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Abstract
Large language models (LLMs) increasingly rely
on reinforcement learning (RL) post-training to
improve step-by-step reasoning. Therein, Group
Relative Policy Optimization (GRPO) emerges as
a prevailing approach that avoids the need for fully
supervised traces. However, GRPO can struggle
with high-difficulty tasks, overfit to easy prob-
lems, and suffer from sensitivity to reward design.
To diagnose these weaknesses, we introduce a
general analysis framework that maps training
trajectories onto an advantage-confidence plane,
revealing three critical phenomena: (1) advantage
contraction: reward-normalized advantages col-
lapse as accuracy improves; (2) confidence satu-
ration: policies become overconfident even on in-
correct outputs; and (3) hierarchical convergence:
easy problems are quickly mastered while harder
ones lag. Based on these insights, we propose
CoDaPO (Confidence- and Difficulty-Adaptive
Policy Optimization), an RL algorithm that adopts
correctness-based reward and advantage reweight-
ing w.r.t. confidence and difficulty. Experiments
on several benchmarks demonstrate that CoDaPO
achieves higher reasoning accuracy and better gen-
eralization than existing RL approaches.

1. Introduction
Large language models (LLMs) have transformed
problem-solving across diverse real-world applications, in-
cluding tool use (Schick et al., 2023), retrieval-augmented
generation (Lewis et al., 2020), and autonomous agents (Yao
et al., 2023b). Central to this progress is their capacity
for explicit, step-by-step reasoning. Early studies such
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as Chain-of-Thought prompting (Wei et al., 2022) and
Tree-of-Thoughts (Yao et al., 2023a) showed that carefully
designed prompts can elicit multi-step reasoning without
changing the underlying model weights. Recent work ex-
tends beyond prompt engineering by post-training, which
continues to train models after the pre-training phase, to
create even more capable and general-purpose machine rea-
soners (Kumar et al., 2025; Li et al., 2025). Post-trained
models like OpenAI o1 (Jaech et al., 2024) and DeepSeek
R1 (Guo et al., 2025) achieve higher levels of intelligence,
which can be further amplified through test-time scaling
that allocates more compute at inference to extend the ex-
ploration (Snell et al., 2024; Muennighoff et al., 2025).

Notably, reinforcement-learning (RL) post-training meth-
ods, most prominently Proximal Policy Optimization
(PPO) (Schulman et al., 2017), Group Relative Policy Op-
timization (GRPO) (Shao et al., 2024), and their variants,
have gained momentum because they markedly enhance
a model’s reasoning ability without requiring to curating
“gold” step-by-step solutions. Instead of teaching the model
every intermediate step, these RL algorithms incentivize the
autonomous discovery of high-quality reasoning paths by
supplying feedback signals derived from rule-based (Shao
et al., 2024) or model-based (Liu et al., 2025c) reward es-
timators. This incentive-driven paradigm departs sharply
from traditional supervised approaches that simply mimic
human demonstrations and has already shown empirical
gains in mathematics (Shao et al., 2024), code genera-
tion (Luo et al., 2025), and formal logic (Xie et al., 2025).

Despite encouraging progress, RL-based reasoning is still in
its infancy, and several weaknesses of the dominant GRPO
framework have become apparent. Sensitivity to reward
design is the first concern: the popular format reward can
actually degrade performance when mis-specified (Stiennon
et al., 2020; Zeng et al., 2025a;b). On difficult tasks, such as
MATH problems at levels 3-5, the policy seldom produces
trajectories that earn positive feedback. Unless the difficulty
of the training tasks is tightly matched to the model’s current
exploration capacity, learning often stalls or even gradually
collapses over time. Crafting robust reward curricula or
adaptive scaling schemes that keep the signal informative
across diverse problem regimes remains an open challenge.
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A second issue is training stability and cost. GRPO opti-
mizes group-based relative advantages, a formulation that
introduces extra variance into the gradient estimate. Com-
bined with the large batch sizes and long roll-outs needed
to stabilize updates, this makes large-scale training com-
putationally expensive (Schulman et al., 2017). Improving
the robustness of the optimization objective and reducing
its computational cost are thus key priorities for the next
generation of RL post-training methods for LLM reasoning.

To pinpoint the root causes of GRPO’s shortcomings, we
carry out a systematic analysis of RL post-training through
the lens of three intertwined distributions: input questions,
model outputs, and rewards (advantages). We closely mon-
itor GRPO’s training dynamics along three axes-problem
difficulty, model confidence, and output advantage-using
only quantities that can be directly computed from model
logits and reward signals, so our methodology generalizes
robustly across different algorithms, datasets, and models.

Concretely, for each difficulty level in the data, we map
the responses generated by the model to an advantage-
confidence (AC) plane. Here, advantage is the reward-
normalized advantage returned by the RL update rule, while
confidence is the probability mass of the policy assigned
to the chosen response. This projection yields an intuitive,
two-dimensional snapshot of how learning unfolds over
the training process. We apply the above framework to
post-training Qwen2.5-Math-1.5B (Yang et al., 2024b) with
GRPO (Shao et al., 2024) on MATH (Hendrycks et al., 2021)
and evaluate on MATH500 (Lightman et al., 2024). The
resulting AC planes reveal several insightful observations:

• Advantage Contraction: As GRPO training improves
the model’s accuracy on the training set, the advantage dis-
tributions gradually contract around zero, which makes it
harder to differentiate outputs within the response group.

• Confidence Saturation: As GRPO training progresses,
the model’s confidence increasingly clusters at a high
value, improving accuracy but also leading to overconfi-
dence in wrong outputs, especially on difficult problems.

• Hierarchical Convergence: During GRPO training, easy
questions move towards higher confidence and positive
advantage, while harder ones shift positively and slowly
but continue to retain a significant proportion of errors.

Building on these insights, we propose CoDaPO, a
confidence- and difficulty-adaptive policy optimization
method for post-training LLMs on reasoning tasks. Un-
like prior approaches, CoDaPO focuses purely on factual
correctness when rewarding outputs, eliminating the noise
introduced by format and length rewards. It dynamically
reweights advantages using a combination of output confi-
dence and problem difficulty, ensuring that high-confidence,

complex outputs receive proportionately greater reinforce-
ment, while simpler, overconfident outputs are appropriately
down-weighted. To address the potential length bias, Co-
DaPO normalizes advantages globally at the sequence level,
avoiding the token-wise scaling that can overly penalize
longer responses. Additionally, it completely discards KL
regularization, which often restricts exploratory learning by
enforcing close alignment with a frozen reference model.
This design frees the policy to discover more diverse reason-
ing trajectories, ultimately improving the model’s ability to
handle deliberate reasoning across a wide range of tasks.

Finally, we empirically validate the proposed algorithm on
seven widely used reasoning-task benchmarks. The ex-
perimental results indicate that CoDaPO achieves higher
reasoning accuracy and better generalization across various
benchmarks compared to existing algorithms. This improve-
ment is particularly evident for base models that have not un-
dergone instruction-tuned training. For instance, CoDaPO
boosts the accuracy of the Qwen2.5-Math-1.5B model from
31.20% to 71.68% on the in-domain MATH500 bench-
mark, and from 18.25% to 32.80% on the out-of-domain
Olympiad Bench. These findings underscore CoDaPO’s
significant potential to enhance the reasoning capabilities of
LLMs, resulting in substantial gains in accuracy across both
in-domain and out-of-domain evaluations. In summary, the
main contributions of the work are three-fold as follows:

• In-depth analysis of RL post-training. We introduce a
general diagnostic framework with AC planes that tracks
the joint distributions of task difficulty, model confidence,
and advantage, yielding actionable insights into why ex-
isting methods like GRPO often stall or regress (Sec. 3).

