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Abstract: Memory is crucial for enabling agents to tackle complex tasks with
temporal and spatial dependencies. While many reinforcement learning (RL) al-
gorithms incorporate memory, the field lacks a universal benchmark to assess an
agent’s memory capabilities across diverse scenarios. This gap is particularly evi-
dent in tabletop robotic manipulation, where memory is essential for solving tasks
with partial observability and ensuring robust performance, yet no standardized
benchmarks exist. To address this, we introduce MIKASA (Memory-Intensive
Skills Assessment Suite for Agents), a comprehensive benchmark for memory RL,
with three key contributions: (1) we propose a comprehensive classification frame-
work for memory-intensive RL tasks, (2) we collect MIKASA-Base – a unified
benchmark that enables systematic evaluation of memory-enhanced agents across
diverse scenarios, and (3) we develop MIKASA-Robo1 – a novel benchmark of
32 carefully designed memory-intensive tasks that assess memory capabilities in
tabletop robotic manipulation. Our work introduces a unified framework to advance
memory RL research, enabling more robust systems for real-world use. MIKASA
is available at https://tinyurl.com/membenchrobots.
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Figure 1: Systematic classification of problems
with memory in RL reveals distinct memory uti-
lization patterns and enables objective evaluation
of memory mechanisms across different agents.

Many real-world problems involve partial ob-
servability [1], where an agent lacks full access
to the environment’s state. These tasks often
include sequential decision-making [2], delayed
or sparse rewards, and long-term information
retention [3, 4]. One approach to tackling these
challenges is to equip the agent with memory,
allowing it to utilize historical information [5, 6].
While there are well-established benchmarks in
Natural Language Processing [7, 8], the evalu-
ation of memory in reinforcement learning (RL)
remains fragmented. Existing benchmarks, such
as POPGym [9], DMLab-30 [10] and Memory-
Gym [11], focus on specific aspects of memory
utilization, as they are designed around particu-
lar problem domains.

In contrast to classical RL, where benchmarks like Atari [12] and MuJoCo [13] serve as universal
standards, memory-enhanced agents are typically evaluated on custom environments developed along-
side their proposals Table 2. This fragmented evaluation landscape obscures important performance
variations across different memory tasks. For instance, an agent might excel at maintaining object
attributes over extended periods while struggling with sequential recall challenges. Such task-specific
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Table 1: MIKASA-Robo: A benchmark comprising 32 memory-intensive robotic manipulation
tasks across 12 categories. Each task varies in difficulty and configuration modes. The table specifies
episode timeout (T), the necessary information that the agent must memorize in order to succeed
(Oracle Info), and task instructions (Prompt) for each environment. See Appendix K for details.

Memory Task Mode Brief description of the task T Oracle Info Prompt Memory

ShellGame Touch
Push
Pick

Memorize the position of the ball after some time being covered by the
cups and then interact with the cup the ball is under 90 cup_with_ball_number — Object

Intercept Slow
Medium
Fast

Memorize the positions of the rolling ball, estimate its velocity through
those positions, and then aim the ball at the target 90 initial_velocity — Spatial

InterceptGrab Slow
Medium
Fast

Memorize the positions of the rolling ball, estimate its velocity through
those positions, and then catch the ball with the gripper and lift it up 90 initial_velocity — Spatial

RotateLenient Pos
PosNeg

Memorize the initial position of the peg and rotate it by a given angle 90 y_angle_diff target_angle Spatial

RotateStrict Pos
PosNeg

Memorize the initial position of the peg and rotate it to a given angle
without shifting its center 90 y_angle_diff target_angle Spatial

TakeItBack-v0 — Memorize the initial position of the cube, move it to the target region,
and then return it to its initial position

180 xyz_initial — Spatial

RememberColor 3 \ 5 \ 9 Memorize the color of the cube and choose among other colors 60 true_color_indices — Object
RememberShape 3 \ 5 \ 9 Memorize the shape of the cube and choose among other shapes 60 true_shape_indices — Object
RememberShape-
AndColor

3×2\3×3\
5×3

Memorize the shape and color of the cube and choose among other
shapes and colors 60 true_shapes_info

true_colors_info
— Object

BunchOfColors 3 \ 5 \ 7 Remember the colors of the set of cubes shown simultaneously in the
bunch and touch them in any order

120 true_color_indices — Capacity

SeqOfColors 3 \ 5 \ 7 Remember the colors of the set of cubes shown sequentially and then
select them in any order

120 true_color_indices — Capacity

ChainOfColors 3 \ 5 \ 7 Remember the colors of the set of cubes shown sequentially and then
select them in the same order

120 true_color_indices — Sequential

Total: 32 tabletop robotic manipulation memory-intensive tasks in 12 groups

strengths and limitations often remain hidden due to narrow evaluation scopes, underscoring the need
for a comprehensive benchmark that spans diverse memory-intensive scenarios.

The challenge of memory evaluation becomes particularly evident in robotics. While some robotic
tasks naturally involve partial observability, e.g. navigation tasks [14, 15], many studies artificially
create partially observable scenarios from Markov Decision Processes (MDPs) [16] by introducing
observation noise or masking parts of the state space [17, 18, 5, 19]. However, these approaches
do not fully capture the complexity of real-world robotic challenges [18], where tasks may require
the agent to recall past object configurations, manipulate occluded objects, or perform multi-step
procedures that depend heavily on memory. Such tasks include, for example, situations where a
service robot needs to memorize occluded objects (e.g., a plate hidden under a towel) or where a
home robot needs to accurately wipe the door of a microwave oven several times. Without memory,
the robot wouldn’t detect the plate in the first case, and in the second, it would wipe the door endlessly,
unsure whether it has cleaned the area or if it’s time to stop.

In this paper, we aim to address these challenges with the following four contributions:

1. Memory Tasks Classification. We propose a simple yet comprehensive framework that
organizes memory-intensive tasks into four key categories. This structure enables system-
atic evaluation without added complexity (Figure 1), offering a clear guide for selecting
environments that reflect core memory challenges in RL and robotics (Section 4).

2. Memory-RL Benchmark. We introduce MIKASA-Base, a Gymnasium-based [20] frame-
work for evaluating memory-enhanced RL agents (Section 5).

3. Robotic Manipulation Tasks. We introduce MIKASA-Robo, an open-source benchmark
(MIT license) comprising 32 robotic tasks that target specific memory-dependent skills in
realistic settings (Section 6). We evaluate it using popular Online RL baselines (Subsec-
tion 6.2) as well as Visual-Language-Action (VLA) models (Subsection 6.4). Guidelines for
customizing environments and configuring time horizons are provided in Appendix M.

4. Robotic Manipulation Datasets. We release datasets for all 32 MIKASA-Robo memory-
intensive tasks to support Offline RL research (see Appendix C), and conduct extensive
evaluations using a range of Offline RL baselines (Subsection 6.3).

2 Related Works

Multiple RL benchmarks are designed to assess agents’ memory capabilities. DMLab-30 [10]
provides 3D navigation and puzzle tasks, focusing on long-horizon exploration and spatial recall.
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Table 2: Key memory-intensive environments
from the reviewed studies for evaluating agent
memory. The Atari [12] environment with
frame stacking is included to illustrate that many
memory-enhanced agents are tested solely in MDP.
Benchmark first introduced in the same work .

Benchmark is open-sourced.
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Atari w/o FrameStack ✓ ✓ ✓
Atari with FrameStack ✓ ✓ ✓ ✓ ✓ ✓ ✓

gym-gridverse ✓
car flag ✓
memory card ✓
Hallway ✓
HeavenHell ✓
Ballet ✓
Object Permanence ✓
DMLab-30 ✓ ✓ ✓
POPGym ✓ ✓ ✓ ✓
Passive T-Maze ✓ ✓
ViZDoom-Two-Colors ✓
Numpad ✓
Memory Maze ✓ ✓
Memory Maze (apples) ✓
Minigrid-Memory ✓
BSuite ✓ ✓
Goal-Search ✓
Doom Maze ✓
PsychLab ✓
Spot the Difference ✓
Goal Navigation ✓
Transitive Inference ✓
I-Maze ✓
Pattern Matching ✓
Random Maze ✓
Unity Fast-Mapping Task ✓
Action Associative Retrieval ✓
BabyAI ✓

PsychLab [38] extends DMLab by incorporating
tasks that probe cognitive processes, including
working memory. MiniGrid and MiniWorld [39]
emphasize partial observability in lightweight
2D and 3D environments, while MiniHack [40]
builds on NetHack [41], offering small rogue-
like scenarios that require both short- and long-
term memory. BabyAI [42] combines natural
language instructions with grid-based tasks, re-
quiring memory for multi-step command execu-
tion. POPGym [9] standardizes memory evalu-
ation with tasks ranging from pattern-matching
puzzles to complex sequential decision-making.
BSuite [43] offers a suite of carefully designed
experiments that test core RL capabilities, in-
cluding memory, through controlled tasks on
exploration, credit assignment, and scalability.
Memory Gym [11] offers a suite of 2D grid en-
vironments with partial observability, designed
to benchmark memory capabilities in decision-
making agents, including endless versions of
tasks for evaluating memory over extremely long time intervals. Memory Maze [44] presents 3D
maze navigation tasks that require memory to solve efficiently.

While these benchmarks offer valuable insights into memory mechanisms, they generally focus
on abstract puzzles or navigation tasks. However, none of them fully encompass the broad range
of memory utilization scenarios an agent may encounter, and the tasks themselves often differ
fundamentally across benchmarks, making direct comparison of memory-enhanced agents difficult.
In the robotics domain, memory requirements become particularly challenging due to the physical
nature of manipulation tasks. Unlike abstract environments, robotic manipulation involves complex
physical interactions and multi-step procedures demanding both spatial and temporal memory.
Existing memory-intensive benchmarks, while useful for diagnostic purposes, struggle to capture
these domain-specific challenges. The physical control and object interaction inherent in manipulation
tasks introduce additional complexities not addressed by traditional memory evaluation frameworks.

Efforts have been made to classify memory-intensive environments by specific attributes. For
example, Ni et al. [45] divides them into memory/credit assignment based on temporal horizons.
Yue et al. [46] proposes memory dependency pairs to model how past events influence current
decisions, aiding imitation learning in partially observable tasks. Cherepanov et al. [47] defines agent
memory types: long-term vs. short-term (based on context length), and declarative vs. procedural
(based on environments and episodes), and formalizes memory-intensive environments. Leibo
et al. [38] instead adapts tasks from cognitive psychology and psychophysics to evaluate agents
on human cognitive benchmarks. While these classifications highlight aspects of memory, they
overlook physical dimensions in robotics. The link between physical interaction and memory remains
underexplored, motivating a framework for spatio-temporal memory in real-world tasks.

Concurrent with our work Fang et al. [48] also proposed MemoryBench, a benchmark for memory-
intensive manipulation consisting of only three tasks designed to access only one type of memory,
spatial memory. This benchmark is based on RLBench [49], which does not allow efficient paral-
lelization of training.
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RememberColor9-v0

RotateLenientPos-v0ShellGameTouch-v0

Figure 2: Illustration of demonstrative memory-intensive tasks execution from the proposed MIKASA-
Robo benchmark. The ShellGameTouch-v0 task requires the agent to memorize the ball’s
location under mugs and touch the correct one. In RememberColor9-v0, the agent must memorize
a cube’s color and later select the matching one. In RotateLenientPos-v0, the agent must
rotate a peg while keeping track of its previous rotations.

