, which
implies the same lower bounds for collaborative learning. We then propose two optimal algorithms
for averaging agreement. Our first algorithm is asymptotically optimal with respect to correctness, up
to a multiplicative constant, when nearly all nodes are honest. Our second algorithm achieves optimal
Byzantine resilience. Each of these algorithms induces an optimal collaborative learning protocol.

While our algorithms apply in a very general setting, they can easily be tweaked for more specific
settings with additional assumptions, such as the presence of a trusted parameter server [30], the
assumption of homogeneous (i.e. i.i.d.) local data or synchrony (Section [3.3]and Section [6)).

We implemented and evaluated our algorithms in a distributed environment with 3 ResNet models [24].
More specifically, we present their throughput overhead when compared to a non—robust collaborative
learning approach with both i.i.d. and non—i.i.d. data (i.e. we highlight the cost of heterogeneity).
Essentially, we show that our first algorithm is more lightweight with a slowdown of at most 1.7X in
the i.i.d. case and almost the triple in the non—i.i.d. case. Our second algorithm adds slightly more
than an order of magnitude overhead: here the non-i.i.d. slowdown is twice the i.i.d. one.

Related work: Byzantine learning. Several techniques have recently been proposed for Byzantine
distributed learning, where different workers collaborate through a central parameter server [30] to
minimize the average of their loss functions [26]. In each round, the server sends its model parameters
to the workers which use their local data to compute gradients. Krum and Multi-Krum [4] use a
distance—based scheme to eliminate Byzantine inputs and average the remaining ones. Median-based
aggregation alternatives were also considered [38]]. Bulyan [13] uses a meta—algorithm against a
strong adversary that can fool the aforementioned aggregation rules in high—dimensional spaces.
Coding schemes were used in Draco [8]] and Detox [35]. In [2], quorums of workers enable to
reach an information theoretical learning optimum, assuming however a strong convex loss function.
Kardam [9] uses filters to tolerate Byzantine workers in an asynchronous setting. All these approaches
assume a central frusted (parameter server) machine.

The few decentralized approaches that removed this single point of failure, restricted however
the problem to (a) homogeneous data distribution, (b) convex functions, and/or (c) a weak (non—

Byzantine) adversary. MOZI [22] combines a distance—based aggregation rule with a performance—
based filtering technique, assuming that adversaries send models with high loss values, restricting
thereby the arbitrary nature of a Byzantine agent that can craft poisoned models whose losses are small
only with respect to the honest nodes’ incomplete loss functions. The technique is also inapplicable
to heterogeneous learning, where nodes can have a biased loss function compared to the average of
all loss function BRIDGE [39] and ByRDiE [40] consider gradient descent (GD) and coordinate
descent (CD) optimizations, respectively. Both rely on trimmed—mean to achieve Byzantine resilience
assuming a synchronous environment and strongly convex loss function with homogeneous data
distribution (i.i.d.). In addition, none of their optimization methods is stochastic: at each step, each
node is supposed to compute the gradient on its entire local data set. ByzSGD [12] starts from the
classical model of several workers and one server, which is then replicated for Byzantine resilience. It
is assumed that up to 1/3 of the server replicas and up to 1/3 of the workers can be Byzantine, which is
stronger than what we assume in the present paper where nodes play both roles and tolerate any subset
of 1/3 Byzantine nodes. More importantly, ByzSGD assumes that all communication patterns between
honest servers eventually hold with probability 1; we make no such assumption here. Additionally,
our present paper is more general, considering heterogeneous data distributions, as opposed to [12].
Furthermore, heterogeneity naturally calls for personalized collaborative learning [14} 23} [10L [15]],
where nodes aim to learn local models, but still leverage collaborations to improve their local models.
Interestingly, our general scheme encompasses personalized collaborative learning.

Maybe more importantly, our reduction to averaging agreement yields new more precise bounds that
improve upon all the results listed above. These are we believe of interest, even in more centralized,
homogeneous, synchronous and convex settings. In particular, our reduction can easily be adapted to
settings where parameter servers and workers with local data are different entities, as in [12].

Related work: Agreement. A major challenge in collaborative learning is to guarantee "some"
agreement between nodes about the appropriate parameters to consider. Especially in non-convex
settings, this is critical as, otherwise, the gradients computed by a node may be completely irrelevant
for another node. The agreement could be achieved using the traditional consensus abstraction [28].
Yet, consensus is impossible in asynchronous environments [18]] and when it is possible (with partial
synchrony), its usage is expensive and would be prohibitive in the context of modern ML models,
with a dimension d in the order of billions. In fact, and as we show in this paper, consensus is
unnecessary.

