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ABSTRACT

We introduce f-PG, a new class of stochastic policy gradient methods regularized by a
family of f-divergences, including entropy and Tsallis divergences. For each divergence,
we employed a coupled parameterization, defined by f-softargmax, which allows us to
establish the first explicit, non-asymptotic, last-iterate convergence rates for stochastic
policy gradient. To derive our analysis, we prove that the f-regularized value function
is smooth and satisfies a Polyak-L.ojasiewicz inequality as a function of f-softargmax
parameters. To establish the latter, we introduce a general policy improvement operator
that restricts optimization to a well-defined policy space that excludes ill-behaved policies.
In the case of softmax, this allows to escape the “gravitational pull” and yields the first
explicit convergence guarantees for this parameterization, closing a gap in the literature.
Finally, we leverage these rates to derive sample complexity bounds for the unregularized
problem and show that f-PG with Tsallis divergences provides a provably better sample
complexity/regularization bias trade-off compared to softmax-based policy gradient with
entropy regularization.

1 INTRODUCTION

Regularization has become a cornerstone of modern Reinforcement Learning (RL), playing a central role
in many of its key breakthroughs. A prominent example is the use of Kullback—Leibler (KL) penalization,
which underlies algorithms such as Trust-Region Policy Optimization (Schulman et al., 2015) and Mirror
Descent Policy Optimization (Tomar et al., 2022), where it ensures stability by constraining policy updates.
Although the KL divergence is by far the most widely adopted regularizer in RL, recent advances have
highlighted the benefits of alternative regularizers based on other f-divergences. For example, Lee et al.
(2019) demonstrated empirically that Tsallis regularization leads to improved performance in continuous
control tasks. On the theoretical front, the Tsallis-INF algorithm for multi-armed bandits (Zimmert & Seldin,
2021) achieves minimax optimality, leveraging Tsallis entropy regularization as a key component. This
motivates the need for a deeper theoretical framework that goes beyond KL divergence.

In this paper, we propose new policy gradient methods for a family of f-divergence regularized RL problems,
based on coupled parametrizations. As an example, the KL divergence is usually coupled with the softmax
parameterization, improving convergence of different RL methods (Schulman et al., 2015; Haarnoja et al.,
2017; 2018; Tomar et al., 2022). Global convergence rates of the policy gradient method under this coupling
were derived in the deterministic setting Mei et al. (2020b), although without explicit constants. In this case,
the softmax parameterization has a natural interpretation: the optimal parameters correspond to temperature-
rescaled optimal Q-values up to a baseline function (Mei et al., 2020b). However, this is no longer the
case when coupled with other types of regularization. Additionally, the soffmax as a parametrization suffers
from the gravitational well and the softmax softmax dumping effects (Mei et al., 2020a). This motivates the
question: “what is the appropriate parameterization for an f-regularized policy gradient method?”
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We argue that the appropriate parameterization follows from the problem’s structure: every convex f-
divergence induces a canonical parameterization via the f-softargmax operator (Blondel et al., 2020; Roulet
et al., 2025). We call this the coupled parametrization, emphasizing the intrinsic link between divergence
and parameterization. From this perspective, the familiar softmax—entropy pair is a special case, with the
choice f: u > ulogu — (u — 1). To illustrate the strength of this coupling, we study the policy gradient
method for a family of f-divergence regularized RL problems with coupled parameterization. We obtain
last-iterate global convergence guarantees in the stochastic setting, in the tabular case, which is new even
in the standard entropy-softmax case (Mei et al., 2020b; Agarwal et al., 2021; Cen et al., 2022; Miiller &
Cayci, 2024; Ding et al., 2025). Our results highlight that using alternatives to the entropy-softmax can lead
to faster convergence. To derive these results, we introduce a novel policy-improvement operator, which
discards ill-behaved policies for all types of parameterizations. This procedure, in the case of the softmax
parameterization, escapes the gravitational pull (Mei et al., 2020a). Our contributions are threefold:

» f-regularized RL via coupled parametrizations. We introduce policies parameterized by the f-
softargmax operator induced by the chosen divergence, thereby coupling regularization and parametriza-
tion. Leveraging the efficient implementation of f-softargmax (Roulet et al., 2025), our method is compu-
tationally efficient while allowing to naturally exploit the geometry of different regularizers.

* Global convergence guarantees. We prove global convergence rates, with explicit constants, for the
stochastic policy gradient method with coupled parameterization. Our analysis relies on a novel character-
ization of the regularized value function’s smoothness and the Polyak—t.ojasiewicz property. These rates
yield finite-sample complexity with convergence rates that depend on the choice of the f-regularizer.

* Better sample complexity/regularization bias trade-off. We establish that using divergences beyond
entropy yields a better sample-complexity/regularization-bias trade-off than the classical softmax—entropy
pair, highlighting the theoretical benefits of broader f-regularization. Importantly, in the case of a-Tsallis
regularised PG, we show that the optimal « depends on the desired precision on the unregularised problem.

2 RELATED WORK

KL regularization in policy gradients. Entropy and KL regularization are standard tools for stabilizing RL
(Haarnoja et al., 2017; 2018; Nachum et al., 2017; Abdolmaleki et al., 2018; Vieillard et al., 2020), including
in policy gradient methods (Schulman et al., 2015; Tomar et al., 2022). Under softmax parameterization,
they enjoy global convergence guarantees in tabular settings (Mei et al., 2020b; Agarwal et al., 2021), but
convergence can take exponential time in the worst case (Mei et al., 2020a; Li et al., 2023), revealing limi-
tations of the softmax parameterization.

Alternatives to softmax. Outside of the RL literature, alternative parametrisations to softmax have been
proposed and shown prominent results (Martins & Astudillo, 2016; Peters et al., 2019; Roulet et al., 2025).
Yet in the RL setting, such alternatives are scarce, with the notable exception of the escort transform (Mei
et al., 2020a; Liu et al., 2025), which does not exploit the geometry of the f-regularized objective.

f-Divergence Regularization. Beyond KL, general frameworks for f-divergence regularization in RL have
been developed (Belousov & Peters, 2017; Geist et al., 2019). A notable particular case is Tsallis entropy
regularization (Chow et al., 2018; Lee et al., 2019), which interpolates between mode-seeking and mode-
covering exploration behaviors. Other works have applied f-divergence regularization in settings such as
offline RL (Sikchi et al., 2024) and goal-conditioned RL (Agarwal et al., 2023). More recently, it has also
proven useful for fine-tuning large language models (Go et al., 2023; Wang et al., 2024; Huang et al., 2025;
Li et al., 2025), underscoring its practical relevance. Yet, unlike the KL case where softmax arises naturally,
no principled parameterization is known for general f-regularization. This gap is the focus of our work.
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3 BACKGROUND

Markov Decision Process. We consider a discounted MDP M = (S, A,~,P,r, p) with finite S, A,
discount v € (0,1), transition kernel P(s’|s,a), reward r(s,a) € [0,1], and initial distribution p. A
stationary policy 7 : & — P(A) induces P, (s'|s) = > P(s'|s,a)m(als). Forv : & — R, set
Pu(s,a) = >, P(s|s,a)v(s") and Prv(s) = 3, P (s'|s)v(s). The value function is

val(s) = B[S 2'r(Si, A1) | S0 = 5|, (1)

with A; ~ 7(-|St), Six1 ~ P(-|St, A¢). The Bellman operator is T,v(s) = rz(s) + vPrv(s), where
r-(s) = >, m(als)r(s, a). It is a y-contraction with unique fixed point v. For v € RIS|, define Q-function
q(s,a) =r(s,a) +~vPv(s,a), yielding Trv(s) = (m(:|s), q(s,-)). The Bellman optimality operator T, v =
max, T v has fixed point v, with optimal Q-function ¢,. For p € P(S), define v(p) = >, p(s)v(s).
The objective is to maximize v (p); if p has full support, this reduces to finding an optimal policy 7, such
that v, = vy, with a support of a subset of arg max, ¢.(s,a) forall s € S.

f-Regularized MDP. Let f: (0,00) — R be a strictly convex generator with f(1) = 0. Its adjoint
(or reverse generator) is fi(u) := w f(1/u), u > 0, which is convex, strictly convex if f is, and satisfies
f+(1) = 0. Boundary conventions are f(0) := lim, o f(u) € (—o0,00] and f;(0) := lim, o ft(u) =
limyyoo f(t)/t € (—00, 00]. For p, g € P(A) over finite A, the f—divergence is

D/ (pllg) == > qla)f(p(a)/qla)) + £:(0) > pla), )
a€A:q(a)>0 a€A:q(a)=0
with conventions: ¢(a)f(0) if ¢(a) > 0,p(a) = 0, and 0 if p(a) = ¢(a) = 0 (Rényi, 1961; Csiszér, 1967,
Liese & Vajda, 2006). f—divergences satisfy D7 (p|lq) € [0, 0], are jointly convex (Csiszar, 1967), vanish
iff p = ¢, and are not symmetric (Dt (p||q) = D’ (p||q)).

Let Mot : S — P(A) be a reference policy. For A > 0, the regularized Bellman operator is Tlv(s) =
Tv(s) — XA DI (n(:|s)||mre (-]5)), s € S. (Geist et al., 2019, Prop. 2) ensures a unique fixed point v/, the
regularized value function, with

vh(s) = Y, m(als)r(s,a) = A D (n(-]s) et (-[)) +7 32, o w(als)P(s'|s, @) v (s). )

The regularized optimal Bellman operator is T{v (s) = max.{(7(:|s),q(s,)) — A D (z(-|s)||mret (-] )},
with unique fixed point v! and associated @—function q{ given by:

vi(s) = max,ep) ({1, al(s,)) = A DI (Wlmet (1))}, al(s,a) = r(s,a) +7Pvi(s,a) (&)
ml (-]s) == argmax,ep(a) { (1, 4L(5,-) = A DI (v][mres (-]3)) }. )

As in the unregularized case, the objective is to maximize v{(p) = 3", p(s)vL(s) over .

Operators generated by f-divergences. For z € RI! and ¢ € P(A), Roulet et al. (2025) define the
following general operators

softmax” (z,q) = max {{v,z) — Df(u||q)}, softargmax’ (z, q) = arg max {{v,z) — Df(y||q)}.
veEP(A) vEP(A)

For simplicity, we assume in the sequel that ¢ has full support, i.e. that g(a) > 0 for all a € P(A).

Since D7 (p|q) is strictly convex in its first argument on the simplex (Csiszar, 1967), the output of the

softargmaxf operator is well defined and unique, as it corresponds to the arg max of a strictly concave
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function over a compact set. These definitions are tightly connected to the Fenchel-Legendre conjugate of
=D/ (-[|q)+ Lp(4)» Where tp(4) denotes the convex indicator function of the probability simplex. Using
these definitions, (4) and (5) can be rewritten as

vl(s) = 7 - softmax’ (¢ (s,-) /7, met ([5)), 7L (-]s) = softargmax’ (¢{(s, ) /7, meet (-]s)).
The efficient way to compute softmax’ and softargmaxf follow from (Roulet et al., 2025, Proposition 1)
that (see also lemma B.1)
Proposition 3.1 (Follows from Roulet et al. 2025, Proposition 1). Assume f is strictly convex and C' on
(0, 00) with lim, o+ f'(u) = —o0, and q(a) > 0 for all a. Then for every & € RAL @ € A:

softargmaxf(:c, q)la]l = q(a) [f’} _1(17(‘1) - Nw)? ©6)

where i, is the unique root of F(p) :== Y, c 4 q(a) [f']  (z(a) — pn) — 1 = 0 Moreover, F is strictly de-
creasing so i, can be computed by bisection in the bracket is i, € (max, x(a)— f'(1/¢min), Mmax, x(a)—
(1), with qumin := min, q(a). Moreover, denoting by f* the convex conjugate of f,

softmax’ (, ¢) = min {u + Z q(a) f*(z(a) - u)}, V. softmax’ (; ¢) = softargmax’ (z; q). (7)
HER -

Corollary 3.2 (KL case). For the (generalized) KL-divergence, the generator is f(u) = ulogu — (u — 1),
softmax*"(z, q) = log 3_, . 4 q(a)e®®) and softargmax""(z, q)[a] = ¢(a) e®®) /3", . 4 q(b)e*®.

With uniform ¢ = (1/|A],...,1/|A]), we recover the classical mellowmax and softmax operators
(Asadi & Littman, 2017). For a real parameter o # 1 (the entropic index), define exp,, (z) = [1 + (o —

1)x]i/(a_l) and log,, (y) = (y*~* —1)/(a — 1) where [2]; = max{z, 0} denotes truncation at zero and for
a € (0,1), exp,, is defined only for x < 1/(1 — «).
Corollary 3.3 (Tsallis, 0 < a < 1). For the a-Tsallis divergence generator fqo(u) = (ulog,(u) —

(u — 1))/a, softargmax’® (z,q)[a] = q(a)exp,(x(a) — pa(z,q)), where o (x;q) is the unique root
of D ueadla)exp,(x(a) — p) = 1; see (Lee et al., 2019; Roulet et al., 2025) and Appendix B.1.

4 REGULARIZED VALUE FUNCTION WITH COUPLED PARAMETRIZATION

In this work, we aim to optimize the f-regularized value function over a parameterized policy class,
F(9) = ot 8
max{.J/(0) := vl (p)} ®)

where the policy is given by a parameterized 6 — 7y € P(A)!S].

f-regularized RL and coupled parameterization. The analytic form of the optimal policy (5) naturally
suggests a coupled parameterization based on the f-softargmax operator. We define the policy induced by
the coupled parameterization, for any 6 € RISI*IAl and state s € S, as

7r£(|s) = softargmaxf(H(s, ), Tret (+|8)) = arg rr(la)x {(1/, 0(s,-)) — Df(y|\7rref(-|s))} ) 9)
veP(A

This choice aligns directly with the structure of the f-regularized solution. In particular, under this parame-

terization, solutions to (8) can be written as

Hf(s,a) = q{(s,a)/)\—i-b(s) ,

where q{f(s7 a) is the regularized optimal Q-function defined in (4) and b: & — R is an arbitrary baseline

function. Hence, learning the parameters boils down to recovering the regularized optimal @-values, up to

a baseline and rescaling by 1/), and the induced policy satisfies Wg* = 7, where 7 is the regularized

optimal policy, defined in (5). When applied to KL regularization, we retrieve Mei et al. (2020b).
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Remark 4.1 (Connection with (Lazy) Mirror Descent.) We stress that, despite similarities, f—PG is funda-
mentally different from mirror descent. With ®(m) =3 DY (7 (-|8)||7ret (-])), mirror descent is

VO(Fip1) = VO(F) + Vvl (p)lrer, . mep1 = arg min_ i {®(7) — (VO (Ti41), ™ — Teq1) }. (10)

where TI = P(A)IS! is a policy space. Denoting 0, = V®(7,), one obtains updates that resemble (14)
(without T ), with one key difference: the gradient in (10) is taken with respect to the policy m whereas in
(14) it is computed w.r.t the "dual” parameter 0 (in the mlrrqr descent terminology). Moreover, the update
(10) can be expressed as, by the chain rule, ;11 = 0; + n[ =2 | o 0 171V J7 (0;), which have an additional
preconditioning term given by the inverse of the policy Jacobzan See Appendix H for more details.

Properties of f-regularized objective under coupled parameterization. We now establish two key
properties of the f-regularized value with coupled parametrization: smoothness of the objective, and a
Polyak-Lojasiewicz inequality. We derive these properties under following two assumptions on f and 7.

Assumption P(7,c¢). There exists Tpef > 0 such that min g o) Tret(als) > Tref-
Assumption A (m.¢). The function f satisfies the following properties.
(i) f is bounded and strictly convex on [0;1/mye], f(1) = 0, and is thrice differentiable on (0,1/myct);

(ii) limy o+ f'(u) = —o0, and lim, o | f'(u)/ f" (u)| < oo;

(iii) there exists 1 < wy < 00, and Ky < 0o, such that for any u € [0; 1/@], we have

V(uf"(w) <ws . and |f"(uw)/f" ()] < w¢ ;

(iv) there exists 1 > vy > 0such that f" decreases on [0; 5] and for any uw € [vy; 1/ meet], f"(1f) = " ().
These conditions are met by a broad class of divergences commonly used in practice, like the KL and
Tsallis divergences. These divergences admit finite constants wy,k ¢, and (r; see Appendix F for explicit
computations. In contrast, Tsallis divergences with oz > 1 violate condition (ii): since f’(0) is finite, the
induced policies may place zero mass on some actions, leading to sparsity and consequently to non-Lipschitz

gradients. Similarly, for reverse KL regularization with f(u) = — log(u), the function f is unbounded as
u — 0, which prevents us from controlling the effect of regularization in the worst case.

Under P(7yef) and A ¢ (et ), we can define the logits wg(a|s) and their sum Wf(s), defined as

f _ 1 Tret(a]$) ith Tret 11
Wo(al$) = 5 P twloymrtarey M fo’(wf(m/w(as) - ab

which will play a central role in our analysis. In the KL divergence case, we recover simple expressions
Wg(a |s) = Wg( |s) and W »(s) = 1. Using the notations in (11), the Jacobian of the policy w.r.t. 6 is

awf;(a\s)) =14 (s) W} (s) [Lo(a) W) (als) — wj(als) w)(b]s)] -

We also defined the following three quantities, which are bounded under P(7r.ct) and A ¢ (et ).

i max ZW w(als )\f’( a)/met(als))| dy:=  max DI (ume(ls) , (12)

(s.)ESXP(A) ? I (w(a)/mwet(als)) (s,v)ESXP(A)

et (als)

0< Cf . (s, V)€S><73’(A Z f/’ )/Wwf( |S)) '

13)

Given P(mer) and Aj(mer), we prove that the regularized objective value function with coupled
parametrization is smooth and satisfies a Lojasiewicz-type condition.
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Algorithm 1 f-Regularized Policy Gradient with Improvement Projection

Initialization: Learning rate > 0, initial parameter 6, divergence generator f.
fort=0toT —1do
Collect B trajectories of length H: Zy = (8P .11 AL gy 1)y using ),
Compute ;1 = 0; + Wgz,, (6;) where ng, (0;) is computed using (15)
Perform projection: 6,41 = T, ; (§t+1) where T, U ; (see Section 5 and Appendix D)

Theorem 4.2. Assume that, for some Tyt > 0, A f(Trer) and P(mye) hold. For any 0 € RISIXIA e have
wylmax(wy, k) + Amax(wrdy, kyds, yr, kpyp/wy, 1)]
(1—=7)? '

We give explicit constants and prove this theorem in Appendix B.3’s Theorem B.12. This guarantees that

the regularized value function vJ; (p) is a smooth function of the parameter §. Now, we derive a Lojasiewicz

inequality, provided that the classical sufficient exploration assumption holds.