• CoDaPO: a confidence- and difficulty-adaptive RL al-
gorithm. Building on the insights in Sec. 3, we design
CoDaPO, a new post-training algorithm that tailors re-
wards, exploration, and normalization to reasoning tasks,
significantly improving stability and performance (Sec. 4).

• Comprehensive empirical verification. Extensive exper-
iments on MATH, AIME 2024, and related benchmarks
demonstrate that CoDaPO consistently outperforms other
post-training approaches, confirming the practical value
of our analysis and algorithmic contributions (Sec. 5).

2. Preliminaries: Post-training Algorithms for
Language Models

Notations. A training dataset D contains question-answer
pairs (q, a). Given a question q, a language model fθ(·)
parameterized by θ generates an output o as o ∼ fθ(·|q).
This output includes the model’s step-by-step reasoning
process and the predicted answer to the question. Sorted by
the frequency of updating in the optimization process, the
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model can be classified into three types: 1) policy model fθ
(latest), 2) old policy model fold (older), and 3) reference
model fref (oldest). Next, we introduce representative post-
training algorithms, including SFT, PPO, and GRPO.

Supervised Fine-tuning (SFT) finetunes the policy model
to predict the next token on data that is more relevant to the
downstream task. The objective of SFT is to maximize the
token-wise log probability of dataset-collected outputs O,
which are treated as the ground truth for training. Namely,

JSFT(fθ) ≜ E(q,a)∼D,o∼O(q)

 1

|o|

|o|∑
t=1

log fθ(ot|q, o<t)

 .

(1)

Although simple in optimization, SFT has several draw-
backs. SFT focuses on exploiting (memorizing, to some
extent) the dataset-collected outputs, resulting in limited
generalization power, especially in the out-of-distribution
scenarios (Chu et al., 2025a). Besides, collecting and anno-
tating the output data can be expensive and often requires
domain-specific knowledge in solving particular questions.

Proximal Policy Optimization (PPO) (Schulman et al.,
2017) is an actor-critic RL algorithm that is widely used
in the RL fine-tuning stage of LLMs. Simplifying the
TRPO (Schulman et al., 2015a), PPO maximizes the ad-
vantage At of the model-generated output o without the
need to collect ground truth outputs. Here, the advantage
At is computed by the Generalized Advantage Estimation
(GAE) (Schulman et al., 2015b), taking 1) the output value
estimated by a trainable value model and 2) the KL penalty
between fθ and fref. PPO maximizes the objective:

JPPO(fθ) ≜ E(q,a)∼D, o∼fold(·|q)[
1

|o|

|o|∑
t=1

min

(
fθ(ot|q, o<t)

fold(ot|q, o<t)
At,

clip
(

fθ(ot|q, o<t)

fold(ot|q, o<t)
, 1− ϵ, 1 + ϵ

)
At

)]
.

(2)

Although widely used in alignment tasks, PPO has several
significant limitations. Its learning process is unstable, com-
putationally expensive, and requires extensive hyperparame-
ter tuning. The clipped objective can slow convergence and
yield suboptimal policies (Engstrom et al., 2020). Notably,
training the value model is challenging due to inherently
high variance and poor generalization (Andrychowicz et al.,
2020). Besides, PPO is also prone to reward hacking, strug-
gles with long-term credit assignment, and suffers from the
issue of sample inefficiency (Henderson et al., 2018).

Group Relative Policy Optimization (GRPO) (Shao et al.,
2024) simplifies PPO via removing the learnable value
model. Instead, GRPO uses the average reward of mul-

tiple sampled outputs for the same question as the baseline.
Specifically, given a question q, GRPO requires to sample
G outputs from the old policy as {oi}Gi=1 ∼ fold(·|q). Then,
it computes the reward ri for each output oi (through deter-
ministic reward functions) and obtains a group of rewards
{ri}Gi=1. The advantage Âi of GRPO is estimated as:

Âi = r̃i =
ri − mean({ri}Gi=1)

std({ri}Gi=1)
. (3)

The objective of GRPO is to maximize the advantage (the
first term) while ensuring that the policy model remains
close to the reference policy (the KL divergence term):

JGRPO(fθ) ≜ E(q,a)∼D,{oi}G
i=1∼fold(·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
min

(
fθ(oi,t|q, oi,<t)

fold(oi,t|q, oi,<t)
Âi,t,

clip
( fθ(oi,t|q, oi,<t)

fold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)

− βDKL [fθ||fref]

]
.

(4)

Here, the clip (·, 1− ϵ, 1 + ϵ) mechanism ensures that the
update of every step do not deviate excessively from the old
policy by bounding the policy ratio between 1− ϵ and 1+ ϵ.
Besides, the KL divergence is estimated as follows:

DKL [fθ||fref] =
fref(oi,t|q, oi,<t)

fθ(oi,t|q, oi,<t)
−log

fref(oi,t|q, oi,<t)

fθ(oi,t|q, oi,<t)
−1.

(5)

Nonetheless, GRPO can be challenging to implement be-
cause it sometimes produces outputs with unintended token
distributions or incoherent language patterns (Guo et al.,
2025). It also demands careful reward function design to
balance fairness constraints and meaningful group-based
advantage estimation (Stiennon et al., 2020). The RL train-
ing process in GRPO can be unstable due to its reliance
on group-based relative advantages, and it remains compu-
tationally expensive, especially for large-scale implemen-
tations (Schulman et al., 2017; Ouyang et al., 2022). Fur-
thermore, while GRPO introduces optimizations to post-
training, it does not consistently outperform other simpler
methods like SFT, particularly in small-scale training.

In addition, several RL algorithms have been developed pri-
marily for alignment tasks. Therein, DPO (Rafailov et al.,
2023), CPO (Xu et al., 2024), and their variants (Li et al.,
2024; Guo et al., 2024; Munos et al., 2024; Hong et al., 2024;
Xie et al., 2024) rely on pairs of outputs labeled by human
preference. In contrast, KTO (Ethayarajh et al., 2024) and
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BCO (Jung et al., 2024) require only a single binary label
(like or dislike) for each output. Besides, the PRM (Uesato
et al., 2022; Lightman et al., 2024) and Step-KTO (Lin et al.,
2025a) offer stepwise guidance by incorporating feedback at
each reasoning step rather than focusing solely on the final
outputs. Recently, the follow-up work of GRPO improves
the optimization objective, e.g., DAPO (Yu et al., 2025),
Dr. GRPO (Liu et al., 2025a), REINFOECE++ (Hu, 2025),
CPPO (Lin et al., 2025b), and GPG (Chu et al., 2025b).
Another line of research generalizes GRPO to broader ap-
plications such as multimodal reasoning (Zhou et al., 2025;
Huang et al., 2025; Chu et al., 2025b; Liu et al., 2025b;
Zhang et al., 2025) and logical reasoning (Xie et al., 2025).

3. Tracking the Training Dynamics of RL
Post-training

Post-training fundamentally relies on three key components:
the algorithm, the dataset, and the base model. Specifically,
the base model is post-trained using a dataset and optimized
with an algorithm, resulting in a refined post-trained model.
To uncover the underlying behaviors that contribute to the
observed limitations of GRPO, we conduct a systematic
analysis of RL post-training on reasoning tasks. In this
study, we track the training dynamics of the GRPO algo-
rithm across three critical metrics: problem difficulty, model
confidence, and output advantages. These metrics are de-
fined in a general manner, ensuring their applicability to a
wide range of algorithms, datasets, and models.

Specifically, given a language model fθ and a question-
answer pair (q, a), we sample G outputs from the model as
{oi}Gi=1 ∼ fθ(·|q). We only compute the accuracy reward
ri for each output by matching the ground-truth answer a
and the predicted answer in oi, where ri=1 if correct and 0
otherwise. With outputs {oi}Gi=1 and rewards {ri}Gi=1, we
compute the metrics of confidence and difficulty as:

Confidence(fθ, q, oi) =
1

|oi|

|oi|∑
t=1

fθ(oi,t|q, oi,<t),

Difficulty(fθ, q, a) = 1− 1

G

G∑
i=1

ri.

(6)

Then, we split the questions into five difficulty levels using
the difficulty metric: 1 0-0.2 (level 1), 0.2-0.4 (level 2),
0.4-0.6 (level 3), 0.6-0.8 (level 4), and 0.8-1 (level 5). For
questions in each level, we map each generated output to
an Advantage-Confidence (AC) plane (Fig. 1). We plot its
confidence (exponentiated average token log-probability)
on the y-axis against its advantage (the reward relative to
the group) on the x-axis. This visualization reveals patterns

1In Appendix B, we verify that the model-estimated difficulty
well aligns with the ground truth difficulty.
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Figure 1: The illustration of AC plane. Higher confidence
indicates greater decoding probability (Eqn. 6). Advantage
indicates the relative output quality within a group (Eqn. 3).

that are not apparent from accuracy metrics alone.

Next, we post-train the Qwen2.5-Math-1.5B (Yang et al.,
2024b) model with GRPO. The AC planes of the training
samples of the MATH dataset (Hendrycks et al., 2021) and
evaluation samples of the MATH500 dataset (Lightman
et al., 2024) are shown in Figs. 2 and 3, respectively. Based
on these, we summarize the following three observations.

Observation 1 (Advantage Contraction). As GRPO train-
ing improves accuracy, the advantage distributions contract
around zero, making it harder to differentiate outputs within
response groups. Due to the inherent design of the GRPO
advantage mechanism, the magnitude of advantage is not
directly linearly correlated with model accuracy. Instead,
it captures the internal variance within response groups.
As GRPO training progresses, the advantage distributions
across all difficulty levels tend to contract around zero. This
convergence is driven by increasing model accuracy, which
results in a larger fraction of correct outputs within each
group. Consequently, while the advantage of these cor-
rect outputs diminishes, it typically remains non-negative.
However, this also implies that the signal for differentiating
between highly effective and slightly less effective outputs
within a group can weaken, potentially reducing the granu-
larity of the advantage feedback in optimization iterations.

Observation 2 (Confidence Saturation). As GRPO train-
ing progresses, the model’s confidence increasingly concen-
trates near 100%, improving accuracy but also leading to
overconfidence in incorrect outputs. Before training, the
model exhibits a similar confidence distribution across diffi-
culty levels: it tends to assign higher confidence to correct
outputs, while the confidence for incorrect outputs remains
highly variable. As GRPO training progresses, the model’s
overall confidence grows towards 100%. This trend aligns
with improving model accuracy but also reveals a downside.
Namely, the model becomes increasingly overconfident in
its incorrect outputs, indicating a potential overfitting or
miscalibration in the training process. This aligns with the
entropy collapse observed in Yu et al. (2025). Besides, we
observe similar trends in the validation set (see Fig. 3).
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Figure 2: The AC planes of the Qwen2.5-Math-1.5B model, post-training on the MATH dataset with the GRPO algorithm.
We present the AC plane of model checkpoints captured at training steps 0 (base model), 60, and 240 on the training set.
Columns 1 through 5 correspond to difficulty levels 1 through 5. Additionally, the marginal distributions (i.e., the density
distributions) of advantage and confidence across all samples are shown above and to the right of each AC plane.
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Figure 3: The AC planes of the Qwen2.5-Math-1.5B model, evaluated on the MATH validation set with the checkpoints
captured at training steps 0 (base model), 60, and 240 (consistent with Fig. 2).

Observation 3 (Hierarchical Convergence). Easy ques-
tions move towards higher confidence and positive advan-
tage, while harder ones shift positively but retain a signifi-
cant proportion of errors. For easier questions, the model’s
initial advantage is concentrated in the non-negative range
with high confidence, even before GRPO training. As train-
ing progresses, the advantage shifts closer to zero, accom-

panied by a further increase in confidence. In contrast, for
more challenging questions, the initial advantage is skewed
towards the non-positive range, reflecting a higher frequency
of incorrect, low-confidence responses. With the progres-
sion of GRPO training, this distribution gradually shifts
toward the positive range as the model accuracy improves,
though a notable portion of incorrect responses persists.
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4. CoDaPO: Confidence and
Difficulty-Adaptive Policy Optimization

This section introduces CoDaPO, a novel RL-based post-
training algorithm inspired by the insights from Sec. 3.
CoDaPO dynamically adjusts the weighting of advantages
based on both model confidence and problem difficulty, pri-
oritizing uncertain outputs in challenging scenarios where
the potential for improvement is greatest. The learning
objective provides the strongest positive reinforcement for
correct and high-confidence responses on difficult problems.

J CoDaPO(fθ) ≜ E(q,a)∼D,{oi}G
i=1∼fold(·|q)

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

[
fθ(oi,t|q, oi,<t)

fold(oi,t|q, oi,<t)
· Âi · ĉi · d̂q

]
,

(7)

where Âi=
ri−mean({ri}Gi=1)

std({ri}Gi=1)
,

ĉi=σ

(
1
G

∑G
i=1

1
|oi|
∑|oi|

t=1 log fθ(oi,t|q, oi,<t)

1
|oi|
∑|oi|

t=1 log fθ(oi,t|q, oi,<t)

)
,

d̂q=1+δ(
1

G

G∑
i=1

ri−
1

2
)2.

Here, the σ(·) denotes the sigmoid function, and δ is a
hyperparameter to scale the average value of rewards within
a group. In the following, we elaborate on the underlying
design rationales of each component in CoDaPO.

Computing rewards and advantages. Following the un-
derstanding part in Sec. 3, we only adopt the accuracy
reward ri (instead of integrating the format or length re-
ward) in evaluating the quality of each output oi. Next,
we estimate the advantage Âi of the output oi as Âi =
ri−mean({ri}G

i=1)/std({ri}G
i=1). Building upon this estimate, we

propose a confidence- and difficulty-adaptive reweighting
mechanism to refine the use of advantages. Specifically,
we multiply the advantage Âi with the output-wise confi-
dence weight ĉi and the question-wise difficulty weight d̂q ,
and obtain the final product Âi · ĉi · d̂q. To optimize the
scalar Âi, we multiply it with the token-wise probability
fθ(oi,t|q,oi,<t)/fold(oi,t|q,oi,<t) to ensure correct gradient flow.

Advantage reweighting w.r.t. confidence. The confidence-
aware scaling factor ĉi compares the confidence of a spe-
cific output against the average group confidence. Outputs
with higher confidence receive greater weight when correct
(positive advantage) and stronger penalties when incorrect
(negative advantage), thereby naturally addressing the confi-
dence saturation problem. We stabilize the factor smoothly
using the sigmoid function to avoid extreme values that may
arise due to the unbounded nature of logarithms.

Advantage reweighting w.r.t. difficulty. Instead of directly

applying the linear difficulty estimation proposed in Eqn. 6,
we adopt a quadratic reweighting strategy that emphasizes
both the easiest and most difficult questions, creating a U-
shaped importance curve. This encourages the model to
maintain strong performance on easy problems while accel-
erating improvement on difficult ones. The training effect of
this reweighting is: (1) For hard questions, correct answers
tend to receive higher advantages, while incorrect ones yield
small-magnitude negative advantages, and (2) for easy ques-
tions, incorrect answers are penalized more severely, and
correct answers do not receive excessive advantages.

Sample-level normalization. We remove the normalization
terms 1/G and 1/|oi| in the original GRPO objective (Eqn. 4)
to address the potential length bias within a group (Yu et al.,
2025; Liu et al., 2025a). Specifically, we sum up the advan-
tage terms of all tokens and all outputs and then normalize
the accumulated value by multiplying 1/

∑G
i=1 |oi|.

Discarding the KL regularization. While KL regulariza-
tion (e.g., Eqn. 5) is valuable for alignment tasks to prevent
divergence from human preferences, we find it unnecessarily
constrains exploration in reasoning tasks where discovering
novel solution strategies is beneficial. Besides, the KL term
increases the overall computational cost, attributed to the
forward inference of the reference model. Therefore, we
remove this term to streamline the optimization as well as al-
low the policy to explore more diverse reasoning paths while
still maintaining coherence through the PPO objective.

5. Experiments
In this section, we evaluate our proposed RL algorithm for
post-training LLMs on mathematical reasoning tasks. We
first describe the experimental setup, followed by the main
experimental results and ablation studies, to demonstrate the
effectiveness of our approach against established baselines.

Baselines. We compare our proposed algorithm with several
strong and representative baselines: GRPO (Shao et al.,
2024), a widely adopted RL method for LLM post-training,
and its variants. Specifically, we evaluate against recently
proposed RL algorithms, including DAPO (Yu et al., 2025),
Dr. GRPO (Liu et al., 2025a), and GPG (Chu et al., 2025b).

Models. We evaluate the above algorithms on Qwen2.5-
1.5B-Instruct (Yang et al., 2024a), a general-purpose model
with 1.5B parameters that has been instruction-tuned on a di-
verse corpus, and Qwen2.5-Math-1.5B (Yang et al., 2024b),
a specialized model pre-trained on high-quality synthetic
mathematical content with the same parameter count.

Training setup. We use the MATH (Lightman et al., 2024;
Hendrycks et al., 2021) dataset for post-training, which
includes 7, 500 problems from mathematics competitions.
Due to computing constraints, all RL algorithms are imple-
mented using 6 NVIDIA A100 GPUs (80 GB each), with 4
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Normalization Advantage Regularization Note

GRPO (Shao et al., 2024)
E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1
G

∑G
i=1

1
|oi|

∑|oi|
t=1

[ min
( fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
Âi,

clip(
fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
, 1 − ϵ, 1 + ϵ)Âi

)−β
( fref(oi,t|q,oi,<t)

fθ(oi,t|q,oi,<t)

− log
fref(oi,t|q,oi,<t)

fθ(oi,t|q,oi,<t)
− 1

)]
.

Âi=
ri−mean({ri}

G
i=1)

std({ri}Gi=1
)

.

Dr. GRPO (Liu et al., 2025a)
E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1

G·c
∑G

i=1

∑|oi|
t=1

[ min
( fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
Âi,

clip(
fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
, 1 − ϵ, 1 + ϵ)Âi

)−β
( fref(oi,t|q,oi,<t)

fθ(oi,t|q,oi,<t)

− log
fref(oi,t|q,oi,<t)

fθ(oi,t|q,oi,<t)
− 1

)]
.
Âi=ri − mean({ri}G

i=1).

DAPO (Yu et al., 2025)
E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1∑G

i=1
|oi|

∑G
i=1

∑|oi|
t=1

[ min
( fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
Âi,

clip(
fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
, 1−ϵlow, 1+ϵhigh)Âi

)]
.

None Âi=
ri−mean({ri}

G
i=1)

std({ri}Gi=1
)

.

GPG (Chu et al., 2025b)
E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1∑G

i=1
|oi|

∑G
i=1

∑|oi|
t=1

[ log fθ(oi,t|q, oi,<t)Âi

]
. None Âi = α ·

(
ri − mean({ri}G

i=1)
)

.

CoDaPO (ours)

E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1∑G

i=1
|oi|

∑G
i=1

∑|oi|
t=1

[ fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
· Âi · ĉi · d̂q

]
. None

Âi =
ri−mean({ri}

G
i=1)

std({ri}Gi=1
)

, ĉi = σ
(

1
G

∑G
i=1

1
|oi|

∑|oi|
t=1 log fθ(oi,t|q,oi,<t)

1
|oi|

∑|oi|
t=1 log fθ(oi,t|q,oi,<t)

)
,

d̂q = 1+δ( 1
G

∑G
i=1 ri − 1

2
)2 .

Table 1: Comparing the components in different RL algorithms for reasoning. Note that the highlighted contents indicate
the differences with the original implementation of the GRPO algorithm. Specifically, (1) the advantage term evaluates
the quality of model-generated outputs, (2) the regularization term measures the divergence between the policy model and
reference model, and (3) the normalization term scales the final optimization signal across multiple problems and outputs.

GPUs allocated for inference during training and the remain-
ing two for parameter optimization. We use Transformer
Reinforcement Learning (von Werra et al., 2020) as the
training backbone and use the same settings in all method
training to ensure fair comparison. For each question, we
sample 12 outputs and set the accumulation step to 12 to
reduce the impact of batch variance. We set the learning rate
to 3.0e-06 for 3 epochs and perform early stopping when
the accuracy reward converges. In CoDaPO, we set the δ in
the difficulty-adaptive weighting function to 0.4.

Evaluation setup. Our framework adapts Qwen2.5-Math’s
evaluation codebase2, ensuring consistent and reliable mea-
surement across all experiments. For conducting a rigorous
evaluation, we sample 5 responses per question with tem-
perature 0.6, averaging the accuracy across these samples.
This approach reduces variance from sampling randomness
while maintaining a reasonable diversity of reasoning paths.
We evaluate on 7 benchmarks of reasoning tasks, includ-
ing MATH500 (Lightman et al., 2024; Hendrycks et al.,
2021), AIME 2024, AIME 2025, AMC 2023, Olympiad
Bench (Huang et al., 2024), Minerva (Lewkowycz et al.,
2022), and GSM8K (Cobbe et al., 2021).

2https://github.com/QwenLM/Qwen2.5-Math/
tree/main/evaluation

Main results. We summarize the following observations
with respect to the experimental results in Tab. 2:

• CoDaPO can significantly improve LLMs’ reasoning
abilities. Applying CoDaPO to various models trained
on the MATH training set consistently yields significant
performance improvements across different benchmarks.
For instance, with the Qwen2.5-Math-1.5B model, Co-
DaPO elevates the accuracy on MATH500 from 31.20%
to 71.68%, and the average accuracy across seven distinct
benchmarks improves from 18.37% to 43.41%. Notably,
this enhancement in accuracy is more pronounced for base
models that have not undergone instruction tuning.

• CoDaPO exhibits remarkable generalization capabili-
ties. Despite being post-trained solely on the MATH train-
ing set, CoDaPO demonstrates surprisingly strong gener-
alization to out-of-domain datasets. For instance, on the
out-of-domain Olympiad Bench benchmark, the model’s
accuracy improves from 18.25% to 32.80%, and on Min-
erva benchmark, the accuracy increases from 9.63% to
31.69%. This indicates the potential of CoDaPO to sig-
nificantly enhance reasoning abilities across a wide range
of tasks, even those not encountered during training.

• CoDaPO’s performance significantly surpasses other
baselines. The comparison of CoDaPO with other RL
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Base Model Algorithm
Datasets

Average
MATH

500
AIME
2024

AIME
2025

AMC
2023

Olympiad
Bench Minerva GSM8K

Qwen2.5-1.5B-Instruct

Base 49.36 3.00 0.00 23.50 17.01 16.84 59.56 24.18
GRPO 55.08 3.00 1.33 26.00 19.08 22.35 73.92 28.68
DAPO 56.04 2.67 0.00 27.50 18.90 21.91 73.04 28.58
Dr. GRPO 56.24 3.33 0.00 25.50 19.11 21.18 73.80 28.45
GPG 54.36 4.00 1.33 23.00 19.29 21.54 74.10 28.34
CoDaPO (ours) 55.60 3.33 1.33 31.00 19.44 22.21 74.30 29.60

(6.24↑) (0.33↑) (1.33↑) (7.50↑) (2.43↑) (5.37↑) (14.74↑) (5.42↑)

Qwen2.5-Math-1.5B

Base 31.20 6.00 0.00 29.50 18.25 9.63 34.01 18.37
GRPO 68.48 12.67 8.00 51.00 30.55 28.53 79.56 39.82
DAPO 71.12 14.00 8.00 49.00 31.97 32.13 82.38 41.23
Dr. GRPO 70.68 10.67 10.67 49.50 31.67 30.51 82.17 40.84
GPG 70.60 11.33 5.33 47.00 31.97 29.49 82.38 39.73
CoDaPO (ours) 71.68 14.67 16.00 53.50 32.80 31.69 83.50 43.41

(40.48↑) (8.67↑) (16.00↑) (24.00↑) (14.55↑) (22.06↑) (49.49↑) (25.04↑)

Table 2: The main results of the post-training experiments (in accuracy). Note that the boldface numbers mean the best
results, while the underlined numbers indicate the second-best results. We also show the absolute improvement of CoDaPO
over the base model for each benchmark.

algorithms reveals that CoDaPO outperforms these base-
lines on most benchmarks. Specifically, in terms of aver-
age accuracy, CoDaPO demonstrates a 3.59% improve-
ment over GRPO and a 2.18% improvement over DAPO,
the best-performing baseline method with the Qwen2.5-
Math-1.5B model. This indicates that CoDaPO’s unique
confidence and difficulty-adaptive mechanism is capable
of robustly improving models’ reasoning capabilities.

The AC planes of CoDaPO. Fig. 4 and Fig. 5 present the
AC planes of the Qwen2.5-Math-1.5B model on the MATH
training set and validation set after training with CoDaPO.
The complete AC planes are presented in Appendix B. We
summarize our observations as follows:

• CoDaPO significantly enhances the model’s accuracy
on difficult problems. On high-difficulty subsets (such
as Level 4 and Level 5), the advantage distribution un-
der CoDaPO is more concentrated on the positive side
of zero compared to GRPO in Fig. 2 and Fig. 3, in-
dicating improved accuracy on these questions. This
likely stems from CoDaPO’s difficulty-adaptive mecha-
nism introduced in Sec. 4, which assigns higher advantage
weights to difficult questions, thereby guiding the model
to pay more attention to problems with sparse rewards.

• CoDaPO mitigates the model’s overconfidence issue.
Compared to GRPO (Fig. 2 and Fig. 3), CoDaPO exhibits
a greater disparity between the confidence scores of cor-
rect and incorrect answers, with correct answers demon-
strating higher confidence and incorrect answers showing
a larger variance in confidence. This is attributed to Co-
DaPO’s confidence-adaptive mechanism introduced in

Sec. 4, which assigns higher advantage to correct answers
with high confidence and imposes a greater penalty on
incorrect answers with high confidence. This encourages
the model to reinforce familiar, high-quality solutions
while reducing overconfidence in erroneous responses.

Case Studies. We present several representative case stud-
ies in Appendix C. Compared to GRPO, CoDaPO demon-
strates more coherent and logically structured reasoning
trajectories. Its reasoning steps are typically well-ordered,
mathematically sound, and more interpretable. In contrast,
GRPO often exhibits fragmented or inconsistent reasoning,
sometimes relying on brittle patterns such as incomplete
algebraic transformations or unverified code snippets. This
can lead to logically invalid outputs or incorrect final an-
swers. These observations highlight CoDaPO’s advantage
in producing not only more accurate answers, but also more
robust and verifiable intermediate reasoning trajectories.

Ablation Studies. To further validate the effectiveness of
our designed confidence and difficulty reweighting mecha-
nism, we conducted a series of ablation experiments. We
systematically disassembled the components of CoDaPO
and performed individual training runs for each. As shown
in Tab. 3, both the confidence and difficulty reweighting
techniques, when implemented in isolation, yield a notice-
able improvement over the vanilla GRPO baseline. More-
over, the combination of both mechanisms results in the
most substantial performance gains. This suggests that the
synergistic integration of confidence and difficulty reweight-
ing within CoDaPO plays a crucial role in optimizing the
learning process and achieving superior performance.
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Figure 4: The AC planes of the Qwen2.5-Math-1.5B model, post-training on the MATH dataset with the CoDaPO algorithm.
We present the AC plane of model checkpoints captured at the midpoint of training (240 steps) and at the end of training
(750 steps). Columns 1 through 5 correspond to difficulty levels 1 through 5.
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Figure 5: The AC planes of the Qwen2.5-Math-1.5B model during CoDaPO training, evaluated on the MATH validation set
with the checkpoints captured at training steps 240, and 750 (consistent with Fig. 4).

Model MATH500

Qwen2.5-Math-1.5B (base) 31.20

+ GRPO 68.48
+ confidence reweighting 71.52
+ difficulty reweighting 71.32
+ both (CoDaPO) 71.68

Table 3: Ablation study on MATH500 accuracy.

6. Limitation and Conclusion
Limitation. While our results are promising, several im-
portant limitations should be noted. First, our evaluation is
limited to 1.5B parameter models, and the scaling behavior
of CoDaPO to models with tens or hundreds of billions of pa-
rameters remains unknown. This is particularly important as
larger models may exhibit different advantage-confidence
dynamics. Second, although we benchmarked on seven
reasoning tasks, post-training was confined to the MATH
dataset, so the robustness of CoDaPO to other domains (e.g.,
commonsense, scientific, coding) remains unclear. Third,
our experiments were conducted under moderate compute,

typical for small-scale models, and we have yet to quantify
resource usage or optimize for large-scale or production-
scale efficiency in RL-based post-training.

Conclusion. In this work, we identify key weaknesses of
GRPO through an advantage-confidence perspective, high-
lighting how reward contraction, confidence saturation, and
hierarchy convergence hinder RL post-training. To address
these challenges, we propose CoDaPO, an RL algorithm
that reweights advantages based on model confidence and
problem difficulty. Across seven reasoning benchmarks,
CoDaPO consistently improves reasoning performance, es-
tablishing a practical path toward more capable reasoning
models and laying the foundation for future work on larger-
scale models and broader post-training scenarios. Moreover,
the insights from our AC plane analysis may extend be-
yond mathematical reasoning to other domains requiring
deliberate step-by-step thinking, such as logical reasoning,
planning, and scientific problem-solving. CoDaPO demon-
strates that reward reshaping based on confidence and diffi-
culty signals can help improve learning dynamics.
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A. Implementation Details
Experiment framework. In this work, we utilize Transformer Reinforcement Learning (TRL) as the training backbone,
specifically version 0.16.1. To ensure consistency with the vanilla GRPO algorithm, we revise the original GRPO trainer
in TRL accordingly since it has some discrepancies in loss computation from Shao et al. (2024). Building upon this
implementation, we develop several baseline methods evaluated in this work, including DAPO, Dr.GRPO, GPG, and our
proposed approach, CoDaPO.

General hyperparameters. To ensure fair comparisons, we train all algorithms using the same set of hyperparameters.

• Sampling setting. For each question, we sample 12 responses to form a response group. The sampling temperature is set
to 0.9, and we use a top-p value of 1.0 to consider the full token distribution.

• Learning rate. We use a learning rate of 3.0e− 6 and apply a warm-up over the first 10% of global training steps. A
cosine learning rate scheduler is employed to gradually reduce the learning rate to zero throughout training.

• Batch size. We set the batch size to 6 to evenly distribute the generated responses across training devices. To mitigate the
variance introduced by different question samples, we use a gradient accumulation step of 12.

• Randomness control. To ensure reproducibility, we set the random seed to 42 and enable full determinism.

Prompt template. We use the prompt template shown in Fig. 6 for both training and evaluation. Furthermore, we apply
chat template shown in Fig. 7 when processing the raw data.

Prompt Template

Please reason step by step, and put your final answer within \boxed{}.

Figure 6: Prompt template used during training and evaluation.

Chat Template

<|im_start|>system
Please reason step by step, and put your final answer within \boxed{}.
<|im_end|>
<|im_start|>user
Find the sum of all integer bases $b>9$ for which $17_b$ is a divisor of $97_b$.
<|im_end|>
<|im_start|>assistant

Figure 7: Example of a prompt used after applying the chat template.

Reward setting. We observe that although using a format reward can improve the readability of LLM outputs to some
extent, it may lead to reward hacking in the later stages of training, potentially resulting in irreversible training collapse.
This observation is consistent with the findings of (Zeng et al., 2025a). Therefore, in all experiments conducted in this work,
we rely solely on the accuracy reward, defined as follows:

ri(yi, ŷ) =

{
1, is_equivalent(yi, ŷ)
0, otherwise

.

Here, yi denotes the answer produced for the i-th output and ŷ represents the corresponding ground truth. To accurately
determine whether yi and ŷ are equivalent, we employ Math-Verify3 as our reward evaluation system, where all LaTeX
expressions are parsed and compared for mathematical equivalence.

3https://github.com/huggingface/Math-Verify
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Completion length constraint. Following the work of (Zeng et al., 2025a), which argues that overly lenient length
constraints—or any heuristics that encourage the model to produce excessively long chains of thought—can, in many cases,
lead to overthinking, we impose a strict maximum completion length of 1024 tokens during both training and evaluation.
While this constraint may appear intuitively unreasonable, our experimental results demonstrate that reinforcement learning
post-training under such a short-CoT constraint can still yield strong performance (see Fig. 10).

B. Full Experiments
Difficulty estimation. Accurate estimation of question difficulty plays a crucial role in our proposed algorithm, CoDaPO, as
it directly influences the computation of difficulty-adaptive weights in the optimization objective. However, relying solely
on pre-existing difficulty annotations presents significant limitations. First, not all datasets contain ground-truth difficulty
labels. Second, since the model’s performance evolves during training, the perceived difficulty of a question may vary over
time. Consequently, fixed difficulty labels may fail to reflect the dynamic nature of the model’s learning process.

To explore a more adaptive and robust difficulty estimation approach, we conduct preliminary experiments on the MATH
dataset, which includes human-annotated difficulty levels. Using GRPO on Qwen2.5-Math-1.5B, we analyze the accuracy
trajectories for different difficulty levels throughout training. As shown in Fig. 8, model accuracy aligns well with the
ground-truth difficulty labels: easier questions correspond to higher accuracy, and harder questions to lower accuracy.
Moreover, the accuracy gap between different difficulty levels increases and stabilizes as training progresses, indicating a
consistent difficulty signal.

Figure 8: The GRPO training accuracy curves for questions of different difficulty
levels on Qwen2.5-Math-1.5B.

These observations motivate us to estimate question difficulty based on the model’s own accuracy. This approach is naturally
integrated into the online RL process without requiring any additional evaluation model, as multiple samples per question are
generated during training. It generalizes well to datasets without difficulty annotations and provides a dynamic estimation
mechanism that adapts to the model’s evolving capabilities over time, overcoming the limitations of static difficulty labels.

Completion length. In Figs. 9 and 10, we illustrate how the length of model responses evolves throughout the training
process. Contrary to prior studies that advocate for encouraging longer responses as a means of enhancing model performance,
our observations reveal a different perspective—namely, that even under stringent response length constraints (e.g., 1024
tokens), models can still achieve substantial performance gains. In fact, although we explicitly impose a hard stop when a
model’s response exceeds 1024 tokens, the model never actually reaches this limit during training.

Interestingly, performance improvements are often accompanied by a decrease in output length. We observe a similar trend
in vanilla GRPO as well. We hypothesize that this phenomenon stems from the nature of the math questions, which typically
do not require excessively long reasoning chains. Instead, longer responses from the base model often reflect overthinking,
including the generation of unnecessary reasoning steps or placeholder verification logic (e.g., writing pseudo Python code
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to "verify" results without external execution support).

RL mitigates these tendencies by discouraging redundant generation and encouraging the model to produce concise,
solution-oriented answers. As a result, we observe a consistent downward trend in average completion length, which aligns
with improved performance.

Figure 9: The GRPO training curves for completion length
on Qwen2.5-Math-1.5B.

Figure 10: The CoDaPO training curves for completion
length on Qwen2.5-Math-1.5B.

Reward curves. We present the reward curve and its standard deviation throughout the training process in Figs. 11 and 12,
where Qwen2.5-Math-1.5B is trained on the MATH dataset using CoDaPO. Note that since we adopt accuracy as the sole
reward, the reward values are equivalent to the model’s average accuracy. Overall, CoDaPO consistently improves model
performance, exhibiting a stable upward trend in accuracy across training steps.

Despite removing the KL regularization term, the training process remains stable, and we do not observe any catastrophic
degradation in accuracy—an issue sometimes encountered in RL-based training. Notably, the most significant performance
gain occurs within the first 200 steps, which corresponds to our designated warm-up phase, highlighting the early-stage
effectiveness of CoDaPO in guiding the model toward better reasoning behaviors.

Figure 11: The CoDaPO training curves for reward on
Qwen2.5-Math-1.5B.

Figure 12: The CoDaPO training curve for reward standard
deviation on Qwen2.5-Math-1.5B.

Confidence curves. We present the average confidence curve of model responses, along with separate confidence curves for
correct and incorrect responses, in Fig. 13. To compute the confidence for each output, we first calculate the log probability
of each token in the response and take the average at the token level. Given the unbounded nature of log probabilities, we
exponentiate the average log probability to obtain a normalized confidence score for each response.

From the confidence curves, we observe a clear and consistent gap between correct and incorrect responses throughout the
CoDaPO training process: the model assigns significantly higher confidence to correct outputs compared to incorrect ones.
This demonstrates that CoDaPO not only improves accuracy, but also enhances the model’s ability to calibrate its confidence
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in a more meaningful and discriminative manner.

Figure 13: The CoDaPO training curves for response confidence on Qwen2.5-
Math-1.5B.
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Complete AC planes. We show the full AC planes of CoDaPO and GRPO checkpoints on MATH training and validation
sets in Figs. 14–17. For fair comparison, all the experiments are conducted under the same training setup.
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Figure 14: The AC planes of the Qwen2.5-Math-1.5B model, post-training on the MATH dataset with the CoDaPO algorithm.
We present the AC planes of model checkpoints captured at every 60 training steps. Columns 1 through 5 correspond
to difficulty levels 1 through 5. Additionally, the marginal distributions (i.e., the density distributions) of advantage and
confidence across all samples are shown above and to the right of each AC plane.

(a
)6

0
st

ep
s

(b
)1

2
0

st
ep

s

19



CoDaPO: Confidence and Difficulty-Adaptive Policy Optimization for Post-Training Language Models
(c

)1
8
0

st
ep

s
(d

)2
4
0

st
ep

s
(e

)3
0
0

st
ep

s
(f

)3
6
0

st
ep

s
(g

)4
2
0

st
ep

s
(h

)4
8
0

st
ep

s
(i

)5
4
0

st
ep

s
(j

)6
0
0

st
ep

s

20



CoDaPO: Confidence and Difficulty-Adaptive Policy Optimization for Post-Training Language Models
(k

)6
6
0

st
ep

s
(l

)7
2
0

st
ep

s
(m

)7
5
0

st
ep

s

Figure 15: The AC planes of the Qwen2.5-Math-1.5B model with CoDaPO, evaluated on the MATH validation set with the
checkpoints captured at every 60 steps (consistent with Fig. 14).
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Figure 16: The AC planes of the Qwen2.5-Math-1.5B model, post-training on the MATH dataset with the GRPO algorithm.
We present the AC planes of model checkpoints captured at every 60 training steps. Columns 1 through 5 correspond
to difficulty levels 1 through 5. Additionally, the marginal distributions (i.e., the density distributions) of advantage and
confidence across all samples are shown above and to the right of each AC plane.
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Figure 17: The AC planes of the Qwen2.5-Math-1.5B model with GRPO, evaluated on the MATH validation set with the
checkpoints captured at every 60 steps (consistent with Fig. 16).
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Benchmarks. We evaluate our proposed method and other baselines on the following diverse benchmarks.

1. MATH 500 (Hendrycks et al., 2021). A curated set of 500 challenging problems from the MATH dataset, focusing on
high school-level mathematics across algebra, geometry, number theory, and combinatorics.

2. AIME 2024 4. A benchmark based on the 2024 American Invitational Mathematics Examination, testing advanced
problem-solving skills with 30 short-answer math problems designed for top high school students.

3. AIME 2025 5. The 2025 version of the AIME benchmark is similarly structured, providing a fresh set of high-difficulty
pre-Olympiad level math problems.

4. AMC 2023 6. Based on the 2023 American Mathematics Competitions (AMC 10/12), this benchmark assesses middle-
to-advanced high school math across a range of topics in a multiple-choice format.

5. Olympiad Benchmark (Huang et al., 2024). A collection of problems from various math olympiads (e.g., USAMO,
IMO), aimed at evaluating models on deep mathematical reasoning and multi-step proofs.

6. Minerva (Lewkowycz et al., 2022). A benchmark and model suite by Google DeepMind that tackles math and science
questions (from grade school to graduate level) using CoT reasoning and LLMs.

7. GSM8K (Cobbe et al., 2021). A dataset of 8500 grade-school level math word problems designed to test models’ ability
to perform multi-step numerical reasoning in natural language.

Test-time scaling. We present the test-time scaling results in Fig. 18 and 19. Specifically, we report the pass@k accuracy
on AIME25 before and after CoDaPO training, where k ∈ {1, 2, 4, 8, 16, 32, 64, 128}. Across all values of k, CoDaPO
consistently improves the model’s performance. Notably, for Qwen2.5-Math-1.5B, the pass@8 accuracy after CoDaPO
training surpasses the pass@32 accuracy of the model before training, effectively reducing the number of required responses
by 24 while achieving better results. This result demonstrates that CoDaPO effectively improves the quality and reliability
of model outputs under constrained sampling budgets. The fact that fewer samples are needed to achieve a given level of
accuracy indicates that the model becomes more confident and consistent in producing correct answers.

Furthermore, for the instruction-tuned Qwen2.5-1.5B-Instruct model, CoDaPO also leads to substantial improvements
in pass@k accuracy. The performance gain becomes more pronounced as k increases. This indicates that CoDaPO also
improves the diversity and calibration of the output distribution. The model is not only better at generating the correct
answer in the top few samples but also more likely to include it somewhere in a wider sampling set, which further confirms
the effectiveness of CoDaPO in enhancing both single-shot reliability and multi-sample robustness.

Figure 18: Pass@k result of Qwen2.5-Math-1.5B with Co-
DaPO on AIME 2025.

Figure 19: Pass@k result of Qwen2.5-1.5B-Instruct with
CoDaPO on AIME 2025.

4https://huggingface.co/datasets/HuggingFaceH4/aime_2024
5https://huggingface.co/datasets/opencompass/AIME2025
6https://huggingface.co/datasets/math-ai/amc23
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C. Case Studies
In-domain case. We analyze the performance gap between CoDaPO and GRPO through a symbolic reasoning task that
requires algebraic manipulation, base conversion, and number-theoretic reasoning in Fig. 20. While both methods adopt
similar initial steps, only CoDaPO successfully arrives at the correct and complete solution. This discrepancy reveals a
broader insight: CoDaPO demonstrates a stronger capacity for maintaining symbolic consistency and handling algebraic
constraints, whereas GRPO is more susceptible to local errors and brittle logic execution.

A key distinction lies in how the two models approach intermediate decision points. CoDaPO tends to preserve the symbolic
structure of the problem throughout the reasoning process, producing interpretable and logically coherent derivations. In
contrast, GRPO is more prone to heuristic or trial-based reasoning patterns, which may yield superficially plausible but
ultimately incorrect results—especially in cases requiring discrete enumeration or careful constraint satisfaction.

This case exemplifies a common challenge in reinforcement learning for language models: small reasoning errors in early
steps often cascade into incorrect final answers, and methods lacking robust symbolic understanding struggle to recover.
CoDaPO mitigates this through more structured reasoning and better alignment between confidence and difficulty signals,
which enhances its robustness in solving multi-step, discrete, and mathematically grounded problems.

These findings suggest that CoDaPO is not only effective in improving accuracy but also in enhancing reasoning fidelity and
interpretability, especially in domains like mathematics, programming, and logic that require precise, symbolic manipulation.

Out-of-domain case. In tasks that require translating natural language descriptions into symbolic formulations grounded
in domain knowledge—such as those involving physical systems or scientific laws (Fig. 21)—we observe a consistent
performance gap between the two methods. CoDaPO demonstrates stronger semantic alignment between the problem
description and the constructed solution model. Its responses tend to follow a coherent chain of physical and mathematical
reasoning, with clear transitions from qualitative understanding to quantitative execution.

In contrast, GRPO is more prone to semantic drift: it often introduces irrelevant concepts, misapplies formulas, or incorrectly
anchors symbolic steps to the problem’s actual objective. This can lead to answers that are numerically plausible but
logically invalid, due to disconnects between intermediate computations and the final question. Such behavior suggests
difficulties in maintaining global consistency across multi-step derivations—particularly when domain-specific reasoning is
required.

More generally, these observations highlight the importance of model capabilities in selective abstraction and structured
model-building. An effective llm solver must not only recall relevant formulas or operations, but also identify the appropriate
scope of reasoning, exclude irrelevant detail, and maintain logical consistency through multi-step symbolic transformations.
CoDaPO exhibits greater stability along these dimensions, making it more reliable on tasks that blend symbolic reasoning
with physical interpretation.
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AIME25 Question

Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b.

Ground Truth: 70

CoDaPO Response

To solve this problem, we need to convert the numbers 17b and 97b from
base b to base 10 and then find the values of b for which 17b divides
97b.
1. Convert 17b to base 10:

17b = 1 · b + 7 = b + 7.

2. Convert 97b to base 10:

97b = 9 · b + 7 = 9b + 7.

We need 17b to be a divisor of 97b, so:

9b + 7 ≡ 0 (mod b + 7).

This means:
9b + 7 = k(b + 7)

for some integer k. Simplifying this, we get:

9b + 7 = kb + 7k

9b − kb = 7k − 7

b(9 − k) = 7(k − 1)

So:

b =
7(k − 1)

9 − k
.

Since b > 9, k must be chosen such that b is an integer greater than 9.
Let’s find the valid values of k and corresponding b.
We check the values of k for which the right-hand side is an integer and
b > 9:

• For k = 2: b =
7(2−1)
9−2 = 7

7 = 1, not greater than 9.

• For k = 3: b =
7(3−1)
9−3 = 14

6 = 7
3 , not an integer.

• For k = 4: b =
7(4−1)
9−4 = 21

5 , not an integer.

• For k = 5: b =
7(5−1)
9−5 = 28

4 = 7, not greater than 9.

• For k = 6: b =
7(6−1)
9−6 = 35

3 , not an integer.

• For k = 7: b =
7(7−1)
9−7 = 42

2 = 21, valid.

• For k = 8: b =
7(8−1)
9−8 = 49

1 = 49, valid.

• For k = 9: b =
7(9−1)
9−9 is undefined.

• For k = 10: b =
7(10−1)
9−10 = 63

−1 = −63, not greater than 9.

So the valid values for b are 21 and 49. The sum of these values is:

21 + 49 = 70.

Thus, the final answer is:
70

GRPO Response

To solve the problem, we need to translate the numbers 17b and 97b
from base b to base 10.
The number 17b in base 10 is:

1 · b + 7 = b + 7

The number 97b in base 10 is:

9 · b + 7 = 9b + 7

We need to find the values of b such that 17b (which is b+7) is a divisor
of 97b (which is 9b + 7). This means that:

b + 7 | 9b + 7

or equivalently:

9b + 7 ≡ 0 (mod b + 7)

We can express this congruence as an equation:

9b + 7 = k(b + 7)

for some integer k. Rearranging the equation:

9b + 7 = kb + 7k

9b − kb = 7k − 7

b(9 − k) = 7(k − 1)

b =
7(k − 1)

9 − k

For b to be an integer greater than 9, the right-hand side must be an
integer. This means 7(k − 1) must be divisible by 9 − k. We can
iterate through possible integer values of k to find valid solutions for b:

# Python code to find valid bases
valid_bases = []
for k in range(10): # Try k from 0 to 9

if (9 - k) != 0:
b = 7 * (k - 1) / (9 - k)
if b.is_integer() and b > 9:

valid_bases.append(int(b))

sum_of_bases = sum(valid_bases)
print((valid_bases, sum_of_bases))

Running this code yields:

valid bases: [16, 21] ⇒ sum = 16 + 21 = 37

Therefore, the final answer is:

37

Figure 20: Case study of CoDaPO and GRPO Responses to an AIME 2025 Question.
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Minerva Question

An eclipsing binary consists of two stars of different radii and effective temperatures. Star 1 has radius R1 and T1, and
Star 2 has R2 = 0.5R1 and T2 = 2T1. Find the change in bolometric magnitude of the binary, ∆mbol , when the smaller
star is behind the larger star. (Consider only bolometric magnitudes so you don’t have to worry about color differences.)
Ground Truth: 1.75

CoDaPO Response

To solve this problem, we need to calculate the change in bolometric
magnitude of the binary system when the smaller star (Star 2) is behind
the larger star (Star 1). The bolometric magnitude of a star is given by:

mbol = −2.5 log10(Lbol)

where Lbol is the bolometric luminosity of the star. The bolometric
luminosity of a star is proportional to its surface area and its effective
temperature:

Lbol ∝ R
2
T

4

So, the bolometric luminosities of Star 1 and Star 2 are:

Lbol,1 ∝ R
2
1T

4
1

Lbol,2 ∝ R
2
2T

4
2 = (0.5R1)

2
(2T1)

4

= 0.25R
2
1 · 16T 4

1 = 4R
2
1T

4
1

The total bolometric luminosity of the binary system when both stars are
visible is:

Lbol,total = Lbol,1 + Lbol,2 = kR
2
1T

4
1 + k · 4R2

1T
4
1

= 5kR
2
1T

4
1

When Star 2 is behind Star 1, the total bolometric luminosity is just the
luminosity of Star 1:

Lbol,total = Lbol,1 = kR
2
1T

4
1

The change in bolometric magnitude is given by:

∆mbol = mbol,after − mbol,before

= −2.5 log10

(
Lbol,total,after

Lbol,total,before

)

= −2.5 log10

(
kR2

1T
4
1

5kR2
1T

4
1

)

= −2.5 log10

(
1

5

)
= −2.5 log10(5

−1
)

= −2.5(− log10(5))

= 2.5 log10(5)

Using the value log10(5) ≈ 0.6990, we get:

∆mbol = 2.5 × 0.6990 = 1.7475 ≈ 1.75

Thus, the change in bolometric magnitude is:

1.75

GRPO Response

To find the change in bolometric magnitude of the binary when the
smaller star (Star 2) is behind the larger star (Star 1), we need to consider
the effect of the limb darkening and the phase angle of the eclipsing
binary.
The bolometric magnitude of a star can be approximated using the Stefan-
Boltzmann law, which states that the luminosity of a star is proportional
to the fourth power of its temperature and the square of its radius. The
bolometric magnitude mB of a star is related to its luminosity by:

mB = −2.5 log10(L) + C

where L is the luminosity of the star and C is a constant. For a binary
system, the change in bolometric magnitude when one star passes in
front of the other can be approximated by considering the change in the
effective area of the star that is visible during the eclipse.
The effective area of a star that is visible during an eclipse is given by:

A = R
2

(
1 −

(
R

d

)2

sin
2
(θ)

)
where R is the radius of the star, d is the distance to the star, and θ is the
phase angle. The change in the effective area when Star 2 is behind Star
1 is given by the difference in the areas of the two stars:

∆A = πR
2
1 − πR

2
2

(
1 −

(
R2

d

)2

sin
2
(θ)

)
Since we are considering only the bolometric magnitude, we can simplify
the problem by considering the ratio of the luminosities of the two stars.
The change in bolometric magnitude is given by:

∆mbol = −2.5 log10

(
L2

L1

)
where L1 and L2 are the luminosities of Star 1 and Star 2, respectively.
Using the Stefan-Boltzmann law, we have:

L2

L1

=

(
T2

T1

)4 (R2

R1

)2

=

(
2T1

T1

)4 ( 0.5R1

R1

)2

= 2
4 · 0.52 = 16 · 0.25 = 4

Thus, the change in bolometric magnitude is:

∆mbol = −2.5 log10(4) = −2.5 · 0.60206
= −1.50515 ≈ −1.51

Therefore, the change in bolometric magnitude of the binary when the
smaller star is behind the larger star is:

−1.51

Figure 21: Case study of CoDaPO and GRPO Responses to a Minerva Question.
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