An alternative candidate abstraction is approximate agreement. This is a weak form of consensus
introduced in [11] where honest nodes converge to values that are close to each other, while remaining
in the convex hull of the values proposed by honest nodes. In the one-dimensional case, optimal
convergence rate has been achieved in both synchronous [16] and asynchronous environments [17],
while optimal asynchronous Byzantine tolerance was attained by [1]. The multi-dimensional version
was addressed by [31], requiring however n? local computations in each round, and assuming
n > f(d + 2). This is clearly impractical in the context of modern ML.

By leveraging some distributed computing techniques [36, |1]], we prove that collaborative learning
can be reduced to averaging agreement, which is even weaker than approximate agreement. This
enables us to bring down the requirement on the number of honest nodes from n > f(d + 2) to
n > 3f, and only require linear computation time in d.

Structure. The rest of the paper is organized as follows. In Section [2] we precisely define the
problems we aim to solve. Section [3| states our main result, namely, the equivalence between
collaborative learning and averaging agreement. Section[d] describes our two solutions to averaging
agreement, and proves their optimality. Section [5|reports on our empirical evaluation and highlight
important takeaways. Finally, Section [6]concludes. The full proofs are provided in the supplementary
material, as well as the optimized algorithm for homogeneous local data.

*Besides, MOZI, focusing on convex optimization, assumes that eventually, models on honest nodes do not
drift among each others, which may not hold for Byzantine nodes could influence the honest models to drift
away from each other [3].

3Convexity greatly helps, as the average of good models will necessarily be a good model. This is no longer
the case in non-convex optimization, which includes the widely used neural network framework.

2 Model and Problem Definitions

2.1 Distributed computing assumptions

We consider a standard distributed computing model with a set [n] = {1,...,n} of nodes, out of
which h are honest and f = n — h are Byzantine. For presentation simplicity, we assume that the
first A nodes are honest. But crucially, no honest node knows which h — 1 other nodes are honest.
The f Byzantine nodes know each other, can collude, and subsequently know who the h remaining
honest nodes are. Essentially, we assume a single adversary that controls all the Byzantine nodes.
These nodes can send arbitrary messages, and they can send different messages to different nodes. In
the terminology of distributed computing, the adversary is omniscient but not omnipotent. Such an
adversary has access to all learning and deployment information, including the learning objective,
the employed algorithm, as well as the dataset. We consider a general asynchronous setting [3]:
the adversary can delay messages to honest nodes: no bound on communication delays or relative
speeds is assumed. We denote BYZ the algorithm adopted by the adversary. Yet, we assume that
the adversary is not able to delay all messages indefinitely [[7]. Besides, the adversary is not able to
alter the messages from the honest nodes, which can authenticate the source of a message to prevent
spoofing and Sybil attacks.

Also for presentation simplicity, we assume that processes communicate in a round-based manner [J5].
In each round, every honest node broadcasts a message (labelled with the round number) and waits
until it successfully gathers messages from at most ¢ < h other nodes (labelled with the correct round
number), before performing some local computation and moving to the next round. Even though the
network is asynchronous, each round is guaranteed to eventually terminate for all honest nodes, as
the h honest nodes’ messages will all be eventually delivered. Evidently, however, some of them
may be delivered after the node receives ¢ messages (including Byzantine nodes’). Such messages
will fail to be taken into account. Our learning algorithm will then rely on main rounds (denoted ¢ in
Section[3)), each of which is decomposed into sub-rounds that run averaging agreements.

2.2 Machine learning assumptions

We assume each honest node j € [h] has a local data distribution D;. The node’s local loss function
is derived from the parameters § € R%, the model and the local data distribution, typically through
L9)(0) = E zp, [((0,)], where £(0, z) is the loss for data point z, which may or may not include
some regularization of the parameter §. Our model is agnostic to whether the local data distribution is
a uniform distribution over collected data (i.e., empirical risk), or whether it is a theoretical unknown
distribution the node can sample from (i.e., statistical risk). We make the following assumptions
about this loss function.

Assumption 1. The loss functions are non-negative, i.e., L) > 0 for all honest nodes j € [h].

Assumption 2. The loss functions are L-smooth, i.e., there exists a constant L such that

V&Q'ERﬂ\Ue[M,vaﬁwgy_VEUWy)

< Lo ¢, (1)
Assumption 3. The variance of the noise in the gradient estimations is uniformly bounded, i.e.,

Vje[n], V0 eRY, E

r~Lj

. 2
vwwﬂg—vdﬂww2g02 2)

Moreover, the data samplings done by two different nodes are independent.