HVQUJ;(;))H < Lyxy, whereLys~
2

Assumption A ,. The smallest coefficient pmin := minges p(s) of the initial distribution p satisfies pmin > 0.

Theorem 4.3. Assume that, for some s > 0, Af(mrer) and P(mye) hold. Assume in addition that the
initial distribution p satisfies A ,. Then, it holds that

Have H > pix f(e)( f(p)—ug(p)) o where pix £ (0) 1= M1 = 7)phun (Cr/wg)” minwi (als)® .

We prove this theorem in Appendix C.a Note that the correspondence 0f = qx / A+ b is crucial to establish
the Polyak-FLojasiewicz condition. For KL-regularization, we retrieve a property outlined for KL-softmax by
Mei et al. (2020b), but our proof, based on the properties of Fenchel-Legendre conjugation, is much simpler.

5 CONVERGENCE ANALYSIS OF f-PG

The f-PG algorithm. We introduce f-PG (Algorithm 1), a regularized policy gradient method with
coupled parameterization. At each iteration of f-PG, the agent samples a batch of independent

truncated trajectories of length H from v(m;-) defined for z = (sp,an)iy € (S x A by
v(m; z) = p(so)m (ao\So)Hh o P(sn | Sh—1,an—1)m(an|sn). The agent then performs the update
Opp1 =T (0 +n- gL (0,) , fort>0, (14)

where 7 > 0 is a learning rate, 7;: RIS*¥IAl — R‘S‘XW is a projection-like operator, and gZ (0;) is a
REINFORCE-like estimator (Williams, 1992) of Vv(, (p) that uses 2 batch of B independent trajectories
Z; ~ [v(6;)]®B. For a batch of trajectories z = (s}.;;_1, a5 ;_,)5-;', we define this estimator as

B 1H-1 h
dlog 7y s

&(0) =7 Z{Z T l0tlo8) o (e, ) A DY (rf (I3l mer (15))) = 2" Ff (5} (15)

b=0 h=0 (=0
where Fg is a vector of size |S| x |.A| defined by
7, (bs
B (5))coay = L) W (s) wh 01s) [/ (22500) = D- witals) /(220 . o)
acA

Furthermore, for z € (S x A)H, we can derive the following upper bounds on the bias and the variance of
the gradient estimator gf (+), that we prove in Appendix E.1.
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Lemma 5.1. Assume that, for some et > 0, f satisfy A ¢(7rer). For any parameter 6 € RISIXIAL e have
&0 -gto],] <
oy 2O(HAL)

where Bp \ ~ Wwf(l + Amax(ds,yy)) and of\yf ~ ﬁw? {1 + A2 max(dQ,y?)}.

vt
Hgf(Q)"‘i&¥QH2 <Bunx , lEz~p4en®B[

Choice of the projection-like operator. The operator 7 used in the parameter updates (14) plays a similar
role to the projection operator in projected gradient descent (Goldstein, 1964; Levitin & Polyak, 1966;
Bertsekas, 2003; Shamir & Zhang, 2013). This operator allows for constraining the optimization process in
a region of interest, discarding ill-behaved policies, where the divergence regularization is large. Given a
policy mand 0 < 7 < 1/(2myet ), we define the following operator U, which for every (s, a) € S x A gives

Tret(a|$)T, if m(als) < met(als)r/2,
Ur(m)(als) = m(als) = Xpear(s) (mrer(bls)T = 7(bls)), if a = af.(s),
m(als), otherwise,

where for any policy 7 and state s € S, we defined used the notation

AT(s) :={a € Am(als)/met(als) < 7/2} ,  afax(s) = argmax, e 4{7(als)/mes(als)}
choosing at random in the arg max in the case of ties. This operator prevents policies from becoming “’too
deterministic”: for any s,a € S x A, if w(a|s) gets too close to zero, it is increased above a threshold that

depends on the parameter 7 and the reference policy m..¢. For a proper choice of 7, applying this operator
on a policy returns a policy with a higher regularized value.

Lemma 5.2. Assume that, for some et > 0, f and myer satisfy A f(mrer) and P(myet), and that the initial

distribution p satisfies A,. Let Ty j = min([f’]_l(—%) 1754 (3))), 7et). Then, for

(), it holds that vé(p) > vl (p) and that 7(a|s) > TyerTh f-

any policy  and form =U

T, f

Note that this operator U/ operates in the space of policies. We thus use it to define the operator 7, which
updates 6 such that 77,y = U, 7y (see Appendix D for an explicit construction of this operator).

Convergence analysis. We now present our main result, which gives a convergence rate for f-PG with
explicit constants for our general class of parameterization. This result is based on the regularity properties of
the regularized value function, which we developed in Section 4, in combination with an appropriate choice
of policy improvement operator. First, we show that with the choice of threshold for 7, from Lemma 5.2,
we can give a uniform lower bound on the constant ji s introduced in Theorem 4.3.

Lemma 5.3. Assume that, for SOMe Tyef > 0, f and myer satisfy A j(Tyer) and P(myer) and that p satisfies
4

1

Ap If N = O((1 T I (If (Lf)‘7‘f( )\’\f(zfrref)\) and Ty 5 is set as in Lemma 5.2. then
: _Aa- v)Pmm " 16+87Ad; )2
lnfGERd M>\7f(7;—)\’f9) 2 H)\,f ’ wf (f*) <_ >‘(1_7)2Pmin) ’

This result is a consequence of Theorem 4.3, combined with the choice of policy improvement operator,
which guarantees that the policies do not become too close to a deterministic policy. We give a proof of this
Lemma in Appendix E.2. We get the following convergence rates for the regularized problem.

Theorem 5.4. Assume that, for some e > 0, f and Tyer satisfy A (meer) and P(myer), and that p satisfies
A,. Fixn < 1/2Ly y, and X and T 5 as in Lemma 5.3. Then, for any t > 0, the iterates of f —PG satisfy

6102 632
ol(0) ~ E [v},(0)] < (1= sy /0" (oL(0) = v, (0)) + Gt + O

. 2 2 . .
where the expressions of o5 , and By, are given in Lemma 5.1.



Under review as a conference paper at ICLR 2026

We provide the proof of this result in Appendix E.2. A crucial feature of this theorem is that it is fully
explicit, as all the terms that appear can be expressed using problem-dependent constants. This allows us
to derive the two following sample complexity results for optimizing the regularized value function and the
consequences on its non-regularized counterpart.

Corollary 5.5. Let € > 0. With Theorem 5.4’s assumptions, f—PG gives vl (p) — ]E[UJ;T (p)] < einT =
Ly s o'?\’f 1){(p)—1)£ (p) hl(l//l.)\ f) 1 EB}I/)\ ¢
O(max(ﬁw , fBﬁi,f)ln( —-—)) iterations, H = O(—g—=3) withn = O(mm(L Wl ))-
Corollary 5.6. Let € > 0 such that € < 3= Vl)ép mi (‘f(b W TR 1 T T )|) and set \ =
min 1 oot
(1 —~v)e/dcy. Assume ¢ = O(1), ky = O(1), {f = O(1), and cy <'m n(im,l/yf, 1). Under
Theorem 5.4°s assumptions, f —PG gives v4(p) — E [vo,(p)] < €in

" —2
f ) (€Cf(1_'7) Pmm )
5(1 ’7)2 minﬂ'ref

*\/7! 71 —
L Y Ga ) N LCHORIRO)
(1,,‘{)3 ) 62(1_7)631)31“]@2 Og € )

=0

max (

1
iterations, H = O(— ol /ﬁk f)) with n = O(min((1 — )3, 62(f*)”(ecf(1+1):

)2 EP— )?(1 - 'Y)GBPEninM2)-

We give a more precise statement and a proof of these two corollaries in Corollary E.10. These results give
an explicit sample complexity for the f—PG algorithm. Corollary 5.5 shows that f—PG enjoy convergence
rates close to the ones of any gradient method: r O(xlog(1/¢)) for a low-variance regime, where x > 0
is a condition number, and O(1/elog(1/¢€)) in general. Selecting an appropriate A and using the explicit
expression for ’f from Lemma 5.3 gives the results from the second corollary for unregularized problem.

Sample complexity for specific choices of divergence. We now provide a more complete interpretation
of these results by stating sample complexity bounds for specific choices of divergences.

Corollary 5.7 (Complexity for Entropy regularization). Let f be the Kullback-Leibler divergence generator.
Let € > 0. Under the assumptions of Theorem 5.4, f—-PG achieves v,(p) — Elvg,.(p)] < ein THB =
O( [log(mrer)|® exp( | log(ret)|

el(1—7)12p0 ; Trer?t €(1=7)3pmin

)) samples.

Corollary 5.8 (Complexity for Tsallis regularization). Let f be the a-Csiszdr—Cressie—Read divergence
generator for 0 < a < 1. Let € > 0. Under the assumptions of Theorem 5.4, f-PG achieves v,(p) —

Efvg,(p)] < €in TBH = O(GZT“E(: V;loi(m“le Xp,, (— %)40‘*8) samples, where we recall

that exp,,(z) = (1 + (o — D)x)V @D forz < 1/(1 — a).

We give detailed versions and prove these corollaries in Appendix F, where we also give sample complexity
results for the regularized problems. These corollaries show that Tsallis regularizers allow for faster learning,
reducing the dependency on (1 — ) from exponential in Corollary 5.7 to polynomial in Corollary 5.8, in
essence overcoming an exponential lower bound of Li et al. (2023). Furthermore, we can show that the best
choice of «a to achieve fast convergence (according to our bounds) for Tsallis regularization is the following.

Corollary 5.9. Assume the same condition of Corollary F.6. The optimal choice o*(€) to minimize the
sample complexity from Corollary F6 is o*(e) = 11/(21og(1/€)) + o (1/log(1/€)).

We prove this corollary in Appendix F. This results shows that the best choice of o isnot & = O nor o = 1,
but depends on the desired precision level. This corroborates results from the bandit literature (Zimmert &
Seldin, 2021), and gives strong evidence that Tsallis regularization with coupled policy parameterization has
the potential to accelerate reinforcement learning algorithms.
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Figure 1: Plot of the suboptimality gap of the unregularized objective, i.e. v4(p) — vy, (p) during the learning
process of f—PG for different choices for a-Tsallis divergence generators and different temperatures .

6 EXPERIMENTS

We now evaluate the empirical performance of f-PG when the regularizer is chosen as the «a-Tsallis di-
vergence generator. Our primary goal is to identify which value of « achieves the best tradeoff between
convergence speed and performance in the unregularised problem. We measure the number of iterations re-
quired for the algorithm to reach a good approximation of the optimal solution of the unregularized objective,
with the step size fixed to n = 0.01.

Environment. We build upon the GridWor1d environment (Domingues et al., 2021). The agent operates
in a 5% 5 grid starting from state (0, 0). A small reward of +0.1 is obtained upon reaching and staying in state
(0,1). Alternatively, by navigating a long path, the agent can collect a larger reward of +1 at state (4, 4). At
each step, the agent selects one of the four cardinal directions. The chosen action succeeds with probability
0.8 unless blocked by a wall; otherwise, the agent transitions uniformly at random to a neighboring state
with probability 0.2. If the intended action leads into a wall, the agent remains in place.

Finding the best o.. Figure 1 reports the performance of f-PG across different values of the temper-
ature parameter A and for various a-Tsallis regularizers. Recall from Corollary 5.6 that A controls the
bias—variance tradeoff: larger A induces higher bias but faster convergence, whereas smaller A reduces bias
at the expense of slower learning. We observe precisely this tradeoff empirically. For large A, all methods
converge rapidly but towards biased solutions. In this regime, entropy-regularized PG converges slightly
faster and with less bias than the other variants. However, in the high-accuracy regime (small \), Tsallis reg-
ularization with o < 1 consistently outperforms entropy regularization, confirming the theoretical prediction
in Corollary 5.9 that moving beyond KL is beneficial.

7 CONCLUSION

We proposed a new class of policy parameterizations coupled with f-divergence regularizers, which nat-
urally extend the classical softmax. This coupling bridges policy gradients with mirror descent, while re-
maining simple enough to apply in deep RL by replacing softmax with its f-generalization. Our analysis
establishes the first convergence guarantees for f-regularized policy gradients under such parameterizations.
Notably, our results show that entropy regularization is not always optimal, extending insights from bandits
to a general reinforcement learning setting. We hope this perspective opens the door to designing algorithms
where the choice of parameterization and regularization are treated jointly rather than in isolation. Extending
our results to adversarial settings would further close the gap between bandits and reinforcement learning in
applications of non-entropy regularizers.
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A NOTATIONS

The state-action sequence (s;, a;);>o defines a stochastic process on the canonical space (S x A)N. For
any initial state s9 € S, we denote by 7 the law of this process. That is, for any n € N and any subset
BcC(SxAnm,

HNSTU(B) = Z Z ]].B((So,ao), ey (sn_l,an_l)) 1:[ W(ai | 3@) P(SZ‘+1 | Si,(li),

(ao,..san—1)€EA™ (s1,...,5p_1)ES" 1 1=0

with the convention sy is the given initial state. We denote by E the corresponding expectation operator.
In particular, the state sequence (s;);>o defines a Markov reward process (Section 2.1.6 in Puterman (1994))

with transition kernel
Pr(s'|s)=> P(s'|s,a)m(a]s) .
aceA
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Symbols Meaning Definition
S State space Section 3
A Action space Section 3
5y Discount factor Section 3
P Transition kernel Section 3
r Reward function Section 3
m Policy Section 3

Tref Reference policy used in the regularization problem Section 3
f Divergence generator Section 3
A Temperature of the regularization Section 3
p Initial state distribution Section 3
by Upper bound on | £ (z)/ f"(x)?| A (Ter)
wy Upper bound on 1/(xf" (x)?) A (Trer)
dy Upper bound on a set of divergences (12)
V¢ Upper bound on a quantity that depends on f” and f’ (12)
q Lower bound on a quantity that depends on f” (13)
- Value function of a policy 7 1)
vf Regularized Value function of a policy 7 3)
P Transition kernel induced by policy 7 Section 3
qfr Regularized Q-function of a policy 7 (49)
dy discounted state visitation of a policy 7 (50)
0 Parameter of the policy (element of RISI*IAl Section 4
ﬂg The soft- f-argmax policy associated with 6 )
W) A matrix of size RS* such that for any s € S, w}(-|s) € P(A) (11)
o(als) shorthand notation for f’(ﬂg(a|s)/7rmf(a|s)) (38)
o (a]s) shorthand notation for f”(wg(a |s)/mret(als)) 39)
o (a]s) short hand notation for f”’(ﬂg(a |s)/mret(als)) (40)
W(s) A function of f}/(-|s) (41)
Y (s) A function of f}(-|s) and ff/(-|s) (41)
T Number of iterations performed by f-PG Algorithm 1
gé(@) Stochastic estimator of the gradient at 0 (15)
H Truncation horizon in f-PG Algorithm 1
gé (9) Stochastic estimator of the gradient at ¢ (15)
B Bias of the stochastic estimator at 6 Lemma 5.1
ONf Variance of the stochastic estimator at 0 Lemma 5.1
N Local smoothness of the objective at ¢ Theorem 4.2
P(A) Set of probability measures over .4 Section 3
Df (pllq) f-divergence between two probability measures p and ¢ 2)

For = € R%, we define the norms

[2]loo =

16

; 4 1/2
max |z; T :Z T L2 = Z zil”
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For a d x d matrix M, we denote by || M|, and || M || respectively the max row sum, and the spectral
norm:

Moo = S};&lg{llfmlloo /zlloo} = s 1M]le = 3_1;18{||M35||2/”37H2} - an

d
sup M; ;
ie{l,..., d};‘ ”

Recall that, for any z € RY, || M2||oo < || M| ||7]s0 and || Mz ||z < || M ||2]|2]]2-

For notational convenience, we also view P as a (|S| - |A|) x |S| matrix with entries P(, 4y o = P(s" | 5,0a).
Similarly, v{ is a vector of size |S| and ¢/ a vector of size |S| x |.A|. Finally, we identify the parameter

6 € RS*4A with its matrix representation § € RISI*IAl indexed by (s,a) € S x A. This slight abuse of
notation allows us to conveniently switch between functional and matrix views.

B SMOOTHNESS OF THE OBJECTIVE

In this section, we establish the smoothness of the regularized value function v]; = vf ,(p) with respect

to the parameter 6. As a first step, we show that the policy 775 is smooth under suitable assumptions on
the divergence generator f and compute its first and second derivatives. To do so, we start by studying the
properties of the soft- f-argmax operator and then apply the obtained results to derive properties of the policy

’/Te .
B.1 PROPERTIES OF THE SOFT—f—ARGMAX

In this Section, we compute the derivative of v/(-) := softargmax’(z,1ref) and softmax”™(-) :=
softmax’ (2, Vret), where

softmaxf(aj7 Vref) i= rr;a();) {(1/, x) — Df(VHVref)} . (18)
ve

The function softmax”(-) is the Fenchel-Legendre transform of D7 (-||14¢), and the results in this section
are therefore standard results from convex analysis, statements of which can be found in various forms in
Hiriart-Urruty & Lemaréchal (2004); Mensch & Blondel (2018); Geist et al. (2019); Roulet et al. (2025).

In this section, we fix a reference probability distribution v,.f € P(.A) such that for any a € A, we have
Vret (@) > Vet fOr some ming e 4 tyer(a) > Vet > 0. For a given z € RIMI, we define

vl (-) := softargmax’ (&, vef) = arg max {<V, x) — Df(UHVref)} . 19)
veP(A)

The following result is a simplified version of (Roulet et al., 2025, Proposition 1). For the sake of complete-
ness, we provide a full proof.

Lemma B.1. Assume that f is strictly convex on [0,1/vyy, differentiable on (0,1/v.y), with
lim, o+ f/'(u) = —o0, for some v,y > 0. Let vy be a policy such that minge 4 Vret(a) > Vwp For any

z € R and a € A, we have 0 < vf(a). Moreover, for all x € R, there exists a unique 1, € Vg (),

where

I, (x) = (Lneaiim(a) - f’(l/@)gleajcx(a) - (1)), (20)
such that
vi(a) = thet(a)[f]7 (2(a) = pta) - @n
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Moreover, 1, € R is the unique root of the equation

Fz,p) =Y vret(@)[f'] " (@(a) =p) =1 =0 for p € L,,(z). 22)

acA

Proof. Under the stated assumption, the map f is strictly increasing on (0, 1 /4], hence injective; therefore
it is invertible onto its image. Moreover,

Dom ([f']7") = f'((0,1/wset]) = (00, f'(1/ther)], (23)
which is an interval and the function [f’]~! is strictly increasing.
Fix € A, and (a,b) € A x A. Recall from (19) the definition of the soft- f-argmax ,
vl = arg max {(V, x) — Df(l/Hl/ref)}
veP(A)

This is a strictly concave optimization problem over the probability simplex P(.A) so it admits a unique
maximizer. We now characterize the maximizer via the KKT conditions. Introduce multipliers ;¢ € R for
the equality constraint ) . , v(c) = 1, and for every ¢ € A, A(c) € RT for the non-negativity constraints
v(c) > 0. The Lagrangian reads

L, i, AN)}eea) = 3 v(©) 2(e) = D (v]vner) + (1= D_ v(e) ) = D_ M) vle) -

ceA ceA ceA

By the differentiability of f, differentiating the Lagrangian with respect to v(a) gives

oL . v(a)

= - —— | —pu—Xa) . 24
s =ota) = 1 (29) — - A o4

At the optimum (v, 1., {\z(c)}ce4), the KKT conditions yield:
vl(c) Au(c) =0, Ve e A, (25)

vi(c)

e e e =0 v . 26
xz(c) — f <Vref(0)> te — Az (C) ) ce A (26)
Under the stated assumptions, lim,_,o+ f'(z) = —oco. Hence, if vf(c) = 0 for some ¢, the stationarity

condition (26) cannot hold with finite multipliers. Therefore v/ (c) > 0 for all ¢ € A, which by (25) implies
Az(¢) = 0. Thus, for each ¢ € A the stationarity condition reduces to

w0 -1 (L) < e

Note also that (27) also implies that for all a € A, z(a) — p, € Dom(f’), which implies, using (23) that
maxge A 2(a) — f'(1/er) < po. Together with (27), this shows (21). Note that p, is a root of (22), since

using (21),

Y vet(@)f) 7 (@(a) = pa) = Y wi(a) = 1.

acA acA
Because [f/]7! is strictly increasing on (—o0, f'(1/vr)], for each € R, the function y +— F(x, )
(see (22)) is strictly decreasing on (—oo, f’(1/v4er)]. Strict monotonicity gives the uniqueness of /i,. Note
finally that if ;1 > max,c 4 x(a) — f'(1), then x(a) — p < f'(1), and since [f’]~! is strictly increasing,
[f]7Y(z(a) — p) < 1, showing that F(z, 1) < 0, which concludes the proof. O

18



Under review as a conference paper at ICLR 2026

Remark B2 Let f : (0,7) — R be a strictly convex and differentiable on (0,7), Dom(f’) = (0,7),
and ' is strictly increasing and continuous on (0,7). Let o := lim,_,0 f'(x) € [—o00,400) and 8 :=
limg_,, f'(z) € (—o0,400]. Then f'((0,7)) = (o, B), i.e, f': (0,7) = (a, B) is a strictly increasing
bijection (hence admits a continuous inverse [f']~1 : («, 8) — (0,7)). Define the convex conjugate of f,

[ (y) = sup {xy f@)} . (28)

z€(0,

The two following properties hold,
(i) Foreveryy € (a, 3), the supremum is attained at a unique point x = (f')~(y).

(ii) Dom(f*) C [a, (] (with the convention that an infinite endpoint is excluded). Specifically,
Dom(f*) N (a, 8) = (o, B), and f*(y) = +oo fory ¢ [a,B]. At an endpoint y = « (resp.
y = B), if finite, f*(y) = limy o(yz — f(x)) (resp. limy4, (yz — f(2))), so f*(c) (resp. f*(B))is

finite iff the corresponding one—sided limit is finite.

On the open interval («, B), the function [* is differentiable and

YW =",  ye(p)

We retrieve the statement on (Roulet et al., 2025, Proposition 1) by replacing [f'|~* by (f*)". In most
examples, there is no need to resort to the convex conjugate to compute the inverse.

Lemma B.3. Assume, in addition to Lemma B.1, that f is two-times continuously differentiable on (0, Vyy.
Then, the function & «— Jig is continuously differentiable on RIAl, and for all a € A,

0 0 0
mﬂz = —MF(%MH/%F(%MH (29)

Proof. The function (z,u) — F(z,u) is two-times continuously differentiable on the open set U :=
{(z,p) :x € RAI 1 € L, (7)} C RMI x R. Let 29 € R4, Since [f’]~! is strictly increasing,

0 1

—F(z, ) Z Vret (@ Qi > 0.

o 2V ) @) — i)
Hence, we may apply the implicit function theorem, which shows that there exists an open neighborhood
Vi, and a unique function x +— i, on V,,, such that for all z € V,, F(x, u,;) = 0 and (29) holds. O

We now introduce some compact notations that will be used throughout the sequel. For any a € A, define
the first three derivatives of f evaluated at the probability ratio v (a)/vret(a):

fila) = f'(”ﬂ““)) L ey = g (”f“)> ey = (f”) e

Vref(a) Vref(a Vref(a)
In addition, we introduce the quantities

Uy, f
= > f, : (31)
acA z
Importantly, as f is strictly convex, its second derivative is strictly positive, making the preceding quantity
well-defined. For any a € A, we also define the following normalized weights
1 vet(a)
f ref \Q
wi(a
(a) = w1 fi(a)
We now specify the particular forms that these quantities take under three choices of the function f: the KL
divergence (f(u) = ulogw), and the -Tsallis entropies for 0 < « < 1.

(32)
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KL case (f(u) = ulogu). Since f'(u) =logu+1, f”"(u) = 1/u, and [f'] "1 (y) = exp(y — 1), the soft-f
operators specialize as follows (with base measure vt € P(A)):

vit(a) = Vref(a)[f/]_1< (@) = pa) = Zbl:jflrjf(e;;péjl(’?i)(b)) ’ veA

where the normalizer is

pe = —1+ log(z Vet (b) exp(z b)))
beA
The associated softmax function is the log-partition:

softmax™" (x, Vyer ) log<z Vret(a) exp(z(a )))

acA
For the curvature quantities in (31)—(32), since
f,,(VEL(a)) _ (V.‘:L(a))-l _ ret(a)
Vref(a) Vref(a) VKL(G’) ’

we obtain

WEE = Z Vfrff = Z v (a) =1

acA acA
and the corresponding normalized weights are

1 et(a)

WI:ZL(CL) = WEL f_;/f(a) = VgL(CL), a € A
> — -1
Tsallis-a case (0 < o < 1). Let f(u) = %, so that
ala—1)
/ _ ua_l 1 " a2 n—1 _ ﬁ
f(u)_ﬁv fhHu) =u7, F17Hy) = 1+ (a = 1)y]

The soft- f operators specialize (with base measure v,.f € P(A)) to

— 1/(a—1
V(@) = (@[] (@) = ) = vies(@) [L+ (@ = D(a(a) = )] /7, ae A,
where (i, is the unique normalizer satisfying the constraint
Zl/ref )[1+ (= 1) (z(a) — pg)] o1 =1,
acA
with the domain condition 1 + (o — 1) (z(a) — p,) > O foralla € A.

The associated softmax is

1 _a
softmax™> (z, Vret) = fis — Z Vret (@ (a— 1)(37(“) - :“I)] a-l,
«
aE.A
For the curvature quantities in (31)—(32), set
vS(a 1
uz(a) = ( ) = [14’(0&71)(1’(&) *,LLT)] a_l.

Vyef (a)
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Since f” (uz(a)) = uz(a)*2, we have

WTS - Z Vr‘/e/f(ac,l) Z Vref Z Vref 1 + o — 1)( ( ) — /_Lw)}(z_a)/(a—l)’

acA x a€A acA

and the corresponding normalized weights are, for a € A,

1 tet(0) | ver(@ (@ vier(a) [L+ (0 — 1) (a(a) — )] *7 Y

N Wi fila)  Yeeatrer(c)uz(c) > eeatret(c) [1+ (a—1)(a(c) — uz)}(%a)/(a_l) '

Lemma B.4. Assume A ¢(v,y). Then the soft- f-argmax 1/91; is twice continuously differentiable with respect
to . Moreover, for any x € Rl and (a,b) € A% we have

ovf
W7 g = Bl vl (@) wl)
In addition, for any (a,b, c) € A3, the second derivative satisfies
1 ovl(a) fi'(a) ¥ Q)
Wii . 7833(6)533(0) = _lb(a>10(a)f//( 2 -wi(a) 4+ 1c(b) wi(a) w ( >f”( )2

f//l (a f/// ( )

+ Ly(a) wl(a) wl(c) +1e(a) wl(a) wl(b)

1 (a)? 12 (a)”
— (e wd0) i) [ £ jf,,(()l v
Wf " W f/// (d) .
+ w( ) dze;A f,, (d)2

Proof. Fix 2 € R4 and (a,b,c) € A®. Define
zip) = Y veet(@)[f] M (@(a) = pa) =1

acA

First derivative. Importantly, using Lemma B.1 we have that
F(zyu:) =0 .
Differentiating the previous identity with respect to :(b), yields

6F (z; uw 1 B %
= 2 i) A )~ ) (““” ax(b)) ’

where we used that the derivative of [f/]~%is 1/f”([f']~'). Next, using from Lemma B.1 that v/ (a) =
vret () [f'] 7} (z(a) — pia) ywlds

= 3 v 55 (e 55 =0

where f(a) is defined in (30). This implies

Ons _ 1 h) (33)
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where w (b) is defined in (32). Now that we have computed the derivative of the normalization factor i,
we can compute the derivative of the policy. Starting from Lemma B.1, we have that

vi(a) = vret(a)[f') " (2(a) — pa) -
Differentiating the previous identity with respect to (b), yields
vl (a Vret(@ 0 Vet (@
(1) _ Vetl) ) - Ot ] Vet ) i)
dz(b)  fi(a) dz(b) ] fi(a)
where in the last identity, we used the expression of the derivative of p, given in (33). Finally, using the
definition of W£ given in (31) gives

81/3;(61) . Vrcf(a) Vrcf(a) VrCf(b) 1
ae0) ~ ey T Fia) ) W oo

Second derivative From (34), we aim to differentiate once more with respect to z(c). First, note that it
holds that

0fi(a) _ fi'(a) ovi(a) _ (a )f”’( a) net(0)fy (@) 1
dz(c)  ver(a) ax(C) fila) [ (a)f” () W]

8Wf Z l/ref f// ) Vref( )f/// Wf Z Vref Vref f/// ( ) (36)

) (35)

- )

i f(d) fie T 1@ fe)
Now computing the second derivative of 1/3{ gives
dvf(a) = —1y(a )Vref( a) af//( ) + Vret (@) Vret (D) . iaf;;/(a)
Oz (b)dx(c) fi(a)? Ox(c) — fl(a)2f(b) WL Ox(c)
Vet (@)vrer(D) 1 Of7 (D) | vrer(@)vrer() 1 OW]
FI@ )2 Wi ox(e)  fr(a)f2(b) (W12 dx(c)
Plugging in (35), and (36) in the preceding inequality yields

ovfa) Vret(a) () ver(©)f (@) 1
e - Oy [1”f~<> 77 (a) ;;<c>'w;:]
Vref (@) Trer (b) 1 {1 (a)fm( )_ Vref( e (a) 1:|
AOBHORE A S AR A AC R

(

Vet (@) Tres () 1 [1()f’” b) _ wet(c)fs(b) 1 }

fa) i@ WL o e Wi
Vref(a)yref(b) . 1 Vref(c)fg/;// 1 Z Vref(c Vref f”/< )
fi(a) fr(0)  (W1)? fi(c)? Wﬁ = @)

which concludes the proof. O

The following lemma links the gradients softmax’ and softargmaxf operators.
Lemma B.5. Assume A ;(v,,f). For any x € Rl it holds that

92 softmax” (2, Vyet)]
0x?

9 softmax’ (T, Vyet)
or

<2W/ .
2

:softargmaxf (z,Vret) and |
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Proof. Forany z € Aand v € P(A), define

W (z,v) = (v, 2) — DI (V|| vrer) 37
Fix b € A and note that
8hf(x,1/) B

It holds that softmax” (z) = max, cp(4) b/ (z,v). As h' is continuous in its two variables, P(A) is a
compact set, and for every 2 € RII, the function h/(z,-) admits a unique optimizer in (A), then by
Danskin’s theorem (Lemma G.5)
dsoftmax’ (z, vrer) ORI (z, 0"
softmax” (, vrer) = (z,v"(@)) = v*(z) , where v*(x) = argmaxh’ (z,v) .
9z (b) Ox VEP(A)
Finally, using that

v*(x) = softargmax’ (2, vier)

establishes the first identity of the lemma. Using the fact that for any matrix A € R%*?, we have || A|, <

YOHIND Syl

9% softmax” (2, Vyer)]

< 33 W n(a) whla) — wh(a) wi ()

aE.A be A ‘

2
Oz acAbeA

where in the last equality, we used Lemma B.4. Finally, applying the triangle inequality establishes the

second claim of the lemma. O

B.2 DERIVATIVES OF THE POLICY

Next, we exploit the expression of the derivatives of the soft- f-argmax derived in Lemma B.4 to compute
the first and second derivatives of the policy. We begin by extending the notations defined in (30), (31), and
(32) to encompass a dependence on the state. For any pair (s,a) € S x A, define the first three derivatives

of f evaluated at the likelihood ratio ﬂg (a]s)/mret(als):

folals) = fos.)(a) = (Wref (38)

o (als) = fos.(a)=f (T(ref ) (39)
7Tref

o (als) = fo(s)(a) = m(w (40)

In addition, for every s € S we introduce the quantities

7Tref
Wi(s) = Wi, =Y =522 and Yi(s |f9< ) . @D
acA ‘9 acA
For every (s,a) € S x A, we define the normalized weights
1 met(als)
f ref
wy(als) = —_—
o Wi(s) fi(als)

The following lemma provides bounds on several key quantities that will appear in the appendix.

(42)
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Lemma B.6. Assume that, for some et > 0, f and myet satisfy A §(rer) and P(Tyet ), respectively. For any
parameter € RISIXIAL it holds that

5(als)
fH swp HYfH <y, maxDf(x)(|s)|mes(-]s)) < dy max 0 <wy .
Wil < ¥l < mad et <dy o e TEES <
Proof. The proof immediately follows from the definition of the different quantities and A ¢ (7ryef). O

Using Lemma B.4, we get the following expression for the derivatives of the policy.

Corollary B.7. Assume that, for some et > 0, f and et satisfy A §(mrer) and P(myet ), respectively. Then

the policy 775 is twice continuously differentiable with respect to 0. Additionally, for all @ € RIS*IAl and
s € S, there exists a unique [19(s) € R such that for any a € A, we have

7 (als) = meer(als) 17" (0(5,a) = po(5))) - (43)
Forany s € S, the 0 — g(s) is continuously differentiable. For any s' # s, /900(s’, )ug(s) = 0 and

Opo(s) _
69(57 ) - W£(|S)

Moreover, for any 6 € RISXIAl s € S, and (a,b) € A x A, we have

I 8775(a|s) _
Wi(s) 00(s,b)

In addition, for any (a,b, c) € A3, the second derivative satisfies

L omjals) o Bals) g o (ale) oo (bl 48013
Wis) 00(s, 0)00s,e) el g - walals) + B (ale) w () 73

£ 1y(a) wi (als) wh els) LU 4 1 (aywi als) v b1y 20212

k) j (als)

—wltals) - wl(bls) - wi(cls) - é”(a|s) ”’(b‘ ) ///(C| )

ol w0l [ 085+ i+ St
+wij(als) - wj(bls) - wj(c|s) Zwe (d|s) o' (d]s) )
e 7 (dls)’

Lemma B.8. Assume that, for some et > 0, f and et satisfy A f(M) and P(7yet), respectively. Then,
it holds that

ngg(a\s)

Omj (als)
00(s,b)00(s, c)

< F(s) .
90(s, b) < 8ry Wy s)

>

(a,b)e A2

<2Wi(s) D

(a,b,c)€eA3

Proof. Using the expression of the derivative of the policy provided in Corollary B.7, we have by the triangle
inequality

>

beA

87T9

ag(sb = 3" Wh(s)whlals) [1o(a) = wf (0]s)| = 2W] () wh(als)(1 = w(als)) -

beA
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where we used that
S [1a@) = whvls)| = 2010~ w](als)) (44)
be A

Hence, we have

ol (als)

P0s 5 | <2 Wals) -

>

(a,b)eA2

Fix a € A. By using the expression of the second derivative of the policy provided in Corollary B.7
combined with the triangle inequality and (44), we get

>

(b,c)eA?

827 (als)
00(s,b)00(s, ¢)

< W) S, wl k) + 4w o) whals) 32 HES w )

1" 2
f{als) 2

Next combining A ¢ (7. )and (44), we obtain

>

(b,c)e.A2?

0y (als)

e A

Finally, summing over the actions concludes the proof. O

B.3 SMOOTHNESS OF OBJECTIVE

In order to prove the smoothness of the objective, we will prove that the all the second-order directional
derivatives are bounded. Denote 6, = 6 + au where o € R and u € RISI*IAl. By Equation (3), for any
s € S it holds that

vp, (s) = e] Moy, 4$)
where M () is a matrix of RS> that satisfies for any (s, s') € S?

M(a) = (1d=9Pg,) ",

and where rga ,and Pg_ are defined in Section 3. Taking the derivative of (45) with respect to « yields

8”5 (s) T 9Py or f
—lall — el M “M(a)r) +elM
80[ Yes ( ) a ( )r9 +e ( ) aa
Taking the derivative of the preceding equation with respect to « gives
82v) (s) 5 T 0Py OPyg T 9°Py
aojg ZZWesM()a ()8 ()r9 +"/e M()aa ()Oa
f 2
0Py or 0 r
T o 0a T )
+ 2ve, M(«a) . M(a)% +e, M(a) 0 (46)

In order to control the second-order directional derivative of the regularised value function, we establish first
several properties of the quantities that appear in the preceding equality.
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Lemma B.9. Assume that, for some Trof > 0, f and mier satisfy A ¢(Trer) and P(myet), respectively. We
have

oP
"&?a()wé2my4WR@me,
Similarly, we have
0Py,
H 02 < 8y max{Wp (s)} [lull;
o a=01lo s

Proof. Bounding the first-order directional derivative. The derivative with respect to « is

Py, |07, (als)
|: a—0:|s,s’ a Z [ aa

(0%
0 acA

] P(s|s,a) .

a=0

Fix s € S. Because ﬂga (a|s) depends only on (s, -), by the chain rule

2. =2 <)

acA acA acA

or}) (als)
oo

ol (als)

ol (als)
<W7U(Sv')> =

89(57) ||U(S,)H2 )

a=0

where in the last inequality we used Cauchy-Schwarz inequality and the fact that the L; norm dominates the
L5 norm. Now using Lemma B.8, we get that

2.

acA

dmj(als)
00(s,-)

|nwa»2st2Wﬁ@.
1

Bounding the second-order directional derivative. Similarly, taking the second derivative with respect to
« yields

9Py ] 9*m} (als)
2 = — P(s'ls,a) .
|: Pa a=04ds,s’ ; l Pa a=0
Fix s € S. It holds that
&*r}, (als) *rf(als) &*rf(als) .
I Azl i ACILINR I 1 P it KCLLOA SR
acA 0% a=0] g4ecA 0%0(s, ") acA 0°0(s,) 2

where in the last inequality, we used the Cauchy-Schwarz inequality and the definition of the matrix operator
norm. Additionally, using that for any matrix A € R%*¢, we have

d d
ALl <D0 ai;
i=1 j=1

combined with Lemma B.§, we get that

Z 32775(1 (als)

2
acA 0o

2
< 8 lu(s, )3 £y max W (s)
a=0 SES
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Lemma B.10. Assume that, for some met > 0, f and et satisfy A ¢ (et Jand P(myet ), respectively. Then,
the regularized reward satisfies

||r9||oc <1 —l—)\meaXDf( Cls)lImeet(¢]5)) -

Additionally, we have that

8r£a ; ;
S| || = 2max{Wie) £ AV}l
and that
02!
0 <max{4(2"{f+)‘)wf(5)+8/\/£fo(8)}||u||2 .
d%a? a=0 — seSs 0 ) 5
o0

Proof. The bound on ||r£ |loo is immediate.

Bounding the first derivative. It holds that
arga
e’

a=0

Computing the derivative of rg (s) with respect to 6(s, b) yields

Ir)(s) < Omjlals) ACDRACD
90(s,b) < 06(s,0) "5 = A 5050 T\ merlals)

Plugging in the expression of the derivative of the policy of Corollary B.7 in the preceding identity yields

8F0(8) _ 7Tlref(b|5) (5 b) _ Trref(b‘ f0 bl Z 7Tref T‘-Tef b| ) r(s,a)

96(s,b) %mf 9< 2 als) fy0ls) Wis)
Z ””f M b‘ %) fr(als) . 47)
aEA 9 ‘ )

Taking the absolute value, applying the triangle inequality, and using that the rewards are bounded by 1 gives

o} (s)
2

~ | 96(s,0)

<2W(s) +2)0Y)(s) .

Bounding the second derivative. It holds that
f
d*ry.

Oa?

a=0

where in the last inequality, we used the Cauchy-Schwarz inequality and the definition of the matrix operator
norm.. We now compute the second derivative of rg (s). Starting from (47), we get

Prh(s)  malbls) [ o 0l merlel)fy Bl 1]
5005, 106(s.0) Mwwlumgw@ wm>(q>wwg]““
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) [11,(0) ”rff((,j'ff - wEb: 3;2'65 W <s>]
AR S [ RS
2%' i ot e ]

S Teot(@]8) et (bls) (s, a) [ mret(cls) ' (cls) 1 5 Teet (¢]8)Teer (d]s) £ ds)]

o Tials) Sy ®ls) W(s)? fi( cl Wis) sz £ (dls)’ £ (cls
ds)]

"

(
)
_ 7Tref(a/ S 7Tref b‘ fé(b|5 7Tref 1 7Tref(C| )ﬂ're ( | )fg (

S Tials) [y (bls) wi(s)? WN)deA § (dls)” 5 (cls
‘A”;m:f(ci mef( i >) @?!i lh(“) m<(§||s>) ‘meféji oy
e ki
R e

Taking the absolute value, applying the triangle inequality, using that under A ¢(7,c¢), for all z € R+, we
have |f""(x)/ f"(x)?| < ky, and using that the rewards are bounded by 1 gives

2. f
2r
_ () < 8k Wi(s) + 8 ks Y () +4ANWI(s) |
F¥YWe fte 0
00(s,b)00(s,c)| —
beAceA
which concludes the proof. U

Lemma B.11. Assume that, for some .ot > 0, f and Tyer satisfy A §(Trer) and P(mye) respectively. Then,
for any 6 € RISXIAl gnd o e RISIXIAL

%0l (s 5. L.(0)
ur 2t M‘g(z 2L )l

i=1

where for i € {1,2,3}, Lg\i’)f (0), are defined as

)
f
L20) =87 | W (nf{l + Amax DY (] () me (1))} + [W|_+A[|¥ HOO) 7

2
1(0) = 82| Wh||_ (1 + AmaxD (n] ([s) [ mres (1s)) -

28



Under review as a conference paper at ICLR 2026

Proof. By construction, we get

Ta%g(s)u _ 0% (s)
062 do? |,
Using (46), we get that
v (s) P P 2P
a0 < 2y2el M(0) 2| M(0) T 0)r} TM(0) = 0)r}
| <ol %] s |+ el 05| o]
(A) (B)
f 2,.f
0Py ory 0%ry
2ve, M(0)—(—=| M(0)—>= T M(0) =
+|27ve, M(0)— - O3, e )2, -
(© (D)
We now bound each of these terms separately
Bounding (A). First note that, for any vector € RS and o € R, we have
1
1M ()zlloo < 7= ll2lloo (48)
This yields
9Pg 9Py 292 || 9Py 2
A) <22 ||MO0)F2| MO)Z2 MOy < ||l Il
(M) <2? |MO) G| MO | MoK < g |G | I
By using again (48), Lemma B.9, and Lemma B.10 we get
8% max, (W} (s)}? [[ull3
(A) < (1_(’7)3 2(1+/\gleang(Wg('\S)Hﬂref(-IS))) :
Bounding (B). Using (48), Lemma B.9, and Lemma B.10 we get
Yy 82P9 f
B)<——— 2 7 lloo
( )—(1_7)2 820( o oo”rG”
8y 2
< gyt max{ W (o)} ully {1+ AmaxD (mj (1s) Imeer(15))} -
Bounding (C). Similarly, using (48), Lemma B.9, and Lemma B.10 we get
2
(©) = =y mas(Wi ()b mag {WhGs) + A Y] () el
Bounding (D). Using (48), Lemma B.9, and Lemma B.10 we get
1 ||otr, 1 ! i 2
(D) < 17| 2% < T, {4(2’% +A) Wy (s) +8Ary Ye(s)} lJully -
a=01|
The proof is completed by collecting these upper bounds. O
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Theorem B.12. Assume that, for some et > 0, f and myer satisfy A ¢ (Tyer) and P(yet) respectively. Then
forany 0,60 € RISXIAL it holds that

ol P Ly 2
o)~ vjio) — (22 g gy < P2y g2
where
Ly = S2rOer £ =)np) 2wy 42— ywp lkpdy 7]+ (1) [wr + 2675

(1—7)3 (1—7)3

Proof. Fix any vector u € RISI*I4l and § e RISIXIAl Using Lemma B.11, it holds that

%0l (s 5. LY (9)
ur 0t M‘g([ e LT

i=1

where for i € {1,2,3}, Lg\i’)f(H), are defined as
LW(0) = 4(2x +>\)HWfH + 8\ HYfH
WA f 9| o Kr(te o
L210) 1= 8 W] _ (0 + Ao Dl Cllimarlo + |+ a[E] )
2
L9 (60) =892 W || (14 Amax D (xf (15)maes(15)) -
Using Lemma B.6 combined with Lemma G.1 concludes the proof. O

C NON-UNIFORM LOJASIEWICZ INEQUALITY

Firstly, define respectively qf,f and dg as the regularized Q-function and discounted state visitation associated
with the policy 77, i.e.

¢ (s,a) =r(s,a) +~ Z P(s'|s,a)qh(s") , (49)
s'eS
dy(s)= (1 =)D 7'oPs(s) . (50)
=0

The goal of this section is to prove that the global objective satisfies a non-uniform Lojasiewicz inequality,
i.e we aim to show the following theorem

Theorem C.1. Assume that, for some T > 0, f and mer satisfy A(mper) and P(mer) respectively.
Assume in addition that the initial distribution p satisfy A ,. Then, it holds that

v} (p)
a0
A1 =) P2inCF .
IO 7 Lo wj(als)?

2
> s 0) (v1(0) = vi(p))

where
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One of the main challenges in establishing such an inequality lies in connecting global information (the
suboptimality gap) to local information (the gradient norm). Recall from Section 3 that if

0(s,a) = ql(s,a)/\, Yac A,

then wg = 7f. This observation highlights that, under this parametrization and regularization, the key

quantity is the closeness between ¢ and ¢ / A. Formally, we will show that both the suboptimality gap and
the gradient norm can be upper and lower bounded, respectively, by a quantity proportional to ||Cs(s)||2,
where we define

s,)/A— 0(s,) — K (s) 14, (51)

(
f
ki) o L8 )/AAT( D) )

Note that Cg is the projection of qg (s,-)/A —0(s, ) onto the subspace orthogonal to 1| 4.

The proof proceeds in three steps:

1. Derive an explicit expression for the gradient of the objective and establish a lower bound in terms
of [1¢7 -
2. Upper bound the suboptimality gap by a quantity directly related to ||Cg II.

3. Combine these two bounds to identify the corresponding non-uniform PL coefficient.

We now detail each step in turn.

C.1 LOWER BOUNDING THE NORM OF THE GRADIENT

Before deriving a lower bound on the norm of the gradient, we start by deriving an expression for the latter.

Lemma C.2. Assume that, for some Tyt > 0, f and Tyt satisfy A ¢ (M) and P(m.ct) respectively. For any
s €Sandb e A, we have

1 oul(p) i)
Wg(s) 39(93,19) =7 _,ng(b|8) lqg(s,b) A(s,b) — ZWG [qg s,a) — /\G(s,a)]

acA

Proof. Fix s € S and b € A. Additionally fix any § € S. Using (3), we have
vh(3) =" 7w (als)r(3,a) = ADF (2] (13) [ meer (13)) +9 Y > 7] (al3)P (5[5, a)v)(3')

acA acAs'eS

Deriving the preceding recursion with respect to 0(s, b) yields

00(3) _ -~ omdtal) | ((wals) s vl (&
) = 2 abGe.0) |1E =N <9>+72P<ss,a>v£<s>

5'eS
Z(3)
_ovl(3)
+y Z Z 71'9 (5'|5,a) =2 .
a€A3'ES 00(s,b)
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Using the definition of the regularized Q-function and writing the preceding recursion in a vector form yields

vy () vy ()
90(s, b) "90(s,b)

=Z()+~P

which implies

T ovj()  dvjlp)
P 90(s,b) ~ 90(s,b)

Next, using the definition of the discounted state visitation (50) and the regularized Q-function (49) implies

pl(Id—~Pg)'Z(.) .

ovylp) _ 1 % omf(als) | ¢, . 74 (als)
90,8~ T 2 W) 2 gy 900 M T )| 53)
orl(als)

aﬂg(a\s')
0

Using that ) 4 855 = 0 and that for s # s', we have — o) = Oyields

dlp) _ 1 o} (als) { =als)
aeém‘ﬁdﬁ(s)agm ahis,0) =M TECS ) = wols)

where pi9(s) is defined in Corollary B.7 and satisfies for any a € A
f
Ty (als)
6 - = :
(S,(Z) f (ﬂref(G/'S)) l},g(s)
Thus, we obtain

31)f(p) 1 37Tf(a|s)
aﬁ(gs,b) = ﬁdﬁ(s) 2 m [qé(&a) - Ae(s,a)} ,

Finally, plugging in the expression of the derivative of the policy derived in Corollary B.7 in the previous
equality concludes the proof. O

Using the previous lemma, we prove the following lower bound for the norm of the gradient.

Lemma C.3. Assume that, for some et > 0, f and myer satisfy A (myer) and P(myet) respectively. Assume
in addition that the initial distribution p satisfy A ,. We have

2
9v3(p) > N2, min {w)(als)*} min{W](s)?} > o (s)]5 -
09 ||, = min o yesxat? sest 0 = 2
Proof. Tt holds that

2 2

vy (p) _y vy (p)

90 90(s, )
2 SES 2

Fix s € S. Using Lemma C.2, we observe that

L 0vj(p) _ di(s)
Wi(s)00(s,-) 1—7
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where for any vector u € R, we define H (u) := diag(u) — uu . Thus, we get that

S — g vl [l 03]

Wi (s)
= )\dg(s) HH(W{; (-]s)) [qf(s, V/A=0(s,-) — Kgf(s)lw} H2 (using that H (u)1) 4 = 0 and (52))
> )\dpa( )Irélﬂ We( Is) ICo(s)]l,  (where (g(s) is defined in (51) and using Lemma G.4) .

Finally, using dg(s) > (1 —)p(s) and A, concludes the proof. O

C.2 BOUNDING THE SUBOPTIMALITY GAP

The first step is to connect the suboptimality gap to information localized at #. This is achieved via the
performance difference lemma for the regularized value function yields (see Lemma G.3)

ol() — i) = 3 2 () ()[Z7r£<a|s>q5<s,a>/x—Df<7r1<-|s>|wref<-s>>—v£<s>/x. (54)

seS 1 -7 acA

(A(s))

Fix s € S. Using the definition of the regularized value functions and Q-functions combined with Equa-
tion (3), we have

vy(s) = (mh (1) qh(s.)) = AD! (] (-|s) [ mres (-]5)) -

This implies A(s) = A;(s) — As(s) — As(s) where
Ai(s) = (m([s), a5 (s, )/A) = DI (] ([5) ][ mres (-]s))
As(s) = <7r£(~|s),9(s,~)> — DI (mj ([s)lImrer (-]s)) (55)
As(s) = (m (1s) ah(s, ) /A = 0(s,) -

Using (9) and (18), A;1(s) < softmaxf(qg(s, /A, et (-|8)) and Ag(s) = softmax” (A(s, ), meet (-] ).
Thus, we have

s)) — As(s)
= softmax’ (¢} (s, ) /A, Tret (+]5)) — softmax’ (6(s, -) + ( $)1a)) (56)

|
: |
—{m) (1), ag(s. ) /A = 0(s,-) = Kj (s)Lja))

where in the last equality we used that, for any = € Rl and o € R,

A(s) < softmax’ (¢} (s, ) /X, Teet (-|5)) — softmax! (8(s, -), Tyet (-
f

softmax’ (z + aljgp, mret(+|s)) = softmax’ (&, T (+]5)) + a

The structure of (A(s)) closely resembles that of a first-order Taylor expansion as by Lemma B.5, we have
that

8softmaxf(9(8, ), Teet (+]5))

26(s,) = softargmaxf(ﬁ(s, Y, et (+]8)) = 7T£(-|s) ) (57)
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Lemma C.4. Assume A ¢(yef). It holds that

A 2
Ty — b (o) < 2 Wl S ¢t
vi(p) = velp) = 1—v GGRS\ISI\E\A\{” 0H°°}S€S HCG (S)HQ

Proof. In this proof, we denote by g, () = softmax’ (&, Tref(+|s)). Combining (54) and (56) yields
vl(p) = vj(p) < 7= D di" (s)B(s) . (58)

where we have defined

Next, by Lemma B.5, it holds that

dgs ()

_ Iy,
o =7y (-|s) .

IIG(S,-)+K9(S)1‘A‘

Standard one-dimensional Taylor theorem with Lagrange remainder shows that there exists y € R which
belongs to the segment between 6(s, -) + Ky(s)1 4 and qg(s, -)/ A such that

_ 1 g5 (x)

B(s) 2% Ox?

(

).

x

Using the bound on the spectral norm of the Hessian of g5 derived in Lemma B.5, we obtain

_1,0%() 9?gs(z)

B(s) 2< 0x? 0x?

. < i,
2

1
2

.¢) <
Yy

T=y

Finally, bounding the discounted state visitation measure in (58) by 1 and plugging in the preceding bound
on B(s) concludes the proof. O

The proof of Theorem C.1 follows immediately from Lemma C.3, Lemma C.4, Lemma B.6, and (13).

D MONOTONE IMPROVEMENT OPERATORS

A key challenge in analyzing stochastic policy gradient methods is that the Lojasiewicz inequality depends
on # and degenerates whenever the probability of an action becomes small. The goal of this section is there-
fore to show the existence of an operator IMP/ with two crucial properties: (i) for any policy, applying this
operator produces a new policy with higher objective value, and (ii) every policy generated by this operator
assigns at least a fixed minimum probability to every action. The main idea is to build the improvement
operator such that it slightly augments the smallest probability weights, such that for any state action pair
(s,a) € S x A the probability ratio m(a|s)/met(a|s) stays above a certain threshold. We will show below
that this procedure improves the global objective while keeping the probabilities uniformly bounded away
from O when the threshold is properly chosen. Let m.s > 0 be such that A f(mef) and P(7.c¢) hold. For

any policy 7, state s € S, 7 < 1/(1mef), we respectively define AT (s), and a7, (s) as
AT(s) = {a € Am(als)/met(als) <7/2} ,  afa(s) = argmax{m(als)/mer(als)}
acA
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where the arg max is chosen at random in the case of ties. Note that the definition of 7y ; ensures that
a® .. (s) does not belong to the set A7 (s) as
max —28)
a€A Tpet(als) —
Finally, we define the improvement operator as follows:
U, : P(A)° — P(A)°,
T — Uy (),

where for every (s,a) € S X A,

Tret(@|8)T, ifr(a|s) < /met(als)T/2,
U (r)(als) = {mlals) = Y (mues(bls)T = w(bls)), ifa=al.(s),
be AT (s)
m(als), otherwise.

The operator U, builds U, (7)(a|s) by (statewise) raising each a € AT (s) to mef(als)T, substracting the
total added mass from the single action a” ,_ (s), and leaving other actions unchanged. If A™(s) = (J, for all

s € S, then IMP/ (1) = 7. Note that mass conservation is immediate from the definition and the fact that

T < 1/(2mref). Non-negativity of U, () (al, . (s)|s) follows because the removed mass is

Z {ﬂ—ref(a“S)T - W(G‘S)} <7 Z Wref(als) <rT

a€ A7 (s) a€ AT (s)
Since m(aT . (8)]8) > Tret (A% 0 (8)]8) > Trer, and 7 < myer /2, we get that Uy (7) (al . (s)|s) > 7/2. This
in particular shows that U, () is a policy. As by Af(mwer) we have lim, o+ f/'(2) = —oo, we consider

[f17% : (—o0, f/(1/mrer)] + Ry the inverse of f” and define

g i (17 (-0 ) 1 (<l (5)]) gms) - 0

The following lemma establishes the crucial improvement property when 7 = 7y ;.

Lemma D.1. Assume that, for some s > 0, f and myer satisfy A y(Tyer) and P(myer) respectively. Assume
in addition that the initial distribution p satisfies A ,. For any policy m, it holds that

v{,,” () (p) = U%C(P) .
Additionally, for any policy w, we have that

Z/{T/\,f (7r)(a|s) Z TrefTA,f -

Proof. Set an arbitrary policy 7. For avoiding heavy notations, we will, through this proof, denote by
AT = A7, . We consider the case where there is s € S such that A7 (s) # 0 (alternatively U, () = T,

which makes the previous inequality immediately valid). Define © = U, . (7). The following applies

CORCEDIO)Y [Fals)r(s.a) - mef<a|s>f (2]
I r(als)(s.0) — Amaslals)f (L]
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- Z (d](s)—d](s)) Z [ﬁ(als)r(s,a) — Mrep(als) f (W)}

Tret(G]$)

@

+ Y d(s) D (7(als) —m(als))r(s,a)
seS acA
(In)
EOOIRERIRES ~o R Ev o))
(111)

We now lower-bound each of the three terms separately.

Bounding (I). Using Lemma G.2, we have

5 [Fatorts.n) dmurtale)s ()] |

e(als)

il 7(-|s) — m(-|s)||; su F(7(:|8) 1mvet (-] 5
" sup [7(1s) = w(ls) |y sup [ 1+ DI GE(ls) e (1))

I) 2 — || —d7 ||, max

Y

2
__ Ty, f Max Z Tret(als) sup sup {1 + )\Df(V||7Tref('|5))j| ,
1—7v seS aeAz(s) vEP(A) sES

where in the last inequality we used that (because we increase the probability of the actions in AT (s) by 7 ¢
and remove the total added mass from the probability of 7(a? .. (s))

sup [7(+}s) = 7([s)lly < 2max > met(als) prag -
seS s€S
a€AT(s)

Bounding (IT). Using the triangle inequality yields

(IT) > —sup||7r(| )= w(ls)ll; = —2max < Y mer(als) p Ty -
s€S s€8 a€AT(s)

Bounding (IIT). All the state-action pairs on which the original 7 allocates the same probability then the
policy 7 are equal to 0 in (III) allowing us to simplify this term

(IIT) = A " d7(s) Y mer(als) {f (%) - (Wmf ))}
)

seS acA
AL 5wl () - ()]
FAL UATE) A O mar(ahlols) |7 (TR - () )

seS
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Since f is convex, for all u,v € [0;1/met], f(u) — f(v) > f'(v)(u — v), we have

(III) > A Z d;(s) Z (m(als) —w(als))f'(Tr,f) (since 7(a|s)/mer(als) = T, f)

sES a€AT(s)

+)\§S (AZ(s) # 0)d; (s) [T(amax(s)]s) — T(amax(s)[s)] f <7rref(agax(s)|s))
Next, using that

T(amax(s)1s) _ m(afax(s)ls) = oy o T(0fhax(8)[$) — Mret/2 1

Tref (AFax(5)15) — Tret(afax(s)ls) = meer(afax(s)ls)  — 2 27

combined with the monotonicity of f’ and the fact that 7(aZ . (s)|s) — 7T(al . (s)|s) > 0 yields

(III) > A Zd;(s) Z (m(als) — T (als))f'(Tar) (since 7(als)/mret(als) = T, f)

sES a€AT(s)

FAS LAT(s) £ D)3 (5) (0T (3)]5) — 7 (T (5)]5)] 1 (“m”")

ses Tret (@fhax (5)|5)

Additionally, since
0 < m(apax(s)ls) = Flafae(s)ls) < Y (wlals) = 7(als)) <oy D merlals)
a€AT(s) a€Az(s)

implies

() > 2 S AT £ 0) | Y merlals) | mss ()

seS a€AT(s)

FAD di()UAT() #0) [ Y merlals) | S (1/2)

seS a€AT(s)
A /
=52 AT £0) | D merlals) | masf (Tag)
seS a€AT(s)

where in the last inequality, we used that f'(7 r) < —4|f’(1/2)|. Hence, by using A ,, we can lower bound
this term as follows

(ITL) > 2 (1) min{p(s )}max{ > mef<as>}n,ff'm,f>.
)

seS
a€AT (s
Collecting these lower bounds and using that

_ 16 4 8yAdy
/\(1 - 7)2pmin

concludes the proof. O

IRGWIES
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Finally, we define the operator that maps each policy to one corresponding parameter
M7 T — RISXIA

by
m(aj4ls)
M (m)(s,a) = f’(7r(a|s))f’< , Y(s,a) €S xA. (61)
( )( ) 7Tref(a/ | S) 7Tref(a|.»4\|s) ( )
Finally, we define the improvement operator on the logitspace as
T =M/ old,

The following lemma shows that M/ successfully recovers a parameter that gives the policy and that 7,
improves the value of the objective when A = 7, ;.

Lemma D.2. Assume that, for some .ot > 0, f and mf satisfy A ¢(ver) and P(myet) respectively. Assume
in addition that the initial distribution p satisfies A ,. For any policy =, it holds that

wﬁ/[f(ﬂ) =7,
Additionally, for any 6 € RIS*IAl and (s,a) € S x A, we have that

f

f )
UTe s 0) 20 0 T (o) = TaelTAS

Proof. The proof follows immediately from a combination of equality (43) in Corollary B.7, (61), and
Lemma D.1. O

E CONVERGENCE ANALYSIS OF STOCHASTIC POLICY GRADIENT

In this section, we aim to derive under A ¢(7.c¢) and A, non-asymptotic convergence rates for f-PG. First,
we establish a bound on the bias and variance of the REINFORCE estimator defined in (15).

E.1 BOUNDING THE BIAS AND VARIANCE OF THE STOCHASTIC ESTIMATOR

First, recall the expression of the stochastic estimator of the gradient
B-1H-1 h

8:(0)=3 Z > mog% ae‘se)vhf(Shvah)

b=0 h=0 /=0
B-1H-1h-1 1H-1

B—
AL 33 8log7rg (ael5) n1ys (s I Clsm) et Clsn) A; bz S A (s1)
0

b=0 h=0 (=0 0

(62)

h=
where z = (s ;1,0 )25 € (S A)B, and we recall that for any s € S, F} (s) is a vector of size

|S| x |.A| defined in (16) as

7 (bls) m(als)
FL(8)] (o = 1s(s)) W (s)w! (b]s (T bls) ) wl(als) f/ (=2 |
[ 0( )}( ,b) ( ) 0( ) 9( | ) f(ﬂ'ref(b|5)) {;A 0( | )f(ﬂ'ref(a|3))
and where Wg, Yg ,and wg are defined in (41) and (42). Finally, define the expected gradient estimator as
g’ (0) == Ezpp(oyer {gé(é))} ; (63)

Before bounding the bias and the variance, we give an explicit expression of the derivative of the log prob-
ability that appears in the expression of our stochastic gradient estimator. We also provide a bound on the

derivative of the log probabilities and on the matrix Fg (s) for any state s € S.
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Lemma E.1. Assume that, for some mwet > 0, f satisfy Aj(mer). For any 0 € RISXIAL (s 8" a,b) €
82 x A2, we have

dlog ﬂg (als)
90(s',b) ﬁg(a|s)
Additionally, we have that

Olog 7T£(CL|S)
06

’ _ 2Wi(s) wi(als)
T mlals)

Proof. The proof follows from the log-derivative trick and the expression of the derivative of the policy
provided in Corollary B.7. O

Next, we establish a REINFORCE-type formula for the gradient of the objective.
Lemma E.2. Assume that, for some myer > 0, f satisfy A ¢ (Tret). It holds that

8log7r9 Ag|5g)
ZZ 90(s, b) V(S A

t=0 ¢=0

(%9

oo t—1 o 7Tf
o ZZW“D%gusﬁnw(-wt))
t=0 ¢=0 ’
3 f als
— AE| D A1,(S) Wh(s) wh(bls) | f C Y whals) (L)
t=0 ref aeA 7Tref( ‘ )

Proof. Fix aparameter § € RIS/l ahorizon T, and a divergence generator f. For any truncated trajectory
2= (s,a¢){=y" € (S x A)T, we define its probability as

T—1
vi(052) = plso)mh(aolso) T Plselsior, arn)mf (arls)
t=1
and the regularized return
(S » ACED)
R (2) = t(rs,a —/\Wm(adst)f Tp eIt ) (64)
9,T() ;’Y (st,a¢) Wg(%‘&) (Wref(at‘5t>)

The finite-horizon objective is
JO) = Y viB:;2)R] () -
2€(SxA)T

Fix (s,b) € S x A. Differentiating this finite-horizon objective gives

8JL(0) i (0;2) s o OR] 1(2)
ety - 2 aags ) M@t DL min) G (65)
z€(SxA)T z€(SxA)T
(A) (B)

We now treat these two terms separately.
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Term (A). Using the log-derivative trick and the fact that the only terms that depend on 6 in V%(H; z) are
the ones that depend on the policy itself, we obtain

6V§(0;z)_ o, Tﬁl@logwg(at\st)
OO IR D T (66)

Plugging expressions (64) and (66) in (A) then gives

(A) = Z 9 2) Tlez:l 810g7r9 (aelse) Ologmy (alse) (r(s o) )\wref(at|st)f( ﬂg(at|st) )>
= ty Q) — .
2E(SxA)T = 996sh) ) (aslse) et (arlst)

Now observe that for ¢ > ¢, the sum of the log-gradient derivatives over z € (S x A)7 is 0. Therefore (A)
reduces to

< og ! (ayls Tref(at| St 7! (ay|se
(A) = Z 92’ Zzalg 9 ele’yt(r(st,at)—/\ ref (@t )f( p (at] ))) (67)

ze(SxA)T 9(s,0) w8 (arlse) * et (aelse)

Term (B). Taking the derivative of (64), we have

OR)r(2) _ A (Pl sl g il ) Drileds) 1 e
39(8,[)) —o 39(8,()) ﬂaf(at|st)2 Wref(at‘St) 39(s,b) ﬂ-gf(at|st) ﬂ—ref(a’t|3t) .

Summing over z € (S x A)T and using the log-derivative trick gives

I ST R A AU, [me«amt) mh(adds) | mhlads) || o

ey P 90(s,b) 78 (agls) * Tret(at]se) Mref (e|st)

Plugging the expressions (67) and (68) in (65) gives

0JL(0) _ O - Qlog ) (AdSe) Moot (AdSe) . 75 (AelS) )|
o —— A (S, Ay) — A f
0(s,b) Bzt o) ;;6 d0(s,b) (St Ae) ) (Al S)) (wref(At|st)) ]
AR szlvtalogwg(AﬂSt) et (Ae]Sh) - 7 (AdSe) _p wg(At|St))
ZNVT(G) o 80(5, b) 7(5 (At‘sf) ’/Tref(At |St) Wref(At |St)

The previous term can be rewritten as
aILO) < — dlogm) (Al Sy)
A
90(s,b) Bzt § ;; 90(s,b) V(S Ar)

Tzli 610g7r9 Ag‘S@) tﬂ—ref(At|St) ﬂ-g(At|St)
AB 7 i)  00(s,b) 7 73 (Ag|S;) T Tret(Ae]St)

t=0
N~ log ) (AdSy) (, m) (Ad]S)
— By i | Do
T —o 89(5, b) 7Tref<At‘St)
Applying the tower property by taking the conditional expectation with respect to G; := (S, Ao, - . ., St)
on the second expectation and using Lemma E.1 in the third expectation, gives
aIhO) = = dlog 7] (AdSp)
S, A
90(s,b) 2t O) g;) 90(s,b) V(S A
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T—1t—1
810g7r (Ay|S,
E o) lZZ Dl08 7y (AAS0) 14t (] (13, e (150))

= 00(s,b)
L StW bSt ’ WfAtSt
Bt lZv W[nmt)—wgws»]f(M)

Applying again the tower property by taking the conditional expectation with respect to G; in the third
expectation gives

aJIhO) = Alog T (AdSe)
7 Bzt [ Z aaes D) V(S Ar)

00(s,b)

t=0

T—-1t—1
10g7r Ag S@
AE; .10 lz Dlog m (AelSi) 7 D (] (1S et (151)

i 00(s,b)
T
b|St m (alSh)
—AE 1,(S)) W (Sy) wi (8] S m S)
Zwvf(ﬁ [27 t) 9( t)WG( ‘ t) [ ( T rof b|St Z WG | t 7Tref< ‘St))
Taking T' — +o0 and applying the dominated convergence theorem concludes the proof. O

The following lemma establishes a bound on the variance and bias of the stochastic estimator.
Lemma E.3. Assume that, for some m.os > 0, f satisfy Ay(mver). There exists a constant B x > 0 such
that, for any parameter 6 € RISI*IAl e have

where B » is an upper bound on the bias defined as

_ 2yH(H + 1)

Brx = Az 2+ 2Xdf + A(1 —7)yy]

where wy is defined in A ¢ (Tref) and dy, and y ¢ are defined in (12).

Proof. Using the expression of the gradient truncated at H from (62) and (63), of the true gradient from
Lemma E.2, and the triangle inequality, we have

v > ! < | Ologml (Al
f(@)_# < Zyt E, %F(&,AQ
2 t=H /=0 2
= A x| 9log ] (Af|S
Y [ [ggéwwwg‘(w&)wc&))
t=H (=0 2

Next, applying Lemma E.1 combined with the triangle inequality yields

3119 - Z Z g 2 W/ (Se) wh(AdlSe)

f
g’ (0) —
t=H ¢=0 779(A6|5€)

Ir(Se, Ar)|
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oo t—1 f o]
o [2WI(S,) wh(AS i
+ E E )\ tE 0 ( Z)Wﬁ( €| 5) ( ( ‘St)”ﬂ—rcf( |St + A § ,YtIEpe |:2W£(St) Yg(st)
t=H £=0 7T9<AZ‘SZ) t=H

We define the following filtration, for ¢ > 0,
gt = O’(SQ,Ao,...,St) 5
Next, applying the tower property of the conditional expectation by conditioning on G;, bounding the reward

and the divergence respectively by 1, and maxses Sup, cp(4) DY (v||7ret(-]5))}, and using that W£(~|s) €
P(A) for any s € S yields

v} (p) =<
gy — =20 t f
0)- =55 <233 Wil
t=H (=0
oo t—1 o)
+2AZZ¢HW£H sup Df(VHW”’f("S))}+2)‘27tHW£H HYgH
t=H (=0 o (s,v)€SXP(A) = oo oo

Finally, using that
oo H oo oo
to t . H t g H+1
Yos— ., YAt-DsnT—s, DAt n—
= -y = (1-1) =, (1=1)
combined with Lemma B.6 completes the proof. O

Lemma E.4. Assume that, for some ot > 0, f satisfy A ;(myer). For any 6 € RISXIAL it holds that

Ez w6)es [Hgf(e) H } U/\f

where we have defined
o2 12
M)

and where wy, dy, and yy are defined in A ¢ (yer) and (12).