3 Background
3.1 Partially Observable Markov Decision Process
Partially Observable Markov Decision Process (POMDP) [16] extend MDP to account for partial ob-
servability, where an agent observes only noisy or incomplete information about the true environments
state. POMDP defined by a tuple (S,A, T,R,Ω, O, γ), where: S is the set of states representing
the complete environment configuration; A is the action space; T (s′|s, a) : S × A× S → [0, 1] is
the transition function defining the probability of reaching state s′ from state s after taking action a;
R(s, a) : S ×A → R is the reward function specifying the immediate reward for taking action a in
state s; Ω is the observation space containing all possible observations; O(o|s, a) : S×A×Ω → [0, 1]
is the observation function defining the probability of observing o after taking action a and reaching
state s; γ ∈ [0, 1) is the discount factor determining the importance of future rewards. The objective is
to find a policy π that maximizes the expected discounted cumulative reward: Eπ [

∑∞
t=0 γ

tR(st, at)],
where at ∼ π(·|o1:t) depends on the history of observations rather than the true state. Relying on
partial observations makes POMDPs harder to solve than MDPs.
3.2 Memory-intensive environments
Memory-intensive environment is an environment where agents must leverage past experiences
to make decisions, often in problems with long-term dependencies or delayed rewards. More
formally, following Cherepanov et al. [47], a memory-intensive task is a POMDP where there exists
a correlation horizon ξ > 1, representing the minimum number of timesteps between an event
critical for decision-making and when that information must be recalled. Popular memory-intensive
environments in RL are listed in Table 2. One way to solving memory-intensive environments is to
augment agents with memory mechanisms (see Appendix F).
3.3 Robotic Tabletop Manipulation
Robotic tabletop manipulation [50] involves robots manipulating objects on flat surfaces through
actions like grasping, pushing, and picking. While crucial for real-world applications [51], most
existing simulators treat these tasks as MDPs without memory requirements, failing to capture the
spatio-temporal dependencies present in real scenarios. This limitation hinders the development of
memory-enhanced agents for practical applications.

4 Classification of memory-intensive tasks
The evaluation of memory capabilities in RL faces two major challenges. First, as shown in Table 2,
research studies use different sets of environments with minimal overlap, making it difficult to
compare memory-enhanced agents across studies. Second, even within individual studies, benchmarks
may focus on testing similar memory aspects (e.g., remembering object locations) while neglecting
others (e.g., reconstructing sequential events), leading to incomplete evaluation of agents’ memory.

Different architectures may exhibit varying performance across memory tasks. For instance, an
architecture optimized for long-term object property recall might struggle with sequential memory
tasks, yet these limitations often remain undetected due to the narrow focus of existing evaluation
approaches.

To address these challenges, we propose a systematic approach to memory evaluation in RL. Draw-
ing from established research in developmental psychology and cognitive science, where similar
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Human Memory TasksAgent Memory Tasks
Too simple to capture the full range of

real world problems
Too sophisticated to be formulated as

RL problems

MIKASA
Concise but succinct

Figure 3: MIKASA bridges the gap between human-like memory complexity and RL agents require-
ments. While agents tasks don’t require the full spectrum of human memory capabilities, they can’t
be reduced to simple spatio-temporal dependencies. MIKASA provides a balanced framework that
captures essential memory aspects for agents tasks while maintaining practical simplicity.

memory challenges have been extensively studied in humans, we develop a categorization framework
consisting of four distinct memory task classes, detailed in Subsection 4.2.

4.1 Memory: From Cognitive Science to RL
In developmental psychology and cognitive science, memory is classified into categories based on
cognitive processes. Key concepts include object permanence [52], which involves remembering the
existence of objects out of sight, and categorical perception [53], where objects are grouped based on
attributes like color or shape. Working memory [54] and memory span [55] refer to the ability to
hold and manipulate information over time, while causal reasoning [56] and transitive inference [57]
involve understanding cause-and-effect relationships and deducing hidden relationships, respectively.

The RL field has attempted to utilize these concepts in the design of specific memory-intensive
environments [31, 3], but these have been limited at the task design level. Of particular interest,
however, is how existing memory-intensive tasks can be categorized using these concepts to develop a
benchmark on which to test the greatest number of memory capabilities of memory-enhanced agents,
and it is this problem that we address in this paper. Thus, we aim to provide a balanced framework
that covers important aspects of memory for real-world applications while maintaining practical
simplicity (see Figure 3).

4.2 Taxonomy of Memory Tasks

We introduce a comprehensive task classification framework for evaluating memory mechanisms in
RL. Our framework categorizes memory-intensive tasks into four fundamental types, each targeting
distinct aspects of memory capabilities:

1. Object Memory. Tasks that evaluate an agent’s ability to maintain object-related information
over time, particularly when objects become temporarily unobservable. These tasks align
with the cognitive concept of object permanence, requiring agents to track object properties
when occluded, maintain object state representations, and recognize encountered objects.
Example: a robot remembers which fruit it put in the fridge.

2. Spatial Memory. Tasks focused on environmental awareness and navigation, where agents
must remember object locations, maintain mental maps of environment layouts, and navigate
based on previously observed spatial information. Example: the robot remembers the
position of a mug it moved while cleaning and returns it to its place.

3. Sequential Memory. Tasks that test an agent’s ability to process and utilize temporally
ordered information, similar to human serial recall and working memory. These tasks require
remembering action sequences, maintaining order-dependent information, and using past
decisions to inform future actions. Example: a robot memorizes the order of the ingredients
it has added to a soup.

4. Memory Capacity. Tasks that challenge an agent’s ability to manage multiple pieces
of information simultaneously, analogous to human memory span. These tasks evaluate
information retention limits and multi-task information processing. Example: a robot is able
to memorize the positions of several different objects while cleaning a table.

This classification framework enables systematic evaluation of memory-enhanced RL agents across
diverse scenarios. By providing a structured approach to memory task categorization, we establish a
foundation for comprehensive benchmarking that spans the wide spectrum of memory requirements.
In the following section, we present a carefully curated set of tasks based on this classification,
forming the basis of our proposed MIKASA benchmark.
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5 MIKASA-Base
Table 3: Analysis of established robotics frame-
works with manipulation tasks, comparing their
support for memory-intensive tasks. † – excluding
Franka Kitchen. ∗ – concurrent work with three
memory tasks with only one type of memory.

Robotics Framework
with Manipulation Tasks

Memory Tasks

Manipulation Atomic Low-level
actions

MIKASA-Robo (Ours) ✓ ✓ ✓

MemoryBench∗ [48] ✓ ✓ ✓
ManiSkill3 [58] ✗ ✗ ✗
ManiSkill-HAB [59] ✗ ✗ ✗
FetchBench [60] ✗ ✗ ✗
RoboCasa [61] ✗ ✗ ✗

Gymnasium-Robotics† [62] ✗ ✗ ✗
BEHAVIOR-1K [63] ✓ ✗ ✗
ARNOLD [64] ✗ ✗ ✗
iGibson 2.0 [65] ✓ ✗ ✗
VIMA [66] ✓ ✓ ✗
Isaac Sim [67] ✗ ✗ ✗
panda-gym [68] ✗ ✗ ✗
Habitat 2.0 [69] ✗ ✗ ✗
Meta-World [70] ✗ ✗ ✗
CausalWorld [71] ✗ ✗ ✗
RLBench [49] ✗ ✗ ✗
robosuite [72] ✗ ✗ ✗
dm_control [73] ✗ ✗ ✗
Franka Kitchen [74] ✗ ✗ ✗
SURREAL [75] ✗ ✗ ✗
AI2-THOR [76] ✗ ✗ ✗

Motivation and Overview. Despite the im-
portance of memory in decision-making, the RL
community lacks standardized tools for bench-
marking memory capabilities. Existing studies
typically introduce bespoke environments tai-
lored to their proposed algorithms, leading to
fragmentation and limited comparability across
works (see Table 2). Moreover, many pop-
ular memory benchmarks focus narrowly on
specific memory types, overlooking the diver-
sity of memory demands found in real-world
applications. To address this gap, we intro-
duce MIKASA-Base, a unified benchmark that
consolidates widely used open-source memory-
intensive environments under a common Gym-
like API. Our goal is to streamline reproducibil-
ity, support fair comparisons, and promote sys-
tematic evaluation of memory in RL.

Benchmark Design Principles. MIKASA-
Base is designed around core principles that support rigorous and interpretable evaluation of memory
in RL. To disentangle memory from unrelated challenges, we organize tasks into two tiers. The first
tier consists of diagnostic vector-based environments that isolate specific memory mechanisms. The
second tier includes complex image-based tasks that add realistic perception challenges, thus more
closely resembling real-world settings. This hierarchical structure enables researchers to validate
memory capabilities incrementally – from atomic reasoning to high-dimensional sensory input.

Task Classification and Selection. Building on our taxonomy from Subsection 4.2, we system-
atically reviewed open-source memory benchmarks and categorized their tasks into four distinct
types of memory usage. We selected a diverse yet representative subset of environments to cover
this taxonomy – ranging from object permanence to sequential planning. All selected tasks are
unified under a single, consistent API. Descriptions are provided in Appendix L, and an overview of
MIKASA-Base tasks appears in Table 9. This consolidation supports architectural ablations, direct
comparison of methods, and simplified evaluation pipelines. Implementation details can be found
in Appendix E.

MIKASA-Base provides the first systematic and unified benchmark for evaluating memory in RL. It
mitigates fragmentation by standardizing task access and evaluation, and its structured progression
enables precise attribution of memory-related agent failures. By covering a broad spectrum of
memory challenges within a common framework, MIKASA-Base offers a foundation for robust,
reproducible research in memory-centric RL.

6 MIKASA-Robo
The landscape of robotic manipulation frameworks reveals significant limitations in addressing
memory-intensive tasks. While partial observability is well-studied in navigation, manipulation
scenarios are still predominantly evaluated under full observability, with limited focus on memory
demands (see Table 3). Among frameworks that do consider memory, BEHAVIOR-1k [63] and
iGibson 2.0 [65] include highly complex, non-atomic tasks, which obscure the evaluation of specific
memory mechanisms. VIMA [66] relies on high-level action abstractions, limiting temporal memory
assessment. To address these gaps, we introduce MIKASA-Robo, a benchmark specifically designed
to evaluate diverse memory skills in robotic manipulation through well-isolated, fine-grained tasks.

Concurrently with our work, Fang et al. [48] proposed MemoryBench, a benchmark focused on
spatial memory with three robotic tasks. In contrast, MIKASA-Robo spans four memory categories
and 32 tasks, enabling broader and more systematic evaluation of memory mechanisms in RL agents.
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Figure 4: Performance of PPO-MLP trained in
state mode, i.e., in MDP mode without the
need for memory. These results suggest that the
proposed tasks are inherently solvable with a
success rate of 100%.

Figure 5: Online RL baselines with MLP
and LSTM backbones trained in RGB+joints
mode on the RememberColor-v0 environ-
ment with dense rewards. Both architectures
fail to solve medium and high complexity tasks.

MIKASA-Robo is a benchmark designed for memory-intensive robotic tabletop manipulation tasks,
simulating real-world challenges commonly encountered by robots. These tasks include locating
occluded objects, recalling previous configurations, and executing complex sequences of actions over
extended time horizons. By incorporating meaningful partial observability, this framework offers a
systematic approach to test an agent’s memory mechanisms.

Building upon the robust foundation of ManiSkill3 framework [58], our benchmark leverages its
efficient parallel GPU-based training capabilities to create and evaluate these tasks.

6.1 MIKASA-Robo Manifestation

In designing the tasks, we drew inspiration from the four memory types identified in our classification
framework (Subsection 4.2). We developed 32 tasks across 12 categories of robotic tabletop
manipulation, each targeting specific aspects of object memory, spatial memory, sequential memory,
and memory capacity. These tasks feature varying levels of complexity, allowing for systematic
evaluation of different memory mechanisms. For instance, some tasks test object permanence by
requiring the agent to track occluded objects, while others challenge sequential memory by requiring
the reproduction of a strict order of actions. A summary of these tasks and their corresponding
memory types is provided in Table 1, with detailed descriptions in Appendix K. Information on task
customization, including adjustments of time horizons and environment parameters, can be found
in Appendix M.

To illustrate the concept of our memory-intensive framework, we present ShellGameTouch-v0,
RememberColor-v0, and RotateLenientPos-v0 tasks in Figure 2. In the
ShellGameTouch-v0 task, the agent observes a red ball placed in one of three positions over the
first 5 steps (t ∈ [0, 4]). At t = 5, the ball and the three positions are covered by mugs. The agent
must then determine the location of the ball by interacting with the correct mug. In the simplest mode
(Touch), the agent only needs to touch the correct mug, whereas in other modes, it must either push
or lift the mug. In the RememberColor-v0 task, the agent observes a cube of a specific color for
5 steps (t ∈ [0, 4]). After the cube disappears for 5 steps, 3, 5, or 9 (depending on task mode) cubes
of different colors appear at t = 10. The agent’s task is to identify and select the same cube it initially
saw. In the RotateLenientPos-v0 task, the agent must rotate a randomly oriented peg by a
specified clockwise angle.

The MIKASA-Robo benchmark offers multiple training modes: state (complete vector information
including oracle data and Tool Center Point (TCP) pose), RGB (top-view and gripper-camera images
with TCP position), joints (joint states and TCP pose), oracle (task-specific environment data
for debugging), and prompt (static task instructions). While any mode combination is possible,
RGB+joints serves as the standard memory testing configuration, with state mode reserved
for MDP-based tasks.

The MIKASA-Robo benchmark implements two types of reward functions: dense and sparse. The
dense reward provides continuous feedback based on the agent’s progress towards the goal, while
the sparse reward only signals task completion. While dense rewards facilitate faster learning in our
experiments, sparse rewards better reflect real-world scenarios where intermediate feedback is often
unavailable, making them crucial for evaluating practical applicability of memory-enhanced agents.
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6.2 Online RL baselines

ChainOfColors7
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InterceptSlow

InterceptMedium

InterceptFast
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TakeItBack
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Figure 6: Results of Offline RL baselines with memory
(RATE, DT) and without memory (BC-MLP, CQL-MLP,
DP) on all 32 MIKASA-Robo tasks. Training was performed
in RGB mode with sparse rewards (success condition).

For the experimental evaluation, we
chose on-policy Proximal Policy Op-
timization (PPO, [77]) with two un-
derlying architectures: Multilayer Per-
ceptron (MLP) and Long Short-Term
Memory (LSTM, [78]), as well as
popular in robotics off-policy Soft
Actor-Critic (SAC, [79]) and model-
based Temporal Difference Learning
for Model Predictive Control (TD-
MPC2, [80]).

The MLP variant serves as a memory-
less baseline, while LSTM represents
a widely-adopted memory mechanism
in RL, known for its effectiveness in
solving POMDPs [6]. This choice
of architectures enables direct com-
parison between memory-less and
memory-enhanced agents while validating our benchmark’s ability to assess memory. We focus
specifically on these fundamental architectures as they align with our primary goal of benchmark
validation rather than comprehensive algorithm comparison. To demonstrate that all proposed en-
vironments are solvable with 100% success rate (SR), we trained a PPO-MLP agent using state
mode, where it had full access to system information. Results for select tasks are shown in Figure 4;
full results are in Appendix G.

Training under the RGB+joints mode with dense rewards reveals the memory-intensive nature of
our tasks. Using the RememberColor-v0 task as an example, PPO-LSTM demonstrates superior
performance compared to PPO-MLP when distinguishing between three colors (see Figure 5).
However, both agents’ success rates drop dramatically to near-zero as the task complexity increases
to five or nine colors. Moreover, under sparse reward conditions, both architectures fail to solve
even the three-color variant (see Appendix G, Figure 10). Additionally, our findings indicate that,
while SAC and TD-MPC2 exhibit higher sample efficiency compared to PPO-MLP, when faced with
more complex challenges, the lack of an explicit memory mechanism becomes a critical shortcoming,
resulting in low performance, which also emphasizes the inappropriateness of algorithms common
in the robotics community for memory-intensive tasks. These results validate our benchmark’s
effectiveness in evaluating agents’ memory, showing clear performance degradation as memory
demands increase.

6.3 Offline RL baselines
Since dense rewards are typically not available in the real world, it is of particular interest to train on
sparse rewards represented as a binary flag of a successfully completed episode. Whereas models
with online learning are extremely hard to handle in this setting, we also conducted experiments with
five Offline RL models: Decision Transformer (DT) [2]) and Recurrent Action Transformer with
Memory (RATE) [25]) based on the Transformer architecture, Standard Behavioral Cloning (BC) and
Conservative Q-Learning (CQL) [81]) with MLP backbones, as well as Diffusion Policy (DP) [82]
– a recent and popular approach in robotic manipulation that leverages diffusion models for direct
action prediction.

Experimental results with Offline RL models trained using two RGB camera views and sparse
rewards are presented in Figure 6. As can be seen from Figure 6, none of the models – including
those explicitly designed for sequence modeling – were able to successfully solve the majority of
MIKASA-Robo tasks, demonstrating the challenge posed by the benchmark. Training was conducted
using datasets consisting of 1000 successful trajectories per task (see Appendix C for details).
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Table 4: Performance of VLA models on selected memory-intensive tasks from the MIKASA-
Robo benchmark. Reported values denote average success rates over 100 evaluation episodes
(mean ± sem). Tasks include spatial reasoning (ShellGameTouch, InterceptMedium) and
color-based memory retrieval (RememberColor3/5/9).

Model ShellGameTouch InterceptMedium RememberColor3 RememberColor5 RememberColor9

Octo-small 0.46 ± 0.05 0.39 ± 0.04 0.45 ± 0.06 0.17 ± 0.03 0.11 ± 0.03
OpenVLA (K=4) 0.12 ± 0.05 0.06 ± 0.02 0.21 ± 0.00 0.09 ± 0.02 0.08 ± 0.02
OpenVLA (K=8) 0.47 ± 0.05 0.14 ± 0.03 0.59 ± 0.04 0.16 ± 0.03 0.06 ± 0.02
SpatialVLA (K=4) 0.23 ± 0.04 0.27 ± 0.04 0.27 ± 0.05 0.17 ± 0.03 0.11 ± 0.03
π0 (K=4) 0.33 ± 0.05 0.42 ± 0.03 0.35 ± 0.04 0.22 ± 0.04 0.15 ± 0.02

Notably, none of the evaluated models were able to solve tasks requiring high Memory Capacity
or Sequential Memory, further underscoring their complexity. More detailed results for Offline RL
algorithms are presented in Appendix, Table 8.

6.4 VLA baselines
To investigate the capabilities of state-of-the-art Visual-Language-Action (VLA) models in memory-
intensive robotic tasks, we selected four representative baselines: Octo [83], OpenVLA [84], π0 [85],
and SpatialVLA [86]. Although none claims to implement sophisticated memory mechanisms, the
experiments offer insights into existing memory capabilities in VLA models.

Octo is a transformer with diffusion heads pretrained on Open X-Embodiment [87]; we fine-tuned
only the readout heads, using the full pretrained context length of 10 and action chunk size (K=4).
OpenVLA uses a Prismatic-7B backbone [88], fine-tuned with LoRA adapters, chunking, and L1

loss [89]. π0 combines a pretrained VLM with a lightweight flow-matching expert. SpatialVLA
augments a VLA with egocentric 3D position encodings and discretized action grids. We evaluate
chunk sizes K=4 and K=8. All models were trained on 250 expert trajectories per task, using
128× 128 RGB image pairs (base and wrist views) and end-effector control (see Appendix D).

Experimental results (Table 4) reveal notable trends. Octo (context size 10) outperforms random on
simpler tasks, suggesting some innate memory capacity, but degrades with complexity, indicating
limited scalability. OpenVLA behaves differently across chunk sizes: with K = 8, it exceeds random
on tasks like RememberColor3 and ShellGameTouch, despite lacking step-wise history. How-
ever, performance drops on harder tasks. With K = 4, OpenVLA, SpatialVLA, and π0 fail across the
board, showing random-like performance. These results suggest larger chunks can bypass memory
by generating full trajectories from early cues, but this fails with smaller chunks, where initially
correct actions often collapse into confusion. Thus, chunking offers limited compensation for lack of
memory. The sharp decline on harder tasks underscores the need for dedicated memory architectures
and validates the multi-difficulty hierarchy in MIKASA-Robo to prevent such “shortcuts.” Our exper-
iments with Octo, OpenVLA, π0, and SpatialVLA highlight a critical gap in current VLA models:
without effective long-term memory, performance is brittle on tasks requiring strong memory. These
findings reveal current limitations and reinforce the value of the MIKASA-Robo benchmark.

7 Limitations
While our benchmark provides a comprehensive evaluation framework, some limitations remain.
In particular, the performance of Octo and OpenVLA may not reflect their full potential, as we
performed limited fine-tuning due to computational constraints. Future work could explore more
extensive adaptation of large VLA models within MIKASA to better assess their memory capabilities.
Additionally, while MIKASA covers a broad range of memory challenges, further extensions could
incorporate tasks with longer temporal dependencies or meta-RL.
8 Conclusion
We present MIKASA, a unified benchmark suite for evaluating memory in RL. Our work addresses
key gaps in the field by introducing: (1) a taxonomy of memory types – object, spatial, sequential,
and capacity; (2) MIKASA-Base, a standardized collection of open-source memory tasks; (3)
MIKASA-Robo, a suite of 32 robotic manipulation tasks targeting diverse memory demands; and (4)
accompanying offline datasets to support reproducible evaluation. Experiments with online, offline,
and VLA agents reveal that current methods struggle with many tasks, highlighting the need for better
memory architectures. MIKASA aims to guide and accelerate progress in memory-intensive RL for
real-world applications. The MIKASA-Robo suite is open-source under the permissive MIT license
and can be conveniently installed via pip install mikasa-robo-suite.
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A MIKASA-Robo Implementation Details

An example of running the environment from the MIKASA-Robo benchmark is shown
in Code 1. For ease of debugging, we also added various wrappers (found in
mikasa_robo_suite/utils/wrappers/) that display useful information about the episode
on the video (Code 2). Thus, RenderStepInfoWrapper() displays the current step in the envi-
ronment; DebugRewardWrapper() displays information about the full reward at the current step
in the environment; DebugRewardWrapper() displays information about each component that
generates the reward function at the current step. In addition, we also added task-specific wrappers
for each environment. For example, RememberColorInfoWrapper() displays the target color
of the cube in the RememberColor-v0 task, and ShellGameRenderCupInfoWrapper()
displays which mug the ball is actually under in the ShellGame-v0 task.

Code 1: Getting started with MIKASA-Robo using the RememberColor9-v0 environment. �
# pip install mikasa_robo_suite
import mikasa_robo_suite
from mikasa_robo_suite.utils.wrappers import

↪→ StateOnlyTensorToDictWrapper
from tqdm.notebook import tqdm
import torch
import gymnasium as gym

# Create the environment via gym.make()
# obs_mode="rgb" for modes "RGB", "RGB+joint", "RGB+oracle" etc.
# obs_mode="state" for mode "state"
episode_timeout = 90
env = gym.make("RememberColor9-v0", num_envs=512 obs_mode="rgb",

↪→ render_mode="all")
env = StateOnlyTensorToDictWrapper(env) # * always use this wrapper!

obs, _ = env.reset(seed=42)
print(obs.keys())
for i in tqdm(range(episode_timeout)):

action = torch.from_numpy(env.action_space.sample())
obs, reward, terminated, truncated, info = env.step(action)

env.close() 
� �
Code 2: MIKASA-Robo wrappers system. �

import mikasa_robo_suite, torch
from mikasa_robo_suite.dataset_collectors.get_mikasa_robo_datasets

↪→ import env_info
import gymnasium as gym
from mani_skill.utils.wrappers import RecordEpisode
from IPython.display import Video

env = gym.make("RememberColor9-v0", num_envs=512, obs_mode="rgb",
↪→ render_mode="all")

state_wrappers_list, episode_timeout = env_info("RememberColor9-v0")
for wrapper_class, wrapper_kwargs in state_wrappers_list:

env = wrapper_class(env, **wrapper_kwargs)
env = RecordEpisode(env, f"./videos", max_steps_per_video=

↪→ episode_timeout)

obs, _ = env.reset(seed=42)
for i in range(episode_timeout):

action = torch.from_numpy(env.action_space.sample())
obs, reward, terminated, truncated, info = env.step(action)

Video(f"./videos/0.mp4", embed=True, width=640)
env.close() 
� �
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B MIKASA-Robo Task Customization

Beyond the official configurations, MIKASA-Robo is designed to be fully customizable. Researchers
can directly adjust environment parameters – such as number of objects, episode length, cue duration,
or delay intervals – to create variants tailored for debugging, ablation studies, or curriculum learning.
This flexibility ensures that tasks can scale from minimal examples to extremely challenging settings
while preserving their memory-centric nature.

We deliberately include highly challenging variants (e.g., BunchOfColors, SeqOfColors,
ChainOfColors) to ensure that the benchmark continues to stress-test algorithms as memory
capabilities advance. To avoid hidden shortcuts, we provide a set of fixed official configurations
with multiple difficulty levels (e.g., RememberColor3/5/9). At the same time, each environment
exposes its underlying parameters, making customization straightforward.

For example, the RememberColor task can be customized as follows:

Code 3: Customized RememberColor environment. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.remember_color import RememberColorBaseEnv
import gymnasium as gym

@register_env("RememberColor4Debug-v0", max_episode_steps=1000)
class RememberColorDebugEnv(RememberColorBaseEnv):

COLORS = 4 # 1-9 unique cubes
TIME_OFFSET = 200 # duration target cube is visible
GOAL_THRESH = 0.03 # success threshold
CUBE_HALFSIZE= 0.02 # cube size
DELTA_TIME = 100 # delay before response

env = gym.make("RememberColor4Debug-v0", num_envs=256,
obs_mode="rgb", render_mode="all",
delta_time=DELTA_TIME) 
� �

Similarly, the SeqOfColors task can be configured with custom sequence length and timing:

Code 4: Customized SeqOfColors environment. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.seq_of_colors import SeqOfColorsEnv
import gymnasium as gym

@register_env("SeqOfColors6Debug-v0", max_episode_steps=1000)
class SeqOfColorsDebugEnv(SeqOfColorsEnv):

COLORS = 2 # 1-9 unique cubes
GOAL_THRESH = 0.03
CUBE_HALFSIZE = 0.02
SEQUENCE_LENGTH= 2 # number of cubes in sequence
STEP_DURATION = 15 # duration per cube
EMPTY_DURATION = 5 # empty delay between cubes

env = gym.make("SeqOfColors6Debug-v0", num_envs=256,
obs_mode="rgb", render_mode="all") 
� �

The design of MIKASA-Robo emphasizes isolating the role of memory, rather than long-horizon
credit assignment. For example, tasks like RememberColor already become non-Markovian after
a single occlusion, so even short horizons (e.g., 60 steps) suffice to reveal memory limitations. Still,
researchers can easily scale horizon length and difficulty by tuning memory-related parameters.

Below we illustrate how to extend RememberColor into a long-horizon setting, increasing both
episode length and delay:
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Code 5: Long-horizon variant of RememberColor. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.remember_color import RememberColorBaseEnv
import gymnasium as gym

@register_env("RememberColor3Debug-v0", max_episode_steps=1000)
class RememberColorDebugEnv(RememberColorBaseEnv):

COLORS = 3
TIME_OFFSET = 50 # target cube duration
GOAL_THRESH = 0.03
CUBE_HALFSIZE= 0.02
DELTA_TIME = 900 # extended delay

env = gym.make("RememberColor3Debug-v0", num_envs=256,
obs_mode="rgb", render_mode="all",
delta_time=DELTA_TIME) 
� �

This flexibility applies to all tasks in the benchmark, making MIKASA-Robo suitable for controlled
debugging, systematic ablations, or curriculum-based studies of memory.

C MIKASA-Robo Datasets for Offline RL

To train Offline RL baselines on camera images (in “RGB” mode) with sparse rewards (success
condition), we collected datasets for each of the 32 MIKASA-Robo tasks. Datasets were collected
using a PPO-MLP agent trained to SR=100% in “state” mode (i.e., with full information about the
task being solved) with sparse rewards (success condition). Thus, each dataset is represented by 1000
successful trajectories, where each trajectory consists of:

1. “rgb” (shape: (T, 128, 128, 6)) - two RGB images (view from above and from the gripper)

2. “joints” (shape: (T, 25)) - Tool Center Point (TCP) position and rotation, and joint positions
and velocities

3. “action” (shape: (T, 8)) - action (8-dimensional vector)

4. “reward” (shape: (T, )) - (dense) reward for each step

5. “success” (shape: (T,)) - (sparse) success flag for each step

6. “done” (shape: (T,)) - done flag for each step

These datasets are available for download from the project website. We have also published the
weights of the PPO-MLP agent used to collect the dataset, as well as scripts for collecting datasets of
any size, to our repository.

D MIKASA-Robo setup for VLA baselines

For experiments involving Vision-Language-Action (VLA) models, we focused on a representative
subset of spatial and object memory tasks from MIKASA-Robo. For each task, we generated a
dataset of 250 episodes using an oracle PPO policy with full access to the environment state. At
every timestep, the policy recorded two synchronized RGB frames (one from the static “base” camera
and one from the robot’s wrist camera) along with the corresponding end-effector control actions
( pd_ee_delta_pose controller from [58]). Each task was also paired with a concise language
instruction (see Table 5).

All VLA baselines were trained for 50000 iterations and evaluated independently on each task. Com-
plete training/evaluation scripts, language instruction templates, and detailed model hyperparameter
settings are provided in the accompanying supplementary code.
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Table 5: Tasks configurations for fine-tuning VLA models. The table lists the task ID, number of
evaluation steps (T), and the associated language instruction

Task T Language instruction

RememberColor3/5/9-v0 60 Remember the color of the cube and then pick the matching one
ShellGameTouch-v0 90 Memorize the position of the cup covering the ball, then pick that cup
InterceptMedium-v0 90 Track the ball’s movement, estimate its velocity, then aim the ball at the target

E MIKASA-Base Implementation Details

An example of running an environment from the MIKASA-Base benchmark is shown in Code 6.
MIKASA-Base supports the standard Gymnasium API and is fully compatible with all its
wrappers. This allows users to leverage various functionalities, including parallelization using
AsyncVectorEnv. MIKASA-Base provides a predefined set of environments with different levels
of difficulty. However, users can customize the environment parameters by passing specific arguments
(see Code 6).

Code 6: Example code for running MemoryLength-v0 environment. �
import mikasa_base
import gymnasium as gym

# use pre-defined env
# env_id = "MemoryLengthEasy-v0"
# env_kwargs = None

# create env using custom parameters
env_id = "MemoryLength-v0"
env_kwargs = {"memory_length": 10, "num_bits": 1}
seed = 123

env = gym.make(env_id, env_kwargs)

obs, _ = env.reset(seed=seed)

for i in range(11):
action = env.action_space.sample()
next_obs, reward, terminations, truncations, infos = env.step(

↪→ action)
env.close() 
� �

F Memory Mechanisms in RL

In RL, memory mechanisms are techniques or models used to enable agents to retain and recall
information from past interactions with the environment.

There are several approaches to incorporating memory into RL, including recurrent neural networks
(RNNs) [90, 78, 91] which uses hidden states to store information from previous steps [92, 21],
state-space models (SSMs) [93–95] which uses system state to store historical information [96,
24], transformers [97] which uses attention mechanism to capture sequential dependencies inside
the context window [4, 3, 45], graph neural networks (GNNs) [98] which uses graphs to store
information [99, 29] etc. Popular agents with memory mechanisms are summarized in Table 2.

G Classic baselines performance on the MIKASA-Robo benchmark

In this section, we present a comprehensive evaluation of PPO-MLP and PPO-LSTM baselines on
our MIKASA-Robo benchmark. Our experiments with PPO-MLP in state mode using dense
rewards demonstrate perfect performance across all tasks, consistently achieving 100% success rate,
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as shown in Figure 7 and Figure 8. This remarkable performance serves as a crucial validation
of our benchmark design: when an agent has access to complete state information and receives
dense rewards, it can master these tasks completely. Therefore, any performance degradation in
RGB+joints mode observed with other algorithms or training configurations must stem from
the algorithmic limitations or learning challenges rather than any inherent flaws in the task design.
This empirical evidence confirms that our environments are well-calibrated and properly designed,
establishing a solid foundation for evaluating memory-enhanced algorithms. All results are presented
as mean ± standard error of the mean (SEM), where the mean is computed across three independent
training runs, and each trained agent is evaluated on 16 different random seeds to ensure robust
performance assessment.

The performance evaluation of PPO-MLP and PPO-LSTM with dense rewards in the RGB+joints
mode is presented in Figure 9. This mode specifically tests the agents’ memory capabilities, as it
requires remembering and utilizing historical information to solve the tasks. Our results demonstrate
a clear distinction between memory-less and memory-enhanced architectures, while also revealing
the limitations of conventional memory mechanisms.

Consider the RememberColor-v0 environment as an illustrative example. In its simplest config-
uration with three cubes, the memory-less PPO-MLP achieves only 25% success rate. In contrast,
PPO-LSTM, leveraging its memory mechanism, achieves perfect performance with 100% success rate.
However, as task complexity increases to five or nine cubes, even the LSTM’s memory capabilities
prove insufficient, with performance degrading significantly.

These results validate two key aspects of our benchmark: first, its effectiveness in distinguishing
between memory-less and memory-enhanced architectures, and second, its ability to challenge
even sophisticated memory mechanisms as task complexity increases. This demonstrates that
MIKASA-Robo provides a competitive yet meaningful evaluation framework for developing and
testing advanced memory-enhanced agents.

Our evaluation of PPO-MLP and PPO-LSTM baselines under sparse reward conditions in
RGB+joints mode reveals the true challenge of our benchmark tasks. As shown in Figure 10,
both architectures – even the memory-enhanced LSTM – consistently fail to achieve any meaningful
success rate across nearly all considered environments. This striking result underscores the extreme
difficulty of memory-intensive manipulation tasks when only terminal rewards are available, high-
lighting the substantial gap between current algorithms and the level of memory capabilities required
for real-world robotic applications.

H Additional Offline RL Results with Dense Rewards

In the main paper, we focused on the sparse reward setting for Offline RL, which is particularly
challenging since online RL agents are generally ineffective in this regime. To better contextualize the
results, we also conducted supplementary experiments in the dense reward setting on a representative
subset of tasks: ShellGameTouch, InterceptMedium, and RememberColor3/5/9. We
compared four representative algorithms: RATE, DT, BC, and CQL.

Table 6: Performance of Offline RL baselines under dense reward formulation.
Task RATE DT BC CQL
ShellGameTouch-v0 0.97±0.02 0.50±0.17 0.38±0.03 0.02±0.01
InterceptMedium-v0 0.39±0.06 0.56±0.02 0.51±0.03 0.04±0.01
RememberColor3-v0 0.68±0.04 0.05±0.03 0.20±0.04 0.00±0.00
RememberColor5-v0 0.11±0.04 0.05±0.03 0.13±0.02 0.01±0.01
RememberColor9-v0 0.10±0.01 0.02±0.02 0.15±0.03 0.01±0.00
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Figure 7: Demonstration of PPO-MLP performance on MIKASA-Robo benchmark when trained with
oracle-level state information. In this learning mode, MDP problem formulation is considered, i.e.
memory is not required for successful problem solving. At the same time, the obtained results show
that it is possible to solve these problems and obtain 100% Success Rate.

I Experiments Reproducing and Compute Resources

All baselines were trained and evaluated under a reproducible standardized setup on a single NVIDIA
A100 GPU. For each task, we conducted three independent training runs. Within each run, evaluation
was performed over 100 independent episodes with environment and agent random seeds ranging from
1 to 100. We first computed the mean success rate per run, and then report the overall performance as
the mean ± standard error (SEM) across the three run-level means.
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Figure 8: Demonstration of PPO-MLP performance on MIKASA-Robo benchmark when
trained with oracle-level state information. Results are shown for memory capac-
ity (SeqOfColors[3,5,7]-v0, BunchOfColors[3,5,7]-v0) and sequential memory
(ChainOfColors[3,5,7]-v0).
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Figure 9: Performance evaluation of PPO-MLP and PPO-LSTM on the MIKASA-Robo benchmark
using the “RGB+joints” training mode with dense reward function, where the agent only receives
images from the camera (from above and from the gripper) and information about the state of the
joints (position and velocity). The results demonstrate that numerous tasks pose significant challenges
even for PPO-LSTM agents with memory, establishing these environments as effective benchmarks
for evaluating advanced memory-enhanced architectures.
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Figure 10: Performance evaluation of PPO-MLP and PPO-LSTM on the MIKASA-Robo benchmark
using the “RGB+joints” with sparse reward function training mode, where the agent only receives
images from the camera (from above and from the gripper) and information about the state of the
joints (position and velocity). This training mode with sparse reward function causes even more
difficulty for the agent to learn, making this mode even more challenging for memory-enhanced
agents.

J Additional Baselines: SSMs and Memory-Enhanced Transformers

To further strengthen our evaluation, we included two additional families of baselines in the offline
RL setting: (1) DMamba [100], a recent state-space model designed for efficient long-sequence
modeling, and (2) GTrXL [4], a gated recurrent transformer variant proposed specifically, adopted to
the offline RL setting.

We tested these methods on a representative subset of tasks – ShellGameTouch,
InterceptMedium, and RememberColor3/5/9 – and compared them against our primary
baselines.

Table 7: Offline RL performance of additional SSM/Transformer baselines (DMamba, GTrXL)
compared with prior models.

Task RATE DT BC CQL DP DMamba GTrXL
ShellGameTouch-v0 0.92±0.01 0.53±0.07 0.28±0.01 0.16±0.04 0.18±0.02 0.21±0.02 0.80±0.10
InterceptMedium-v0 0.09±0.03 0.56±0.01 0.31±0.14 0.03±0.01 0.24±0.01 0.14±0.07 0.64±0.04
RememberColor3-v0 0.65±0.04 0.01±0.01 0.27±0.03 0.29±0.01 0.07±0.04 0.32±0.03 0.39±0.06
RememberColor5-v0 0.13±0.03 0.07±0.05 0.12±0.02 0.15±0.02 0.01±0.01 0.11±0.02 0.19±0.04
RememberColor9-v0 0.09±0.02 0.01±0.01 0.12±0.02 0.15±0.01 0.02±0.01 0.14±0.00 0.16±0.01

Overall, we find that while GTrXL shows some improvements over standard DT and BC base-
lines, both it and DMamba still fail to match the performance of RATE model, especially on
tasks with higher memory requirements (e.g., RememberColor5/9). These results confirm that
memory-centric SSM and Transformer variants remain challenged by increasing sequence complexity,
underscoring the importance of dedicated mechanisms for continual memory retention and rewriting.

K MIKASA-Robo Detailed Tasks Description

In this section, we provide comprehensive descriptions of the 32 memory-intensive tasks that comprise
the MIKASA-Robo benchmark. Each task is designed to evaluate specific aspects of memory
capabilities in robotic manipulation, ranging from object tracking and spatial memory to sequential
decision-making. For each task, we detail its objective, memory requirements, observation space,
reward structure, and success criteria. Additionally, we explain how task complexity increases across
different variants and discuss the specific memory challenges they present. The following subsections
describe each task category and its variants in detail.
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Table 8: Results for Offline RL baselines. The table shows comparison of transformer-based
baselines (RATE, DT), behavior cloning (BC), classic Offline RL baselines (CQL), and Diffusion
Policy (DP) on all 32 tasks from the MIKASA-Robo benchmark. Results are presented as mean ±
sem across the three runs, where each run is averaged over 100 episodes and sem is the standard
error of the mean. Training was performed using only RGB observations (two cameras: top view and
gripper view) and using sparse rewards (success once condition). The results show that even models
with memory (RATE, DT) are not able to solve most of the benchmark problems, which makes it
challenging and promising for further validation of the algorithm.

# Environment RATE DT BC CQL DP
1 ShellGameTouch-v0 0.92±0.01 0.53±0.07 0.28±0.01 0.16±0.04 0.18±0.02
2 ShellGamePush-v0 0.78±0.06 0.62±0.14 0.27±0.01 0.25±0.01 0.22±0.03
3 ShellGamePick-v0 0.02±0.01 0.00±0.00 0.01±0.01 0.00±0.00 0.01±0.00
4 InterceptSlow-v0 0.23±0.02 0.40±0.02 0.37±0.06 0.25±0.01 0.33±0.05
5 InterceptMedium-v0 0.32±0.02 0.56±0.01 0.31±0.14 0.03±0.01 0.68±0.02
6 InterceptFast-v0 0.30±0.04 0.36±0.04 0.03±0.02 0.02±0.02 0.21±0.05
7 InterceptGrabSlow-v0 0.09±0.03 0.00±0.00 0.28±0.18 0.03±0.00 0.03±0.01
8 InterceptGrabMedium-v0 0.09±0.03 0.00±0.00 0.11±0.02 0.08±0.04 0.03±0.01
9 InterceptGrabFast-v0 0.14±0.03 0.11±0.03 0.09±0.02 0.08±0.03 0.18±0.02

10 RotateLenientPos-v0 0.11±0.04 0.01±0.01 0.15±0.03 0.16±0.02 0.11±0.02
11 RotateLenientPosNeg-v0 0.29±0.03 0.05±0.02 0.22±0.01 0.12±0.02 0.14±0.05
12 RotateStrictPos-v0 0.03±0.02 0.05±0.04 0.01±0.00 0.03±0.01 0.06±0.02
13 RotateStrictPosNeg-v0 0.08±0.01 0.05±0.03 0.04±0.02 0.04±0.02 0.15±0.01
14 TakeItBack-v0 0.42±0.24 0.08±0.04 0.33±0.10 0.04±0.01 0.05±0.02
15 RememberColor3-v0 0.65±0.04 0.01±0.01 0.27±0.03 0.29±0.01 0.32±0.01
16 RememberColor5-v0 0.13±0.03 0.07±0.05 0.12±0.01 0.15±0.02 0.10±0.02
17 RememberColor9-v0 0.09±0.02 0.01±0.01 0.12±0.02 0.15±0.01 0.17±0.01
18 RememberShape3-v0 0.21±0.04 0.05±0.04 0.31±0.04 0.20±0.10 0.32±0.05
19 RememberShape5-v0 0.17±0.04 0.04±0.04 0.18±0.01 0.15±0.00 0.21±0.04
20 RememberShape9-v0 0.05±0.00 0.05±0.02 0.10±0.02 0.14±0.01 0.11±0.02
21 RememberShapeAndColor3x2-v0 0.14±0.02 0.04±0.02 0.13±0.02 0.11±0.05 0.14±0.02
22 RememberShapeAndColor3x3-v0 0.08±0.03 0.06±0.06 0.09±0.02 0.09±0.02 0.16±0.01
23 RememberShapeAndColor5x3-v0 0.07±0.02 0.01±0.01 0.09±0.01 0.09±0.02 0.11±0.03
24 BunchOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
25 BunchOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
26 BunchOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
27 SeqOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
28 SeqOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
29 SeqOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
30 ChainOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
31 ChainOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
32 ChainOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Each of the proposed environment supports multiple observation modes:

• State: Full state information including ball position

• RGB+joints: Two camera views (top-down and gripper) plus robot joint states

• RGB: Only visual information from two cameras

In the case of RotateLenient-v0 and RotateStrict-v0, the prompt information available
at each step is additionally added to each observation.
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Figure 11: ShellGameTouch-v0: The robot observes a ball in front of it. next, this ball is covered
by a mug and then the robot has to touch the mug with the ball underneath.

K.1 ShellGame-v0

The ShellGame-v0 task (Figure 11) is inspired by a simplified version of the classic shell game,
which tests a person’s ability to remember object locations when they become occluded. This task
evaluates an agent’s capacity for object permanence and spatial memory, crucial skills for real-world
robotic manipulation where objects frequently become temporarily hidden from view.

Environment Description The environment consists of three identical mugs placed on a table and
a red ball. The task proceeds in three phases:

1. Observation Phase (steps 0-4): The ball is placed at one of three positions, and the agent
can observe its location.

2. Occlusion Phase (step 5): The ball and positions are covered by three identical mugs.

3. Action Phase (steps 6+): The agent must interact with the mug covering the ball’s location.
The type of target interaction depends on the selected mode: Touch, Push and Pick.

Task Modes The task includes three variants of increasing difficulty:

• Touch: The agent only needs to touch the correct mug

• Push: The agent must push the correct mug to a designated area

• Pick: The agent must pick and lift the correct mug above a specified height

Success Criteria Success is determined by:

• Touch: Contact between the gripper and the correct mug

• Push: Moving forward the correct mug to the target zone

• Pick: Elevating the correct mug above 0.1m

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and target mug
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when the task is solved)
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Figure 12: RememberColor9-v0: The robot observes a colored cube in front of it, then this cube
disappears and an empty table is shown. Then 9 cubes appear on the table, and the agent must touch
a cube of the same color as the one it observed at the beginning of the episode.

K.2 RememberColor-v0

The RememberColor-v0 task (Figure 12) tests an agent’s ability to remember and identify objects
based on their visual properties. This capability is essential for real-world robotics applications where
agents must recall and match object characteristics across time intervals.

Environment Description The environment presents a sequence of colored cubes on a table. The
task proceeds in three phases:

1. Observation Phase (steps 0-4): A cube of a specific color is displayed, and the agent must
memorize its color.

2. Delay Phase (steps 5-9): The cube disappears, leaving an empty table.

3. Selection Phase (steps 10+): Multiple cubes of different colors appear (3, 5, or 9 depending
on difficulty), and the agent must identify and interact with the cube matching the original
color.

Task Modes The task includes three complexity levels:

• 3 (easy): Choose from 3 different colors (red, lime, blue)

• 5 (Medium): Choose from 5 different colors (red, lime, blue, yellow, magenta)

• 9 (Hard): Choose from 9 different colors (red, lime, blue, yellow, magenta, cyan, maroon,
olive, teal)

Success Criteria Success is determined by:

• Correctly identifying and touching the cube that matches the color shown in the observation
phase

• Maintaining contact with the correct cube for at least 0.1 seconds

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and target cube
– Robot’s motion smoothness (static reward based on joint velocities)
– Additional reward for robot being static while touching the correct cube
– Task completion status (additional reward when the task is solved)
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Figure 13: RememberShape9-v0: The robot observes an object with specific shape in front of it,
then the object disappears and an empty table appears. Then 9 objects of different shapes appear on
the table, and the agent must touch an object of the same shape as the one it observed at the beginning
of the episode.

K.3 RememberShape-v0

The RememberShape-v0 task (Figure 13) evaluates an agent’s ability to remember and identify
objects based on their geometric properties. This capability is crucial for robotic applications where
shape recognition and recall are essential for successful manipulation.

Environment Description The environment presents a sequence of geometric shapes on a table.
The task proceeds in three phases:

1. Observation Phase (steps 0-4): A shape (cube, sphere, cylinder, etc.) is displayed, and the
agent must memorize its geometry.

2. Delay Phase (steps 5-9): The shape disappears, leaving an empty table.

3. Selection Phase (steps 10+): Multiple shapes appear (3, 5, or 9 depending on difficulty),
and the agent must identify and interact with the shape matching the original geometry.

Task Modes The task includes three complexity levels:

• 3 (Easy): Choose from 3 different shapes (cube, sphere, cylinder)

• 5 (Medium): Choose from 5 different shapes (cube, sphere, cylinder cross, torus)

• 9 (Hard): Choose from 9 different shapes (cube, sphere, cylinder cross, torus, star, pyramid,
t-shape, crescent)

Success Criteria Success is determined by:

• Correctly identifying and touching the object with the same shape shown in the observation
phase

• Maintaining contact with the correct shape for at least 0.1 seconds

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and target object
– Robot’s motion smoothness (static reward based on joint velocities)
– Additional reward for maintaining static position when touching correct object
– Task completion status (additional reward when the task is solved)

30



Figure 14: RememberShapeAndColor5x3-v0: An object of a certain shape and color appears
in front of the agent. Then the object disappears and the agent sees an empty table. Then objects of 5
different shapes and 3 different colors appear on the table and the agent has to touch what it observed
at the beginning of the episode.

K.4 RememberShapeAndColor-v0

The RememberShapeAndColor-v0 task (Figure 14) evaluates an agent’s ability to remember
and identify objects based on multiple visual properties simultaneously. This task combines shape
and color recognition, testing the agent’s capacity to maintain and match multiple object features
across time intervals.

Environment Description The environment presents a sequence of colored geometric shapes on a
table. The task proceeds in three phases:

1. Observation Phase (steps 0-4): An object with specific shape and color is displayed, and
the agent must memorize both properties.

2. Delay Phase (steps 5-9): The object disappears, leaving an empty table.

3. Selection Phase (steps 10+): Multiple objects with different combinations of shapes and
colors appear, and the agent must identify and interact with the object matching both the
original shape and color.

Task Modes The task includes three complexity levels based on the number of shape-color combi-
nations:

• 3x2 (Easy): Choose from 6 objects (3 shapes × 2 colors); shapes: cube, sphere, t-shape;
colors: red, green

• 3x3 (Medium): Choose from 9 objects (3 shapes × 3 colors); shapes: cube, sphere, t-shape;
colors: red, green, blue

• 5x3 (Hard): Choose from 15 objects (5 shapes × 3 colors); shapes: cube, sphere, t-shape,
cross, torus; colors: red, green, blue

Success Criteria Success is determined by:

• Correctly identifying and touching the object that matches both the shape and color shown
in the observation phase

• Maintaining contact with the correct object for at least 0.1 seconds

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and target object
– Robot’s motion smoothness (static reward based on joint velocities)
– Additional reward for maintaining static position while touching correct object
– Task completion status (additional reward when the task is solved)
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Figure 15: InterceptMedium-v0: A ball rolls on the table in front of the agent with a random
initial velocity, and the agent’s task is to intercept this ball and direct it at the target zone.

K.5 Intercept-v0

The Intercept-v0 task (Figure 16) evaluates an agent’s ability to predict and intercept a moving
object based on its initial trajectory. This task tests the agent’s capacity for motion prediction and
spatial-temporal reasoning, which are essential skills for dynamic manipulation tasks in robotics.

Environment Description The environment consists of a red ball moving across a table and a
target zone. The task requires the agent to:

1. Observe the ball’s initial position and velocity

2. Predict the ball’s trajectory

3. Guide the ball to reach a designated target zone

Task Modes The task includes three variants with increasing ball velocities:

• Slow: Ball velocity range of 0.25-0.5 m/s

• Medium: Ball velocity range of 0.5-0.75 m/s

• Fast: Ball velocity range of 0.75-1.0 m/s

Success Criteria Success is determined by:

• Guiding the ball to enter the target zone

• The ball must come to rest within the target area (radius 0.1m)

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and ball
– Distance between ball and target zone
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when the task is solved)
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Figure 16: InterceptGrabMedium-v0: A ball rolls on the table in front of the agent with a
random initial velocity, and the agent’s task is to intercept this ball with a gripper and lift it up.

K.6 InterceptGrab-v0

The InterceptGrab-v0 task (Figure 16) extends the Intercept-v0 task by requiring the
agent to not only predict the trajectory of a moving object but also grasp it while in motion. This
task evaluates the agent’s ability to combine motion prediction with precise manipulation timing,
simulating real-world scenarios where robots must catch or intercept moving objects.

Environment Description The environment consists of a red ball moving across a table. The task
requires the agent to:

1. Observe the ball’s initial position and velocity

2. Predict the ball’s trajectory

3. Position the gripper to intercept the ball’s path

4. Time the grasping action correctly to catch the ball

5. Maintain a stable grasp while bringing the ball to rest

Task Modes The task includes three variants with increasing ball velocities:

• Slow: Ball velocity range of 0.25-0.5 m/s

• Medium: Ball velocity range of 0.5-0.75 m/s

• Fast: Ball velocity range of 0.75-1.0 m/s

Success Criteria Success is determined by:

• Successfully grasping the moving ball

• Maintaining a stable grasp until the ball comes to rest

• The robot must be static with the ball firmly grasped

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and ball
– Grasping reward
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when the task is solved)
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Figure 17: RotateLenientPos-v0: A randomly oriented peg is placed in front of the agent.
The agent’s task is to rotate this peg by a certain angle (the center of the peg can be shifted).

K.7 RotateLenient-v0

The RotateLenient-v0 task (Figure 17) evaluates an agent’s ability to remember and execute
specific rotational movements. This task tests the agent’s capacity to maintain and reproduce angular
information, which is crucial for manipulation tasks requiring precise orientation control. This task
tests the agent’s ability to hold information in memory about how far peg has already rotated at the
current step relative to its initial position.

Environment Description The environment consists of a blue-colored peg on a table that must be
rotated by a specified angle. The task proceeds in one phase, but the static prompt information about
the target angle is available to the agent at each timestep:

1. Action Phase: The agent must rotate the peg to match the target angle

Task Modes The task includes two variants with different rotation requirements:

• Pos: Rotate by a positive angle between 0 and π/2

• PosNeg: Rotate by either positive or negative angle between −π/4 and π/4

Success Criteria Success is determined by:

• Rotating the peg to within the angle threshold (±0.1 radians) of the target angle

• Maintaining the final orientation in a stable position

• The robot must be static with the peg at the correct orientation

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and peg
– Angular distance to target rotation
– Stability of the peg’s orientation
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when the task is solved)
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Figure 18: RotateStrictPos-v0: A randomly oriented peg is placed in front of the agent. The
agent’s task is to rotate this peg by a certain angle (it is not allowed to move the center of the peg)

K.8 RotateStrict-v0

The RotateStrict-v0 task (Figure 18) extends the RotateLenient-v0 task with more
stringent requirements for precise rotational control.

Environment Description The environment consists of a blue-colored peg on a table that must be
rotated by a specified angle while maintaining its position. The task proceeds in one phase, but the
static prompt information about the target angle is available to the agent at each timestep:

1. Action Phase: The agent must rotate the peg to match the target angle while keeping it
centered

Task Modes The task includes two variants with different rotation requirements:

• Pos: Rotate by a positive angle between 0 and π/2

• PosNeg: Rotate by either positive or negative angle between −π/4 and π/4

Success Criteria Success is determined by:

• Rotating the peg to within the angle threshold (±0.1 radians) of the target angle

• Maintaining the peg’s position within 5cm of its initial XY coordinates

• The robot must be static with the peg at the correct orientation

• No significant deviation in other rotation axes

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and peg
– Angular distance to target rotation
– Position deviation from initial location
– Stability of the peg’s orientation
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when the task is solved)
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Figure 19: TakeItBack-v0: The agent observes a green cube in front of him. The agent’s task
is to move the green cube to the red target, and as soon as it lights up violet, return the cube to its
original position (the agent does not observes the original position of the cube).

K.9 TakeItBack-v0

The TakeItBack-v0 task (Figure 19) assesses the agent’s ability to perform sequential tasks and
memorize the starting position. This task tests the agent’s capacity for sequential memory and spatial
reasoning, requiring it to maintain information about past locations and achievements while executing
a multi-step plan.

Environment Description The environment consists of a green cube and two target regions (initial
and goal) on a table. The task proceeds in two phases:

1. First Phase: The agent must move the cube from its initial position to a goal region

2. Second Phase: After reaching the goal, goal region change it’s color from red to magenta,
and the agent must return the cube to its original position (marked by the initial region and
invisible for the agent)

Success Criteria Success is determined by:

• First reaching the goal region with the cube

• Then returning the cube to the initial region

• Both goals must be achieved in sequence

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and cube
– Distance to current target region
– Progress through the task sequence
– Stability of cube manipulation
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when the task is solved)
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Figure 20: SeqOfColors7-v0: In front of the agent, 7 cubes of different colors appear sequentially.
After the last cube is shown, the agent observes an empty table. Then 9 cubes of different colors
appear on the table and the agent has to touch the cubes that were shown at the beginning of the
episode in any order.

K.10 SeqOfColors-v0

The SeqOfColors-v0 task (Figure 20) evaluates an agent’s ability to remember and reproduce an
unordered sequence of colors. This task tests memory capacity capabilities essential for robotic tasks
that require following specific patterns or sequences.

Environment Description The environment presents a sequence of colored cubes that must be
reproduced in any order. The task proceeds in two phases:

1. Observation Phase (steps 0-(5N − 1)): A sequence of N colored cubes is shown one at a
time, with each cube visible for 5 steps.

2. Delay Phase (steps (5N )-(5N + 4)): All cubes disappear

3. Selection Phase (steps (5N + 5)+): A larger set of cubes appears, and the agent must
identify and touch all previously shown cubes in any order

Task Modes The task includes three complexity levels:

• 3 (Easy): Remember 3 colors demonstrated sequentially

• 5 (Medium): Remember 5 colors demonstrated sequentially

• 7 (Hard): Remember 7 colors demonstrated sequentially

Success Criteria Success is determined by:

• Correctly identifying and touching all cubes from the observation phase

• Order of selection doesn’t matter

• Each cube must be touched for at least 0.1 seconds

• The demonstrated set must be touched without any mistakes

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and next target cube
– Number of correctly identified cubes
– Static reward for stable contact
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when the task is solved)
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Figure 21: BunchOfColors7-v0: 7 cubes of different colors appear simultaneously in front of
the agent. After the agent observes an empty table. Then, 9 cubes of different colors appear on the
table and the agent has to touch the cubes that were shown at the beginning of the episode in any
order.

K.11 BunchOfColors-v0

The BunchOfColors-v0 task (Figure 21) tests an agent’s memory capacity by requiring it to
remember multiple objects simultaneously. This capability is crucial for tasks requiring parallel
processing of multiple items.

Environment Description The environment presents multiple colored cubes simultaneously. The
task proceeds in three phases:

1. Observation Phase (steps 0-4): Multiple colored cubes are displayed simultaneously

2. Delay Phase (steps 5-9): All cubes disappear

3. Selection Phase (steps 10+): A larger set of cubes appears, and the agent must identify and
touch all previously shown cubes in any order

Task Modes The task includes three complexity levels:

• 3 (Easy): Remember 3 colors demonstrated simultaneously

• 5 (Medium): Remember 5 colors demonstrated simultaneously

• 7 (Hard): Remember 7 colors demonstrated simultaneously

Success Criteria Success is determined by:

• Correctly identifying and touching all cubes from the observation phase

• Order of selection doesn’t matter

• Each cube must be touched for at least 0.1 seconds

• The demonstrated set must be touched without any mistakes

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and next target cube
– Static reward for stable contact
– Number of correctly touched cubes
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when the task is solved)
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Figure 22: ChainOfColors7-v0: In front of the agent, 7 cubes of different colors appear
sequentially. After the last cube is shown, the agent sees an empty table. Then 9 cubes of different
colors appear on the table and the agent must unmistakably touch the cubes that were shown at the
beginning of the episode, in the same strict order.

K.12 ChainOfColors-v0

The ChainOfColors-v0 task (Figure 22) evaluates the agent’s ability to store and retrieve ordered
information. This task simulates scenarios where the agent must track changing relationships between
objects over time.

Environment Description The environment presents am ordered sequence (chain) of colored cubes
that must be followed. The task proceeds in multiple phases:

1. Observation Phase (steps 0-(5N − 1)): A sequence of N colored cubes is shown one at a
time, with each cube visible for 5 steps.

2. Delay Phase (steps (5N )-(5N + 4)): All cubes disappear

3. Selection Phase (steps (5N + 5)+): A larger set of cubes appears, and the agent must
identify and touch all previously shown cubes in the exact order as demonstrated

Task Modes The task includes three complexity levels:

• 3 (Easy): Remember 3 colors demonstrated sequentially

• 5 (Medium): Remember 5 colors demonstrated sequentially

• 7 (Hard): Remember 7 colors demonstrated sequentially

Success Criteria Success is determined by:

• Correctly identifying and touching all cubes from the observation phase in the exact order

• Each cube must be touched for at least 0.1 seconds

• The demonstrated set must be touched without any mistakes

Reward Structure The environment provides both sparse and dense reward variants:

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)

• Dense: Continuous reward based on:

– Distance between gripper and next target cube
– Static reward for stable contact
– Number of correctly touched cubes
– Robot’s motion smoothness (static reward based on joint velocities)
– Task completion status (additional reward when the task is solved)
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Table 9: Classification of environments from the MIKASA-Base benchmark according to the sug-
gested memory-intensive tasks classification from the Subsection 4.2.

