
GDeR: Safeguarding Efficiency, Balancing, and
Robustness via Prototypical Graph Pruning

Guibin Zhang∗1,2, Haonan Dong∗1, Yuchen Zhang2, Zhixun Li3, Dingshuo Chen4,
Kai Wang5, Tianlong Chen6, Yuxuan Liang7, Dawei Cheng†1,2, Kun Wang†8

1Tongji Univerity, 2Shanghai AI Laboratory, 3CUHK, 4UCAS,
5NUS, 6UNC-Chapel Hill, 7HKUST (Guangzhou) 8NTU

∗ Equal Contribution, † Corresponding author
dcheng@tongji.edu.cn, wk520529wjh@gmail.com

Abstract
Training high-quality deep models necessitates vast amounts of data, resulting
in overwhelming computational and memory demands. Recently, data pruning,
distillation, and coreset selection have been developed to streamline data volume
by retaining, synthesizing, or selecting a small yet informative subset from the
full set. Among these methods, data pruning incurs the least additional training
cost and offers the most practical acceleration benefits. However, it is the most
vulnerable, often suffering significant performance degradation with imbalanced
or biased data schema, thus raising concerns about its accuracy and reliability
in on-device deployment. Therefore, there is a looming need for a new data
pruning paradigm that maintains the efficiency of previous practices while ensuring
balance and robustness. Unlike the fields of computer vision and natural language
processing, where mature solutions have been developed to address these issues,
graph neural networks (GNNs) continue to struggle with increasingly large-scale,
imbalanced, and noisy datasets, lacking a unified dataset pruning solution. To
achieve this, we introduce a novel dynamic soft-pruning method, GDeR, designed
to update the training “basket” during the process using trainable prototypes.
GDeR first constructs a well-modeled graph embedding hypersphere and then
samples representative, balanced, and unbiased subsets from this embedding space,
which achieves the goal we called Graph Training Debugging. Extensive
experiments on five datasets across three GNN backbones, demonstrate that GDeR
(I) achieves or surpasses the performance of the full dataset with 30% ∼ 50%
fewer training samples, (II) attains up to a 2.81× lossless training speedup, and
(III) outperforms state-of-the-art pruning methods in imbalanced training and noisy
training scenarios by 0.3% ∼ 4.3% and 3.6% ∼ 7.8%, respectively. The source
code is available at https://github.com/ins1stenc3/GDeR.

1 Introduction
Data-centric AI, though continuously providing high-quality data for upcoming artificial general
intelligence [1, 2, 3, 4], presents a significant hurdle for their on-device deployment during training and
inference phases [5, 6, 7, 8]. To democratize existing state-of-the-art methods [9, 10, 9, 11, 12, 13, 14],
considerable efforts are directed toward identifying unbiased and core data within training datasets and
conducting troubleshooting to deepen our solid understanding of the intrinsic property of data shcema
[15, 16, 17, 18]. To date, data pruning [19, 20, 21, 22, 23], distillation [24, 25, 26, 27, 28, 29, 30] and
coreset selection [31, 32, 33, 16] aim to retain, synthesize or choose a small but informative dataset
from original full set. While the sample size undergoes significant reshaping and reduction, methods
like dataset distillation inevitably lead to additional training costs [23, 34, 35]. As a hardware-friendly
candidate and accelerator for training and inference, data pruning serves as a promising candidate by
mitigating the high computational burden.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/ins1stenc3/GDeR

Original Epoch 100 Epoch 200 Epoch 300

(b) Biased Scenario

(a) Imbalanced Scenario

Figure 1: (a) We report the label distribution of the
training set retained by InfoBatch at pruning ratios
of 50% in the {0, 100, 200, 300}-th epochs. The
gray, light blue and dark blue represent pruned, mi-
nority, and majority samples, respectively. (b) Per-
formance comparison between InfoBatch and our
GDeR when introducing outliers (following [36])
into {0%, 10%, 20%} of the training set.

Recent advancements, however, have demon-
strated that the efficiency of data pruning may
come at a cost—utilizing only a portion of
the data can potentially render the model more
vulnerable to imbalance or malicious perturba-
tion attacks [37], which are commonly seen in
real-world applications. As illustrated in Fig-
ure 1, we evaluate the performance of the cur-
rent state-of-the-art data pruning paradigm, In-
foBatch [23], with a pruning ratio of 50%, on
MUTAG [38]+GCN [39] under both imbalance
and biased scenarios. It can be observed that:
❶ InfoBatch exacerbates the imbalance of train-
ing samples during the training process; ❷ In-
foBatch efficiently saves training costs in noise-
free scenarios, even surpassing the original full
dataset performance by 0.7%. However, it en-
counters significant performance degradation
(5.7% ∼ 6.4% ↓) in biased scenarios.

In this paper, we primarily focus on graph-level
data pruning, aiming to enhance the model’s
robustness to data imbalance and noise while maintaining the efficiency inherited from traditional
data pruning practices. This is because, unlike in computer vision (CV) and natural language
processing (NLP) domains, where separate solutions already exist for addressing these issues [37, 23],
graph learning models continue to grapple with increasingly large-scale, imbalanced, and biased
datasets [40, 36, 41]. To this end, we first introduce a novel direction in the realm of graph training,
termed Graph Training Debugging (GTD), to (dynamically) identify representative, robust, and
unbiased subsets for accelerating the training process without compromising performance.

We achieve GTD goal by proposing a novel dynamical soft-pruning method, Graph De-Redundancy
(GDeR), in which specifically designed to work efficiently and accurately on various GNN archi-
tectures. Concretely, GDeR draws inspiration from prototype learning [42, 43] practices, projecting
training graph samples onto a hyperspherical embedding space. It utilizes a set of trainable prototypes
to regularize the graph embedding distribution, essentially encouraging both inter-class separateness
and intra-class compactness. Furthermore, on this well-regularized hypersphere, GDeR generates a
sampling distribution that encourages the sampling of under-learned graphs, while excluding those
with high outlier risk and belonging to majority clusters. Given a training budget (i.e., pruning ratio),
GDeR dynamically maintains a sub-dataset at each epoch, efficiently combating the negative impact
of imbalanced and noisy data on the model, simultaneously accelerating training significantly.

Broader Impact. In this paper, we present a novel training philosophy GDeR to achieve our defined
GTD goal. GDeR dynamically prunes irrelevant graph samples, providing a more comprehensive insight
and achieving a triple-win of efficiency, balancing, and robustness. This approach can contribute
to a wide range of graph-related applications, accelerating model training while demonstrating
great potential in scenarios such as adversarial attacks [44, 45, 45], imbalanced graph classification
[40, 46], and unsupervised pre-training [47, 48, 49]. We believe GDeR can serve as a benchmark
for future research in this area, attracting significant attention and inspiring further exploration into
understanding sparsity in other domains such as LLMs.

Experimental Observation We validate the GDeR through a comprehensive series of graph-level
tasks, across five datasets and three GNN backbones, showcasing that GDeR can: ❶ achieve lossless
training performances with 30% ∼ 50% fewer training samples, ❷ achieve a 2.0× lossless speedup
on OGBG-MOLHIV, and a 2.81× lossless speedup on pre-training ZINC. ❸ mitigate imbalance
issues by achieving a 0.3 ∼ 4.3% ↑ in F1-macro on MUTAG and DHFR datasets, ❹ effectively help
outlier-attacked GNNs improve accuracy by 3.5% ∼ 10.2% through data pruning.

Limitations & Future Insight. GDeR, as a plug-in to graph training, not only improves efficiency
but also ensures robustness and balance throughout the training. However, the applicability of its
principles in fields such as CV remains unexplored, limiting the generalizability of data debugging.
This represents a direction for future development in our work.

2

2 Technical Background
Notations Consider an undirected graph G = (V, E), where V represents the node set and E
signifies the edges. The feature matrix for the graph is designated as X ∈ R|V|×F . Each node vi ∈ V
is associated with a feature vector of F dimensions. The adjacency matrix A ∈ {0, 1}N×N represents
the connectivity between nodes, where A[i, j] = 1 suggests the presence of an edge eij ∈ E , and 0
indicates no edge. In graph-level training tasks, specifically for graph classification, given a set of
N graphs {G} = {G1,G2, . . . ,GN}, where each graph Gi = (Vi, E i) is as defined above, and their
corresponding labels Y ∈ RN×C with C being the total number of classes, we aim to learn graph
representations H ∈ RN×d′

with H[i, :] for each Gi ∈ G that effectively predict Yi.
Graph Neural Networks (GNNs). GNNs [50, 51] have become pivotal for learning graph represen-
tations, achieving benchmark performances in various graph tasks at node-level [52], edge-level [53],
and graph-level [54]. The success of GNN mainly stems from message-passing mechanism:

h
(l)
i = COMB

(
h
(l−1)
i , AGGR{h(l−1)

j : vj ∈ N (vi)}
)
, 0 ≤ l ≤ L. (1)

Here, L represents the number of GNN layers, where h
(0)
i = xi, and h

(l)
i (1 ≤ l ≤ L) de-

notes the node embedding of vi at the l-th layer. N (vi) denotes the 1-hop neighbors of vi, and
AGGR(·) and COMB(·) are used for aggregating neighborhood information and combining ego/neighbor-
representations, respectively. Finally, a sum/mean pooling operation is commonly used for READOUT
function to obtain the graph-level embedding. While promising, the increasing volume of graph
samples [55, 19, 56] poses significant computational challenges for both training and pre-training of
GNNs. Efficiently accelerating graph-level training remains an unresolved issue.
Data Pruning Current data pruning methods can be categorized as static or dynamic [23]. Static
data pruning involves heuristic-based metrics or limited training to assess sample importance and
perform pruning before formal training, like EL2N [18] and Influence-score [57]. On the other hand,
dynamic data pruning dynamically selects different training samples during training [58, 23, 59],
often achieving better results than static pruning. In the graph domain, attempts related to data pruning
include edge-level sampling techniques like GraphSAGE [60] and GraphSAINT [61]. However,
to the best of our knowledge, there is currently no method specially designed for graph-level data
pruning, let alone one that can simultaneously improve the balance and robustness of GNNs.
Imbalance in GNNs Deep imbalanced learning has been one of the significant challenges in deep
learning [62]. The current mainstream research can be broadly categorized into three approaches:
(1) re-sampling [63, 64, 65], which balances the number of samples from different classes; (2)
re-balancing [66, 67, 68], which adjusts the loss values for samples from different classes; and (3)
post-hoc processing [69], which shifts the model logits based on label frequencies. In the domain
of graph learning, most efforts to address the imbalance issue focus on node-level classification
imbalances [70, 71, 72], yet solutions targeting graph-level imbalance are relatively limited. Despite
a preliminary attempt [40], which requires complex up-sampling and regrouping operations, there is
still a need for a straightforward yet effective solution to graph imbalance issue.
Robustness in GNNs As for robustness learning, many studies showcase graph classification
is vulnerable to adversarial attacks [73, 74]. Given a set of training or test graphs, an attacker
could perturb the graph structure [75] and/or node features to deceive a graph classifier into making
incorrect predictions for the perturbed testing graph. Traditional empirical and certified defenses
[76, 77, 78, 79] often involve complex designs and additional components. In this paper, we propose
subtle adjustments during training, leveraging prototypes to enhance the robustness of graph training.

3 Methodology
3.1 Problem Formulation
In the classic scenario of graph-level training (not limited to specific tasks like graph classification,
regression, or pre-training), given a graph dataset D = {zi}|D|

i=1 = {(Gi,Yi)}|D|
i=1, a GNN encoder is

employed to extract graph-level embeddings H = {hi}|D|
i=1 for each graph sample, which are then

utilized for downstream tasks. The goal of GDeR is to find an oracle function that changes with time
(epochs) and can determine the current most representative, balanced, and denoised core subset Xt:

Xt = Ft−1

(
D, {h(t−1)

i }|D|
i=1

)
, (2)

where Ft−1 is the selection function at the (t − 1)-th epoch. Given a preset sparsity ratio s%, the
subset’s volume is fixed as |Xt| = (1− s)%× |D|.

3

𝒢1

𝒢2

𝒢|𝒮𝑡|

ሷ𝒢|෪𝒮𝑡|

ሷ𝒢1

G
ra

p
h

 N
e

u
ra

l

N
e

tw
o

rk

P
ro

to
ty

p
e

C
lu

s
te

r
in

g

R
o

b
u

s
tn

e
s

s

Ite
ra

tiv
e

 T
ra

in
in

g

(1
 e

p
o

c
h

)

B
a

la
n

c
e

P
ru

n
ed

 set: ෩𝓢
𝒕

S
elected

 set: 𝓢
𝒕

𝒟 = ෪𝒳𝑡 ∪𝒳𝑡

…
…

…

Class-conditioned Prototypes

Hyperspherical

Projection

𝐩𝟏
(𝟏)

𝐩𝟐
(𝟏)

𝐩𝟏
(𝟐)

𝐩𝟐
(𝟐)

𝐩𝟏
(𝟑)

𝐩𝟐
(𝟑)

𝐡 ∈ ℝ𝐹

𝐳 ∈ ℝ𝐷, 𝐳
2
= 1

Visualization

Inter-class

In
tr

a
-c

la
ss

Outlier assessment Balanced Sampling

v
M

F

D
istrib

u
tio

n

M
o

d
e

lin
g

Regularize

Embeddings

ℒcomp + ℒsepa

Outlier

Assessment

Balanced

Weighting

𝜔𝑏(𝐳)

Familiarity

Filtering

𝜔𝑒(𝐳)

𝜔𝑟(𝐳)

Sampling

Distribution

𝒫𝒕(𝐳)

Efficiency

…𝒳𝑡 ෩𝒳𝑡

Sample by

𝑆(𝒳𝑡 , 𝒫
𝒕 𝐳 ,𝚿 𝐭) 𝑆(෩𝒳𝑡, 𝒫

𝒕−𝟏 𝐳 ,𝚿 𝐭)
Sample by

𝒳𝑡+1
…

Robust Balanced

Efficient Dynamic Pruning

Methodology Target

Figure 2: The overview of our proposed GDeR. GDeR comprises hypersphere projection, embedding
space modeling, sampling distribution formatting, and the final dynamic sampling. We present the
dynamic sample selection process of GDeR within one epoch.

3.2 Overview of the Proposed Method
As shown in Figure 2, given an arbitrary GNN, GDeR selects a training sample setXt within a specified
budget for each epoch. At the t-th epoch, after the GNN fθ : X→ RE outputs graph embeddings
h ∈ RE from the input graph Gi with h = fθ(Gi), these are projected into a hyperspherical
embedding space via a projector gϕ : RE → RD. GDeR allocates a set of M trainable prototypes
Pc = {pc

k}Kk=1 for each class c, with associated losses used to shape the embedding space, ensuring
inter-class separation and intra-class compactness. In this regularized space, GDeR formulates a
sampling distribution by focusing on samples unfamiliar to the model, excluding those from the
majority prototype cluster and with high outlier risk, thereby providing a subset of samples St+1

for the next epoch. Through this balanced and robust dynamic pruning mechanism, GDeR achieves
unbiased graph representations at a significantly lower training cost than the full dataset.

3.3 Projection onto Hyperspherical Embedding Space

At the t-th epoch, GDeR maintains a subsetXt with a given budget, where s% = |Xt|/|D| is a constant,
representing the dataset pruning ratio. Given the feature representations H ∈ R|Xt|×E output by fθ,
we first project these features into a hyperspherical embedding space, denoted as z′ = gϕ(h), z =
z′/||z′||2. This projection has been shown to be beneficial for compactly embedding samples of the
same class [80, 81, 82]. The projected embeddings z ∈ RD, which lie on the unit sphere (||z||2 = 1),
can naturally be modeled using the von Mises-Fisher (vMF) distribution [80, 81]. Here, we first
consider the graph classification scenario1, in which we allocate K prototypes Pc = {pc

k}Kk=1 for
each class c (1 ≤ c ≤ C). Following conventional practices in hyperspherical space modeling [83],
we model a vMF distribution as the combination of a center prototype representation pk and the
concentration parameter κ:

pD(z;pk, κ) = ZD(κ) exp
(
κp⊤

k z
)
, ZD(κ) =

κD/2−1

(2π)D/2ID/2−1(κ)
, (3)

where κ ≥ 0 denotes the tightness around the mean, ZD(κ) represents a normalization factor [83],
exp

(
κp⊤

k z
)

is called the angular distance and Iv is the modified Bessel function of the first kind
with order v. In our multi-prototype settings, we model the probability density of a graph embedding
zi in class c as follows:

p(zi;P
c, κ) =

K∑
k=1

ZD(κ) exp(κpc
k
⊤zi), (4)

1The extension of GDeR to broader scenarios will be detailed in Section 3.5

4

Further, the embedding zi is assigned to class c with the normalized probability as shown above:

p(yi = c | zi; {Pj , κ}Cj=1) =

∑K
k=1 ZD(κ) exp(pc

k
⊤zi/τ)∑C

j=1

∑K
k′=1 ZD(κ′) exp(pj

k′
⊤
zi/τ)

, (5)

where τ is a temperature coefficient. Given that we have now allocated a corresponding class for
each graph embedding, we aim to further encourage: ❶ allocation correctness, meaning that the
allocation should be consistent with the ground truth label; ❷ intra-class compactness, meaning that
graph embeddings should be close to the appropriate prototypes belonging to their own class; and ❸
inter-class separateness, meaning that graph embeddings should be distant from prototypes of other
classes. To achieve ❶ and ❷ , we have designed the compactness loss below:

Lcomp = − 1

|Xt|

|Xt|∑
i=1

log

∑K
k=1 ZD(κ) exp(pyi

k
⊤
zi/τ)∑C

c=1

∑K
k′=1 ZD(κ′) exp(pyi

k′
⊤
zi/τ)

, (6)

where yi represents the class index for zi. Equation (6) is the maximum likelihood estimation of
maxθ,ϕ Π

|Xt|
i=1p(yi = c|zi, {{pc

k, κ}Kk=1}Cj=1), which not only boosts the allocation correctness but
also enforces graph embeddings to compactly surround the appropriate prototypes. Furthermore, to
achieve ❸, namely encouraging inter-class separateness, we design the separation loss, optimizing
large angular distances among different class prototypes:

Lsepa =
1

C

C∑
i=1

log
1

C − 1

C∑
j=1

1j ̸=i

K∑
k=1

exp(pj
kzi/τ) (7)

where 1(·) is an indicator function. Through the above regularization, we obtain C prototype clusters
{χc}Cc=1, each composed of K prototype centers {pk}Kk=1 and surrounding sample sets {z(C)}. After
modeling this hypersphere, we proceed with sample selection on the current subset D(t).

3.4 Efficient, Balanced and Robust Graph Debugging
Traditional dynamic dataset pruning methods typically rely on loss-based metrics to select informative
subsets [58, 23], which, however, can make the model more vulnerable to imbalance and malicious
perturbation (as discussed in Section 1). In this subsection, while selecting a representative subset
D(t), we also intend to further ensure it is balanced and noise-free. Our first step is to locate samples
that are at risk of being outliers in the embedding space. We propose using a prototype-based
Mahalanobis distance to estimate the outlier risk of each graph sample:

ωr(zi) = −min
c

[
−1yi ̸=c max

k

[
(zi − pc

k)
⊤Σ−1

k (zi − pc
k)
]]

, (8)

where Σk ∈ RK×K is the sample covariance of all the prototypes in class c. Equation (8) calculates
the maximum distance of zi to all prototypes within its class, which serves as a robust outlier detection
metric [84]. Furthermore, we intend to evaluate the effectiveness of each sample. Given that the
distance of an embedding from its cluster center has been shown to be a good indicator of the model’s
familiarity with it [85], we compute the distance of each graph sample to its class-specific prototypes
as a familiarity metric:

ωe(zi) =

∑K
k=1 dist(p

yi

k , zi)∑C
c=1

∑K
k′=1 1c ̸=yi

dist(pyi

k′ , zi)
, (9)

which suggests that if a graph sample is significantly closer to its own prototypes and farther from
those of other classes, the model is more familiar with it. We implement the distance function using
the angular distance in Equation (3). When considering the data balancing issue, we formulate the
balancing score for each sample zi as follows:

ωb(zi) =

∣∣∣∣{zi|min
k

dist(ϕzi(pk), zi)

}∣∣∣∣/|{ϕzi(χ)}|, (10)

where ϕzi
(pk) denotes the closest prototype to zi, and ϕzi

(χ) denotes the prototype cluster that zi
currently belongs to. Equation (10) evaluates whether the graph sample zi belongs to a minority from
a prototype-cluster perspective. Finally, we assign sampling probabilities to all samples in D(t):

5

ω(zi) =
ωσ

e (zi)

(ωσ
r (zi) + ϵ) · (ωσ

b (zi) + ϵ)
, (11)

where (·)σ represents the Sigmoid transformation. Equation (11) is designed to sample with higher
probability those samples that the model is less familiar with, have a lower outlier risk, and belong
to a minority group. Now, at the t-th epoch, we obtain the final sampling probability distribution
P(t)(z) :

∫
z∈Xt

ω(z)∫
z
ω(z) dz

dz. Recall that we have (1 − s)% of samples pruned in the t-th epoch,

i.e., X̃t = D \ Xt. For X̃t, we use the probability distribution P(t−1)(z) from the (t− 1)-th epoch 2.
Specifically, we formulate GDeR’s coreset sampling function Ft in Equation (2) as follows:

Ft(D,H) = S
(
Xt,P(t)(z),Ψ(t)

)⋃
S
(
X̃t,P(t−1)(z), Ψ̃(t)

)
, (12)

where Ft outputs the selected samples Xt+1 for the next epoch’s training, S(X ,P, N) is a sampling
operator that samples N samples from X with probability distribution P , and Ψ(t) (Ψ̃(t)) is the
scheduler function (with implementation placed in Appendix B.5) that control the number of samples
drawn from Xt (X̃t), respectively, subject to the given budget Ψ(t) + Ψ̃(t) = |D| × s% = |Xt|.

3.5 Optimization and Extension

Optimization Aside from the original task-specific loss of GNN training denoted as Ltask, GDeR
has additionally introduced Lcomp and Lsepa. The overall training objective of GDeR is formulated as:

LGDeR = Ltask + λ1 · Lcomp + λ2 · Lsepa, (13)

where λ1 and λ2 are co-efficient adjusting the relative importance of two losses. We conclude the
algorithm workflow table of GDeR in Appendix C.

Extension Finally, we advocate that GDeR is not limited to graph classification but can also be
seamlessly adapted to tasks such as graph regression and graph pre-training. The key distinction
between these tasks and graph classification is that each graph sample does not have a ground truth
class index, which makes ground truth class-based calculations, such as those in Equations (6) and (7),
infeasible. One straightforward approach is to manually set M virtual classes, using the class assigned
by Equation (5) as the graph sample’s current class. However, this may result in prototypes and
hyperspherical embeddings that do not accurately reflect the underlying clustering distribution [86].
To address this, we leverage ProtNCELoss [43] as a self-supervised signal, providing a more reliable
reflection of the data’s structure. Detailed implementation can be found in Appendix D.

4 Experiments
In this section, we conduct extensive experiments to answer the following research questions: (RQ1)
Can GDeR effectively boost GNN efficiency (under both supervised and unsupervised settings)?
(RQ2) Does GDeR genuinely accelerate the GNN training? (RQ3) Can GDeR help alleviate graph
imbalance? (RQ4) Can GDeR aid in robust GNN training?

4.1 Experiment Setup
Datasets and Backbones We test GDeR on two widely-used datasets, MUTAG [38] and DHFR [87];
two OGB large-scale datasets, OGBG-MOLHIV and OGBG-MOLPBCA [88]; one large-scale chemical
compound dataset ZINC [89]. Following [40], we adopt a 25%/25%/50% train/validation/test
random split for the MUTAG and DHFR under imbalanced scenarios and 80%/10%/10% under normal
and biased scenarios, both reporting results across 20 data splits. For OGBG-MOLHIV and OGBG-
MOLPBCA, we use the official splits provided by [88]. For ZINC, we follow the splits specified in
[90]. We choose three representative GNNs, including GCN [91], PNA [92] and GraphGPS [90].
Detailed dataset and backbone settings are in Appendices B.1 and B.2.

Parameter Configurations The hyperparameters in GDeR include the temperature coefficient τ ,
prototype count K, loss-specific coefficient λ1 and λ2. Practically, we uniformly set K = 2, and tune
the other three by grid searching: τ ∈ {1e−3, 1e−4, 1e−5}, λ ∈ {1e−1, 5e−1},λ ∈ {1e−1, 1e−5}.
Detailed ablation study on hyperparameters is placed in Section 4.5.

2For the first epoch, we set P(t−1)(z) as uniform distribution.

6

Table 1: Performance comparison to state-of-the-art dataset pruning methods when remaining
{20%, 30%, 50%, 70%} of the full set. All methods are trained using PNA, and the reported metrics
represent the average of five runs.

Dataset OGBG-MOLHIV (ROC-AUC ↑) OGBG-MOLPCBA (AP ↑)

Remaining Ratio % 20 30 50 70 20 30 50 70

St
at

ic

Hard Random 72.1↓4.2 72.4↓3.9 73.5↓2.8 75.6↓0.7 20.5↓7.6 22.9↓5.2 24.7↓3.4 28.0↓0.1
CD [93] 71.9↓4.4 72.6↓3.7 73.8↓2.5 75.9↓0.4 19.8↓8.3 22.6↓5.5 23.7↓4.4 27.8↓0.3

Herding [94] 63.0↓13.3 64.9↓11.4 66.8↓9.5 75.2↓1.1 12.4↓15.7 14.0↓14.1 15.5↓12.6 21.8↓6.3
K-Means [95] 61.5↓14.8 65.9↓10.4 69.5↓6.8 74.7↓2.6 18.5↓9.6 23.4↓4.7 23.2↓4.9 27.6↓0.5

Least Confidence [96] 72.1↓4.2 72.4↓3.9 75.6↓0.7 75.9↓0.4 21.0↓7.1 23.4↓4.7 25.0↓3.1 27.8↓0.3
Margin [96] 72.9↓3.4 71.3↓5.0 75.1↓1.2 76.0↓0.3 20.2↓7.9 23.3↓4.8 25.0↓3.1 28.3↑0.2

Forgetting [33] 72.6↓3.7 73.0↓3.3 73.9↓2.4 75.7↓0.6 20.7↓7.4 23.1↓5.0 24.1↓4.0 27.9↓0.2
GraNd-4 [18] 68.5↓7.8 72.7↓3.6 73.8↓2.5 75.7↓0.6 20.2↓7.9 22.9↓5.2 25.0↓3.1 28.0↓0.1
GraNd-20 [18] 74.7↓1.6 74.0↓2.3 74.9↓1.4 75.9↓0.4 21.2↓6.9 23.8↓4.3 24.9↓3.2 27.8↓0.3
DeepFool [97] 71.9↓4.4 72.5↓3.8 73.0↓3.3 75.6↓0.7 19.3↓8.8 22.7↓5.4 24.0↓4.1 27.7↓0.4

Craig [98] 71.8↓4.5 72.3↓4.0 73.5↓2.8 76.0↓0.3 20.5↓7.6 23.1↓5.0 24.7↓3.4 27.8↓0.3
Glister [99] 73.3↓3.0 74.4↓2.9 75.0↓1.3 76.2↓0.1 20.6↓7.5 23.4↓4.7 25.0↓3.1 27.9↓0.2

Influence [57] 71.5↓4.8 72.7↓3.6 73.5↓2.8 75.2↓1.1 19.7↓8.4 22.3↓5.8 23.9↓4.2 27.2↓0.9
EL2N-2 [33] 73.0↓3.3 74.5↓1.8 75.0↓1.3 76.1↓0.2 20.9↓7.2 23.5↓4.6 24.3↓3.8 27.6↓0.5

DP [100] 72.1↓4.2 73.5↓2.8 74.7↓1.6 76.0↓0.3 20.0↓8.1 22.7↓5.4 24.6↓3.5 27.7↓0.4

D
yn

am
ic Soft Random 74.3↓2.0 73.9↓2.4 76.1↓0.2 76.2↓0.1 22.7↓5.4 24.8↓3.3 27.0↓1.1 27.8↓0.3

ϵ-greedy [58] 73.8↓2.5 73.6↓2.7 75.6↓0.7 76.2↓0.1 24.0↓4.1 25.3↓2.8 27.1↓1.0 27.6↓0.5
UCB [58] 73.8↓2.5 73.7↓2.6 75.0↓1.3 75.8↓0.5 23.9↓4.2 25.8↓2.3 26.6↓1.5 28.1↑0.0

InfoBatch [23] 74.1↓2.2 74.0↓2.3 76.3↑0.0 76.3↑0.0 24.1↓4.0 24.8↓3.3 27.3↓0.8 28.3↑0.2

GDeR 75.8↓0.5 76.0↓0.3 76.4↑0.1 76.8↑0.5 24.8↓3.3 26.0↓2.1 28.0↓0.1 28.5↑0.4

Whole Dataset 76.3±0.9 28.1±0.3

4.2 GDeR makes GNN training way faster
To answer RQ1 and RQ2, we comprehensively compare GDeR with fourteen widely-used static
pruning methods and three dynamic pruning methods, as outlined in Table 1, with more detailed
explanations in Appendix B.3. Following [23], we add hard random and soft random pruning as
baselines for a more comprehensive comparison. Specifically, we set the dataset remaining ratio
(1− s)% ∈ {20%, 30%, 50%, 70%}. The performance results are shown in Tables 1, 2 and 7 and the
efficiency comparisons are in Figure 3. Our observations (Obs.) are as summarized follows:

100% 90% 70% 50% 40% 30%
Per Epoch Time (ogbn-molhiv)

70

71

72

73

74

75

76

77

A
cc

ur
ac

y
(%

)

Vanilla
H-Random
Margin
Craig
DP
S-Random
UCB
InfoBatch
GDeR (Ours)

Figure 3: The trade-off between per epoch time
and ROC-AUC (%) of data pruning methods.
Specifically, we report the test performance when
pruning methods achieve per epoch times of
{90%, 70%, 50%, 40%, 30%} of the full dataset
training time. "Vanilla" denotes the original GNN
backbone without any data pruning.

Obs.❶ GDeR achieves maximum graph prun-
ing with performance guarantees. As shown
in Tables 1 and 2, GDeR consistently outper-
forms both static or dynamic baselines under
various pruning ratios. For instance, on OGBG-
MOLHIV+PNA, GDeR experiences only a 0.5%
performance decay even with 80% pruning, sur-
passing the current state-of-the-art method In-
foBatch, which suffers a 1.7% decay. When
pruning 50% and 30% of the data, GDeR even
achieves performance improvements of 0.1%
and 0.5%, respectively.
Obs.❷ The degree of redundancy varies
across different datasets. We observe that
OGBG-MOLPCBA is more sensitive to pruning
than OGBG-MOLHIV, which suggests the de-
gree of redundancy varies between datasets.
For example, when pruning 80% of the data,
GraphGPS on OGBG-MOLPCBA exhibits a per-
formance decay ranging between 3.5% ∼
13.9%, significantly higher than the 2.5% ∼
11.5% decay observed on OGBG-MOLHIV.
However, as the remaining ratio increases, GDeR
quickly recovers and surpasses the full dataset
performance by 0.2% at the 50% pruning level.

7

Table 2: Performance comparison to state-of-the-art dataset pruning methods. All methods are trained
using GraphGPS, and the reported metrics represent the average of five runs.

Dataset OGBG-MOLHIV (ROC-AUC ↑) OGBG-MOLPCBA (AP ↑)

Remaining Ratio % 20 30 50 70 20 30 50 70
St

at
ic

Random 69.3↓9.4 72.7↓6.0 73.4↓5.3 75.6↓3.1 19.4↓7.8 21.7↓5.5 23.9↓3.3 26.3↓0.9
CD [93] 72.6↓6.1 73.0↓5.7 75.3↓3.4 76.7↓2.0 18.0↓9.2 20.7↓6.5 21.7↓5.5 26.4↓0.8

Herding [94] 69.5↓9.2 73.3↓5.4 74.5↓4.2 75.9↓2.8 13.3↓13.9 14.0↓13.2 17.8↓9.4 23.0↓4.2
K-Center [95] 67.2↓11.5 70.8↓7.9 72.6↓6.1 73.9↓4.8 16.9↓10.3 19.4↓7.8 22.8↓4.4 26.1↓1.1

Least Confidence [96] 73.9↓4.8 74.2↓4.5 75.8↓2.9 77.3↓1.4 19.4↓7.6 21.9↓5.3 23.5↓3.7 26.0↓1.2
Margin [96] 74.0↓4.7 74.4↓4.3 75.8↓2.9 77.5↓1.2 18.8↓8.4 21.5↓5.7 23.9↓3.3 27.0↓0.2

Forgetting [33] 74.2↓4.5 74.8↓3.9 75.6↓3.1 76.9↓1.8 18.3↓9.9 21.9↓5.3 23.3↓3.9 26.8↓0.4
GraNd-4 [18] 73.8↓4.9 74.2↓4.5 75.3↓3.4 77.5↓1.2 18.0↓9.2 21.3↓5.9 23.6↓3.6 26.9↓0.3
DeepFool [97] 72.2↓6.5 73.3↓5.4 74.9↓3.8 75.5↓3.2 17.6↓9.6 21.9↓5.3 23.2↓4.0 26.5↓0.7

Craig [98] 73.5↓5.2 74.4↓4.3 76.0↓2.7 77.9↓0.8 18.7↓8.5 22.7↓4.5 24.5↓2.7 27.1↓0.1
Glister [99] 73.6↓5.1 74.0↓4.7 75.8↓2.9 78.0↓0.7 19.9↓7.3 22.5↓4.7 24.8↓2.4 27.0↑0.2

Influence [57] 72.9↓5.8 73.7↓5.0 74.8↓3.9 77.4↓1.3 17.7↓9.5 21.9↓5.3 23.5↓3.7 26.6↓0.6
EL2N-20 [33] 74.0↓4.7 75.5↓3.2 76.9↓1.8 77.7↓1.0 19.1↓8.1 22.9↓4.3 24.0↓3.2 26.0↓1.2

DP [100] 72.0↓6.7 74.1↓4.6 76.0↓2.7 76.9↓1.8 19.6↓7.6 21.5↓5.7 24.9↓2.3 26.4↓0.8

D
yn

am
ic Soft Random 74.0↓4.7 74.1↓4.6 74.4↓4.3 78.1↓0.6 21.5↓5.7 22.4↓4.8 26.0↓1.2 27.1↓0.1

ϵ-greedy [58] 74.7↓4.0 74.9↓3.8 76.6↓2.1 78.6↓0.1 22.8↓4.4 23.1↓4.1 26.3↓0.9 27.0↓0.2
UCB [58] 75.5↓3.2 74.9↓3.8 76.3↓2.4 78.0↓0.7 23.7↓3.5 24.1↓3.1 26.5↓0.7 27.2↑0.0

InfoBatch [23] 75.0↓3.4 75.6↓3.1 77.8↓0.9 78.5↓0.2 23.5↓3.7 24.6↓2.6 26.7↓0.5 27.2↑0.0

GDeR 76.5↓2.2 76.9↓1.8 78.7↑0.0 79.1↑0.4 23.4↓3.8 24.5↓2.7 27.4↑0.2 27.6↑0.4

Whole Dataset 78.7±1.1 27.2±0.2

Obs. ❸ GDeR can significantly accelerate GNN training. Figure 3 illustrates the per-epoch time
and corresponding performance of each pruning method compared to full dataset training on OGBG-
MOLHIV+GraphGPS. It is evident that GDeR can achieve a 2.0× speedup without any performance
loss (corresponding to 50% per-epoch time). Even with a significant 3.3× speedup, GDeR only
experiences a moderate drop of 0.9%, which is superior to baselines including InfoBatch by a margin
of 1.1% ∼ 4.2%. Additionally, we observe from Table 7 that pretraining on ZINC with only 30% of
the data leads to a 1.53% ROC-AUC improvement, with 2.81× training time acceleration.

4.3 GDeR Mitigates Graph Imbalance
To answer RQ3, we tested GDeR in extremely imbalanced scenarios and compared its performance
with other dynamic pruning methods. Following [40], we randomly set 25%/25% graphs as training/-
validation sets and within each of them, we designate one class as the minority class and reduce the
number of graphs for this class in the training set (while increasing the others) until the imbalance
ratio reached 1:9, which creates an extremely imbalanced scenario. The reported metrics are the
average of 50 different data splits to avoid bias from data splitting. We observe from Figure 4 that:

DHFR DHFR MUTAG MUTAG

Figure 4: Performance comparison of different pruning methods across various imbalance ratios. We
utilize MUTAG and DHFR datasets with GCN, and reported the metrics when adjusting the imbalance
ratios among {1:9, 3:7, 5:5, 7:3, 9:1}. “No Pruning” denotes training GCN without dataset pruning.

Obs. ❹ GDeR can effectively mitigate imbalance issues. As observed in Figure 4, baseline pruning
methods struggle to outperform “no-pruning” GCN, resulting in substantial losses in speedup efficacy.
In contrast, GDeR offers a more meaningful pruning approach. For instance, on DHFR, pruning 50%
of the data results in a 4.3%improvement in F1-Macro. This demonstrates that GDeR not only saves
computational resources but also effectively mitigates data imbalance issues.

8

4.4 GDeR Aids in GNN Robustness

T
e

st
 A

c
c

u
ra

c
y

 (
%

)

10% Noise

Pruning Settings (%) Noise Settings (%)

Figure 5: (Left) We report the performance of several top-performing pruning methods when
perturbation noise is added to 10% of the training set of MUTAG. The black dashed line represents the
original GNN performance without pruning. (Right) We compare GDeR with DropEdge and GRAND
under different noise settings, utilizing GDeR with pruning ratios of 10% and 30%.

We divide RQ4 into two sub-questions: (1) Is GDeR more robust to outlier perturbation compared
to previous data pruning methods? (2) Can GDeR compete with mainstream methods designed to
enhance GNN robustness? In practice, following [36], we introduce perturbations to k% of the graph
samples in the training set by adding Gaussian noise to the node features of the selected graphs. We
compare GDeR against both data pruning baselines and GNN robustness enhancement baselines. The
experimental results are presented in Figure 5, and we observe:

Obs. ❺ GDeR is a resource-saving GNN robustness booster. From Figure 5 (Left), we observe that
GDeR effectively counters noise perturbation, outperforming the GNN under outlier attacks at both
30% and 50% pruning rates. Notably, InfoBatch, which performed competitively in RQ1, suffers a
significant performance drop (2.0% ∼ 6.1% ↓) in this biased training scenario, which is likely due to
its loss magnitude-based sample selection mechanism, inadvertently amplifying the negative impact
of high-loss outlier samples on the model. From Figure 5 (Right), we conclude that GDeR performs as
well as or better than current robust GNN plugins, and it shows the most significant improvement in
accuracy, with increases of 3.6% and 7.8% at noise ratios of 5% and 30%, respectively.

4.5 Ablation & Sensitivity Study
Ablation Study To evaluate the effectiveness of the different modules in GDeR, we propose three
variants: (1) GDeR w/o ωe, (2) GDeR w/o ωr, and (3) GDeR w/o ωb. GDeR w/o ωe represents removing
ωe from Equation (11), with the other two variants defined similarly. We observe from Table 3
that ❶ removing any component leads to a performance drop for GDeR, while removing ωb in the
imbalance scenario or ωr in the biased scenario results in the most significant impact; ❷ GDeR w/o
ωe consistently underperforms across all scenarios, indicating that selecting highly representative
samples is fundamental to the success of dynamic pruning methods.

Setting Normal Imbalance Baised

GDeR 84.21±3.40 76.32±4.70 77.84±2.70

GDeR w/o ωe 79.77±2.97 73.78±2.96 75.60±3.55

GDeR w/o ωr 84.01±3.09 76.21±3.42 77.96±3.18

GDeR w/o ωb 83.46±2.50 73.12±2.50 75.02±2.98

Table 3: Ablation study on GDeR and its three
variants. “Imbalance” refers to setting the imbal-
ance ratio to be {1 : 9}, and “Noisy” refers to
adding 5% noise to the training set. All metrics
are reported under 30% pruning ratio.

Ratio (s%) Metric K = 1 K = 2 K = 4

20%
Perf. 75.8±1.5 76.5±1.4 76.1±0.9

Time 15.32 16.44 17.16

50%
Perf. 78.2±1.4 78.7±1.3 78.9±0.23

Time 19.97 20.18 22.08

70%
Perf. 81.19±2.0 79.1±1.9 79.2±2.2

Time 26.19 31.30 39.55

Table 4: Sensitivity analysis on K. We report
the ROCAUC (%) and per-epoch time (s) on
OGBG-MOLHIV+GraphGPS.

Sensitivity and Efficiency Analysis We investigate the impact of K, on the performance and
efficiency of GDeR. Specifically, we vary K ∈ {1, 2, 4} on OGBG-MOLHIV+GraphGPS and observe
changes in performance and per-epoch time. We observe from Table 4 that K = 1 leads to an
under-learning of the hypersphere, resulting in consistently lower performance. While K = 4 shows
a marginal performance gain compared to K = 2, for efficiency considerations, we opt for K = 2
across all experiments. Additionally, we observe that data pruning significantly saves per-epoch time,
with s = 20 resulting in per-epoch times being 40% ∼ 60% of those achieved with s = 70.

9

5 Conclusion & Future Work
In this work, we propose the graph training debugging concept and explore soft dataset pruning in
the graph learning area for the first time. Particularly, we present a prototype-guided soft pruning
method, termed GDeR, which initially establishes a well-modeled graph embedding hypersphere and
subsequently samples representative, balanced, and noise-free subsets from this embedding space,
debugging and troubleshooting graph processing. In the future, we plan to extend this concept to
the CV realm, aiming to expedite the process of image training and provide efficient insights for the
development of high-quality visual large-scale models.

Acknowledgement

Dawei Cheng is supported by the National Natural Science Foundation of China (Grant No.
62102287). Yuxuan Liang is supported by the National Natural Science Foundation of China
(No. 62402414), Guangzhou Municipal Science and Technology Project (No. 2023A03J0011),
and Guangdong Provincial Key Lab of Integrated Communication, Sensing and Computation for
Ubiquitous Internet of Things (No. 2023B1212010007).

References
[1] Mohammad Motamedi, Nikolay Sakharnykh, and Tim Kaldewey. A data-centric approach for

training deep neural networks with less data. arXiv preprint arXiv:2110.03613, 2021.

[2] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong,
and Xia Hu. Data-centric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158,
2023.

[3] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences.
Minds and Machines, 30:681–694, 2020.

[4] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for" mind" exploration of large language model society. Advances in
Neural Information Processing Systems, 36, 2024.

[5] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR,
2023.

[6] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns.
arXiv preprint arXiv:2401.15024, 2024.

[7] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023.

[8] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by
fine-tuning. Advances in neural information processing systems, 33:20378–20389, 2020.

[9] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[10] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[11] Junke Wang, Dongdong Chen, Chong Luo, Xiyang Dai, Lu Yuan, Zuxuan Wu, and Yu-Gang
Jiang. Chatvideo: A tracklet-centric multimodal and versatile video understanding system,
2023.

10

[12] Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechu Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023.

[13] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4:
Enhancing vision-language understanding with advanced large language models. arXiv
preprint arXiv:2304.10592, 2023.

[14] Sihan Chen, Handong Li, Qunbo Wang, Zijia Zhao, Mingzhen Sun, Xinxin Zhu, and Jing Liu.
Vast: A vision-audio-subtitle-text omni-modality foundation model and dataset, 2023.

[15] Bojan Karlaš, David Dao, Matteo Interlandi, Bo Li, Sebastian Schelter, Wentao Wu, and
Ce Zhang. Data debugging with shapley importance over end-to-end machine learning
pipelines, 2022.

[16] Jae-hun Shim, Kyeongbo Kong, and Suk-Ju Kang. Core-set sampling for efficient neural
architecture search. arXiv preprint arXiv:2107.06869, 2021.

[17] Murad Tukan, Alaa Maalouf, and Dan Feldman. Coresets for near-convex functions. Advances
in Neural Information Processing Systems, 33:997–1009, 2020.

[18] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. Advances in Neural Information Processing
Systems, 34:20596–20607, 2021.

[19] Guibin Zhang, Kun Wang, Wei Huang, Yanwei Yue, Yang Wang, Roger Zimmermann, Aojun
Zhou, Dawei Cheng, Jin Zeng, and Yuxuan Liang. Graph lottery ticket automated. In The
Twelfth International Conference on Learning Representations, 2024.

[20] Kun Wang, Yuxuan Liang, Xinglin Li, Guohao Li, Bernard Ghanem, Roger Zimmermann,
Huahui Yi, Yudong Zhang, Yang Wang, et al. Brave the wind and the waves: Discovering
robust and generalizable graph lottery tickets. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

[21] Guibin Zhang, Yanwei Yue, Kun Wang, Junfeng Fang, Yongduo Sui, Kai Wang, Yuxuan Liang,
Dawei Cheng, Shirui Pan, and Tianlong Chen. Two heads are better than one: Boosting graph
sparse training via semantic and topological awareness, 2024.

[22] Ravi S Raju, Kyle Daruwalla, and Mikko Lipasti. Accelerating deep learning with dynamic
data pruning. arXiv preprint arXiv:2111.12621, 2021.

[23] Ziheng Qin, Kai Wang, Zangwei Zheng, Jianyang Gu, Xiangyu Peng, Zhaopan Xu, Daquan
Zhou, Lei Shang, Baigui Sun, Xuansong Xie, et al. Infobatch: Lossless training speed up by
unbiased dynamic data pruning. arXiv preprint arXiv:2303.04947, 2023.

[24] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 6514–6523,
2023.

[25] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12196–12205, 2022.

[26] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 4750–4759, 2022.

[27] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. Advances in Neural Information Processing Systems,
34:5186–5198, 2021.

11

[28] Xinglin Li, Kun Wang, Hanhui Deng, Yuxuan Liang, and Di Wu. Attend who is weak: Enhanc-
ing graph condensation via cross-free adversarial training. arXiv preprint arXiv:2311.15772,
2023.

[29] Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin,
and Yang You. Navigating complexity: Toward lossless graph condensation via expanding
window matching. In Forty-first International Conference on Machine Learning, 2024.

[30] Tianle Zhang, Yuchen Zhang, Kun Wang, Kai Wang, Beining Yang, Kaipeng Zhang, Wenqi
Shao, Ping Liu, Joey Tianyi Zhou, and Yang You. Two trades is not baffled: Condense graph
via crafting rational gradient matching. arXiv preprint arXiv:2402.04924, 2024.

[31] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
291–300, 2004.

[32] Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

[33] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua
Bengio, and Geoffrey J Gordon. An empirical study of example forgetting during deep neural
network learning. arXiv preprint arXiv:1812.05159, 2018.

[34] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient
matching. arXiv preprint arXiv:2006.05929, 2020.

[35] Yao Lu, Xuguang Chen, Yuchen Zhang, Jianyang Gu, Tianle Zhang, Yifan Zhang, Xiaoniu
Yang, Qi Xuan, Kai Wang, and Yang You. Can pre-trained models assist in dataset distillation?
arXiv preprint arXiv:2310.03295, 2023.

[36] Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. Graphde: A generative framework for
debiased learning and out-of-distribution detection on graphs. Advances in Neural Information
Processing Systems, 35:30277–30290, 2022.

[37] Dongmin Park, Seola Choi, Doyoung Kim, Hwanjun Song, and Jae-Gil Lee. Robust data
pruning under label noise via maximizing re-labeling accuracy. Advances in Neural Information
Processing Systems, 36, 2024.

[38] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. J. Med.
Chem., 34(2):786–797, 1991.

[39] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2016.

[40] Yu Wang, Yuying Zhao, Neil Shah, and Tyler Derr. Imbalanced graph classification via
graph-of-graph neural networks. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pages 2067–2076, 2022.

[41] Zhixun Li, Yushun Dong, Qiang Liu, and Jeffrey Xu Yu. Rethinking fair graph neural networks
from re-balancing. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 1736–1745, 2024.

[42] Sercan O Arik and Tomas Pfister. Protoattend: Attention-based prototypical learning. Journal
of Machine Learning Research, 21(210):1–35, 2020.

[43] Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi. Prototypical contrastive learning
of unsupervised representations. arXiv preprint arXiv:2005.04966, 2020.

[44] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei
Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In
International conference on machine learning, pages 1989–1998. Pmlr, 2018.

12

[45] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, and
Manmohan Chandraker. Learning to adapt structured output space for semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
7472–7481, 2018.

[46] Shirui Pan and Xingquan Zhu. Graph classification with imbalanced class distributions and
noise. In IJCAI, pages 1586–1592, 2013.

[47] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 594–604, 2022.

[48] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in neural information processing
systems, 33:5812–5823, 2020.

[49] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In International Conference on Machine Learning, pages 12121–12132. PMLR,
2021.

[50] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[51] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI open, 1:57–81, 2020.

[52] Shunxin Xiao, Shiping Wang, Yuanfei Dai, and Wenzhong Guo. Graph neural networks in
node classification: survey and evaluation. Machine Vision and Applications, 33(1):4, 2022.

[53] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Proceedings
of NIPS, 2018.

[54] Chuang Liu, Yibing Zhan, Jia Wu, Chang Li, Bo Du, Wenbin Hu, Tongliang Liu, and Dacheng
Tao. Graph pooling for graph neural networks: Progress, challenges, and opportunities. arXiv
preprint arXiv:2204.07321, 2022.

[55] Kun Wang, Yuxuan Liang, Pengkun Wang, Xu Wang, Pengfei Gu, Junfeng Fang, and Yang
Wang. Searching lottery tickets in graph neural networks: A dual perspective. In The Eleventh
International Conference on Learning Representations, 2022.

[56] Dingshuo Chen, Yanqiao Zhu, Jieyu Zhang, Yuanqi Du, Zhixun Li, Qiang Liu, Shu Wu, and
Liang Wang. Uncovering neural scaling laws in molecular representation learning. Advances
in Neural Information Processing Systems, 36, 2024.

[57] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1885–1894. JMLR. org, 2017.

[58] Ravi S Raju, Kyle Daruwalla, and Mikko Lipasti. Accelerating deep learning with dynamic
data pruning, 2021.

[59] Dingshuo Chen, Zhixun Li, Yuyan Ni, Guibin Zhang, Ding Wang, Qiang Liu, Shu Wu,
Jeffrey Xu Yu, and Liang Wang. Beyond efficiency: Molecular data pruning for enhanced
generalization. arXiv preprint arXiv:2409.01081, 2024.

[60] Yongduo Sui, Xiang Wang, Tianlong Chen, Xiangnan He, and Tat-Seng Chua. Inductive
lottery ticket learning for graph neural networks. 2021.

[61] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. Graphsaint: Graph sampling based inductive learning method. arXiv preprint
arXiv:1907.04931, 2019.

13

[62] Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[63] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on
knowledge and data engineering, 21(9):1263–1284, 2009.

[64] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–
357, 2002.

[65] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and
Yannis Kalantidis. Decoupling representation and classifier for long-tailed recognition. arXiv
preprint arXiv:1910.09217, 2019.

[66] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[67] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss
based on effective number of samples. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9268–9277, 2019.

[68] Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and Junjie
Yan. Equalization loss for long-tailed object recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11662–11671, 2020.

[69] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,
and Sanjiv Kumar. Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314,
2020.

[70] Min Shi, Yufei Tang, Xingquan Zhu, David Wilson, and Jianxun Liu. Multi-class imbalanced
graph convolutional network learning. In IJCAI, 2020.

[71] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification
on graphs with graph neural networks. In WSDM, 2021.

[72] Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin. Imgagn: Imbalanced
network embedding via generative adversarial graph networks. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1390–1398, 2021.

[73] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on
graph neural networks. Advances in neural information processing systems, 33:4756–4766,
2020.

[74] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 1399–1407, 2019.

[75] Zhixun Li, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin Zhou,
Qiang Liu, Shu Wu, Liang Wang, et al. Gslb: The graph structure learning benchmark.
Advances in Neural Information Processing Systems, 36, 2024.

[76] Yizheng Chen, Yacin Nadji, Athanasios Kountouras, Fabian Monrose, Roberto Perdisci, Manos
Antonakakis, and Nikolaos Vasiloglou. Practical attacks against graph-based clustering. In
Proceedings of the 2017 ACM SIGSAC conference on computer and communications security,
pages 1125–1142, 2017.

[77] Binghui Wang, Meng Pang, and Yun Dong. Turning strengths into weaknesses: A certified
robustness inspired attack framework against graph neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16394–16403,
2023.

[78] Han Yang, Binghui Wang, Jinyuan Jia, et al. Graphguard: Provably robust graph classi-
fication against adversarial attacks. In The Twelfth International Conference on Learning
Representations, 2023.

14

[79] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. Backdoor attacks to
graph neural networks. In Proceedings of the 26th ACM Symposium on Access Control Models
and Technologies, pages 15–26, 2021.

[80] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In Proceedings of ICML, 2020.

[81] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in
neural information processing systems, 33:18661–18673, 2020.

[82] Haodong Lu, Dong Gong, Shuo Wang, Jason Xue, Lina Yao, and Kristen Moore. Learning
with mixture of prototypes for out-of-distribution detection. arXiv preprint arXiv:2402.02653,
2024.

[83] Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. Siren: Shaping representations for
detecting out-of-distribution objects. Advances in Neural Information Processing Systems,
35:20434–20449, 2022.

[84] Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-
supervised outlier detection. arXiv preprint arXiv:2103.12051, 2021.

[85] Amro Abbas, Evgenia Rusak, Kushal Tirumala, Wieland Brendel, Kamalika Chaudhuri, and
Ari S Morcos. Effective pruning of web-scale datasets based on complexity of concept clusters.
arXiv preprint arXiv:2401.04578, 2024.

[86] Hichem Frigui and Olfa Nasraoui. Unsupervised learning of prototypes and attribute weights.
Pattern recognition, 37(3):567–581, 2004.

[87] Jeffrey J Sutherland, Lee A O’brien, and Donald F Weaver. Spline-fitting with a genetic
algorithm: A method for developing classification structure- activity relationships. J Chem
Inform Comput Sci, 43(6), 2003.

[88] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[89] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman.
ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and
Modeling, 52(7):1757–1768, 2012.

[90] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022.

[91] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In Proceedings of the 5th International Conference on Learning Representations,
2017.

[92] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing
Systems, 33:13260–13271, 2020.

[93] Sharat Agarwal, Himanshu Arora, Saket Anand, and Chetan Arora. Contextual diversity for
active learning. In ECCV, pages 137–153. Springer, 2020.

[94] Max Welling. Herding dynamical weights to learn. In ICMLg, pages 1121–1128, 2009.

[95] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In ICLR, 2018.

[96] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis,
Percy Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection
for deep learning. In ICLR, 2019.

15

[97] Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a
margin based approach. arXiv preprint arXiv:1802.09841, 2018.

[98] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training
of machine learning models. In ICML. PMLR, 2020.

[99] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer.
Glister: Generalization based data subset selection for efficient and robust learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[100] Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning:
Reducing training data by examining generalization influence. In The Eleventh International
Conference on Learning Representations, 2023.

[101] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[102] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

[103] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878, 2017.

[104] Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of Chemical
Information and Modeling, 55(11):2324–2337, 2015.

[105] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: A benchmark for molecular machine
learning. Chemical Science, 9(2):513–530, 2018.

[106] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via
non-parametric instance discrimination. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3733–3742, 2018.

[107] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[108] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of CVPR, 2020.

[109] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725–1735.
PMLR, 2020.

[110] Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive
learning with hard negative samples. In International Conference on Learning Representations,
2021.

[111] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Armand Joulin, Nicolas
Ballas, and Michael Rabbat. Semi-supervised learning of visual features by non-parametrically
predicting view assignments with support samples. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 8443–8452, 2021.

[112] Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2495–2504,
2021.

[113] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European conference on
computer vision (ECCV), pages 132–149, 2018.

[114] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30, 2017.

16

[115] Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi. Prototypical contrastive learning of
unsupervised representations. In International Conference on Learning Representations, 2021.

Appendices
A Notations

We conclude the commonly used notations throughout the manuscript in Table 5.

Table 5: The notations that are commonly used in the manuscript.

Notation Definition

G = {V, E} = {A,X} Input graph
A Input adjacency matrix
X Node features

D = {zi}|D|
i=1 = {(Gi,Yi)}|D|

i=1 Graph datasets
hi Graph embedding for Gi

fθ GNN encoder
gϕ Feature projector

Pc = {pc
k}Kk=1 Total K Prototypes for class c

Xt Remained training set at the t-th epoch
X̃t Pruned training set at the t-th epoch

zi ∈ RD Projected embedding for Gi

ωr(zi) Outlier risk assessment metric
ωe(zi) Sample familiarity matric
ωb(zi) Sample balancing score
ω(zi) Sampling probability for zi
Ψ(t) Scheduler function that controls how many samples to choose from Xt

Ψ̃(t) Scheduler function that controls how many samples to choose from Xt+1

B Experimental Details

B.1 Dataset Details

The graph dataset details are summarized in Table 6.

Table 6: Graph datasets statistics.

Dataset #Graph #Node #Edge #Classes Metric

MUTAG 188 17.93 19.79 2 Accuracy/F1-macro
DHFR 756 42.43 44.54 2 Accuracy/F1-macro

OGBG-MOLHIV 41,127 25.5 27.5 40 ROC-AUC
OGBG-MOLPCBA 437,929 26.0 28.1 2 Average Precision

ZINC15 70,100 50.5 564.5 10 Accuracy

17

B.2 Backbone Settings

We choose three representative GNNs, including one classic message-passing network GCN [91], one
classical graph classification backbone PNA [92] and a graph transformer backbone GraphGPS [90].
For GCN, we simply set layer_num = 3 and hidden_dim = 128. For PNA, we set
layer_num = 4, and hidden_dim = 64, edge_dim = 16. The rest configurations are
the same as provided by [92] (https://github.com/lukecavabarrett/pna/blob/master/
models/pytorch_geometric/example.py). For GraphGPS, we uniformly set hidden_dim =
64, pe_dim = 8 and utilize random walk encoding, performer [101], and GINE [102] as the positional
encoding, attention module and the local convolutional module, respectively. The rest configurations
are the same as provided by the PyTorch library (https://github.com/pyg-team/pytorch_
geometric/blob/master/examples/graph_gps.py). All the experiments are conducted on
NVIDIA Tesla V100 (32GB GPU), using PyTorch and PyTorch Geometric framework.

B.3 Pruning Baselines

As for static pruning methods, we first introduce Hard Random, which conducts a random sample
selection before training. Influence [57] and EL2N [18] are two classical static pruning methods
that prune samples based on Influence-score and EL2N-score, respectively. DP [100] conducts
pruning with consideration of generalization. Following the methodology of [23], we introduce
a total of 13 static data pruning methods. These methods select a core set of data via predefined
score functions or heuristic knowledge. Additionally, we introduce three dynamic pruning methods,
including ϵ-greedy [58], UCB [58], and InfoBatch [23]. Following [58, 23], we also introduce the
dynamic pruning baseline, termed Soft Random, which conducts random selection in each epoch.

B.4 Metrics

For MUTAG and DHFR, the metrics used vary across different scenarios. In the normal (Section 4.2)
and biased (Section 4.4) scenarios, we use accuracy. However, in the imbalanced scenario (Sec-
tion 4.3), accuracy does not faithfully reflect the performance for the minority group. Following
previous works in imbalanced classification [71], we choose to use F1-macro, which computes
the accuracy independently for each class and then takes the average, treating different classes
equally. For OGBG-MOLHIV and OGBG-MOLPCBA, we use ROC-AUC and Average Precision (AP),
following [88].

B.5 Scheduler Function

Ψ(t) and Ψ̃(t) are scheduler functions that determine the proportions of samples in Xt+1 originating
from Xt and X̃t, respectively. For simplicity, we adopt the Inverse Power function [103]:

Ψ(t) = |Xt| · ς
(
1− t

T

)κ

, Ψ̃(t) = |Xt| −Ψ(t) (14)

where ς denotes the initial ratio and κ is the decay factor controlling the rate at which the ratio
decreases over intervals. In practice, we uniformly set ς = 0.7 and κ = 2.

C Algorithm Workflow

The algorithm framework is presented in Algo. 1.

D Extension of GDeR

In this section, we will explain how to extend GDeR beyond traditional graph classification tasks to
more complex scenarios like graph regression and graph pre-training. As noted in Section 3.5, tasks
such as graph pre-training do not have ground truth class indices, making direct application of GDeR,
which relies on true class labels in Equations (6) and (7), infeasible.

A straightforward approach is to assign C virtual classes, each with K prototypes Pc = {pc
k}Kk=1.

During prototype allocation, we use the probability distribution provided by Equation (5) to determine

18

https://github.com/lukecavabarrett/pna/blob/master/models/pytorch_geometric/example.py
https://github.com/lukecavabarrett/pna/blob/master/models/pytorch_geometric/example.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py

Algorithm 1: Algorithm workflow of GDeR

Input :Graph datasets D = {zi}|D|
i=1 = {(Gi,Yi)}|D|

i=1, the number of epochs T , GNN encoder
fθ, feature projector gϕ,

Initialized M prototypes {p(C)
k }Mi=1 for class C

for epoch t← 1 to T do
/* Extract graph-level embedding and Projection */
Xt ← current training set.
for sample index i← 1 to |Xt| do

Compute graph embedding hi ← gθ(Gi).
Project graph embedding onto hypersphere by zi = z′/||z′||2, z′ = gθ(hi).

end
Determine which prototype cluster χc each graph sample zi corresponds to; ▷ Eq. 5
/* Formatting sampling distribution */
Calculate the outlier score ωr(zi) by prototype-based Mahalanobis distance; ▷ Eq. 8
Calculate the familiarity score ωe(zi) based on prorotype-sample distance; ▷ Eq. 9
Calculate the balancing distribution ωb based on cluster volume; ▷ Eq. 10
Formulate sampling distribution ω(zi) =

ωσ
e (zi)

(ωσ
r (zi)+ϵ)·(ωσ

b (zi)+ϵ)
; ▷ Eq. 11

/* Dataset sampling */
Initialize the sample set for the (t+ 1)-th epoch Xt+1 ← ∅
/* Sample from currently remained set */
Xt+1 ← Xt+1 + S

(
Xt,P(t−1)(z),Ψ(t)

)
/* Sample from currently pruned set */

Xt+1 ← Xt+1 + S
(
X̃t,P(t−1)(z), Ψ̃(t)

)
/* Standard GNN training */
Compute loss LGDeR = Ltask + λ1 · Lcomp + λ2 · Lsepa; ▷ Eq. 13
Backpropagate to update the GNN model fθ, projector gϕ, and prototypes.

end

the class of each graph sample:

ỹi = argmaxc p(yi = c|zi, {Pj , κ}Cj=1). (15)

We then substitute ỹi for yi in Equations (6) and (7), essentially emphasizing that the sample zi
should cluster tightly around its assigned prototype cluster χỹi and remain distant from other clusters.
However, this approach is prone to error accumulation: if a sample is initially misclassified, Lcomp
and Lsepa will erroneously encourage it to continue moving in the wrong direction. To address this
issue, we draw inspiration from previous practices in prototypical contrastive learning and leverage
the prototypical contrastive loss [43]:

Lcontra =

|Xt|∑
i=1

−
(
1

C

C∑
c=1

log

∑K
k=1 exp(zi · pc

s/ϕ
c
s)∑r

j=0

∑K
k=1 exp(zi · pc

j/ϕ
m
j)

)
, (16)

where ϕ calculates the concentration level of the feature distribution around a prototype as defined in
[43]. Equation (16) has been shown to learn cluster distributions with high mutual information with
ground truth labels in unsupervised settings. It encourages samples to migrate between clusters by
measuring a concentration-weighted contrastive signal, rather than accumulating current errors. Thus,
the overall objective of GDeR becomes:

L′
GDeR = Ltask + λ1 · Lcomp + λ2 · Lsepa + λ3 · Lcontra. (17)

We applied this setting when extending GDeR to pre-training with GraphMAE on the ZINC dataset,
with the experimental results in Table 7.

19

Table 7: Graph pre-training performance of GDeR on GraphMAE [47]+ZINC15 [104]. Following
[47], the model is first pre-trained in 2 million unlabeled molecules sampled from the ZINC15, and
then finetuned in 3 classification benchmark datasets contained in MoleculeNet [105].

Remaining Ratio % 30% 50% 70%

Dataset BBBP ToxCast BACE BBBP ToxCast BACE BBBP ToxCast BACE

Original 72.04 65.77 81.96 72.04 65.77 81.96 72.04 65.77 81.96
+GDeR 73.57 63.55 78.42 73.99 64.16 82.29 73.87 65.68 82.70

Time consumption 1.70 h 2.58 h 3.78 h
Training Speedup 2.81× 1.86× 1.26×

The original pre-training time is 4.8 h.

Table 8: Performance comparison to state-of-the-art dataset pruning methods. All methods are trained
using PNA, and the reported metrics represent the average of twenty random runs and different
dataset splits.

Dataset MUTAG (Accuracy ↑) DHFR (Accuracy ↑)

Remaining Ratio % 20 30 50 70 20 30 50 70

St
at

ic

Random 85.3↓4.1 85.6↓3.8 86.7↓2.7 88.3↓1.1 72.3↓4.2 72.6↓3.9 73.7↓2.8 75.8↓0.7
CD [93] 85.1↓4.3 85.8↓3.6 87.0↓2.4 88.1↓1.3 72.1↓4.4 72.8↓3.7 74.0↓2.5 76.1↓0.4

Herding [94] 77.7↓11.7 79.6↓9.8 81.5↓7.9 87.9↓1.5 65.8↓10.7 67.6↓8.9 69.6↓6.9 73.6↓2.9
K-Center [95] 76.2↓3.2 80.6↓8.8 84.2↓5.2 88.4↓1.0 64.2↓12.3 68.2↓8.3 70.6↓5.9 72.8↓3.7

Least Confidence [96] 85.3↓4.1 85.6↓3.8 87.8↓1.6 88.3↓1.1 72.3↓4.2 72.6↓3.9 74.8↓1.7 76.1↓0.4
Margin [96] 84.2↓5.2 84.5↓4.9 87.3↓2.1 88.4↓1.0 70.2↓6.3 71.5↓5.0 74.6↓1.9 75.6↓0.9

Forgetting [33] 85.8↓3.6 86.2↓3.2 87.1↓2.3 88.4↓1.0 72.8↓3.7 73.2↓3.3 74.1↓2.4 76.0↓0.5
GraNd-4 [18] 81.7↓7.7 85.9↓3.5 87.0↓2.4 88.2↓1.2 68.7↓7.8 72.9↓3.6 74.0↓2.5 75.6↓0.9
DeepFool [97] 85.1↓4.3 85.6↓3.8 86.7↓2.7 88.1↓1.3 72.1↓4.4 72.7↓3.8 73.2↓3.3 75.8↓0.7

Craig [98] 85.0↓4.4 85.4↓4.0 86.3↓3.1 88.2↓1.2 72.0↓4.5 72.5↓4.0 73.7↓2.8 76.2↓0.3
Glister [99] 86.3↓3.1 86.8↓2.6 87.2↓2.2 88.4↓1.0 72.9↓3.6 73.3↓3.2 75.2↓1.3 76.4↓0.1

Influence [57] 84.7↓4.7 85.9↓3.5 86.7↓2.7 88.1↓1.3 71.7↓4.8 72.9↓3.6 73.7↓2.8 75.4↓1.1
EL2N-2 [33] 86.2↓3.2 87.1↓2.3 87.7↓1.7 88.2↓1.2 72.2↓4.3 73.9↓2.6 74.6↓1.9 75.0↓1.5
EL2N-20 [33] 86.3↓3.1 87.1↓2.3 87.9↓1.5 88.3↓1.1 72.4↓4.1 73.0↓3.5 74.6↓1.9 76.2↓0.3

DP [100] 85.3↓4.1 86.2↓3.2 87.4↓2.0 87.9↓1.5 71.3↓5.2 72.6↓3.9 74.0↓2.5 75.6↓0.9

D
yn

am
ic Random* 87.0↓2.4 86.6↓2.8 88.8↓0.6 88.9↓0.5 73.4↓3.1 73.9↓2.6 74.8↓1.7 76.4↓0.1

ϵ-greedy [58] 86.5↓2.9 86.3↓3.1 88.3↓1.1 88.9↓0.5 73.1↓3.4 73.4↓3.1 74.1↓1.6 76.4↓0.1
UCB [58] 86.5↓2.9 86.4↓3.0 87.7↓1.7 88.5↓0.9 73.1↓3.4 73.5↓3.0 74.0↓2.5 75.9↓0.6

InfoBatch [23] 86.8↓2.6 86.7↓2.7 89.0↓0.4 89.3↓0.1 73.3↓3.2 73.7↓2.8 75.0↓1.5 76.3↓0.2

GDeR 88.2↓1.2 88.5↓0.9 89.3↓0.1 89.9↑0.5 75.7↓0.8 75.9↓0.6 76.1↓0.4 77.1↑0.6

Whole Dataset 89.4±0.1 76.5±0.1

E Additional Experimental Results

We place additional results about MUTAG and DHFR in Table 8, and the GraphMAE+ZINC
pre-training results in Table 7.

F Supplementary Related Work

Constrastive Learning and Prototypical learning Contrastive representation learning methods
consider each sample as a unique class, aligning multiple views of the same input while distancing
other samples. This significantly improves the discriminative power of the learned representations,
allowing these methods to excel in learning robust feature representations across unsupervised
[106, 107, 108, 109, 110], semi-supervised [111], and supervised settings [81]. The foundational
properties and effectiveness of contrastive loss within hyperspherical space have been extensively
studied [80, 112]. Other approaches focus on learning feature representations by modeling the
relationships between samples and cluster centroids [113] or prototypes [114]. Building on contrastive
learning, [115] incorporates prototypical learning, adding a contrastive mechanism between samples
and prototypes obtained through offline clustering. PALM [82] utilizes prorotypical learning for

20

out-of-distribution (OOD) identification, which automatically identifies and dynamically updates
prototypes, and assigns each sample to a subset of prototypes via reciprocal neighbor soft assignment
weights. However, all these methods are not conducive to a more lightweight training burden, and
our method is the first attempt at leveraging prototype learning for soft data pruning.

21

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we introduce a novel soft pruning strategy and we claim the con-
tributions and scope in the abstract and introduction sections (See Abstract and Introduction
Section).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In this work, we systematically discuss the limitations of our research and
outline directions for future work (See Introduction Section).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

22

Answer: [NA]
Justification: This paper does not include experimental results related to theoretical aspects.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the code necessary for replicating the studies described in this
paper via an anonymous link, and we detail the experimental setup for the replication in the
article itself (See Appendix).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For the datasets disclosed in the article, we have provided information regarding
their sources and origins (See Appendix).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we have specified all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results
(See Appendix B).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In this paper, we have reported the standard deviation of the experiments (See
Experiments).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In this paper, we provide detailed information about the experimental resources,
including GPU configurations used in our studies (See Appendix).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study presented in this paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have provided the societal impacts of the work (See Introduction).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

25

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not address issues related to this aspect.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators and original owners of the assets used in our paper, such as code,
data, and models, have been properly credited. We have explicitly mentioned the licenses
and terms of use for each asset and have ensured full compliance with these terms throughout
our research.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

26

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The research presented in this paper is not concerned with new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve experiments or research related to human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not address potential risks incurred by study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Technical Background
	Methodology
	Problem Formulation
	Overview of the Proposed Method
	Projection onto Hyperspherical Embedding Space
	Efficient, Balanced and Robust Graph Debugging
	Optimization and Extension

	Experiments
	Experiment Setup
	GDeR makes GNN training way faster
	GDeR Mitigates Graph Imbalance
	GDeR Aids in GNN Robustness
	Ablation & Sensitivity Study

	Conclusion & Future Work
	Appendices
	Notations
	Experimental Details
	Dataset Details
	Backbone Settings
	Pruning Baselines
	Metrics
	Scheduler Function

	Algorithm Workflow
	Extension of GDeR
	Additional Experimental Results
	Supplementary Related Work