I:Cd;))c + )\272wfcd?c + A3 (1— 7)2wj2cy?c] ,

Proof. Firstly, define for & = (sp, an))t € (S x A)H
H-1 h

Olog 7! (agls
ZZ g 0 (a Z)'th(shyah)

h=0 £=0
1h-1

H-
ol
AY 3 BT o)) — A Z T (s1)
h=0 £=0
Importantly, for a given Z ~ [1(8)]®53, denoting by Z = (Zy, ..., Zp_1), it holds that
1
- B Z uz,(0) , andg’(0) = Exvyo) [us(9)]
b=0

Using that the variables (Z, ..., Zp_1) are independent and identically distributed, we get

Z qu )

Ez~p(o)08 U(gf(H) —gﬁ(G)Hz] =Ez p@o)er
2
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1 1
= ZEzw) {Hu‘z(@) *gf(ig)”;] < Erwo) [”U‘I(G)”ﬂ , (69)

where in the last inequality, we used that the second moment of a random variable dominates its variance.
Next, using Jensen’s inequality combined with the convexity of the square function, we have

H-1 h 2

810g7r (A)S
E‘INV(O) |:||u‘3( ) 2} < 3Ef5 Z Z 9 E| E) I’(Sh,Ah)
h=0 ¢=0 2
H-1h-1 2
dlog ) (Ay|S,

e | )23 D108 70 (Ae151) 11 (f (181 e 1 51)

h=0 £=0 2
+ 3N Ex, (0 "FI(S :

2

Applying the triangle inequality and the fact that the reward and the divergence are positive yields

h 2
>

h=0 ¢=0

H-1

dlog 7l (Ay|S
ogﬂgé ¢|Se) 2r(Sh;Ah)>

B 2

H—1h—1 ¥
Olog ) (AylS,
3N Exnyo) ( 3 || 2208 e (AelSe) Df<7r£<-|sh>mef<-sh>>>

Ex v (6) [||U‘z(9)||§} < 3E< () (

00

H-1 2
e (5 fris],) |
h=0

Combining Lemma E.1 and the fact that the reward is bounded between 0 and 1 gives

H-1 h ¥ 2
W (Se) w? (A,lS
Es [||ug(9)||§} < 3Ez~v(0) ( E E 2yM/2 . /2 at ;) o (A Z)>
h=0 ¢=0 0(A2|Sl)

B 2

H—1h—1 f
wi(s Ay|S,
3N Egne) <Z S 042 02 5 (Se) wy (Ae|Se) sup Df(l/||7'('ref('|5))>

h=0 (=0 75 (Ae|Se) (s.)ESXP(A)

e 2
eovtan | (S il ) |

Next, applying the Cauchy-Schwarz inequality gives

H-1 h H—-1 h ! w
Exnuo) [lux(9) 3] < 3Exeuio) KZ Z4wh> <Z > »Rel A;SZSM >

h=0 £=0 h=0 ¢=0

H—-1h—-1 H-1h—1 f
W3 (Se) Ay|S :
FN Bz || 2 2 0" (220 DSy D (g fs)
7T9 Ae|S@) (A)

h=0 =0 —0 (=0 (s,V)ESXP

+ 3\ Bz (0) [(H 147h> (Z“V HWfH HYfH )]

0
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We define the following filtration, for ¢ > 0,
Qt = O'(So,Ao,...,St) 5

Next, applying the tower property of the conditional expectation by conditioning on G;, and using that
w£(~|s) € P(A) for any s € S yields

Bxevio) lux(®)3] < 12| PglgA{ |'j }(Z’v h+1>
A

wy (als)
+12)2 HWfH max — sup Tref (¢ ’yhh
(s,a)ESxA 7T£(a|5) (s,u)GSX'P(.A){ (H } Z
) , [H-1 2
e ] (m) -
> > h=0

Next using
H-1 1 H— 1
t
Y S T > ) 7 71 N9
el Bty gy
and plugging in the obtained bound in (69), combined with Lemma B.6 concludes the proof. O

E.2 SAMPLE COMPLEXITY OF STOCHASTIC f-PG

We now derive convergence rates for f-PG. First, we define the following quantity, which will be the
Polyak-t.ojasiewicz constant of our function over the optimization space, where policies are guaranteed not
to be too ill-conditioned, i.e., all their entries are larger than the 7 ; defined in (60),

)‘(1 - P)/)p?nmcjzf 2

= T min " T - ' 70
Exs w]% et we[m,ﬁﬁ]f ) o

As we will prove in this subsection, this quantity represents a lower bound of the non-uniform Lojasiewicz
coefficient along the trajectory. In the following lemma, we give a simpler lower bound of 1, f provided
that \ is not too large.

Lemma E.5. Assume that, for some et > 0, f and mye satisfy A j(myer) and P(myet) respectively. Assume
in addition that the initial distribution p satisfies A, and that X satisfies

)< 4 4 1 4
= =% A PO T et
In this case, it holds that

AL = )phindG e 16 + 8yAds >
AR A=) pumin

Additionally if A < 1/dy, then it holds that
s A1 — v)pfmnﬁﬂ 2y ( 24 >2
> ——————5 et - .
L T

44



Under review as a conference paper at ICLR 2026

Proof. First note that the first condition on A implies that 7 § < ¢y, with ¢; defined in A ;(7,ef), and thus
min ") = ")

z€[Ty, f’wrlcf]

Additionally, the second and third conditions on A guarantee that the minimum of 7 ; in (60) is attained in
the first term, that is

- 16 + 8yAdy
™ =17 (—
! [ ] >‘(1 - V)QPInin
Finally, we recall that the convex conjugate of f defined in (28) satisfies, for any y € (—oo, f'(==)),

1
)" W) = s -
()
Thus, we obtain that f” (75 )2 = (f*)” (%)2 which concludes the proof. O

In the following, we define the filtration adapted to the iterates of f—PG as
Fi 2:U<Zt te {O,...,T—l}) .

The following theorem gives convergence rates of f-PG.

Theorem E.6. Assume that, for some Trer > 0, f and mye satisfy A ¢ (Tyer) and P(myer) respectively. Assume
in addition that the initial distribution p satisfies A,. Fixn < 1/2Ly ¢, a given temperature )\, and consider
the iterates (0;)52, of the algorithm f-PG. It holds almost surely that

> .
inf px g (0) = 1y (71)

Additionally, for any t > 0 we have that

ol(p) = B[}, (0)] < (1=, /0" L(p) = o], (o)) + 5 2L

Proof. Recall that for any ¢ € [T'], we have that

6, = M’ (8,) .
Hence, by Lemma D.2, for any ¢ € [T7] it holds that

Wgt > TA fTref -
Combining the previous inequality with the expression of the coefficient yi s provided in Theorem C.1
proves the first statement of the lemma. Next, using Theorem B.12 gives

2
n° Ly,
0h,.,(0) 2 0], (0) + 20090}, (), 85, (00)) = 2L |

Next, taking the conditional expectation with respect to F; and adding and subtracting Vugf (p) in the dot
product gives ’

2
E{ Vo, (P ‘ft} > b, (o) + 20| Vol ()| + 20(90], (0). 87 (0) = Vol (o)
(K1)

nL)\f]E{

2 (72)

0

I

(K2)

We now bound each of these terms separately.
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Bounding K;. Using the Cauchy-Schwarz inequality, yields
20(Vol, (p), 8 (0:) = Vvj, (p)) > —2n HWQ (p)H2 Hgf(et) - Vo), (p)H

=-2.9'/2 vaét(p)Hz 0B

v

2

where in the last inequality we used Lemma E.3. Next, using Young’s inequality gives
f 7 ! F ol a2
20(V0h, (), 87 (00) = Vvh, (0)) = = |[ Vo, ()| = B - (73)
Bounding K. Using the convexity of the square function with Jensen’s inequality gives

E {Hgé, (01)

2 2
J|7] = [ 00 - 200 + 6 200 - 9l 0+ 9, 0 7]
30/2\,](

B )
where we used Lemma E.3 and Lemma E.4. Plugging in the bounds (73) on K; and (74) on Ky in (72) gives

<38 +3] Vol ()| + (74)

377 Ly, f) 37°Ly s Hv H 2 3np? LA fUA S
. LA

B [vf, .| 5] 2ot 040 |9, 0 = (o + B

Taking the expectation with respect to all the stochasticity, multiplying both sides by —1, and adding v] (p)
gives

v{(p) - E {viﬁm(p)} <v{(p)—E [vé: (p)} - 77(1 Snla, f) HV v, (p H

3n? L/\,f 30°Lx 03

+ (o 2 )P+ 2B

Next using Theorem C.1 combined with (71) yields

vi(p) —E [vﬁm (p)} < (1 oY (1 - 3772”)) (Uf(p) -E [vgt (p)D

37]2L/\,f0/2\,f

2B ’
where we used 3nLy r/2 < 1. Finally, using that n < 1/2L) ; to bound 1 — 3nL, ;/2 and unrolling the
recursion concludes the proof. O

+ 2835 +

Next, we provide the sample complexity of f—PG for solving the f-regularized objective.

Corollary E.7. Assume that, for some met > 0, f and mper satisfy Ay(mrer) and P(met) respectively.
Assume in addition that the initial distribution p satisfies A ,. Fix any € > 0 and X > 0. Setting

4 1 216w?
H> + In 4440242 + 22 (1 —7)%23] |, (75)
(1_’7)2 1_7 (6/6\7)0(]_—’}/)4 [ f ( ) f]
and
1 €Bu
1 < min ==l (76)
QL,\)f 180A,f
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and

1 2 { _ f
Tzz4lnax<2ij’ 80%f>.ln<30)<p> vﬁxp»> | -

guarantees that

Proof. Asn < 1/2L, ;, then by using Theorem E.6, it holds that

ol(p) =B [vh, ()] < (1=, /47 (@(p) = o], (o)) + 5 2L

By By
V) (W)

Next, we aim to show that under our conditions on 7', H, and 7, each of these terms is smaller than €/3.

Bounding V. We start with the term V, which gives a condition on the step size. In particular, setting

By
180/2\ ¥

n<

)

guarantees that V < ¢/3, which, together with n < 1/(2L) ), gives the condition (76).
Bounding U. In order to ensure that U is smaller then ¢/3, we need T to satisfy

4
T > In ¢

Sy \3 (vf(p) — v} (p))

which, combined with the inequality In(1 + z) < x for z > —1, ensures that U is smaller than €/3, and the
condition (77) follows from (76).

)

Bounding W. Using Lemma E.3 and Jensen’s inequality, it holds that
6  4y2H(H +1)?

W<
H>\7f (1_7)4

wi [12+12X%d7 + 30*(1 — 7)%y3]
Next, we remark that for any a > 0, we have ay?? (H + 1)% < ¢/3 for

H > L max 1 ,In 3a
11— 11—~ €

Taking a = 5 r=rw} 12+ 120%d3 + 3M%(1 - 7)2yﬂ gives W < ¢/3, provided that (75) holds. [
Exr

E.3 GUARANTEES ON THE NON-REGULARIZED PROBLEM

A key criterion for evaluating the quality of a reinforcement learning algorithm is its sample efficiency in
solving the original, unregularized objective. To this end, we recall a result from Geist et al. (2019), which
establishes a connection between regularized and unregularized value functions, and further characterizes
the performance of the optimal f-regularized policy when evaluated in the original unregularized MDP.
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Lemma E.8 (Proposition 3 and Theorem 2 of Geist et al. (2019)). For any policy m, and state s € S it holds

that
Ad
|v£(s) —Uw(s)| < 17f .
-
Additionally, denote by 7w the optimal regularized policy. For any state s € S, It holds that
Ad
vl(s)—wv s < =
Ty 1 _ ,y

The following theorem gives the convergence rate for the non-regularised problem.

Theorem E.9. Assume that, for some et > 0, f and myet satisfy A j(Tyer) and P(myep) respectively. Assume
in addition that the initial distribution p satisfies A ,. Fixn < 1/2Lj r, a given temperature )\, and consider
the iterates (0)52 of the algorithm f—-PG. For any t > 0 we have that

6n0§,f n GBJQLI’)\ " 2)Mdy .
Buy By 170

va(p) = Elve, (p)] < (1= p, /4" (v(p) — v (p) +

Proof. The proof holds from Theorem E.6 and Lemma E.8. O

Finally, we give the sample complexity of f—PG to solve the unregularised problem.

Corollary E.10. Assume that, for some s > 0, f and Ty satisfy A¢(meer) and P(myes) respectively.
Assume in addition that the initial distribution p satisfies A ,. Consider any constant cy > 0 such that

< min( L 1)
¢ <min(—,—,1) .
! dy vy
Fixany (1 —)~' > € > 0 such that
16 . 4 1 4 (I —7)e
€< min , , , and set \ = ———cy . (78)
(1= ) Prain <|ff<bf>| F 3] |ff<;mef>\> i
Define
96 2 6(vk(p) = vh, (p)
de) = (f)"| —————— Le) =1 = . 79
O =0 () - fo - ( : 79)
Additionally, define the three following constants which depend only on f as
16w? 3456w
1 _ f @ _ 48, _ (3) _ f
= , = ywr+ (1 —7v)kg) , C7/ = (30)
f CfCJQr f s (ywr +( )Ef) f C;Cf
Setting
4 1 297020
H > 5+ In fe. ; 2
(1= " 1—v  \ed(e)(1 = 7)°prnres
and
i 1—~)% €2d(e)(1 —~)9Bp2, mret?
p < in (L2000 CAIO =) Bt ) 81
Cf C’f

48



Under review as a conference paper at ICLR 2026

and

1601 ¢ (e o o
r 49 max ( ( f / , (82)

guarantees that

vi(p) —Efve, (p)] <€ .

Proof. First, note that the conditions (78) on € and A guarantee that
) < 4 . 4 1 4
S o5 Inin ) ) )
(1 =7)?pmin P El PO (G7er)|

Thus, using Lemma E.5, and the fact that € < (1 — ) ™!, we have that

A = 7)PminCF —24 2
H)\f > —2f77ref2(f*)// <)\12> .
’ W ( - 'Y) Pmin
Plugging in the expression of A from (78) yields the following simplified expression
ecy(1—7)?PpinCF —96 2 de(1— )2 PR et
N e (1) ; = - de) ,  (83)
’ W ch(l =) prmin Cf

where d(e) and C](fl) are defined respectively in (79) and (80). Additionally, combining Lemma E.3,
Lemma E.4 and Theorem B.12 and the expression of A yields
5 24 62 H _ By (wp + (1 = v)ky)

< _u3 < — L 84
B e .

where we used that under A ¢ (¢ ), we have wy > 1. Using Theorem E.9 and the fact that A < (1—+)e/4dy,
we have that

g

to! f 6noss | 607 e
velp) = Efvo(p)] < (1= a1, ;n/4) (vilp) = vg, (p) + Hr=+ oty
Ex, Ex,
! !

(u”)

(v (W)
Next, we aim to show that under our conditions on 7', H, and 7, each of these terms is smaller than €/6.
Bounding V’. We start with the term V’ which gives a condition on the step-size. Using (83) and (84), it
holds that
144nw? 576nw> c®
NWe < NWe 1 ron

= (]- - 7)4BH>\J N (]- - 7)63 ECfp?niHCJ%M2(f*)” (6%‘(1:%)2 6€d(€)(1 - ’y)GBpfninMQa

where C’J(;’) is defined in (80). In particular, setting

_ (1 =) Byt

guarantees that V' < ¢/6, which together with the condition 7 < 1/(2Ly ), gives the condition (81).

)
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Bounding U’. In order to ensure that U’ is smaller then €/6, we need T to satisfy

1 €
In
T In(l—np, /4 \ 6 (v{(p) — v, (p))

which combined with the inequality In(1 + z) < x for x > —1, ensures that V’’ < ¢/6 and the condition
(82) follows from (81).

Bounding W’. Using (84), it holds that

2H 2
we 636 (H4;1) '
H}\,f (1_7)

Next, using that for any a > 0, we have ay*" (H + 1)? < ¢/6 for

H > L max 1 ,In ba ,
11—~ 11—~ €

shows that under our condition on H, we have W* < ¢/6. O

F APPLICATION TO COMMON f-DIVERGENCES

In this section, we apply the results of the preceding section to two commonly used f-divergences, which
are Kullback-Leibler and «a-Tsallis.

F.1 KULLBACK-LEIBLER

Lemma F.1. Assume that, for some Tyt > 0, Tyet satisfy P(myet ). The function f defined by f(u) = ulog(u)
satisfies A f(Tyef), With

o.)le, I€f=1, LfZl.

Additionally, under the condition that

4
A< 7 85
B (1 - ’Y)QPmin(lOg(Q/M) + 1) ( )
we have
8 3+ 4| log(myef)|
— 1, df <|log(med)| s vi<1+2[1og(me)| s Lxs= A Tref)l
Cr ) £ < [log(met)| Yf + 2[log (et )| A f (1—~)3 + (1—7)?
QWH(H + 1) 12
ﬁH,)\ = W [2+A+4A‘10g(@)|] 5 Ui,f S W [1+/\2 (2+5|10g(M)|2)] 3

32 + 169X log(wrcf)|> /9

H)\,f > )\(1 - '7)pi11nM2 exp(— )\(1 - ’Y)mein

Proof. Firstly, note that we have

flu) =ulog(u) , f'(u) =log(u) +1, f'(w)=u"", ["(u)=-u"?.
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Satisfying A ¢ (7). Observe that (i) and (¢i) are immediately valid from the expression above of the
derivatives of f. Moreover, we have
S )l _

uf'(u)=1, )2

showing that (4i7) of A f(myef), is satisfied with wy = k¢ = 1. Finally, as f” is a strictly decreasing function
on Ry then (iv) is valid with ¢; = 1.

Bounding the constants. Next, we bound sequentially each of the constants that appear in the statement
of the lemma. For any s € S and v € P(.A), we have that

) DIORT

acA f//(mef(a|s)) acA
Thus using (13), we have that (¢ = 1. It holds that

v(a)
dy = re
! (s,u)IEI}SafP(A) Z m f( | ) ( |

acA Tret (a 8)

_ v(a)
N )IenSai(P(.A)Z ()1og(’ﬂ'ref(a|8))

(50 acA

< om0 () log(v(a) — v(@) log(mu) -
. ﬂ'ref( | )
Y= (s,u)g}safpm) Z ( v(a) )

(s,V)ESXP(A aea
f/ ( (a) )‘
ac€A f” Tret(al]s) ﬂ—ref(a|8)
v(a) ) ‘
= max v(a)|lo +1
 (s)EP(A) 26;4 (a) log <7Tref(a|8)
=1 —log(mes) + max — Z v(a)log(v(a))

veP(A) acA

)

which gives dy < —log(myer). Next, we have

<1+ 2[log(mrer)|

where in the last inequality, we used that the entropy of a distribution on A is bounded by log(|.A|) and the
fact that 7myf < 1/|.A|. Next, using Theorem B.12 and the bounds above, we have

8wy (ywy + (1 —y)ky)

2v2widy + 29(1 — y)wy [kpdy +y7] + (1 —7)? [wy + 2k 7]

Ly + 4
o (1=7)? (=)
8 3 + 4| log(myet)|
—— +4\—F—F——
(1—=9)? (1=9)?
Using Lemma E.3 gives
2vH (H +1) YA (H +1)
Bayr = —F———57wr[24+2Mdf + A1 — )y <7 2+ X+ 4| log(7res
, T ! s =yl < = | |log (et
Using Lemma E.4 gives

12

ai"f = 7(1 m— [(A}?‘ + )\272w?d?c + A1 - v)zw?y}] <

ﬁ [1+ A2(2 + 5| log(meer) [2))]
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Next, note that (85), guarantees that we have

< $min 4 ! 4
= (1= 7)%pmin el [P )] (5reer) |

Thus, using Lemma E.5, we have

. A = 1)PminGF 24 ( 16 + 8yAd; )2
o i et L =) pmin
32 + 16vA| log(mryef)|
> M1 =) P2 et — = 9
= ( W)pran €xXp ( )\(1 — '7)2pmin / 5
where in the last equality, we used that the convex conjugate of f(u) = ulog(u) is f*(y) = exp(y — 1) and
that exp(—2) > 1/9. O

In the next two corollaries, we apply Corollary E.7 and Corollary E.10 to get more explicitly the sample
complexity of f—PG with entropy regularization.

Corollary F.2. Assume that, for some 1/4 > Tpef > 0, myer satisfy P(myer). Assume in addition that the
initial distribution p satisfies A ,. Fix any (1 —~)~* > € >0, A\ > 0 and B such that

)\ < min ( 4 1) B < 216 log(mrrer)| . ( 48| log(myer) | )
) 9 = X
N (1 = 7)2pmin (log(2/mrer) + 1) (1 — )2 Tret 2020 P A1 = 7)?pmin

Setting
> 1 ( 29160 log(myef)? ) 52| log(mrer)| ’ 86)
1- A1 =)’ phinmret® ) AL = 7)%Pmin
and
eBA(L = )" phinTret” 48| log (rret )|
"= 15552 log (myer) P (‘m - v)?pmh)
and

559872] log ()| 96 log (myer)|
= B ) phmer AN =) 2pmin )

guarantees that

vl(p) —E [v;’; (p)} <e,

where f is the Kullback-Leibler divergence generator. Thus, the sample complexity of f—PG to learn an
e-solution of the entropy regularized problem is

1 | log (7ryer ) |° o[ 108 (et
A3€B (1 —7)°p s vt A1 =7)?Pmin

TBH =~

Proof. To prove this corollary, we show that the assumptions of Corollary E.7 hold. First, A f(m) holds
as a consequence of Lemma F.1. Then, we show that the condition (75) in Corollary E.7 holds, that is

216w .
H< 7(1747)2 + ﬁ log (ww(lfw4 {4 +4X2d% 4+ A2 (1 - 7)2},?}). To this end, we remark that

4 1 216“}12‘ 212 2 2.2
(1_7)2+1_’ylog<€u A=) [4—|—4)\df—|—/\(1—’y) yf]
=X\ f
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4 1 216 ) )
< 1o (6 = [4+ X*(5 + 6 log(mrer) )])

(1=7)? ty (1=7)
4 N 1 1 1944 [4 4+ A2(5 4 6 log(meer)?)] N 32 + 167y A| log(myet)|
o Tref Tref.
(19?2 1y A1 = 9)°Ppin Tret? AL = 7)3 pmin
< 1 29160 10g(27rr76f)2 52| log(myet)| <n.
1- 6/\(1 - V)SpminMQ )\(1 - ’Y)Bpmin

where we used the lower bound on p, f provided in Lemma F.1 in the second inequality, as well as A < 1
and e <1 /4 in the last two inequalities. Furthermore, Lemma F.1 with A < 1 gives

36| log (et )|

Lyys< ; 87)
F= 1=
96| log (et )|?
2 Tref
ONf S~ a1 (88)
M (1)t
AL = 7)Ppin Tret” 48| log (et ) |
by et ( [og(mus ) )
’ 9 A(L =) pmin
Using these three bounds on smoothness, variance and Polyak-t.ojasiewicz coefficients, we obtain
48| log(7yef
. 1 €Bu,, _ (1—~)3 eBA(1 = 7)° prin et exp(—ﬁ)
min , : > min ,
2Ly 1803 ¢ 72| log (et )| 15552| 1og (7rrer) |
_ €BA(1 —)°pZ i ret 48[ log (et )| ©0)
 15552| log(myer)|? AL = 7)?pmin

where in the last identity, we used the fact that e < (1 — ) ™! and that
216[log(meer)] (48[ log(7rer)|
el - 7)2M2p12nin A(1 = 7)2pmin

This shows that our condition on 7 guarantees that the one set in Corollary E.7 is satisfied. Finally using
(90) and (89), we have

4 <2fo> 1so§’f> L4 15552| 1og (Tryet ) |2 exp ( 48| 1og (Tyef )| )
By s ’ EBHAJ I eBA(1 — )% p2 i Trer A1 = )2 pmin
559872| log (et ) |* 96/ log(mref)|
= N2eB(1— ) Pk Trer® </\(1 - v)2pmm)
which concludes the proof. O

Corollary F.3. Assume that, for some 1/4 > Tt > 0, Tyer satisfy P(myer). Assume in addition that the
initial distribution p satisfies A, and fix f to be the Kullback-Leibler divergence generator, i.e. f(u) =
ulog(u). Fix any (1 —~)~1 > € > 0, such that

16 (I—7)e

€< , and set \ = ————— .
(1 =) prin (log(2/mret) + 1) 12log(|myet )

oD
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Additionally set any B such that

e | op (STor(E)) o)

h 62(1 - ’Y)Sp?ninMQ 6(1 - 7)3pmin
Setting

)

1 | log(7rret)| 586| log (et )|
H > log 5
1—v €(1 —)5p2 ;. Trer? €(1 = 7)*pmin

and

93)

)< 0 By m® (=Sriotza

93312| log(mryef )| €(1 = 7)3pmin

and

644972544| log(ryer)|* (1152| 1og<mef>|) log <6<v£<p> — v, <p>>) o

>
N 63(1 - 7)8p?11111M4B 6(1 - ’7)3pmin €
guarantees that

vx(p) = Elvg,(p)] <€ .

Thus, the sample complexity of f—PG, where f is the Kullback-Leibler divergence generator, to learn an
e-solution of the non-regularized problem is

| log (mrer) | ( | log (et )| )
exp

TBH ~ {
64(1 - 7)12p0minM4 6(1 - 7)3pmin

Proof. This result follows from Corollary E.10, whose assumptions we check now. First, note that (91)
implies that

< 16 ) 4 1 4

€ < ————— min , ,

(1 =7)3pmin £ (ep)l ‘f’(%)‘ ’f«%@”

Additionally, we can rewrite the constants from Corollary E.10 using Lemma F.1, which gives

—576] log (et )|

O < 48| log(mer)], CF) <48, CF = 10368| log(mer)|, d(e) > exp ( T

) /9, (95)

where C§-1)7 0;2), C}g), and d(e) are defined in (80) and (79). Next, the condition on H in Corollary E.10
holds since

4 1 297w3CY
T 1 <6d(6)(1 - v)ﬁpiﬁnﬂref2>
4 1 128304 log (et | 576/ log(ret)|
BCETIE A i <e<1 - v)ﬁpiﬂnmf?) (1= 7] prain

| log (et )| > 586/ log (et )| <H.

< lo
ST, <6(1 =) PhinTret® ) €(1 =) Pmin
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where in the second to last inequality, we used that 7ot < 1/4 and that log(128304) < 6. Using (95), we
have

_ 3 2d 1_ 6B 2_ re2
mm<<l 7)* (o)1~ 7) pmmm>

@ @)
Cy Cy
o win (A=? €0 =7)°Bpliume®  (—576] log(rer)|
. B 93312 log(me)| =) prin

62(1 - 7)6Bp12nin7rref2 —576/ log (et )|
Tref” Tref
= T 03312[log(mer)] D\ (1= 1)Ppmin )

where in the last inequality, we used the condition on B introduced in (92). Hence our condition on the step
size ensures that the one assumed in Corollary E.10 is satisfied. Next, using (95) and (96) yields

(96)

16057 4(c) o o
A1 =V Ppmeat® ((1 —)* (o) (1 - v)GBpfninw2>
160}”46) 93312| log(mrer) | 576| log (et )|
= ed(e)(1 = )2 ppiTrret®  €2(1 =)0 B gy ret? e(1 —7)%pmin
6912| log(mrref)|€(€) 93312 log(mref) | 1152]log(myet) |
T el =) Phinret®  €(1 = Y)0Bpg iy Tres® €(1 = 7)3pmin

644972544 log(mper) |2 1152 log(mver) | | 6(vl(p) — v}, (p))
o 63(1 - V)SpfninMZLB 6(1 - 7)3pmin & € ’
which proves that under our condition on 7" the one assumed by Corollary E.10 is satisfied. O

F.2 «-TSALLIS

Lemma F.4. Assume that, for some 1/4 > Tt > 0, Tyor satisfy P(myer). For any oo € (0; 1), the function
fa defined by

u* —oau+a—1

fa(u) =

ala—1) ’
satisfies A ¢ (Tret ), With
Wy =Tt K= 2Met®T gy =1
Additionally, under the condition that
4 11—«
A< : ) CH)
(1 =7)2pmin  (Tret/2)>7 1 — 1
we have
4| log(ﬂ—ref)‘ ]-67Trefa71 7Tref2a72| log(ﬂ-refﬂ
=1, df < ——~ < 4] 1 ref)| s Lxf=——— + 180A=— —
Cr  Gf = 2 s YIS ‘ Og(MN A f (1—7) + a2(1— )3
4’7H(H + 1) |10g(77ref)| 2 127Tref3a_3 162 9
=——— 2 |1+ 6A———= < — 1 1 o ,
B, (1—7)2 + 2 o ONfF S (1— )4 + o 0g(ﬂ| )

42«

16 + 327 log(ﬂref)I/a2>

2—2a 2 2
[ A1 = ) Tret PminTref €XPq (_ A1 = 9)2pmin
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Proof. Fix any a € (0,1) and set f = f,. Firstly, note that we have

a—1
U -1 9

Pl =" )= ) = (-2

a—1

u* —aou+a—1

f(U):W )

Satisfying A ;(m.er). Observe that (i) and (i7) are immediately valid from the expression above of the
derivatives of f. Moreover, we have

£ ()]
f”(u)2
showing that (23¢) of A s (), is satisfied with wy = Ter® 1, and K = 2me® ', Finally,as f” is a strictly
decreasing function on R then (iv) is valid with ¢y = 1. Next, we bound sequentially each of the constants
that appear in the statement of the lemma.

=|a—2ut" |

uf!(u) =u'=

Bounding (y. Forany s € S and v € P(A), using Jensen’s inequality we have that

2—a
7Tref I/((I) e ﬂ =
ety = St (i) 2 (o) =1

acA f/,(mgf(a|s)) acA acA

Thus using (13), we have that (y = 1.

Bounding d¢. For any state s € S and v € P(A), it holds that

D (0 moag (- - KV(@) O CO N 1_4
(Vimeer(1s) = ZA als) | (205 ) —omtis —(1-a)
Next, for y €]0; — ] define the function p, : [a; 1] — R which satisfies

py(B) =y’ — By . p,(B)=1log(y)y’ —y .
It holds that

*—ay — (1 —« o) — 1
v ooy =(=a) _p@ =) g 8] < g+ yllog(®)[Lyss + |log(®)ly Ly<r -
a—1 a—1 BEa,1]

Applying the previous inequality with y = v(a)/met(als) yields
v(a) v(a) v(a)
Df (v Tre ) < — Tre + lo
(Wlmret ( § i(a { p— | log( |

(als) = mret(als) Trret (a]$)

)|1V(a)/71".ef(a|s)21

aEA
v(a) v(a)
1 v s
*+log(—0 5! ( (als) ) (a)/mees(als ><1}
1 v(a 1 v(a
< f_s_ a)|log( (a) ——)|+ = maX|log ) ( )/ e (a]s)<1
a et (als) als
aE.A
1
< 1 - (e}
<t Y @log((@)]+ 5 3 vl log(mr(als))| + - max log(a)la”
aE.A acA
1 1 1 a
< =+ Zlog(|A]) + —|log(7rref)| +— max |log(z)|z® ,
o z€[0;1]
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where in the last inequality, we used that the entropy of a probability measure on A is bounded by | log(myef)|-
Next using that max, ;1) | log(z)|z* < ™! /a combined with max(1,log(|A)) < |log(mer)| gives

1 re 4 1 re
3| log(Tret) | +i2§ IOg(;Tif)l .

Df(’/HWref("S)) <

« [0 «

Thus, it holds that

4, < Wloglrm)]

= on

Bounding y;. For any policy v € P(A) and s € S, we have

a a—1
Z Tret (a$) £ v(a) )‘ _ ‘ 1 v(a)?~ ( v(a) > 1
=~ f”(wr:f((l;)ls)) Tret(@]$) 11—« Wref(a|s) ret(als)
Next, define the function g, for y €]0; — ] which satisfies

94(8) :yﬂ*1 . g,(B) =log(y)y” ! .

It holds that
ya_l -1 gy(a) - gy(1> ’ -1
1o ‘ 1 < le[gfl] |9,(3)] < [og(y)] 1y<1 + |log(y)y* | 1y>1

Hence, applying the previous inequality with y = v(a)/mer(a|s) gives

met(als) |, v(a)
Z " fua . )
aGAf (ﬂ'mf((a)|s)) Wrcf(a|s)
v(a)*~® v(a) m(als) Tret(a]5) 1o
< = Teot(a]5) 1= [' 1og(7Tref a|s))|1u(a)/7rref(a\s)§1 + |10g(7rref(a|5))| ( v(a) ) ]
via) \'° v(a) m(als)
S ~ (ﬂ'ref(a)> V(a‘)‘ log(ﬂref(a|s))|1V(a)/‘“'ref(ﬂ|s)<1 + (; |10g ef(a\s)”
< 3 vl ox( 051+ 2 log(ra)|
QEA re:

where in the last inequality, we used for the first term that for any u € R, ul,<; < 1 that the entropy of a
probability distribution on A is bounded by log(].A|), the fact that 7o < 1/|.A|. Using the same argument
again to bound the first term gives

v < 4|log(mret)| -

Bounding L ;. Next, using Theorem B.12 and the bound on the constants previously computed, we have
8wy (ws + (L= )Kyp) 4)\272‘“’)20df +29(1 =Yy [kpdy +yg] + (1 = 7)? [wy + 2654]
(1—7)? (1—n)?
16m6* 1 Trot 2% 2| log (e
< Mref 1180y 2t f | log (Trvet)| ’
(1—=7)? a?(1—7)?

where in the last inequality, we used that 7m¢ < 1/4.

Lyy=
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Bounding 3y . Using Lemma E.3 gives

NI (H 41 v (H 41 | log(7ret)]
Bir = u(_w)wf 24 2Xd; + A1 =)y, < W {1 + o
Bounding 0 ;. Using Lemma E.4 gives
12 1275323 162
0% = T [w} + XN2?wid} + N (1 — ) wiyf] < 1) [1 +— IOg(wp)}

Bounding By g Next, note that as f/, is an increasing function then f], (m.e/2) < fL,(1/2) < fl(ef) =
f4,(1) = 0. Thus, we have | f/,(c5)| < |f4(1/2)| < |f4(7ret/2)]. This proves that (97), guarantees that

A< $min 4 1 4
= (1—7)%pmin Pl | P37 (5wt |

Thus, using Lemma E.5, we have

_ M =omi (ryr (16 + 837y ? ©8)
b= Ty A= 2)huin
Next, recall from proposition 8 of Roulet et al. (2025) that
1 —1)z) =T —1 1
fole) = Utle-lj) , forz < :
« l1-a
Thus, we have
1
(fa) (@) = (1+ (a0 = D)z) o1 = exp,(2) ,
where we have originally defined exp,, in Section 3. Finally, it holds that
(fa)"(z) = expgy(x)*™* .
Thus,
> AL = 7)o 202 mreg? expy (- 16 + 329 log(mer)| /0?7
H)\’f = 0 Nref pmm#Ef pa )\(1 7 7)2pmin ’
O

In the next two corollaries, we apply Corollary E.7 and Corollary E.10 to get more explicitly the sample
complexity of f—PG with entropy regularization.

Corollary E.5. Assume that, for some 1/4 > ot > 0, pet satisfy P(myer). Assume in addition that the
initial distribution p satisfies A ,. Fix any (1 —~)™' > € >0, a € (0,1), A > 0, and B such that

4 1-— 4811 o )\7 2 2a—4
/\Smin< — = ,1), B<—5q—e a(_ [ 1og {(mse) | max( a))
(]— - ’7) Pmin ('/Tref/2)a7 -1 Tref” Pmin Aa (1 - ’7) Pmin
Setting
1 281527Tref4a_4| log(ﬂ-ref)|2 196| log(ﬂ'ref)\
H > 1 — == 2 )\)2 _o e\ Trel)l 2
- 1-= ¥ ( 6)\0{4(1 _ 7)5p12ninﬂ—ref maX(O[ 7>\) + )\042(1 — 7)3pmin maX(oz ) A) (99)
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and

n< €BA(1L — ) et > 2% 2 i et ( 48| log (Tryef )|

4—2a
— A a2
36721og(mret)? max(a?, X)? Aa2(1 = )2 pmin max(), )) ’

and

14688 log (e )% max(a?, X)? 48| log(mrret) |
~ A%eB(1 - 7)60447rref777ap?ninM4 “ Aa?(1 = )2 puin

4a—8
max (A, a2)> ,
guarantees that

vi(p) —E [v’e: (p)} <e,

where f = f, is the a-Csiszdr—Cressie—Read divergence generator. Thus, the sample complexity of f—PG
to learn an e-solution of the a-Tsallis regularized problem is

| log(myer) |° max(a™® A7%) ( | log(mrer) |
4 a

TBH ~ _ e\ frelt)l
€B(1 = 7)2Tret "~ Pl i Tref Aa2(1 = %)2pmin

4a—8
max (A, a2)> .

Proof. To prove this corollary, we will show that under the conditions of this corollary, the assumptions of
Theorem E.6 holds. Firstly, note that by using Lemma F.4, the assumption A ¢ (¢ )holds. Secondly, using
Lemma F.4 note that

4 1 216w
+ 7 71og< ! [44+4X%d} + A*(1 —7)2y§]>

(177)2 Eﬁ)\,f(]‘if}/)zl
4 1 216767 { | log (e )|
+ log 44 32\ —=—"—
(1=7)? 1-9v <euw(1—7)4 at

<
T (1—n)? AL — ) pZ i Trres?

( < 16+327/\log(7rref)|>4_2a>
log | exp, | — — )

4 1 864y [1 4 32X%| log(mrer)|? /* ]
+ 1 log — —

1- Y )\0[2(1 - ’7)2pmin

where in the last inequality, we used the lower bound on p A provided in Lemma F.4. Next using the
definition of exp,, (see Section 3) and the fact that A < 1, we have

4 1 216""? 2 12 2 2. 2
(17)2+1’ylog(€u A=) [4+4/\df+)\(1—’y) yf]
Eaf

4 1 2815270t log (Tryet ) |2
. N | Tret™ | gg(u)\ max(a?, )2
(1 _ ,Y)Q 1 6)\044(1 - 7)5pminM
4-2v 1 48| log(mret)| 2
R p—— Og( * a)<m2(17)2pmm (A
1 28152711 4| log (myes )| 196| log(re
- Tref | gg(M)‘ max(a?, A\)? ) + M max(a2, \) |
1-— Y 6)\0(4(1 - 7)5pminM )\062(1 - 7)3pmin
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where in the last inequality, we used that for 2z > 0, we have log(1 4+ 2) < . This shows that our condition
on H guarantees that the one set in Theorem E.9 is satisfied. Next, using again Lemma F.4 observe that

20—2 3a—3 2
T rof [log(7rret)| 2047 ef log(myef)
Lyy= 196=—= (1= 7)73 =" max(a?,\) , 0',2\,f < 7;4(1 — 7)476 max(a?, A)?  (100)
—on 48] log(7ryet)| 420
By = AL =) Tret® ™ ppyinTret” XD <_Aa2(1—v %mmmax()\,az) . (101)

Hence, we have that

. 1 EBHAJ
min ,
2Ly ; 1803,
201 _ A3 pmin(—2 Y—1
> min a?(1 — ) min(a™=, A )7
3927rer 22| log (rrer ) |

€BA(L = 7)°arret® =" i Tret” 48| log(rrer )|
36721og(mrer)? max(a?, X)? *Pa A@?(1 = )2 pmin

EBA(L = 1)° 0" Mot P oot 48] log (e
3672 og(meer)? max(a2, )20\ 202(1 — 7%

where in the last identity, we used the fact that € < (1 — v)~! and that

4—2a
max(A,a2)> ) (102)

42«
max (), a2)> , (103)

1
Bgexpa<

2,2
Tref pmin

48]1 . 2a0—4
__48llog(me)] max(\, a?) .
Aa?(1 = 7)?pmin

This shows that our condition on n guarantees that the one set in Theorem E.9 is satisfied. Finally using
(103) and (101), we have

4 1802
—— max <2fo, AJV)
J " eBu

Bys

4 3672 log(rer)? max(a?, \)? 48| log(mrret) |

Ty €BAL =)t et R e\ MA@ (1= 7)% prin
14688 log(myef )% max(a?, \)? 48] log(mret)|

T NB(1 =)0t et T o Trett T\ MA@ (1= 7)pmin

which concludes the proof. O

20—4
max (A, a2)>

4a—8
max(\, a2)) ,

Corollary F.6. Assume that, for some 1/4 > ot > 0, Tpet satisfy P(myer). Assume in addition that the
initial distribution p satisfies A, and fix f to be the a-Csiszdr—Cressie—Read divergence generator, i.e.

u* —oau+a—1

) = fol) = 2
Fix any (1 —~)~! > € > 0, such that
16 e (1 —7)a?e
€< . , and set N = ————— . (104)
(1 - 7)3Pmin (Wref/z)a_l -1 16| IOg(MN
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Additionally set any B such that
1 384| log(meer)| \ 27"
= 0?1 P P (_6a2(1 - v)3pmin) (199
Setting
H5 1 (19008%#&-% log(meer) |\ 1540] log (e )|
T l-ny (1 — )07 i, Tret (1 =) pmin
and
€2a?(1 — v)5Bp2 ;, rer? 384 log(me)| \ 472"
< Tin e o (et o) oo
and
I

127M’7a—7| IOg(M)P
% Pt (L= Py ma B P

( 384/ log (TTret ) |

guarantees that

- €a2(1 - '7)3pmin

€

a— f -V
>4 slog<6(v*(p) 90<p))>7 (107)

v.(p) —E [vg, ()] < € .

Thus, the sample complexity of f —PG, where f is thea-Csiszdr—Cressie—Read divergence generator, to learn

an e-solution of the non-regularized problem is

TBH ~
etaS(1 — )20 et

Tret 7| log(rret )[* <_

384 log(mrer)] \** 7"
6042(1 - 7)3pmin

Proof. To prove this corollary, we will show that under the conditions of this corollary, the assumptions of

Theorem E.9 holds. Firstly, note that (104) implies that

16 4 1

1—
yo ! v)ecf’

. 4
RN e <f'<af>|’ a6k |f'<;m>|> ’ 4

with ¢y = a?/4|log(mer)|. Additionally, observe using Lemma F.4 that we have

647,0: 22| log(m,
Tref | g(M”’ C,](CQ) §96M2a_27 Cf < =

(1)
Cf = a2

384/ log(mer)| \" 7
B (Y

)

@ _ 13824m° 0] log(mer)

(108)

where Cj(cl), CJ(CQ), CJ(;’), and d(e) are defined in (80) and (79). Next, observe that

N Lo (e 384 log(mrer)| \ 172
[ — 2008 Tref)|
1= 2\ TP T ea?(1= ) pmin

4 1 297w3C{

TP T4 <ed<e>(1 = w)ﬁpiﬁnw?)

S S, (19008”ref4a2 log(wﬂ)
1-=9)2 1-n ea?(1 —7)0p2 ;. mrer?

< 4 N 1 og <190087rref4‘12 1og(7rref)|> N 1536/ log(mref)| 7
1-=9)2 1-n €a?(1 —)0p2, Trer? €02(1 = 7) pmain
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where in the last inequality, we used that log(1 4+ u) < x for u > —1. This shows that our condition on H
implies the one assumed in Theorem E.9. Using (108), we have

nin ((1 —)? ()1~ w)ﬁBpimmef?)
2 7 (3)
Cf Cf
o i [ A= €a?(L =) Bpgin et exp, [~ 234 oa(mrer)| e
h 967mrer?* 2" 13824myet P [ log(mret)| "\ €@?(1 = 7)3pmin

€2a®(1 = 7)° Bpl i Tret” ~ 384[log(mer)| )"
~ 138247,¢° 70| log (Trvet )| @ ea(1 — )3 pmin ’

(109)

where in the last inequality, we used the condition on B introduced in (105). Hence our condition on the
step size ensures that the one assumed in Theorem E.9 is satisfied. Next, using (108) and (109) yields

(1) (2) (3)
16057 ¢(e) (< Yy
Gd(E)(l - ’Y)Qp%nin@2 (1 - 7)3’ 62d(6)(1 - ’7)6Bpfninw2
16C)4e)  13824m® | log(mer)| (384 loglme)] )
= ed(e)(1 =) P met®  2a?(1=9)0Bpl e Y\ €@ (1 —7)%pin

10247,0£ 22| log(mrer) [€(€) 1382471067 | log (et )| 384| log(mer)| \**7°
60[2(1 - 7)2pr2ninﬂ—r8f2 62a2(1 - Py)GBp?ninﬂ-refQ “ 60[2(1 - 7)3pmin

127w log ()| ( 384| log (er )| )4a_810g (6(0{(”)‘“50(/))))

< exp, | ——r——
630‘4(1 - V)SpfninM4B “ 60‘2(1 - V)SPmin €

which proves that under our condition on 7' the one assumed by Theorem E.O is satisfied. 0

Corollary F.7. Assume the same condition of Corollary F.6. For any (1 —v)™! > ¢ > 0 and o € (0,1),
denote respectively by T(e, ), B(e, ), and H (e, ), the thresholds set in Corollary F.6 on T, B, and
H, to learn an e-solution of the unregularized problem. Finally, denote by o*(€) the minimizer of

T(e, ) B(e, ) H (e, o). It holds that

REVEEL DU Y I S
TS og(1/e) T \log(1/e) ) -
Proof. Firstly, note that using Corollary F.6, we have
S(e, ) = log (T'(e, ) B(e, ) H (€, ) )
( 1277rrcf7a77| log(ﬂ—rcf) ‘2 )
= log = =

e*at (1 —7)® P Trrer

+40‘8log<1+(1a) <38410g(7r”f)|>)

oa—1 €a(1 — )3 pmin

/ ;
o <1og (6(v*(p) ;er (p))>>

1 190087042 | log(Tret )| 1540| log(mret) |
log — — —
1—v 6042(1 - '7)4pmin

+lo
& ea?(1 —)5p2 i Mret?
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Firstly, observe that for any function k(e) which does converge to a different value from 0, we have

y S(e,e)
50 S(e, k(e))

which establishes that a*(¢) — 0. This allows, to rewrite S(¢, o) as

<1,

1 8 — 4« 1
S(ev0) = oa( ) + o (7 ) + vlene)

where ¢(«, €) is defined as

1277rref70t77| log(’ﬂ_refﬂz)
a,e) =1o — —
olaq =g (S e

et (0o (i) e (@)

Fip) — of
tlog <10g <6<v*<p> vl <p>>>>

ea® 190087012 | log(ref )| 1540| log(mryef) |
+ log log 5 6.3 5 + YO
11—~ ea®(1 = 7)0 ppyin ret (1 =7)*Pmin

Importantly, observe that function dominated by log(1/¢) when (a, €) — 0 and that

awéi’ Do (mogl(;))

Computing the derivative of this function with respect to « yields

S(e,) -6 1 1 1 1.8 1 (e, @)

da  « +4(1—a)2 log(€)+4(1_a)2 IOg(az) ! <1+ 1—a) * O (110)

—22 1 1
= — +4log(— _ . 111
«Q + Og(e)—‘_o(alog(;)) (1D

As
9S(e, ) —0 .
9a lazar(o

Then this implies that

G TECHNICAL LEMMAS

Lemma G.1 (Lemma 1.2.3 in Nesterov (2004)). Let f : R? — R be twice continuously differentiable.
Suppose there exists L > 0 such that for all x € R? and v € RY,

[T V2 f(z)v] < Lfvlf*.
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Then f has an L-Lipschitz continuous gradient (i.e., f is L-smooth); in particular,

IVf(y) = V@) < Ly — =,
and
fly) = fl@)+(Vf(@)y—2) - 5ly =]
forall z,y € R%.
Lemma G.2. Consider any two policies 7;, i = 1,2. It holds that

ldzr —dzell, < £ sup mi(ls) = maCls)ll

Proof. Let us start from the definition of flow conservation constraints for the discounted state visitation
(Puterman, 1994), for i € {1, 2}, we have

dy(s) = (L =7)p(s) +7)_ Pr(ss)dji(s") -

Then, we have

DoldpE(s) —dpt(s) < v Do DO |P(sls’ a)ma(d|s)dF(s)) — P(sls', a)m(d']s)dg (s')]

seS (s',a’) s
<Y Y Plsls a) Ima(d]s') = m(d/|s') dj?(s)
s',al s
+7 YD Psls’,a)m(d|s') [t (") — dj(s')]
Svi@llm(l ) = ma(:|s)|l +VZId’” —d3(s)]
which concludes the proof. O

Lemma G.3 (Performance Difference Lemma). It holds that

vi(p) = vh(p 72 [Z ] (als)ap(s,a) = ADI (x] (]s) | mer (-]s)) = vL, (s)

aES acA

Proof. Fix 6 € RISI*IAl and any state s € S. It holds that

vi(s) = vl (s) =Y wl(als)al(s,a) = Y wh(als)ah(s,a)

a€eA acA
- ADf<7rf<~|s>||wref<-|s>> + MDY (] (]5)l|mret (-]5))
= Y wl(als) (¢{(s.0) = ah(s.@)) + > (L (als) = mj (als)) g} (5. 0)

acA acA
— ADI (] (c[s)l|meet (-[5)) + ADY (] (-|3) | et (-]5))

=93 wl(als) Y2 Psls,a) (v1(s) — vf(s)) + 3 (wL(als) — 7l (als)) ah(s.a)

acA s'eS acA
— AD (] (-|s) et (-[5)) + ADF (] (-15) et (-]3))
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where in the last equality, we used the definition of the regularized Q-function (4). Expanding the recursion
yields

ol(s) = h, (5) = =2 7 di(s) [Z (vl(als) = 7{ (als") qé(s',w]
7 ies acA
1 .
e 2 ) AP (18" mer (1) = ADY (! (1) e (1)
s'eS
1
=1 2 () lZ ] (als)q}(s',a) = XD (n] <-|s'>||wref<-|s’>>]
v s'eS a€A
]‘ *
-1 &) [Z mj (als")gf(s',a) = AD (] <-|s'>||m<~|s/>>] ,
v s'eS acA
which concludes the proof. O

Lemma G.4 (Lemma 23 of Mei et al. (2020b) ). Let © € P(A). Denote H(r) = diag(n) — nr . For any

vector x € RIAl
(,1).4))
Jrrm (== 5 0)

Lemma G.5 (Danskin (1966)). Let Z C R™ be compact and let ¢ : R™ x Z — R be continuous. Define

1
> minw(a) - ||z — Wlfu

9 acA

2

flx) = rzneaéc o(x, 2), Zo(z) = argrznea%( o(z, 2).

Assume that for each fixed z € Z, the map x — ¢(x, z) is differentiable. If Zy(x) = {z} and x — ¢(z, Z)
is differentiable at x, then f is differentiable at x with

Of(z) _ 0¢(x,2)

ox ox

H LINKS WITH MIRROR DESCENT

To avoid overwhelming readers with technical details, we keep the discussion in this paragraph at a
high level. There is a clear connection between the coupled parameterization we consider and mirror
descent (MD) algorithms. The discussion below is informal, meant to highlight the key ideas. We
stress that the proposed method is fundamentally different from mirror descent. Let us define a mapping
O(m) = Y ics DY (7(:|s)||7ret (-] 5)). For the functions f that we consider, ® is Legendre on the positive
orthant and separable across states (Bubeck et al., 2015). In this case, the f-regularized value function v (p)
can be optimized directly in the policy space via the Lazy Mirror Descent algorithm (or dual averaging; see
Nesterov (2009); Xiao (2009); Juditsky et al. (2023)) with ® as mirror map. Denoting by ; the policy at
step ¢t and 7; by the unnormalized policy at step ¢, the lazy MD updates reads:

VO(Tiy1) = VO(TL) + Vvl (p)ner, s  Tep1 = arg rgin B (m||741) - (112)
S

where IT = P(A)!S! is a policy space and By (7||7") = ®(7)—®(7')—(V®(7’), 7—') is the corresponding
Bregman divergence. Since @ is separable over states, the Bregman projection can be written state-wise as
Tes1(t]s) = softargmax’ (VO(Fy11)(s, ), Teet (]5))-
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By denoting 6; = V®(7;), one obtains updates that resemble those of (14) (after the removal of T'), with
one important difference: the gradient in (112) is taken with respect to the policy m whereas in (14) it is
computed w.r.t the “dual” parameter 6 (in the MD terminology). Even more important, the update (112) can
be expressed as, by the chain rule

871'{’;

-1
Ory1 =0+ [Wb:e,} Vo (6:),
which have an additional preconditioning term given by the inverse of the policy Jacobian.

A crucial feature of (14) is that it performs a gradient ascent in the ’dual” space directly. This algorithm can
be extended in the non-tabular setting directly, by parameterizing the function 6(s, a), allowing extensions
to deep RL. This is in contrast with Lazy-MD methods (Nesterov, 2009; Xiao, 2009; Juditsky et al., 2023),
due to preconditioning, which cannot be expressed as direct parameter-space gradient steps. This remark
has several important implications, which we leave for future work.
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