Environment Memory Task Brief description of the task Observation Space Action Space

Memory Cards Capacity Memorize the positions of revealed cards and correctly match pairs while minimizing
incorrect guesses.

vector discrete

Numpad Sequential Memorize the sequence of movements and navigate the rolling ball on a 3×3 grid by
following the correct order while avoiding mistakes.

image, vector discrete, continuous

BSuite Memory Length Object Memorize the initial context signal and recall it after a given number of steps to take
the correct action.

vector discrete

Minigrid-Memory Object Memorize the object in the starting room and use this information to select the
correct path at the junction.

image discrete

Ballet Sequential,
Object

Memorize the sequence of movements performed by each uniquely colored and
shaped dancer, then identify and approach the dancer who executed the given pattern.

image discrete

Passive Visual Match Object Memorize the target color displayed on the wall during the initial phase. After a
brief distractor phase, identify and select the target color among the distractors by
stepping on the corresponding ground pad.

image discrete

Passive-T-Maze Object Memorize the goal’s location upon initial observation, navigate through the maze
with limited sensory input, and select the correct path at the junction.

vector discrete

ViZDoom-two-colors Object Memorize the color of the briefly appearing pillar (green or red) and collect items of
the same color to survive in the acid-filled room.

image discrete

Memory Maze Spatial Memorize the locations of objects and the maze structure using visual clues, then
navigate efficiently to find objects of a specific color and score points.

image discrete

MemoryGym Mortar Mayhem Capacity,
Sequential

Memorize a sequence of movement commands and execute them in the correct order. image discrete

MemoryGym Mystery Path Capacity,
Spatial

Memorize the invisible path and navigate it without stepping off. image discrete

POPGym Repeat First Object Memorize the initial value presented at the first step and recall it correctly after
receiving a sequence of random values.

vector discrete

POPGym Repeat Previous Sequential,
Object

Memorize the value observed at each step and recall the value from k steps earlier
when required.

vector discrete

POPGym Autoencode Sequential Memorize the sequence of cards presented at the beginning and reproduce them in
the same order when required.

vector discrete

POPGym Count Recall Object,
Capacity

Memorize unique values encountered and count how many times a specific value
has appeared.

vector discrete

POPGym vectorless Cartpole Sequential Memorize velocity data over time and integrate it to infer the position of the pole for
balance control.

vector continuous

POPGym vectorless Pendulum Sequential Memorize angular velocity over time and integrate it to infer the pendulum’s position
for successful swing-up control.

vector continuous

POPGym Multiarmed Bandit Object, Capacity Memorize the reward probabilities of different slot machines by exploring them and
identify the one with the highest expected reward.

vector discrete

POPGym Concentration Capacity Memorize the positions of revealed cards and match them with previously seen cards
to find all matching pairs.

vector discrete

POPGym Battleship Spatial Memorize the coordinates of previous shots and their HIT or MISS feedback to build
an internal representation of the board, avoid repeat shots, and strategically target
ships for maximum rewards.

vector discrete

POPGym Mine Sweeper Spatial Memorize revealed grid information and use numerical clues to infer safe tiles while
avoiding mines.

vector discrete

POPGym Labyrinth Explore Spatial Memorize previously visited cells and navigate the maze efficiently to discover new,
unexplored areas and maximize rewards.

vector discrete

POPGym Labyrinth Escape Spatial Memorize the maze layout while exploring and navigate efficiently to find the exit
and receive a reward.

vector discrete

POPGym Higher Lower Object,
Sequential

Memorize previously revealed card ranks and predict whether the next card will
be higher or lower, updating the reference card after each prediction to maximize
rewards.

vector discrete

L MIKASA-Base Benchmark Tasks Description

This section provides a detailed description of all environments included in the MIKASA-Base
benchmark Section 5. Understanding the characteristics and challenges of these environments is
crucial for evaluating RL algorithms. Each environment presents unique tasks, offering diverse
scenarios to test the memory abilities of RL agents.

L.1 Memory Cards

The Memory Cards environment [22] is a memory game environment with 5 randomly shuffled pairs
of hidden cards. At each step, the agent sees one revealed card and must find its matching pair. A
correct guess removes both cards; otherwise, the card is hidden again, and a new one is revealed. The
game continues until all pairs are removed.

L.2 Numpad

The Numpad environment [101] consists of an N ×N grid of tiles. The agent controls a ball that rolls
between tiles. At the beginning of an episode, a random sequence of n neighboring tiles (excluding
diagonals) is selected, and the agent must follow this sequence in the correct order. The environment
is structured so that pressing the correct tile lights it up, while pressing an incorrect tile resets progress.
A reward of +1 is given for the first press of each correct tile after a reset. The episode ends after a
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fixed number of steps. To succeed, the agent must memorize the sequence and navigate it correctly
without mistakes. The ability to “jump” over tiles is not available.

L.3 BSuite MemoryLength

The MemoryLength environment [43] represents a sequence of observations, where at each step, the
observation takes a value of either +1 or -1. The environment is structured so that a reward is given
only at the final step if the agent correctly predicts the i-th value from the initial observation vector
obs. The index of this i-th value is specified at the last step observation vector in obs[1]. To succeed,
the agent must remember the sequence of observations and use this information to make an accurate
prediction at the final step.

L.4 Minigrid-Memory

Minigrid-Memory [39] is a two-dimensional grid-based environment that features a T-shaped maze
with a small room at the beginning of the corridor, containing an object. The agent starts at a random
position within the corridor. Its task is to reach the room, observe and memorize the object, then
proceed to the junction at the maze’s end and turn towards the direction where an identical object is
located. The reward function is defined as Rt = 1− 0.9× t

T for a successful attempt; otherwise, the
agent receives zero reward. The episode terminates when the agent makes a choice at the junction or
exceeds a time limit of steps.

L.5 Ballet

In the Ballet environment [3] tasks take place in an 11× 11 tiled room, consisting of a 9× 9 central
area surrounded by a one-tile-wide wall. Each tile is upsampled to 9 pixels, resulting in a 99× 99
pixel input image. The agent is initially placed at the center of the room, while dancers are randomly
positioned in one of 8 possible locations around it. Each dancer has a distinct shape and color,
selected from 15 possible shapes and 19 colors, ensuring uniqueness. These visual features serve
only for identification and do not influence behavior. The agent itself is always represented as a white
square. The agent receives egocentric visual observations, meaning its view is centered on its own
position, which has been shown to enhance generalization.

L.6 Passive T-Maze

The Passive T-Maze environment [45] consists of a corridor leading to a junction that connects two
possible goal states. The agent starts at a designated position and can move in four directions: left,
right, up, or down. At the beginning of each episode, one of the two goal states is randomly assigned
as the correct destination. The agent observes this goal location before starting its movement. The
agent stays in place if it attempts to move into a wall. To succeed, the agent must navigate to the
correct goal based on its initial observation. The optimal strategy involves moving through the
corridor towards the junction and then selecting the correct path.

L.7 ViZDoom-Two-Colors

The ViZDoom-Two-Colors [102] is an environment where an agent is placed in a room with constantly
depleting health. The room contains red and green objects, one of which restores health (+1 reward),
while the other reduces it (-1 reward). The beneficial color is randomly assigned at the beginning
of each episode and indicated by a column. The environment is structured so that the agent must
memorize the column’s color to collect the correct items. Initially, the column remains visible, but in
a harder variant, it disappears after 45 steps, increasing the memory requirement. To succeed, the
agent must maximize survival by collecting beneficial objects while avoiding harmful ones.
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L.8 Memory Maze

The Memory Maze environment [44] is a procedurally generated 3D maze. Each episode, the agent
spawns in a new maze with multiple colored objects placed in fixed locations. The agent receives a
first-person view and a prompt indicating the color of the target object. It must navigate the maze,
memorize object positions, and return to them efficiently. The agent receives a reward of 1 for
reaching the correct object and no reward for incorrect objects.

L.9 MemoryGym Mortar Mayhem

Mortar Mayhem [11] is a grid-based environment where the agent must memorize and execute a
sequence of commands in the correct order. The environment consists of a finite grid, where the agent
initially observes a series of movement instructions and then attempts to reproduce them accurately.
Commands include movements to adjacent tiles or remaining in place. The challenge lies in the
agent’s ability to recall and execute a growing sequence of instructions, with failure resulting in
episode termination. A reward of +0.1 is given for each correctly executed command

L.10 MemoryGym Mystery Path

Mystery Path [11] presents an invisible pathway that the agent must traverse without deviating. If
the agent steps off the path, it is returned to the starting position, forcing it to remember the correct
trajectory. The path is procedurally generated, meaning each episode introduces a new configuration.
Success in this environment requires the agent to accurately recall previous steps and missteps to
avoid repeating errors. The agent is rewarded +0.1 for progressing onto a previously unvisited tile

L.11 POPGym environments

The following environments are included from the POPGym benchmark [9], which is designed
to evaluate RL agents in partially observable settings. POPGym provides a diverse collection of
lightweight vectorized environments with varying difficulty levels.

L.11.1 POPGym Autoencode

The environment consists of a deck of cards that is shuffled and sequentially shown to the agent
during the watch phase. While observing the cards, a watch indicator is active, but it disappears
when the last card is revealed. Afterward, the agent must reproduce the sequence of cards in the
correct order. The environment is structured to evaluate the agent’s ability to encode a sequence of
observations into an internal representation and later reconstruct the sequence one observation at a
time.

L.11.2 POPGym Concentration

The environment represents a classic memory game where a shuffled deck of cards is placed face-
down. The agent sequentially flips two cards and earns a reward if the revealed cards form a matching
pair. The environment is designed in such a way that the agent must remember previously revealed
cards to maximize its success rate.

L.11.3 POPGym Repeat First

The environment presents the agent with an initial value from a set of four possible values, along with
an indicator signaling that this is the first value. In subsequent steps, the agent continues to receive
random values from the same set but without the initial indicator. The structure requires the agent to
retain the first received value in memory and recall it accurately to receive a reward.
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L.11.4 POPGym Repeat Previous

The environment consists of a sequence of observations, where each observation can take one of four
possible values at each timestep. The agent is tasked with recalling and outputting the value that
appeared a specified number of steps in the past.

L.11.5 POPGym Stateless Cartpole

This is a modified version of the traditional Cartpole environment [103] where angular and linear
position information is removed from observations. Instead, the agent only receives velocity-based
data and must infer positional states by integrating this information over time to successfully balance
the pole.

L.11.6 POPGym Stateless Pendulum

In this variation of the swing-up pendulum environment [104], angular position data is omitted
from the agent’s observations. The agent must infer the pendulum’s position by processing velocity
information and use this estimate to determine appropriate control actions.

L.11.7 POPGym Noisy Stateless Cartpole

This environment builds upon Stateless Cartpole by introducing Gaussian noise into the observations.
The agent must still infer positional states from velocity information while filtering out the added
noise to maintain control of the pole.

L.11.8 POPGym Noisy Stateless Pendulum

This variation extends the Stateless Pendulum environment by incorporating Gaussian noise into
the observations. The agent must manage this uncertainty while using velocity data to estimate the
pendulum’s position and swing it up effectively.

L.11.9 POPGym Multiarmed Bandit

The Multiarmed Bandit environment is an episodic formulation of the multiarmed bandit prob-
lem [105], where a set of bandits is randomly initialized at the start of each episode. Unlike
conventional multiarmed bandit tasks, where reward probabilities remain fixed across episodes, this
structure resets them every time. The agent must dynamically adjust its exploration and exploitation
strategies to maximize long-term rewards.

L.11.10 POPGym Higher Lower

Inspired by the higher-lower card game, this environment presents the agent with a sequence of cards.
At each step, the agent must predict whether the next card will have a higher or lower rank than the
current one. Upon making a guess, the next card is revealed and becomes the new reference. The
agent can enhance its performance by employing card counting strategies to estimate the probability
of future values.

L.11.11 POPGym Count Recall

At each timestep, the agent is presented with two values: a next value and a query value. The agent
must determine and output how many times the query value has appeared so far. To succeed, the
agent must maintain an accurate count of past occurrences and retrieve the correct number upon
request.

L.11.12 POPGym Battleship

A partially observable variation of the game Battleship, where the agent does not have access to
the full board. Instead, it receives feedback on its previous shot, indicating whether it was a HIT or
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MISS, along with the shot’s location. The agent earns rewards for hitting ships, receives no reward
for missing, and incurs a penalty for targeting the same location more than once. The environment
challenges the agent to construct an internal representation of the board and update its strategy based
on past observations.

L.11.13 POPGym Mine Sweeper

A partially observable version of the computer game Mine Sweeper, where the agent lacks direct
visibility of the board. Observations include the coordinates of the most recently clicked tile and
the number of adjacent mines. Clicking on a mined tile results in a negative reward and ends the
game. To succeed, the agent must track previous selections and deduce mine locations based on the
numerical clues, ensuring it avoids mines while uncovering safe tiles.

L.11.14 POPGym Labyrinth Explore

The environment consists of a procedurally generated 2D maze in which the agent earns rewards
for reaching new, unexplored tiles. Observations are limited to adjacent tiles, requiring the agent to
infer the larger maze layout through exploration. A small penalty per timestep incentivizes efficient
navigation and discovery strategies.

L.11.15 POPGym Labyrinth Escape

This variation of Labyrinth Explore challenges the agent to find an exit rather than merely exploring
the maze. The agent retains the same restricted observation space, seeing only nearby tiles. Rewards
are only given upon successfully reaching the exit, making it a sparse reward environment where the
agent must navigate strategically to achieve its goal.

M MIKASA-Robo Customization Guides
Code 7: ShellGameTouch: key difficulty knobs and a debug preset. �

# ShellGameTouch
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.shell_game_touch import ShellGameTouchEnv
import gymnasium as gym

@register_env("ShellGameTouchDebug-v0", max_episode_steps=1000)
class ShellGameTouchDebugEnv(ShellGameTouchEnv):

BALL_RADIUS = 0.02 # radius of the ball
MIN_DIST = 0.2 # minimum distance between nearest cups
TIME_OFFSET = 5 # how long the ball is visible (no cups)
GOAL_THRESH = 0.08 # threshold for the goal

env = gym.make("ShellGameTouchDebug-v0", num_envs=256, obs_mode="
↪→ rgb", render_mode="all") 
� �

Code 8: ShellGamePush: key difficulty knobs and a debug preset. �
# ShellGamePush
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.shell_game_push import ShellGamePushEnv
import gymnasium as gym

@register_env("ShellGamePushDebug-v0", max_episode_steps=1000)
class ShellGamePushDebugEnv(ShellGamePushEnv):

BALL_RADIUS = 0.02 # radius of the ball
MIN_DIST = 0.2 # minimum distance between nearest cups
TIME_OFFSET = 5 # how long the ball is visible (no cups)
GOAL_THRESH = 0.08 # threshold for the goal

env = gym.make("ShellGamePushDebug-v0", num_envs=256, obs_mode="
↪→ rgb", render_mode="all") 
� �
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Code 9: ShellGamePick: key difficulty knobs and a debug preset. �
# ShellGamePick
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.shell_game_pick import ShellGamePickEnv
import gymnasium as gym

@register_env("ShellGamePickDebug-v0", max_episode_steps=1000)
class ShellGamePickDebugEnv(ShellGamePickEnv):

BALL_RADIUS = 0.02 # radius of the ball
MIN_DIST = 0.2 # minimum distance between nearest cups
TIME_OFFSET = 5 # how long the ball is visible (no cups)
GOAL_THRESH = 0.08 # threshold for the goal

env = gym.make("ShellGamePickDebug-v0", num_envs=256, obs_mode="
↪→ rgb", render_mode="all") 
� �

M.1 Intercept

Code 10: Intercept: controlling projectile speed and target tolerance. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.intercept import InterceptBaseEnv
import gymnasium as gym

@register_env("InterceptDebug-v0", max_episode_steps=1000)
class InterceptDebugEnv(InterceptBaseEnv):

VELOCITY_RANGE = (0.0, 0.0) # (min_v, max_v) - range for the ball
↪→ velocity randomization

BALL_RADIUS = 0.02 # radius of the ball
GOAL_RADIUS = 0.1 # radius of the goal region

env = gym.make("InterceptDebug-v0", num_envs=256, obs_mode="rgb",
↪→ render_mode="all") 
� �

Code 11: InterceptGrab: grasp-based variant with velocity randomization. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.intercept_grab import InterceptGrabBaseEnv
import gymnasium as gym

@register_env("InterceptGrabDebug-v0", max_episode_steps=1000)
class InterceptGrabDebugEnv(InterceptGrabBaseEnv):

VELOCITY_RANGE = (0.0, 0.0) # (min_v, max_v) - range for the ball
↪→ velocity randomization

BALL_RADIUS = 0.02 # radius of the ball

env = gym.make("InterceptGrabDebug-v0", num_envs=256, obs_mode="
↪→ rgb", render_mode="all") 
� �
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M.2 Rotate

Code 12: RotateLenient: one- vs. two-sided rotation with tolerance control. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.rotate_lenient import RotateLenientEnv
import gymnasium as gym

@register_env("RotateLenientDebug-v0", max_episode_steps=1000)
class RotateLenientDebugEnv(RotateLenientEnv):

MODE = "pos_angle" # "pos_angle" or "pos_neg_angle" - defines
↪→ possible directions of rotation

PEG_HALF_WIDTH = 0.025 # peg half width
PEG_HALF_LENGTH = 0.12 # peg half length
ANGLE_THRESHOLD = 0.1 # (radians) defines the permissible

↪→ deviation from the target angle

env = gym.make("RotateLenientDebug-v0", num_envs=256, obs_mode="
↪→ rgb", render_mode="all", angle_threshold=ANGLE_THRESHOLD) 
� �

Code 13: RotateStrict: stricter alignment for fine-grained control. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.rotate_strict import RotateStrictEnv
import gymnasium as gym

@register_env("RotateStrictDebug-v0", max_episode_steps=1000)
class RotateStrictDebugEnv(RotateStrictEnv):

MODE = "pos_angle" # "pos_angle" or "pos_neg_angle" - defines
↪→ possible directions of rotation

PEG_HALF_WIDTH = 0.025 # peg half width
PEG_HALF_LENGTH = 0.12 # peg half length
ANGLE_THRESHOLD = 0.1 # (radians) defines the permissible

↪→ deviation from the target angle

env = gym.make("RotateStrictDebug-v0", num_envs=256, obs_mode="rgb
↪→ ", render_mode="all", angle_threshold=ANGLE_THRESHOLD) 
� �

M.3 TakeItBack

Code 14: TakeItBack: goal-region and object-size controls. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.take_it_back import TakeItBackEnv
import gymnasium as gym

@register_env("TakeItBackDebug-v0", max_episode_steps=1000)
class TakeItBackDebugEnv(TakeItBackEnv):

GOAL_RADIUS: float = 0.08 # radius of the goal region
CUBE_HALFSIZE: float = 0.02 # cube size

env = gym.make("TakeItBackDebug-v0", num_envs=256, obs_mode="rgb",
↪→ render_mode="all") 
� �
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M.4 RememberColor

Code 15: RememberColor: visibility window, occlusion delay, and tolerance. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.remember_color import RememberColorBaseEnv
import gymnasium as gym

@register_env("RememberColor4Debug-v0", max_episode_steps=1000)
class RememberColorDebugEnv(RememberColorBaseEnv):

COLORS = 4 # 1-9 unique cubes
TIME_OFFSET = 200 # how long target cube is shown
GOAL_THRESH = 0.03 # more difficult goal threshold
CUBE_HALFSIZE = 0.02 # cubes size
DELTA_TIME = 100 # empty table duration (seconds)

env = gym.make("RememberColor4Debug-v0", num_envs=256, obs_mode="
↪→ rgb", render_mode="all", delta_time=DELTA_TIME)} 
� �

M.5 RememberShape

Code 16: RememberShape: number of shapes, scale, and fixed color option. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.remember_shape import RememberShapeBaseEnv
import gymnasium as gym

@register_env("RememberShape6Debug-v0", max_episode_steps=1000)
class RememberShapeDebugEnv(RememberShapeBaseEnv):

SHAPES = 6 # 1-9 unique shapes
TIME_OFFSET = 200 # how long target cube is shown
GOAL_THRESH = 0.03 # more difficult goal threshold
SHAPE_SCALE = 0.02 # cubes size
COLOR = [0, 0, 255, 255] # each object has the same color
DELTA_TIME = 100 # empty table duration (seconds)

env = gym.make("RememberShape6Debug-v0", num_envs=256, obs_mode="
↪→ rgb", render_mode="all", delta_time=DELTA_TIME) 
� �

M.6 RememberShapeAndColor

Code 17: RememberShapeAndColor: composite cue space and timing. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.remember_shape_and_color import

↪→ RememberShapeAndColorBaseEnv
import gymnasium as gym

@register_env("RememberShapeAndColor4x1Debug-v0", max_episode_steps
↪→ =1000)

class RememberShapeAndColorDebugEnv(RememberShapeAndColorBaseEnv):
SHAPES = 4 * 1 # 1-5 unique shapes with 3 colors (1-15

↪→ combinations)
TIME_OFFSET = 200 # how long target cube is shown
GOAL_THRESH = 0.03 # more difficult goal threshold
SHAPE_SCALE = 0.02 # cubes size
COLOR = [0, 0, 255, 255] # each object has the same color
DELTA_TIME = 100 # empty table duration (seconds)

env = gym.make("RememberShapeAndColor4x1Debug-v0", num_envs=256,
↪→ obs_mode="rgb", render_mode="all", delta_time=DELTA_TIME) 
� �
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M.7 BunchOfColors

Code 18: BunchOfColors: set size and presentation timing. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.bunch_of_colors import BunchOfColorsEnv
import gymnasium as gym

@register_env("BunchOfColors6Debug-v0", max_episode_steps=1000)
class RememberShapeAndColorDebugEnv(BunchOfColorsEnv):

COLORS = 6 # 1-9 unique cubes
GOAL_THRESH = 0.03 # more difficult goal threshold
CUBE_HALFSIZE = 0.02 # cubes size
SEQUENCE_LENGTH = 15 # Number of cubes to show in sequence (1-9)
STEP_DURATION = 15 # Duration to show each cube
EMPTY_DURATION = 5 # Duration of empty table
DELTA_TIME = 100 # empty table duration (seconds)

env = gym.make("BunchOfColors6Debug-v0", num_envs=256, obs_mode="
↪→ rgb", render_mode="all", delta_time=DELTA_TIME) 
� �

M.8 SeqOfColors

Code 19: SeqOfColors: sequence length and tempo. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.seq_of_colors import SeqOfColorsEnv
import gymnasium as gym

@register_env("SeqOfColors6Debug-v0", max_episode_steps=1000)
class RememberShapeAndColorDebugEnv(SeqOfColorsEnv):

COLORS = 6 # 1-9 unique cubes
GOAL_THRESH = 0.03 # more difficult goal threshold
CUBE_HALFSIZE = 0.02 # cubes size
SEQUENCE_LENGTH = 15 # Number of cubes to show in sequence (1-9)
STEP_DURATION = 15 # Duration to show each cube
EMPTY_DURATION = 5 # Duration of empty table
DELTA_TIME = 100 # empty table duration (seconds)

env = gym.make("SeqOfColors6Debug-v0", num_envs=256, obs_mode="rgb
↪→ ", render_mode="all", delta_time=DELTA_TIME) 
� �

M.9 ChainOfColors

Code 20: ChainOfColors: chained sub-episodes with controlled pace. �
from mani_skill.utils.registration import register_env
from mikasa_robo_suite.seq_of_colors import SeqOfColorsEnv
import gymnasium as gym

@register_env("SeqOfColors6Debug-v0", max_episode_steps=1000)
class RememberShapeAndColorDebugEnv(SeqOfColorsEnv):

COLORS = 6 # 1-9 unique cubes
GOAL_THRESH = 0.03 # more difficult goal threshold
CUBE_HALFSIZE = 0.02 # cubes size
SEQUENCE_LENGTH = 15 # Number of cubes to show in sequence (1-9)
STEP_DURATION = 15 # