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Abstract

Continuous fixed-point problems are a computational primitive in numerical computing,
optimization, machine learning, and the natural and social sciences, and have recently been
incorporated into deep learning models as optimization layers. Acceleration of fixed-point
computations has traditionally been explored in optimization research without the use
of learning. In this work, we introduce neural fixed-point acceleration, a framework to
automatically learn to accelerate fixed-point problems that are drawn from a distribution;
a key question motivating our work is to better understand the characteristics that make
neural acceleration more beneficial for some problems than others. We apply the framework
to solve second-order cone programs with the Splitting Conic Solver (SCS), and evaluate
on distributions of Lasso problems and Kalman filtering problems. Our main results show
that we are able to get a 10x performance improvement in accuracy on the Kalman filtering
distribution, while those on Lasso are much more modest. We then isolate a few factors that
make neural acceleration much more useful on the Kalman filtering distribution than on
the Lasso distribution; we apply a number of problem and distribution modifications on a
scaled-down version of the Lasso problem, adding in properties that make it structurally
closer to Kalman filtering, and show when the problem benefits from neural acceleration.

1 Introduction

Given a map f : R — R", a fized point of f is a point x € R™ where f(z) = x. Fized-point iterations
repeatedly apply f until a fixed point is reached and provably converge under assumptions of f (Giles,
1987). Continuous fixed-point problems are a computational primitive in numerical computing, optimization,
machine learning, and the natural and social sciences. Recent work in machine learning has incorporated
fixed-point computations into deep learning models as optimization layers, e.g., through differentiable convex
optimization (Domke, 2012; Gould et al., 2016; Amos & Kolter, 2017; Agrawal et al., 2019; Lee et al., 2019),
differentiable control (Amos et al., 2018), deep equilibrium models (Bai et al., 2019; 2020; 2022), and Sinkhorn
iterations (Mena et al., 2018). Because these layers are now solving optimization problems, they become
a significant computational bottleneck in training and deploying when using optimization layers. Quickly
predicting solutions to these optimization problems would be a significant step in speeding up the use of
optimization layers.

Accelerating (i.e. speeding up) fixed-point computations is an active area of optimization research that involves
using the knowledge of prior iterates to improve the future ones. These acceleration methods improve over
standard fixed-point iterations but are classically done without learning, because of the lack of theoretical
guarantees on learned solvers. However, for many real-time applications, traditional fixed-point solvers can
be too slow.

On the other hand, fixed-point problems that get repeatedly solved in an application typically share a lot of
structure, e.g., motion planning with noisy observations. Such an application naturally induce a distribution
of fixed-point problem instances. This raises the question: can we learn to accelerate a fixed-point solver,
when the problems are drawn from a fixed distribution?
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In this paper, we study the problem of learning to accelerate fixed-point problem instances drawn from a
distribution, which we term neural fized-point acceleration; a key motivation of this work is also to better
understand the characteristics that make neural acceleration more beneficial or easier for some problems
than others. We design a framework for our problem based on learning to optimize, i.e., meta-learning
(see Section 2): we learn a model that accelerates the fixed-point computations on a fixed distribution of
problems, by repeatedly backpropagating through their unrolled computations. We build on ideas from
classical acceleration: we learn a model that uses the history of past iterates to predict the next iterate.

Concretely, we first present a neural acceleration framework that learns an acceleration model as a drop-in
replacement for a classical acceleration technique such as Anderson Acceleration, i.e., that takes the current
and past few fixed-point iterates and predicts the next iterate at every step in the optimization. We then
generalize this framework to support models that predict fixed-point iterates only at intermittent steps in
the optimization. Predicting at intermittent steps only allows for greater training and inference efficiency
than predicting iterates at every step, since we no longer need to backpropagate through the entire history of
fixed-point iterations, but instead can use truncated gradients (Wu et al., 2018; Metz et al., 2021).

We apply this framework to the Splitting Conic Solver (O’Donoghue et al., 2016), solving two second-order
cone problem distributions: one over Kalman filtering problems and another over Lasso problems. Our
main results show that our best acceleration models achieve more than 10x improvement in accuracy on the
Kalman filtering problem distribution, when compared to SCS with Anderson Acceleration; our improvement
on the Lasso problem distribution is more modest. Through the use of overparametrization (Arora et al.,
2018), we are able to reduce the training time of our most expensive application, Kalman filtering, by a factor
of over 1.4.

In the second part of this paper, we isolate a few factors that make neural acceleration much better on the
Kalman filtering distribution than the Lasso distribution. We apply a number of distribution and problem
modifications to a scaled-down version of our Lasso distribution, adding in properties that make it structurally
closer to the Kalman filtering distribution. Our experiments, while only illustrative, provide evidence that
the structural differences we identify (i.e., the amount and type of randomness in the problem distribution,
the set of cones in the problem representation) are a few of the factors that allow the robust Kalman filtering
problem to benefit more from neural acceleration. Our experiments suggest that linear dynamical systems
may be a class of optimization problems that benefit from neural acceleration.

2 Related Work

There are many classic numerical methods for acceleration, such as Anderson Acceleration (AA) (Anderson,
1965) (also the default solver in SCS), Broyden’s method (Broyden, 1965), and Walker & Ni (2011); Zhang
et al. (2020). Most closely related to our work is that of Bai et al. (2022), who also learn an acceleration
model; however, they focus on deep equilibrium models, and their model predicts the initial iterate and AA
update coefficients at each step. Our approach is complementary to theirs, as we learn the full iterates at
both the initial and the later steps; while this modeling makes it more challenging to accelerate similarly to
the AA path, it allows us more easily to capture iterates for accelerating problems that are difficult for AA.

Our work is also related to the learning-to-optimize literature, of which Amos (2022) provides a tutorial. The
meta-learning and learning-to-optimize work, e.g. (Li & Malik, 2016; Finn et al., 2017; Wichrowska et al.,
2017; Andrychowicz et al., 2016; Metz et al., 2019; 2021; Gregor & LeCun, 2010), aim to learn better solutions
to problems that arise in machine learning tasks. Bastianello et al. (2021) approximates the fixed-point
iteration with the closest contractive fixed-point iteration. Ichnowski et al. (2021) use reinforcement learning
to improve quadratic programming solvers. There have also been many recent works on learning-to-optimize
that are application-driven, e.g., e.g. optimal power flow (Baker, 2020; Donti et al., 2021), combinatorial
optimization (Khalil et al., 2016; Dai et al., 2017; Nair et al., 2020; Bengio et al., 2020), and solving differential
equations (Li et al., 2020; Poli et al., 2020; Kochkov et al., 2021).
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3 Background

In this section, we introduce the definitions and background necessary for the rest of the paper.

3.1 Convex Cone Optimization

Convex cone programming is a class of optimization problems that are capable of representing any convex

optimization problem (Nemirovski, 2007). In standard form, conic optimization involves solving the following
primal-dual problems:

minimize ¢! maximize —b’y
s.t. Ax+s=5> s.t. —ATy+r=c (1)
(z,5) eR" x K (r,y) € {0} x K*

where z € R™ is the primal variable, s € R™ is the primal slack variable, y € R™ is the dual variable, and
r € R™ is the dual residual. The set K € R™ is a non-empty convex cone with dual cone K* € R™. (We refer
the reader to Boyd & Vandenberghe (2004) for an introduction to conic optimization.)

3.2 Solver

We use the Splitting Conic Solver (SCS) (O’Donoghue et al., 2016) as our (differentiable) solver in our neural
acceleration framework. SCS is a state-of-the-art fixed-point algorithm that solves eq. (1). In this section,
we briefly describe its formulation and fixed-point iterations, as these are necessary to define our metric of
convergence, the fixed-point residual.

Formulation. SCS solves conic optimization problems by converting the pair of primal-dual optimization
problems into a homogeneous self-dual embedding (Ve et al., 1994), which remains feasible even if the original
pair of primal-dual problems is not feasible. We describe this formulation below:

T 0 AT (] [x
- =T ol |7

where z,y,r, s are as in eq. (1) and k,7 € Ry, i.e., k, T are non-negative scalars.

We use the following notation to simplify eq. (2):

T r 0 AT ¢
u= |yl,v=1|s|,Q=|-A 0 b
T K - =T 0

The homogeneous self-dual embedding (2) is then:
find (u,v)
s.t. v=Qu
u,v€CxC* (3)
where C = R™ x £* x Ry is a cone with dual C* = {0}" x IC x R.

Core Algorithm. Let IIs(x) denote the Euclidean projection of z to the subspace S. The core SCS algorithm
is given by the following equations:

@t = (I 4+ Q) (u” 4 vb) (4)
uk-‘rl — Hc(ﬁk+l _ ’Uk) (5)
,Uk:-‘rl — ,Uk: _ ,ak—i-l + uk-i—l (6)

The first step (eq. (4)) projects the current iterates into an affine subspace by solving a linear system. The
second step projects the resulting iterates onto the cone C. The third step simply updates v*+1 with the
difference u**! — @*T1. We note that SCS uses ||[u*T! — u¥||y as its fized-point residual, since u’ converges to
its fixed point at the optimal solution.
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3.3 Applications
Lasso. The Lasso (Tibshirani, 1996) is a well-known machine learning problem formulated as follows:

minimize (1/2)[|Fz ~ gl[3 + |2

where z € RP, and where F' € R?*P g € RP and u € Ry are data.

We draw problem instances from the same distribution as O’Donoghue et al. (2016): For each instance, we
create a matrix F' € R7*P where each entry is drawn from N(0,1). We create a vector z* € RP, also with each
entry in A(0,1), and set a random 90% of its entries to 0; we compute g = Fz* + w, where w ~ N (0,0.1);
we set g1 = 0.1||FT g|| -

Robust Kalman Filtering. Our second example applies robust Kalman filtering to the problem of tracking
a moving vehicle from noisy location data. We follow the modeling of Diamond & Boyd (2022) as a linear
dynamical system. To describe the problem, we introduce some notation: let z; € R™ denote the state at
time ¢t € {0...T — 1}, and y: € R" be the state measurement. The dynamics of the system are denoted by
matrices: F' as the drift matrix, G as the input matrix and H the observation matrix. We also allow for noise
v; € R", and input to the dynamical system w; € R™. With this, the problem model becomes:

minimize S G (w]l3 + o1, (v0)
S. t. It+1:F$t+th, tE[OT*H
yr = Hay + vy, tel0...T—1]

where our goal is to recover x; for all ¢, and where 1, is the Huber function:

%(a):{w el <o

2pllallz — p* lall2 = p

We simulate the system forward in time to obtain x} and y; for 7" time steps. Our optimization variables for
this problem are thus x;, w; and v;. For ease of reference, we include the full dynamics matrices F', G and H
in Appendix A.

4 Neural Acceleration: A First Framework

4.1 Definitions

We introduce some definitions to describe our framework. A fixed-point problem is defined by a context
¢ € R™ drawn from a distribution P(¢); we will use f to denote the fixed-point map, and 6 to denote learned
parameters. Our goal is to find the fixed points of f(x;¢). We define two models that will be learned:

e the initializer gienit as the model that provides a starting iterate, typically using as input the initial
problem instance context ¢,
o the acceleration model g3 as the model that updates the iterate at all further iterations after

observing the application of the fixed-point map f.

4.2 Framework

Next, we describe our first neural fixed-point acceleration framework, shown in Alg. 1. Given a fixed context
¢, we solve the fixed-point problem as follows. At each time step ¢ we maintain the fized-point iterations x;
and a hidden state h;. In the first time step, the initializer gignit takes as input the context ¢, and provides
the starting iterate and the first hidden state. In all further time-steps, the acceleration model g5 uses
the hidden state h; and the current fixed-point iterate x;, and the fixed-point map f to provide an updated

iterate w¢yq.
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Algorithm 1 Neural fixed-point acceleration augments standard fixed-point computations with a learned
initialization and updates to the iterates.

Inputs: Context ¢, parameters 6, and fixed-point map f.

(21, h1] = gt (o) > Initial iterate and hidden state
for fixed-point iteration ¢t = 1..7" do
Zip1 = f(zg;0) > Original fixed-point iteration
Tt hig1 = g5 (e, Teqn, hy) > Acceleration
end for

4.3 Modeling and optimization
4.3.1 Modeling

Model. We use a standard MLP for gi"'* and a recurrent model such as an LSTM (Hochreiter & Schmidhuber,
1997) or GRU (Cho et al., 2014) for g§°°. A recurrent model is a natural choice for the acceleration model

g5°° as it encapsulates the history of iterates in the hidden state, and uses that to predict a future iterate.

We construct the input context ¢ for a problem instance by converting it into its standard form (1), and using
A, b, c to define ¢, i.e., ¢ = [v(A); b; ¢] where v : R™*™ — R™". The parameters 6 are initialized through the
initialization of gi"* and g3°.

Loss. To characterize how well the fixed-point iterations are solved, we use the fized-point residual norms
defined by R(z; ¢) £ ||z — f(x; ¢)||2. This is a natural choice for the objective as the convergence analysis of
SCS and classical acceleration methods are built around the fixed-point residual. Our learning objective is thus
to find the parameters to minimize the fixed-point residual norms in every iteration across the distribution of
fixed-point problem instances:

miniomize Epp(s) Z R(z¢;¢)/Ro(9), (7)

t<T

where T' is the maximum number of iterations to apply and Rg is an optional normalization factor that is
useful when the fixed-point residuals have significantly different magnitudes.

We optimize eq. (7) with a gradient-based method such as Adam (Kingma & Ba, 2014). For this, we need
that the fixed-point map f(z) is differentiable, i.e. that we can compute V f(x). In the next section, we
describe how to differentiate through the fixed-point map of SCS.

4.3.2 Differentiating through SCS

Recall that the core fixed-point iteration in SCS involves alternating two key steps: (1) projecting current
iterates into an affine subspace by solving a linear system; (2) projecting the iterates onto the cone. We thus
need to differentiate through both these projections:

1. Linear System Solve. We use implicit differentiation, e.g. as described in Barron & Poole (2016).
Further, for differentiating through SCS, for a linear system Qu = v, we only need to obtain the
derivative g—?ﬂ since the fixed-point computation repeatedly solves linear systems with the same @,
but different v. This also lets us use an LU decomposition of Q) to speed up the computation of the
original linear system solve and its derivative.

2. Cone Projections. We use the cone projection derivative methods developed by Ali et al. (2017);
Busseti et al. (2019); we can do so because SCS also formulates the cone program as a homogeneous
self-dual embedding (Ye et al., 1994).

Normalization of the Loss. As described earlier, the natural choice for the learning objective is the
fixed-point residual norms of SCS. However, SCS scales the iterates of feasible problems by 7 for better
conditioning, and this causes a serious issue when optimizing the fixed-point residuals: shrinking the iterate-
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Table 1: Sizes of convex cone problems in standard form

Lasso  Kalman Filter Lasso Kalman Filter
Variables n 102 655 2 Zero 0 350
Constraints m 204 852 g Non-negative 100 100
nonzeros in A 5204 1652 o

Second-order  [101, 3] [102] + [3]x100

scaling 7 artificially decreases the fixed-point residuals, allowing g5°° to have a good loss even with poor
solutions.

We eliminate this issue in SCS+Neural by normalizing each z; by its corresponding 7. Thus, the fixed-point
residual norm becomes the ||z;/7; — f(2t,¢)/Tf(2,,¢)l|. We are then always measuring the residual norm
with 7 = 1 for the learning objective. (Note that this change does not modify the cone program that we are
optimizing.) We show the importance of this design choice by ablating the 7 normalization in Appendix D.
Busseti et al. (2019) also observe this issue for the primal-dual residual map, where they propose a similar
solution. In addition, with this objective, we no longer need to learn or predict from 7 in the models gfg“it
and g5°c.

4.4 Experiments

We show experimental results on two second-order cone problems: Lasso and Robust Kalman Filtering. For
ease of reference, we denote SCS accelerated with Anderson Acceleration as SCS+AA, and the learning-
augmented SCS as SCS+Neural.

4.4.1 Experimental Setup

Problem distributions. We now describe how we instantiate the optimization problems from Section 3.3.
For Lasso, we create a training set of 100,000 problem instances and validation and test sets of 512 problems
each; we use p = 50, ¢ = 100. For Kalman filtering, we create a training set of 50,000 problems and validation
and test sets of 500 each. We set up our dynamics matrices as in Diamond & Boyd (2022), with n = 50 and
T = 12. We generate w; ~ N (0, 1), and initialize 2:{j to be 0, and set u and p both to 2. We also generate
noise v; ~ N(0,1), but increase v; by a factor of 20 for a randomly selected 20% time intervals. Table 1
summarizes problem sizes, types of cones, and cone sizes of these problems, obtained through CVXPY’s
canonicalization (Agrawal et al., 2019).

Training and Evaluation. We use Adam (Kingma & Ba, 2014) to train the gj** and ¢§° for up to
100,000 model updates. To solve a problem instance, we allow it to perform 50 fixed-point iterations for both
training and evaluation. For SCS+AA, we use a history of 5 iterations. We perform a hyperparameter sweep
across the parameters of the model, Adam, and training setup, and use the best models for the results below.
Table 3 shows the values used in the hyperparameter sweep.

4.4.2 Results

Figure 1 shows the fixed-point, primal and dual residuals for SCS, SCS+AA, and SCS+Neural. It shows
the mean and standard deviation of each residual per iteration, aggregated over all test instances for each
solver. We see that SCS+-consistently reaches a lower residual faster than SCS or SCS+AA, in the earlier
iterations, but SCS+AA is able to slightly improve over SCS+Neural in the last few iterations (e.g., past
iteration 40). For example, in Lasso (Figure la), SCS+Neural reaches a fixed-point residual of 0.001 in 25
iterations, while SCS+AA and SCS take 35 and 50 iterations and SCS respectively; moreover, improving
the fixed-point residuals earlier also results in corresponding improvement in the primal/dual residuals. Our
improvement for Kalman filtering (Figure 1b) is more mixed: we reach a fixed-point residual of 0.01 in 5
iterations, compared to the 30 iterations taken by SCS and SCS+AA; however, the primal/dual residuals do
not show as much improvement. In addition, SCS+AA consistently has high standard deviation, due to its
well-known stability issues.
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Figure 1: Learned acceleration models in SCS+Neural with recurrent models show modest improvements
over SCS and SCS+AA.

5 Neural Acceleration with Intermittent Model Access

We now describe how we generalize the framework of Section 4 to accelerate fixed-point iterations with only
intermittent model access. Unrolling through the entire sequence of fixed point iterations is computationally
expensive and memory intensive, and is likely the cause of substantially slower training. We instead use
truncated gradients (Wu et al., 2018; Metz et al., 2021) to update the acceleration model to improve in the
local region around where it was applied. This allows us to learn by accessing the model only at intermittent
iterations.

5.1 Framework

We now describe our acceleration framework, followed by the learning algorithm needed to train models
appropriately for this framework. Since we are no longer accessing the model at each iteration, we cannot use
the hidden state of the recurrent model to encode the current problem and solution state. Instead we will use
the history of the iterates and the problem context as input to allow the model to effectively reconstruct the
state for a particular iteration.

Acceleration Framework. Formally, let the access set A be the set of fixed-point iterations at which the
model is accessed. The framework now needs to do the following: (1) apply gj° only at iterations in the
access set (we assume g'* is always applied); (2) keep the history H; of the last k iterates at iteration 4; (3)
g5°° now needs to use the iterate history H; and context ¢ in place of the hidden state to predict the next

iterate. The full acceleration framework is presented in Alg. 2.

Learning Algorithm. Next, we describe how we learn an acceleration model with intermittent access
using truncated gradients. We first observe that the iterate sequence that the model needs to predict from is
likely to change as the model learns. Because these are high-dimensional iterates, we use a strategy motivated
by replay buffers in reinforcement learning (Sutton & Barto, 2018): we use our model to generate iterates to
learn from, and then use those iterates with the fixed-point map f to improve the model.

We introduce one more definition to describe the learning framework: the residual interval r; is the number
of fixed-point iterations performed after the access at iteration i. rg is the number of fixed-point iterations

performed after the access to gienit, and we refer to all residual intervals as R = {r;}.

Specifically, our learning algorithm is the following:
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Algorithm 2 Neural fixed-point acceleration with intermittent model access

Inputs: Context ¢, parameters 6, fixed-point map f, access set A, iterate history size k

Ty = girit(¢) > Initial model-generated iterate
for fixed-point iteration t = 1..7" do
Ty = f(x—1;0) > Original fixed-point iteration
Hy={xt_p,... 241} > Update iterate history
if t € A then
xy = g5°°(Zy, Hy, @) > Apply the learned acceleration model
else
Ty = Ty > Use same iterate without acceleration
end if
end for
1. We generate a sequence of iterates H = [z1,25...2] by repeatedly applying f, accelerating an

iterate x; with our current g3 if 7 € A.

2. We use this sequence of iterates to create our iterate history H; for iteration ¢ € A.

3. We use gj°° to predict new iterates using the current iterate, iterate history, and context: ;41 =
ggcc<xiv Hi> (rb)

4. We compute fixed-point residuals on y;;1 for another r; steps as the loss for iteration i: L£; =
ngm R(Yi+;; ¢). Further, for a pair of accesses 1,2 € A, if 7; > ia — i1, then fixed-point residuals
(and therefore the loss £;) include a model access for iy as well.

5. We compute our total loss £ =), , L;, differentiate with respect to 6, and update 6.

5.2 Modeling

Model Architecture. Throughout, we use two MLPs: one for gi"*, and one for g3°. We use an MLP
for the gg° here, rather than a recurrent model because we found more eflicient to train MLPs rather than
recurrent models, and because we only train and predict at intermittent fixed-point iterations. Our fixed-point
iterates for this model are both iterates of SCS, u and v, which we denote as (u;v). We use both iterates
because: (1) our access is intermittent and we do not have a hidden state, so we provide g5°® both iterates as
the iterate history; (2) predicting both u and v is helpful, since a mismatched v can degrade what might
otherwise be a good prediction of w.

As in Section 4, we construct the input context ¢ for a problem instance by converting it into its standard
form (1), and using A, b, ¢ to define ¢, i.e., ¢ = [v(A);b; ] where v : R™*"™ — R™". The parameters 6 are
initialized through the initialization of gi* and g§°c.

Additionally, we use overparametrization (Arora et al., 2018; Saunshi et al., 2020) to accelerate learning the
models for the Kalman Filtering; this overparametrization increases the number of parameters in a given
network without increasing the expressiveness. In our experiments, following that of Arora et al. (2018) on
convolutional networks, we replace the matrix of each hidden layer of size m x m by two matrices of size
m X m, and the output layer of size m x k by two matrices of sizes m x k and k x k respectively.

Loss. As in Section 4, our loss is the fized-point residual norms defined by R(z;¢) = ||z — f(x; ¢)||2. With
the intermittent access learning procedure, each iteration in the access set has a loss computed through
fixed-point residuals. Our overall loss is the sum of all individual iteration losses; as before, we do not include
the scaling factor 7 in our loss (or in the models). To reduce the impact of the early iterates (whose residuals
are much higher), we use the logarithm of the fixed-point norms.

Formally, we define our loss as follows. Let y; denote the point iterate at iteration i. When the fixed-point
residuals on ;41 are computed for another r; steps, the loss at iteration i is £; = 3 <ri log R(yiﬂ»;(b).
Further, for a pair of accesses i1,i9 € A, if r; > i3 — i1, then fixed-point residuals (and therefore the loss £;)
include a model access for iy as well. We compute our total loss £ = Zie 4 L£; and differentiate through it.
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Figure 2: Learned acceleration models in SCS+Neural-MLP improve on upon SCS/SCS+AA to reach a
better solution with only a few intermittent model accesses.

5.3 Experiments

We show experimental results on the same two second-order cone problems of Section 4: Lasso and Robust
Kalman Filtering. To distinguish the intermittent access acceleration model from the recurrent model, we
will refer to it as SCS+Neural-MLP.

5.3.1 Experimental Setup

Our experimental setup here is identical to that of Section 4 to facilitate a comparison. The primary
changes come from having to additionally set up the access set and residual intervals for the model. For
SCS+Neural-MLP, we allow the access set to have 5 accesses to g3, in addition to the access to gi"*. Our
hyperparameter sweep now includes access set and residual intervals, which are key design elements that
affect the accuracy and efficiency of the models —in general, we find that earlier accesses are more useful than
later ones, and it is useful for the residual intervals to be at least long enough so that they go a few iterations
past the next model access; for some applications, the residual intervals need to be much longer than others.
Table 4 shows the range of values used in the hyperparameter sweep, and our results use the best choices
that we found for each problem. All experiments are run with 3 seeds for repeatability, and each metric is
aggregated over all test set instances and all runs.

5.3.2 Results

Figure 2 shows the fixed-point, primal and dual residuals for each problem, similar to Figure 1. Below, we
discuss our results for each problem individually.

Lasso. Our models for gie’“it and g5°® both have 3 hidden layers, with 2560 and 5120 units respectively. In
addition, as mentioned earlier, the accuracy of the learned model strongly depends on the choice of the access
sets and the residual intervals. Through extensive hyperparameter search, we found the following access sets
and residual intervals to work well for Lasso the access set is A = {1,2,5,10,15}, with the residual interval
at iteration 0 rg = 5, at iterations 1, 2, 5 71, 79,75 all as 10, and at iterations 10, 15 r1g, 715 as 20. For ease of
notation, we denote this set of residual intervals as R = {rq = 5;r1,r2,75 = 10;r19,715 = 20} in Figure 2.

Figure 2a shows the residuals of SCS+Neural-MLP; these are similar to the recurrent models in Section 4, but
they require only 5 model accesses compared to the 50 required by the recurrent models. SCS+Neural-MLP is
able to improve on the residuals of SCS by as many as 20 iterations (i.e., by iteration 20, SCS+Neural-MLP
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Lasso (orig.) Lasso: ¢ =40 Lasso: ¢ =60 dynamic Lasso dynamic Lasso

(2-step) (3-step)
Total variables 22 22 22 53 83
Constraints 44 64 84 105 165
nnz in A 244 444 644 525 805
w  Zero 0 0 0 10 20
g Non-negative 20 20 20 40 60
©  Second-order [21, 3] [41, 3] [61, 3] [41, 3, 11] [61, 3, 21]

Table 2: Lasso variants for Section 6: problem sizes when in standard form

has improved over the residuals reached by SCS at iteration 40) and over SCS+AA by as many as 12 iterations
(SCS+AA reaches the same residuals around iteration 32). SCS+Neural-MLP maintains all its improvement
over SCS across most of the 50 iterations, but its improvement over SCS+AA starts to degrade past iteration
35 and disappears completely around iteration 45. Unlike Kalman filtering, overparametrization does not
help improve the neural acceleration model for Lasso.

Kalman Filtering. For Kalman filtering, we use a 3-layer network for gienit and g5°°. We use 15000 units
in the hidden layer for gignit, and 7680 units in the hidden layer for g5°. We also use overparametrization in
the hidden layer and the output layer, as described in Section 5.2. Our access set is A = {1,2,5,10,20}. We
use a residual interval of 15 for the accesses at iterations 0, 1 and 2, and we use 30 for accesses at 5, 10, and

20. For ease of notation, we denote these as R = {rg,r1,7r2 = 15;75, 710,720 = 30}.

Our results are shown in Figure 2b. We note we are able to improve the convergence of all three residuals for
SCS+Neural-MLP over SCS/SCS+AA by almost 5x fewer iterations: by iteration 10, SCS+Neural-MLP has
already reached the same residuals that SCS and SCS+AA reach by iteration 50. This is unlike the recurrent
models (shown in 1b in Section 4), where only the fixed-point residual has improved by iteration 10; the
corresponding improvement in primal/dual residuals is very little. Further, unlike the recurrent models, the
improvement over SCS and SCS+AA remains nearly as high at iteration 50 as it is at iteration 1. Indeed, the
improvement far exceeds that of recurrent models in Section 4 — the primal/dual residuals for MLP models
at iteration 10 are 10x already smaller than the recurrent models; at 50 iterations, all three residuals of
SCS+Neural-MLP are at least 10x smaller than the recurrent models.

Thus, we see that the increased training efficiency achieved by our intermittent access framework and our
modeling have enabled significant improvements over SCS/SCS+AA on Kalman filtering. In our experiments,
overparametrization turns out to be crucial for the Kalman filtering results. The overparametrized model
achieved the results shown in 30k-35k training iterations, while the regular model did not obtain similar
results in 50k iterations.

5.3.3 Discussion

Our results show that SCS+Neural-MLP is able to accelerate the Kalman filtering problem distribution much
better than the Lasso problem distribution. We note that using the same models, overparametrization, and
hyperparameters as Kalman filtering for Lasso does not result in any noticeable improvement over the results
in Figure 2. A natural question this raises is why this improvement is possible for Kalman filtering, but not
Lasso.

To explore this question, we begin by identifying a few structural differences between these two problems:

e Distributions of the A, b, c. For Kalman Filtering, A is identical across all problem instances; only
the b varies, and only in the entries corresponding to the zero cone. For Lasso, A,b and c are all
different across the problem instances; however, c is identical subject to a normalization. In addition,
b varies in the entries corresponding to second-order cone of size 101.

10
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Figure 3: Original Lasso with p = 10, ¢ = 20. Learned model uses A = {1,2,5,10},r; = 10 for all i.

e Cone structure. The Kalman filtering problem has a zero cone of size 100 (from its equality
constraints), while the Lasso problem has no zero cone. In addition, while both problems have
second-order cones, the Robust Kalman Filtering has many (100) second-order cones of dimension
3, and one larger cone of dimension 102. The Lasso, instead, has two second-order cones, one of
dimension 101, and one of size 3. This also induces a substantial difference in the sparsity and
block-structure of the source matrices A of the two problems.

These differences lead to two major reasons why neural acceleration is more beneficial for Kalman filtering.
First, the Kalman filtering problem is learning to solve for the same A with each of different instances;
thus, this provides many more training instances and iterations for the same A, and reduces the amount of
randomness in the problem. Second, the Kalman filtering problem has to fit a large zero cone; geometrically,
the zero cone is a point, more restrictive than a second-order cone, and so all the algorithms will need to fit
the solution exactly; this makes the problem harder for SCS and SCS+AA.

Based on these insights, in the next section, we design a series of modifications that convert a Lasso problem
to a linear dynamical optimization problem like Kalman filtering, and show that these modifications improve
the benefit of neural acceleration.

6 Variations between Optimization Problems

In this section, we explore some of the characteristics of second-order cone problem distributions that allow
for the gain of significant improvements with neural acceleration. For this analysis, we begin with the original
Lasso problem distribution, and examine whether, by applying modifications to either just the distribution or
the optimization problem itself, the resulting problem distribution is easier for or benefits more from learned
acceleration.

To simplify our analysis, we use a much smaller problem (than Section 5) from the Lasso distribution. We see
that even these smaller problems are not easy for neural acceleration, even when using the same model as the
larger sized Lasso problems. Each modification then changes the optimization problem and/or distribution
such that it adds some properties of the Kalman filtering, and we train new neural acceleration models on the
new distributions. This allows us to gain insight about the characteristics that make a problem distribution
better for neural acceleration. Since these experiments are on smaller-sized problems, rather than the original
Lasso and Kalman filtering problem distributions, we emphasize that these results are only indicative of the
underlying properties. Nevertheless, our results suggest that linear dynamical systems may be a class of
optimization problems that benefits from neural acceleration.

Our experimental setup for this section follows Section 5.3, with one difference: since the optimization problem
distribution varies in each experiment, we will describe those in their respective sections. However, for ease
of reference, Table 2 shows the problem sizes for the different Lasso variants when they are represented in
standard form.

6.1 Optimization Problems of the Original Distribution

Our first experiment repeats the distribution of Section 5 on the smaller problem size, to provide a baseline
for the remaining experiments. For these experiments, we use p = 10,q = 20, i.e. 10 variables and 20

11
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Figure 4: Reducing the randomness in the Lasso problem distribution by keeping the source matrix F' fixed,
leading to a fixed A matrix in standard form. Learned model uses A = {1,2, 5,10}, r; = 10 for all 4.

observations. We also observe that while each problem instance is generated with an underlying solution z*,
the addition of the noise w changes the optimization problem, and depending on the accuracy of the required
residuals, z* may no longer suffice as a solution.

Figure 3 shows the results of training SCS+Neural-MLP for this distribution. We see that there is only a
very modest improvement over SCS, most of which is obtained around fixed-point iteration 5, and is fully
lost after fixed-point iteration 10. We observe also that the SCS+Neural-MLP can predict to a obtained to a
residual of 1072, and no improvement is obtained after that.

In Appendix C.1, we show that this trend does not change significantly for this distribution as the sparsity of
the solution changes, i.e., as the number of non-zero values in z* (termed the density p) changes from 0.1 to
0.3 and 0.5.

6.2 Reducing the Randomness in the Distribution

We now examine the effect of reducing the amount of randomness in the distribution. Recall that the original
Lasso distribution has three independent components of randomly generated data: the source matrix F,
solution z*, noise w. (Note also that the quantity p depends on both F' and 2*, and affects the objective of
the optimization problem in standard form.)

In our experiments below, we show the effect of keeping the source matrix F' fixed (Section 6.2.1), and of
reducing the noise in the distribution (Section 6.2.2). In Appendix C.2, we also include results that show
that keeping the solution or the noise fixed does not affect the neural acceleration.

6.2.1 Fixed Source Matrix

In this experiment, we keep the source matrix F' fixed throughout the problem distribution: i.e., we generate
one source matrix F', and use it to generate all problem instances, drawing z* and w at random as before. To
ensure that we observe general trends, rather than dependencies on any single source matrix, we aggregate
our results over problem distributions for 10 different source matrices.

Figure 4 shows the results for SCS, SCS-AA, and SCS+Neural-MLP on this distribution. We note that the
performance of SCS and SCS-AA does not change noticeably compared to Figure 3, but SCS+Neural-MLP
has a dramatic improvement: now, SCS+Neural-MLP improves over SCS at all 50 fixed-point iterations,
typically by over an order of magnitude, and it gets primal/dual residuals as low as 10~° in around 35-40
iterations. SCS+Neural-MLP even improves substantially over SCS-AA as well over the first 30 fixed-point
iterations, and for the first 10 iterations, it maintains an improvement of 2 orders of magnitude over SCS-AA
as well.

6.2.2 Reduced Noise

Our next experiment shows that just reducing the noise in the original distribution (while allowing the source
matrix F' to change) is not sufficient to learn to optimize well on this Lasso problem distribution.

12
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Figure 5: Reduced noise in Lasso distribution. Learned models use A = {1,2,5,10},r; = 10 for all 4.

For this experiment, we modify the problem distribution as follows: we generate F', z* and w as earlier, but
we define g = F'z* 4+ ow, where o is a multiplicative factor that reduces the impact of the noise on the final
solution. In our experiment, we use ¢ = 1072,1072,10~%. Note that in our original distribution ¢ = 0.1.

Fig. 5 shows the results. We see that for all three o values, there is an improvement over the original
distribution, as the SCS+Neural-MLP is now able to obtain improvements over SCS to at least 1073, which
is achieved around fixed-point iteration 10. We note also that there does not appear to be a noticeable
difference between SCS+Neural-MLP’s performance on the different o values: o = 0.01 already obtains the
maximum improvement if only the noise multiplication factor is reduced.

These results suggest that even the F' and z* in the Lasso distribution have too much variability for this
particular model size/design to learn to optimize well.

6.3 From Lasso to a Linear Dynamical System

Our last set of experiments explore the ease of neural acceleration when the Lasso problem we have studied
above is converted to a linear dynamical system, like the Kalman filtering problem. A linear dynamical system
evolves (noisily) over time, so we will have many more observations on the same matrix. However, more
observations typically reduce the space of valid good solutions (since the noise in our problem distributions are
generated independently), which might make it easier for both SCS and SCS+Neural to find the optimization
solution z.

To isolate the impact of the dynamical system from the increased number of observations, we first increase
the number of observations with the variables remaining static, in Section 6.3.1. Then, in Section 6.3.2, we
modify our problem into a linear dynamical system by allowing the solution to move gradually in a defined
manner as well over time steps, and obtain one set of observations at each time step.
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Figure 6: Increased observations for fixed source Lasso distributions. Learned models use A = {1,2,5,10},r; =
10 for all i.

6.3.1 Static Solution

In this experiment, we use a Lasso problem distribution very similar to Section 6.2.1, but with increased
observations. The distribution of Section 6.2.1 used fixed source matrices of size ¢ X p where ¢ = 20 and
p = 10. Here we increase the number of observations to ¢ = 40 and ¢ = 60 respectively.

Figure 6 shows the results for these problem distributions. We observe that while the residuals for all three
algorithms (SCS, SCS-AA and SCS+Neural-MLP) are larger than in Figure 4, the improvement of the
learned models of SCS/SCS-AA is slightly increased, exceeding 2 orders of magnitude throughout. The higher
residuals can likely because having more observations ¢ makes it harder for SCS/SCS-AA to fit the noise as
well in the optimization solution z. The results for p = 0.3 and p = 0.5 are similar, and hence we do not
include them here.

6.3.2 Dynamic Solution

In our final experiment, we modify the Lasso into a linear dynamical system, simulating the (defined)
movement of the Lasso solution over multiple time steps, and show its impact on the benefits of neural
acceleration.

Problem Generation. Concretely, we modify our problem generation process as follows:

e We compute a source matrix F', and an initial solution 2i as before, where 2] has the required density
p. We compute wi,ws ... as the noise, as independent vectors for each required step.

e For each step, we move the solution z* forward by a defined step size d, e.g., 2/, | = 2] + 4. Only the
non-zero entries of z are changed in order to maintain sparsity.

e We then compute g; = Fz] + w; as the output solution for each required step. As is typical in
optimization problems derived from linear dynamical systems, we penalize all the noise by a reduced
factor of o.

With this process, we define our optimization problem as follows. Let H denote the source matrix created
by repeating F' for time ¢t number of times in a block structure; let g denote the vector of observations
[91592 - .. g¢], and let z denote the vector of all the solutions [z1; 22 ... 2]; and let v denote the vector of all
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Figure 7: A simple linear dynamical system that simulates the Lasso solution moving in time. The problem
distribution has a fixed source matrix F', but varying z* per instance, and varying w per instance and per
time step. Learned models use A = {1,2,5,10},r; = 10 for all 1.
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Figure 8: Linear dynamical system simulating the Lasso forward in time with density p = 0.5. Learned
models use A = {1,2,5,10},r; = 10 for all 1.

noise [v1;vg ... Uy

minimize ||Hz — g||§ + )\HZH% + [|v][2
S.t.zi1 =2+ 0+ Pu;

In our experiments, we set 6 = 0.1 and § = 0.005. All other parameters remain as before from the Lasso
problem earlier.

Results. Figure 7 shows the results on this problem distribution for p = 0.1 (the results for p = 0.3 are
similar); we have simulated the linear dynamical system described above 2 steps and 3 steps forward to
obtain the problem distributions. We first note that this problem distribution is, overall, harder for SCS-AA
to improve over SCS — note that the residuals obtained by SCS-AA are very close to that of SCS. However,
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Figure 9: Residuals as a function of training iterations. Learned models use A = {1,2,5,10},r; = 10 for all s.

SCS+Neural-MLP is able to substantially improve on SCS and SCS-AA, by well over 2 orders of magnitude.
Indeed, the relative improvement over SCS exceeds even that of the fixed source matrix Lasso distributions
in 6.2.1.

Next, Figure 8 shows the results when p = 0.5. Note that here, the results are more mixed: when there are

only 2 steps, the model learns very poorly, but with 3 steps, the model is able to learn quite well, although
not as well as in Figure 7, with p = 0.1.

Finally, we explore how quickly SCS+Neural-MLP learns a good model for the different variations in Figure 9.
We see that for the dynamic Lasso (with 3 steps), SCS+Neural-MLP learns a good model very quickly,
reaching close to its best residual in as little as 5000 training iterations; this is similar to what we observed in
the Robust Kalman Filtering models. In contrast, the model learnt by SCS+Neural-MLP for fixed source
matrix distributions learns slowly and gradually over (at least) 50000 training iterations. Taken together,
these results suggest that linear dynamical systems may be a class of optimization problems that benefit
from neural acceleration.

7 Conclusion

Continuous fixed-point problems are a computational primitive in numerical computing, optimization, machine
learning, and the natural and social sciences, and have recently been incorporated into deep learning models as
optimization layers. Acceleration of fixed-point computations has traditionally been explored in optimization
research without the use of learning. In this work, we introduce neural fixed-point acceleration, a framework
to automatically learn to accelerate fixed-point problems that are drawn from a distribution; a key question
motivating our work is to better understand the characteristics that make neural acceleration more beneficial
for some problems than others. We apply the framework to solve second-order cone programs with the
Splitting Conic Solver (SCS), and evaluate on distributions of Lasso problems and Kalman filtering problems.
Our main results show that we are able to get a 10x performance improvement in accuracy on the Kalman
filtering distribution, while those on Lasso are much more modest. We then isolate a few factors that make
neural acceleration much more useful on the Kalman filtering distribution than on the Lasso distribution; we
apply a number of problem and distribution modifications on a scaled-down version of the Lasso problem,
adding in properties that make it structurally closer to Kalman filtering, and show when the problem benefits
from neural acceleration. Our results suggest that linear dynamical systems may be a class of optimization
problems that benefit from neural acceleration.
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A Dynamics matrices for Kalman filtering

For ease of reference, we include here the full dynamics matrices from Diamond & Boyd (2022) used in the
robust Kalman filtering problem.

1 0 (1-3ZA0At 0 A2 0
_ 1 A42
o |01 0 (1-2At)AL G| 0 3At g_[L ooo
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00 0 1— At 0 At

B Hyperparameters used for training

Table 3 and Table 4 show the range of parameters used in the hyperparameter sweep for SCS+Neural (with
recurrent models) and SCS+Neural-MLP (with MLP models) respectively.

C Additional Variations

In this appendix, we include additional variations on the Lasso problems that provide insight into how the
modifications affect whether an optimization problem benefits from neural acceleration.