Assumption 4. There is a computable bound L4, such that, at initial point 6, € R?, for any honest
node j € [h], we have L9 (0,) < Lonaa-

While the first three assumptions are standard, the fourth assumption deserves further explanation.
Notice first that 67 is a given parameter of our algorithms, which we could, just for the sake of the
argument, set to 0. The assumption would thus be about the value of the local losses at 0, which will
typically depend on the nodes’ local data distribution. But losses usually depend on the data only as
an average of the loss per data point. Moreover, the loss at 0 for any data point is usually bounded.
In image classification tasks for example, each color intensity of each pixel of an input image has
a bounded value. This usually suffices to upper-bound the loss at 0 for any data point, which then
yields Assumption

In iteration ¢, we require each node to average the stochastic gradient estimates over a batch of b;

i.i.d. samples. As a result, denoting Ht(7) and g(]) L Zle [be] Vgé(xgjl)) node j’s parameters

and computed stochastic gradient in iteration ¢, we have

o2
by
As t grows, we increase batch size b; up to ©(1/5%) (where § is a parameter of the collaborative
learning problem, see Section 2.3)), so that o, = O(6) for ¢ large enough (see Remark [2). This allows
to dynamically mitigate the decrease of the norm of the true gradient. Namely, early on, while we are
far from convergence, this norm is usually large. It is then desirable to have very noisy estimates, as
these can be obtained more efficiently, and as the aggregation of these poor estimates will nevertheless
allow progress. However, as we get closer to convergence, the norm of the true gradient becomes
smaller, making the learning more vulnerable to Byzantine attacks [3]]. Increasing the batch size then
becomes useful. Our proofs essentially formalize this intuition. Note that, in the homogeneous setting,
[25] theoretically proves that leveraging Momentum reduces variance and prevents Byzantine attacks
without increasing the batch size, while [32] observes on several hundred experimental settings that
Momentum indeed often offsets, or even cancels out, the effects of Byzantine attacks.

E

x~D;

2 g2, 3)

vﬁ(])(g(ﬂ))H

2.3 Collaborative learning

Given the ¢y diameter Az(g) = max; yep |

9 collaborative learning consists in min-

imizing the average £ (9) = 1 32, L’(J) (6) of local losses at the average 6 = ;31,1 69,
while guaranteeing that the honest nodes parameters have a small diameter.

This general model encompasses to the personalized federated learning problem introduced by [14,
23L[10L[15]. For instance, in [23]], each node j aims to learn a local model x; that minimizes f;, with a

penalty 3 ||z; — a?"Hg on their distance to the average Z of all models. This framework can be restated
by considering that nodes must agree on a common parameter § = Z, but have local losses defined
by £ (9) £ min, f;(z;) + 2|z — 0||§ The problem of [23]] then boils down to minimizing the
average of local losses.
Definition 1. An algorithm LEARN solves the Byzantine C'-collaborative learning problem if, given
any local losses L) for j € [h] satisfying assumptions E]) and any § > 0, no matter what
Byzantine attack BYZ is adopted by Byzantines, LEARN outputs a vector family 0 of honest nodes
such that .

EAo(0)? <% and E|VL(0)| < (1+3)°C°K?, ©))

where K £ SUP; pe(n], SUPpeRrd ||V£(j) () — VLF) (H2 is the largest difference between the true
local gradients at the same parameter 0, and where the randomness comes from the algorithm
(typically the random sampling for gradient estimates).

In our definition above, the constant K measures the heterogeneity of local data distributions.
Intuitively, this also captures the hardness of the problem. Indeed, the more heterogeneous the local
data distributions, the more options Byzantine nodes have to bias the learning, the harder it is to learn
in a Byzantine-resilient manner. Interestingly, for convex quadratic losses, our guarantee implies
straightforwardly an upper-bound on the distance to the unique optimum of the problem, which is
proportional to the hardness of the problem measured by K. In fact, our equivalence result conveys
the tightness of this guarantee. In particular, the combination of our equivalence and of Theorem 3]
implies that, for any € > 0, asynchronous (2f/h — ¢)-collaborative learning is impossible.

2.4 Averaging agreement

We address collaborative learning by reducing it to a new abstract distributed computing problem,
which we call averaging agreement.

Definition 2. A distributed algorithm AVG achieves Byzantine C-averaging agreement if, for any in-
put N € N, any vector family & € R*" and any Byzantine attack BYZ, denoting ij = AVG (&, BYZ)
the output of AVG given such inputs, we guarantee

_ Do(@)?

EA?(:J)Q 4N

and E||j—z|; < C?As(7)?, 5)

where iy = % > el y](\],) is the average of honest nodes’ vectors, and where the randomness comes

from the algorithm. We simply say that an algorithm solves averaging agreement if there exists a
constant C for which it solves C-averaging agreement.

In particular, for deterministic algorithms, C'-averaging on input N ensures the following guarantee

As(y) < A2(Z)

and |7 — Z||, < CAL(F). (6)

In Section 4] we will present two solutions to the averaging agreement problem. These solutions
typically involve several rounds. At each round, each node sends their current vector to all other
nodes. Then, once a node has received sufficiently many vectors, it will execute a robust mean
estimator to these vectors, the output of which will be their starting vector for the next round. The
nodes then halt after a number of rounds dependent on the parameter N.

3 The Equivalence

The main result of this paper is that, for K > 0, C'-collaborative learning is equivalent to C'-averaging
agreement. We present two reductions, first from collaborative learning to averaging agreement, and
then from averaging agreement to collaborative learning.

3.1 From collaborative learning to averaging agreement

Given an algorithm AVG that solves Byzantine C'-averaging agreement, we design a Byzantine
collaborative learning algorithm LEARN. Recall that LEARN must take a constant § > 0 as input,
which determines the degree of agreement (i.e., learning quality) that LEARN must achieve.

All honest parameter vectors are initialized with the same random values (i.e., Vj € [h], 9?) = 0,)
using a pre-defined seed. At iteration ¢, each honest node j € [h] first computes a local gradient
estimate g,gj) given its local loss function £U) () and its local parameters 9,53), with a batch size b,.
But, instead of performing a learning step with this gradient estimate, LEARN uses an aggregate of

all local gradients, which we compute using the averaging agreement algorithm AVG.

Recall from Definition 2] that AVG depends on a parameter which defines the degree of agreement.
We set this parameter at N (t) £ [log, t] at iteration ¢, so that 1/4V() < 1/¢2. Denoting 7, the

output of AVG () applied to vectors g;, we then have the following guarantee:

2 o A2 (g) >
Ea () < 20 ana EJ5, - 52 < 0200 (3)°, @

where the expectations are conditioned on g,. We then update node j’s parameters by Ht(i)l j2 =
©)

ng) _ n7,”’ , for a fixed learning rate n = §/12L. But before moving on to the next iteration, we
run once again AVG, with its parameter set to 1. Moreover, this time, AVG is run on local nodes’

—

L 7 .
parameters. Denoting 0,_ ; the output of AVG, executed with vectors we then have

t+1/2°

-)2 S A2(9t+1/2)2

EA, (et » : and E ’

_ _ 2 .
01 — 0t+1/2H2 < 02A2(9t+1/2)27 ¥

—

where the expectations are conditioned on 0, 4120 On input J, LEARN then runs 7' =S TiLearn(9)

learning iterations. The function 71 garn(0) Will be given explicitly in the proof of Theorem where
we will stress the fact that it can be computed from the inputs of the proble (L, K,C,n, f, oy,

L a2 and §). Finally, instead of returning gTLmN ()" LEARN chooses uniformly randomly an iteration
* € [TLrarn(0)], using a predefined common seed, and returns the vector family é;. We recapitulate

the local execution of LEARN (at each node) in Algorithm E} We stress that on steps 6 and 8, when the
averaging agreement algorithm AVG is called, the Byzantines can adopt any procedure BYZ, which

*Note that upper-bounds (even conservative) on such values suffice. Our guarantees still hold, though
TLEARN(5) would take larger values, which makes LEARN slower to converge to 0,.

N QA R W N

10
11

consists in sending any message to any node at any point based on any information in the system, and
in delaying for any amount of time any message sent by any honest node. Note that, apart from this,
all other steps of Algorithm I]is a purely local operation.

Data: Local loss gradient oracle, parameter § > 0
Result: Model parameters 6

Initialize local parameters #, using a fixed common seed;
Fix learning rate n £ 6 /12L;
Fix number of iterations 7' 2 Ty gapn(6);
fort < 1,...,7T do
g, < GradientOracle(0,,b;);
Y < AVGy(1)(G;, BYZ) // Vulnerable to Byzantine attacks
0t+1/2 0 — s
;41 < AVGy (9t+1/27
end
Draw % ~ U([T]) using the fixed common seed;
Return 6, ;

BYZ) // Vulnerable to Byzantine attacks

Algorithm 1: LEARN execution on a honest node.
Remark 1. In practice, it may be more efficient to return the last computed vector family, though
our proof applies to a randomly selected iteration.

Theorem 1. Under assumptions (I} 2| Bl) and K > 0, given a C-averaging agreement oracle AVG,
on any input 0 < 0 < 3, LEARN solves Byzantine C-collaborative learning.

The proof is quite technical, and is provided in the supplementary material. Essentially, it focuses on
the average of all honest nodes’ local parameters, and on the effective gradients that they undergo,
given the local gradient updates and the applications of the averaging agreement oracle AVG.

Remark 2. Our proof requires Tigarn(0) = @(5’1 max {672, (t — sup,s, 05)71(5)}). To
prevent the noise from being the bottleneck for the convergence rate, we then need oy = 0(9),
so that Tigarn = O(673). Interestingly, this can be obtained by, for example, setting by = t, for

t <T, =0(072), and by = T fort > Ty, where Ty is precisely defined by the proof provided in the
supplementary material. In particular, we do not need to assume that by — oc.

3.2 Converse reduction

We also prove the converse reduction, from averaging agreement to collaborative learning.

Theorem 2. Given a Byzantine C-collaborative learning oracle, then, for any § > 0, there is a
solution to Byzantine (1 + §)C-averaging agreement.

The proof is given in the supplementary material. It is obtained by applying a collaborative learning
algorithm LEARN to the local loss functions £ (6) £ || — 29 Hz

This converse reduction proves the tightness of our former reduction, and allows to straightforwardly
derive impossibility theorems about collaborative learning from impossibility theorems about averag-
ing agreement. In particular, in the sequel, we prove that no asynchronous algorithm can achieve

better than Byzantine h+2hf —4-averaging agreement. It follows that no algorithm can achieve better

than Byzantine ’”%H—col]aborative learning. Similarly, Theorem@implies the impossibility of
Byzantine asynchronous collaborative learning for n < 3 f.

3.3 Particular cases

Trusted server. It is straightforward to adapt our techniques and prove the equivalence between
averaging agreement and collaborative learning in a context with a trusted server. Our lower bounds for
asynchronous collaborative learning still apply to C-averaging agreement, and thus to C'-collaborative
learning. Note, however, that the trusted server may allow to improve the speed of collaborative
learning, as it no longer requires contracting the parameters of local nodes’ models.

Homogeneous learning. In the supplementary material, we propose a faster algorithm for i.i.d. data,
called HOM-LEARN, which skips the averaging agreement of nodes’ gradients. Despite requiring
fewer communications, HOM-LEARN remains correct, as the following theorem shows.

Theorem 3. Under assumptions BIH). for i.i.d. local data and given a C-averaging agreement
oracle AVG, on input & > 0, HOM-LEARN guarantees E Ay(6,)2 < 62 and E ||V£ (0,) H; <62

4 Solutions to Averaging Agreement

We now present two solutions to the averaging agreement problem, called MINIMUM—-DIAMETER
AVERAGINGE] (MDA) and RELIABLE BROADCAST - TRIMMED MEAN (RB-TM), each thus
inducing a solution to collaborative learning. We prove each optimal according to some dimension.

4.1 Optimal averaging

Given a family 2 € R%? of vectors, MDA first identifies a subfamily Sypa (Z) of ¢ — f vectors of
minimal /5 diameter, i.e.,

Smpa (Z) € argmin Ay (Z’(S)) = arg min max Hz(j) - z(k)H .)
5Clq) SClq) TkeS 2
|Sl=q—f |S|=a—f

We denote Z(MPA) ¢ R (9=f) the subfamily thereby selected. MDA then outputs the average of this
subfamily, i.e.,

1)
MDA(Z) 2 7 Z 20, (10)
q JESmpa(2)

On input N € N, MDA y iterates MDA Typa(N) = [N In2/£] times on vectors received from
other nodes at each communication round such that the output of round ¢ will be the input of round
t + 1. The correctness of MDA is then ensured under the following assumption.

Assumption 5 (Assumption for analysis of MDA). There is 0 < € < 1 such that n > % f. This

then allows to set q > %h + %f In this case, we define é = 127455

Rf+h—q)g+(a=21)f
h(q—f)é

Theorem 4. Under AssumptionE] MDA achieves Byzantine -averaging agree-

ment.

The proof is given in the supplementary material. It relies on the observation that, because of the
filter, no Byzantine vector can significantly harm the estimation of the average.

Remark 3. Although MDA runs in linear time in d, it runs in exponential time in q. Interestingly,
assuming that each honest node fully trusts its computations and its data (which may not hold if
parameter-servers do not compute gradients as in [I30)]), each honest node can use its own vector
to filter out the f most dissimilar gradients in linear time in q, and can average out all remaining
vectors. Using a similar proof as for MDA, the algorithm thereby defined can be shown to achieve
asymptotically the same averaging constant as MDA, in the limit ¢ > f; but it now runs in O(dq),
(requiring howevern > 7f + 1).

Theorem 5. No asynchronous algorithm can achieve better than Byzantine %—averaging

agreement.

The proof is given in the supplementary material. It relies on the quasi-unanimity lemma, which
shows that if a node receives at least ¢ — f identical vectors z, then it must output z. We then
construct an instance where, because of this and of Byzantines, honest nodes cannot agree. Note
that, as a corollary, in the regime ¢ = h — oo and f = o(h), MDA achieves asymptotically the
best-possible averaging constant, up to a multiplicative constant equal to 3/2.

3Introduced by [13] in the context of robust machine learning, it uses the same principle as the minimal
volume ellipsoid, that was introduced by [36] in the context of robust statistics.

4.2 Optimal Byzantine resilience

Our second algorithm makes use of reliable broadcaslﬂ each Byzantine node broadcasts only a single
vector (the uniqueness property of reliable broadcast in [1]). We denote w € R%™ the family of
vectors proposed by all nodes. For each j € [h], w() = 20 is the vector of an honest node, while
a Byzantine node proposes w(/) for each j € [h + 1,n]. Moreover, [I]] showed the existence of a
multi-round algorithm which, by using reliable broadcast and a witness mechanism, guarantees that
any two honest nodes j and k will collect at least ¢ similar inputs. Formally, denoting Q\/) C [n]
the set of nodes whose messages were successfully delivered to node j (including through relays),
the algorithm by [1]] guarantees that ‘Q(j)N Q™ | > ¢ for any two honest nodes j, k € [h]. At each
iteration of our RB-TM algorithm, each node j exploits the same reliable broadcast and witness
mechanism techniques to collect other nodes’ vectors. Now, given its set Q) of collected messages,
each node j applies coordinate-wise trimmed mean, denoted TM, as follows. For each coordinate ¢, it
discards the f smallest i-th coordinates it collected, as well as the f largest. We denote 2{/) = & (@)
the subfamily received by node j, and S(Z{/)[i]) C [n] the subset of nodes whose i-th coordinates
remain after trimming. Node j then computes the average y/) of the i-th coordinates of this subset,

ie.
, 1
@ & K1z
v 2 >, w®l. (11
@] -
QW] —2f keS(ZW[i])

RB-TM consists of iterating TM, on vectors received from other nodes at each communication round.
Namely, given input N € N, RB-TM iterates TM Trp.m (V) times, where

(N+1)ln2+ln\/ﬁ-‘

12)

TRB—TM(N) £ ’V E

The correctness of RB-TM can then be guaranteed under the following assumption.
Assumption 6 (Assumption for analysis of RB-TM). There is € > 0 such thatn > (3 +¢)f. We

~ A I3
then set ¢ = n — f, and define € = 1.
4f
vh
optimal in terms of Byzantine resilience. Indeed, for n < 3f, no algorithm can achieve Byzantine

averaging agreement.

Theorem 6. Under Assumption@ RB-TM guarantees Byzantine —=-averaging agreement. This is

The proof is provided in the supplementary material. The correctness relies on a coordinate-wise
analysis, and on the study of a so-called coordinate-wise diameter, and its relation with the {5
diameter. The lower bound exploits the quasi-unanimity lemma. Note that while RB-TM tolerates

more Byzantine nodes, its averaging constant is larger than that of MDA by a factor of O(v/h).

S Empirical Evaluation

We implemented our collaborative learning algorithms using Garfield library [20] and PyTorch [34].
Each agreement algorithm comes in two variants: one assuming i.i.d. data (See supplementary
material) and one tolerating non-i.i.d. data (Algorithm([I). In each case, the first variants require fewer
communications. We report below on the empirical evaluation of the overhead of our four variants
when compared to a non—robust collaborative learning approach. Our baseline is indeed a vanilla
fully decentralized implementation in which all nodes share their updates with each other and then
aggregate these updates by averaging (a deployment that cannot tolerate even one Byzantine node).

We focus on throughput, measuring the number of updates the system performs per second. As we
consider an asynchronous network, we report on the fastest node in each experiment. We consider
image classification tasks, using MNIST [29] and CIFAR-10 [27] datasets. MNIST is a dataset of
handwritten digits with 70,000 28 x 28 images in 10 classes. CIFAR-10 consists of 60,000 32 x 32
colour images in 10 classes. We use batches of size 100, and we experimented with 5 models with
different sizes ranging from simple models like small convolutional neural network (MNIST_CNN
and Cifarnet), training a few thousands of parameters, to big models like ResNet-50 with around 23M

Note that MDA can also be straightforwardly upgraded into RB-MDA to gain Byzantine resilience.

07 442.4°
:] £ LEARN-iid-MDA
0.6 400
EEE EARN-non-iid-MDA
505 : 5300 BB EARN-iid-RB-TM
Q — M s
S04/ L Vanilla SGD B LEARN-non-iid-RB-TM
Sos J LEARN-iid-MDA <
<z S P LEARN-non-iid-MDA 2200
0.2 / —+- LEARN-id-RB-TM
01f ' — - LEARN-non-iid-RB-TM 100 % . .
00735 5 10 15 ol pol ol o
Training epochs MNIST_CNN CifarNet Resnet-18 Resnet-34 Resnet-50
Figure 1: Convergence of our algorithms Figure 2: Slowdown of our algorithms
and the vanilla baseline. normalized to the vanilla baseline throughput.

parameters. Our experimental platform is Grid5000 [19]]. We always employ nodes from the same
cluster, each having 2 CPUs (Intel Xeon E5-2630 v4) with 14 cores, 768 GiB RAM, 2x 10 Gbps
Ethernet, and 2 Nvidia Tesla P100 GPUs. We set f = 1, except when deploying our vanilla baseline.

Figure[I] compares the convergence of our algorithms to the vanilla baseline w.r.t. the training epochs.
We use 7 nodes in this experiment, and we train Resnet—18 with CIFAR10. We verify from this figure
that our algorithms can follow the same convergence trajectory as the vanilla baseline. It is clear from
the figure that the i.i.d. versions outperform the non-i.i.d. ones.

Figure [2| depicts the throughput overhead of our algorithms (with both i.i.d. and non-i.i.d. data)
compared to our vanilla baseline, with 10 nodes from the same cluster. Three observations from this
figure are in order. First, the MDA-based algorithm performs better than the RB-TM one. The
reason is that the latter incurs much more communication messages than the former as the latter uses
reliable broadcast and a witness mechanism. Second, tolerating Byzantine nodes with i.i.d. data is
much cheaper than the non-i.i.d. case. The reason is that it is harder to detect Byzantine behavior
when data is not identically distributed on the nodes, which translates into more communication steps.
Third, the slowdown is much higher with small models (i.e., MNIST_CNN and Cifarnet). This is
because the network bandwidth is not saturated by the small models in the vanilla case, where it
gets congested with the many communication rounds required by our algorithms. On the other hand,
with the larger models, the vanilla deployment saturates the network bandwidth, making the extra
communication messages account only for linear overhead.

Finally, it is important to notice that our evaluation is by no means exhaustive and our implementation
has not been optimized. Our goal was to give an overview of the relative overheads. With proper
optimizations, we believe the actual throughput could be increased for all implementations.

6 Conclusion

We defined and solved collaborative learning in a fully decentralized, Byzantine, heterogeneous,
asynchronous and non-convex setting. We proved that the problem is equivalent to a new abstract
form of agreement, which we call averaging agreement. We then described two solutions to averaging
agreement, inducing two original solutions to collaborative learning. Each solution is optimal along
some dimension. In particular, our lower bounds for the averaging agreement problem provide
lower bounds on what any collaborative learning algorithm can achieve. Such impossibility results
would have been challenging to obtain without our reduction. Our algorithms and our impossibility
theorems are very general but can also be adapted for specific settings, such as the presence of a
trusted parameter server, the assumption of i.i.d. data or a synchronous contexﬂ In the latter case for
instance, our two algorithms would only require n > 4f + 1 and n > 2f + 1, respectively.

Limitations and potential negative social impacts. Like all Byzantine learning algorithms, we
essentially filter out outliers. In practice, this may discard minorities with vastly diverging views.
Future research should aim to address this fundamental trade-off between inclusivity and robustness.
We also note that the computation time of MDA grows exponentially with g, when f is a constant
fraction of q.

"In the synchronous case of MDA, with ¢ = n, n > 4;12; f is sufficient to guarantee ¢ > %h + % fin

Assurnption Also, note that no synchronous algorithm can achieve better than %-averaging agreement.

10

Acknowledgments and Disclosure of Funding

We thank Rafaél Pinot and Nirupam Gupta for their useful comments. This work has been supported
in part by the Swiss National Science Foundation projects: 200021_182542, Machine learning and
200021_200477, Controlling the spread of Epidemics. Most experiments presented in this paper
were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted by
Inria and including CNRS, RENATER and several Universities as well as other organizations (see
https://www.grid5000.fr).

References

[1] Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approximate
agreement. In International Conference on Principles of Distributed Systems, pages 229-239.
Springer, 2004.

[2] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In Neural
Information Processing Systems, pages 4613—4623, 2018.

[3] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses
for distributed learning. In Neural Information Processing Systems, pages 8635-8645, 2019.

[4] Peva Blanchard, El-Mahdi El-Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Neural Information Processing
Systems, pages 118128, 2017.

[5] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130-143, 1987.

[6] Samantha Bradshaw and Philip N Howard. The global disinformation order: 2019 global
inventory of organised social media manipulation. Project on Computational Propaganda, 2019.

[7] Miguel Castro, Barbara Liskov, et al. Practical Byzantine fault tolerance. In Operating Systems
Design and Implementation, volume 99, pages 173186, 1999.

[8] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Draco: Byzantine-
resilient distributed training via redundant gradients. In International Conference on Machine
Learning, pages 902-911, 2018.

[9] Georgios Damaskinos, EI-Mahdi El-Mhamdi, Rachid Guerraoui, Rhicheek Patra, and Mahsa
Taziki. Asynchronous Byzantine machine learning (the case of SGD). In Neural Information
Processing Systems, volume 80, pages 1145-1154, 2018.

[10] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learning with
moreau envelopes. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[11] Danny Dolev, Nancy A Lynch, Shlomit S Pinter, Eugene W Stark, and William E Weihl.
Reaching approximate agreement in the presence of faults. Journal of the ACM, 33(3):499-516,
1986.

[12] El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lé Nguyén Hoang, and Sébastien
Rouault. Genuinely distributed Byzantine machine learning. In Principles of Distributed
Computing, pages 355-364, 2020.

[13] El-Mahdi El-Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability

of distributed learning in Byzantium. In International Conference on Machine Learning,
volume 80, pages 3521-3530, 2018.

11

https://www.grid5000.fr

[14] Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar. Personalized federated learning
with theoretical guarantees: A model-agnostic meta-learning approach. In Hugo Larochelle,
Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[15] Sadegh Farhadkhani, Rachid Guerraoui, and Lé-Nguyén Hoang. Strategyproof learning: Build-
ing trustworthy user-generated datasets. ArXiV, 2021.

[16] AD Fekete. Asymptotically optimal algorithms for approximate agreement. In Principles of
Distributed Computing, pages 73-87, 1986.

[17] Alan David Fekete. Asynchronous approximate agreement. In Principles of Distributed
Computing, pages 64-76, 1987.

[18] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374-382, 1985.

[19] Grid5000. Grid5000. https://www.grid5000.fr/, 2019.

[20] Rachid Guerraoui, Arsany Guirguis, Jérémy Plassmann, Anton Ragot, and Sébastien Rouault.
Garfield: System support for byzantine machine learning (regular paper). In 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 39-51.
IEEE, 2021.

[21] Arsany Guirguis. LEARN source code. https://github.com/LPD-EPFL/garfield/tree/
decentralized.

[22] Shangwei Guo, Tianwei Zhang, Xiaofei Xie, Lei Ma, Tao Xiang, and Yang Liu. Towards
byzantine-resilient learning in decentralized systems. arXiv preprint arXiv:2002.08569, 2020.

[23] Filip Hanzely, Slavomir Hanzely, Samuel Horvéth, and Peter Richtarik. Lower bounds and
optimal algorithms for personalized federated learning. In Hugo Larochelle, Marc’ Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770-778, 2016.

[25] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust
optimization. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 5311-5319. PMLR, 2021.

[26] Jakub Kone¢ny, H Brendan McMahan, Daniel Ramage, and Peter Richtarik. Federated optimiza-
tion: distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

[27] Alex Krizhevsky. Cifar dataset. https://www.cs.toronto.edu/ kriz/cifar.html, 2009.

[28] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. Trans-
actions on Programming Languages and Systems, 4(3):382—401, 1982.

[29] Yann Lecunn. Mnist dataset. http://yann.lecun.com/exdb/mnist/, 1998.

[30] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the
parameter server. In Operating Systems Design and Implementation, volume 1, page 3, 2014.

[31] Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in byzan-
tine asynchronous systems. In Symposium on Theory of computing, pages 391-400, 2013.

12

https://www.grid5000.fr/
https://github.com/LPD-EPFL/garfield/tree/decentralized
https://github.com/LPD-EPFL/garfield/tree/decentralized
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/

[32] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. Distributed momentum for
byzantine-resilient stochastic gradient descent. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[33] Lisa-Maria Neudert, Philip Howard, and Bence Kollanyi. Sourcing and automation of
political news and information during three european elections. Social Media+ Society,
5(3):2056305119863147, 2019.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[35] Shashank Rajput, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Detox: A
redundancy-based framework for faster and more robust gradient aggregation. In Neural
Information Processing Systems, pages 10320-10330, 2019.

[36] Peter J Rousseeuw. Multivariate estimation with high breakdown point. Mathematical Statistics
and Applications, 8:283-297, 1985.

[37] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533-536, 1986.

[38] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized Byzantine-tolerant SGD.
arXiv preprint arXiv:1802.10116, 2018.

[39] Zhixiong Yang and Waheed U Bajwa. Bridge: Byzantine-resilient decentralized gradient
descent. arXiv preprint arXiv:1908.08098, 2019.

[40] Zhixiong Yang and Waheed U Bajwa. Byrdie: Byzantine-resilient distributed coordinate descent
for decentralized learning. Transactions on Signal and Information Processing over Networks,
5(4):611-627, 2019.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] The assumptions are fully explicit.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] The
conclusion notes the tension between security and inclusivity. We call for further
research in addressing this tradeoff.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Our assump-
tions are clearly highlighted in Section[2.2]
(b) Did you include complete proofs of all theoretical results? [Yes] They are provided in
the supplementary material
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] The code is
open—sourced and can be found here [21]].

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? Choosing the best hyperparameters is out of the scope of this paper.
In our experimental evaluation, we focus only on the systems metrics, e.g., throughput.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? Error bars in our experiments are very small; we omitted
them for better readability.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section@

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section[3]

(b) Did you mention the license of the assets? The license can be found using the
provided URLs.

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? The datasets and models we use are already open—sourced.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Model and Problem Definitions
	Distributed computing assumptions
	Machine learning assumptions
	Collaborative learning
	Averaging agreement

	The Equivalence
	From collaborative learning to averaging agreement
	Converse reduction
	Particular cases

	Solutions to Averaging Agreement
	Optimal averaging
	Optimal Byzantine resilience

	Empirical Evaluation
	Conclusion