C.1 Changing Solution Sparsity in Original Distribution

In this experiment, we show that the trends described in Section 6.1 essentially hold when the sparsity of the
solution changes. Recall that, in our distribution above, only 10% of the variables (1 variable with p = 10)
are set to non-zero values in z*. Here we show the effect of reducing the sparsity of the solution. We define
the fraction of non-zero variables in the solution z* as the density of the solution. In the experiments that
folow, we see how the previous trends change as the density p increases from 0.1 to 0.3 and 0.5.
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Table 3: Parameters used for hyperparameter sweep of SCS+Neural with Recurrent Models

Neural Model

Adam

- use initial hidden state
- use initial iterate
Initializer:

- hidden units

- activation function

True, False
True, False

128, 256, 512, 1024
relu, tanh, elu

learning rate 104, 1072 - depth [0...4]
51 0.1, 0.5, 0.7, 0.9 Encoder:
B2 0.1, 0.5, 0.7, 0.9, 0.99, 0.999 - hidden units 128, 256, 512, 1024
cosine learning rate decay True, False - activation function relu, tanh, elu
Misc - depth [0...4]
Decoder:
max gradient for clipping  10.0, 100.0 - hidden units 128, 256, 512, 1024

batch size 16, 32, 64, 128 [Lasso]

5, 10, 25, 50 [Kalman filter]

- activation function relu, tanh, elu
- depth [0...4]

- weight scaling [2.0, 128.0]
Recurrent Cell:

- model LSTM, GRU
- hidden units 128, 256, 512, 1024
- depth 1...4]

Table 4: Parameters used for hyperparameter sweep of SCS+Neural-MLP

Neural Model

- use initial hidden state True
Adam - use initial iterate True
- use overparametrization True, False
learning rate [10’47 10’2] MLP:
B 0.9 - hidden units 1024, 1280, 2560, 5120, 7680, 10240, 15000
B2 0.999 - activation function relu
cosine learning rate decay  False - depth 2...4]
Misc - number of overparameterization layers [1 ...4]

Access sets:
max gradient for clipping

batch size

100.0
32, 64, 128 [Lasso]
25, 50 [Kalman filter]

Various subsets of [1, 2, 5, 8, 10, 15, 20, 30, 40]
Every z iterations, for x in (3, 5, 10]
Residual Intervals:

[3, 5, 10, 15, 20, 30]
Every z times the gap between consecutive elements
in the access set, for z = [1, 1.5, 2, 3]

Our experiment shows that the results from Section 6.1 change only slightly when the density of z* is
increased to 0.3 and 0.5. Figure 10 shows the results of learning on these distributions for SCS, SCS-AA
and SCS+Neural-MLP. We note that the increased density allows for slightly increased performance of
SCS+Neural-MLP, i.e., at p = 0.5, the residuals of SCS-Neural now reach 5e-3 before they no longer improve
over SCS.

C.2 Fixed Solution/Noise Matrix

In this section, we include additional experiments from Section 6.2, showing that keeping the noise w fixed or
the solution z* does not result in a distribution where neural acceleration is beneficial.

C.2.1 Fixed Noise Matrix

Our next experiment examines how well the model learns when the noise is kept fixed. In this experiment, we
generate one fixed w, and then use it to generate all problem instances similar to the original distribution, i.e.,
we draw F', z* from the same distributions as the original, and then use our fixed w to generate g = Fz* + w.
1 is generated as before.

Figure 11a shows the results for SCS, SCS-AA and SCS+Neural-MLP for this distribution. We note that the
improvement of SCS+Neural-MLP over SCS here is again modest, only to a fixed-point residuals around
1073; indeed, the improvement is a little less than those in Figure 5. This is consistent with our earlier finding
— a problem distribution where the noise is fixed is no better than a problem distribution where the noise is
much smaller than the required residuals.
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Figure 10: Original Lasso distribution with increased density p (Appendix C.1). Learned models use
A={1,2,5,10},r; = 10 for all i.

C.2.2 Fixed Solution

Our next experiment examines how well the model learns when the original solution z* is kept fixed. In
this experiment, we generate one fixed z*, and use it to generate all the problem instances as we did in our
original distribution, i.e., we draw F', w from the same distribution as we did originally, and then use our
fixed z* to generate g = Fz* + w. Again, u is generated as before. Again, we generate datasets with 10
different solutions, and learn models on each of them.

Figure 11b shows the results for SCS, SCS-AA, SCS+Neural-MLP aggregated over the 10 different datasets.
We see that again, SCS and SCS-AA are similar to the previous distributions, but SCS-Neural is now no
longer able to learn much. Indeed, the performance of SCS-Neural is now similar to that in the original Lasso
distribution (Figure 3), where the most substantial improvement over SCS comes at fixed-point iteration 5
with a residual of 1072.

D Importance of 7 Normalization

In this appendix, we show the importance of normalizing the fixed-point residual norms for the loss by the 7
conditioning factor in SCS. Figure 12 shows the residuals obtained for Lasso when SCS+Neural does not use
7 normalization in the objective. The primal/dual residuals are significantly worse than SCS and SCS+AA.
The fixed-point residual shows an initial improvement, but finishes worse. As discussed in Section 4, this
happens when SCS+Neural achieves a low loss by simply learning a low 7.

We verify this empirically examining how 7 changes over the fixed-point iterations. Figure 13 shows the mean
and standard deviation of the learned 7 values, averaged across all test instances and across runs with all
seeds. Note that SCS and SCS+AA quickly find their 7 (by iteration 3-4), and deviate very little from it.
SCS+Neural, however, starts at a very low 7 that slowly increases; this results in very low initial fixed-point
residuals (and thus a better loss for g§°°), but poor quality solutions with high primal/dual residuals.
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Figure 11: Reducing the randomness in the Lasso problem distribution by keeping the noise or the solution
fixed (Appendix C.2)
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Figure 12: Lasso without 7 normalization: a failure mode of neural acceleration (that SCS+Neural overcomes
with design), see Appendix D.
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Figure 13: We observe that without 7 normalization, a failure mode of neural acceleration is that it learns to
produce low 7 values that artificially reduce the fixed-point residuals and does not solve the optimization
problem well (Appendix D).
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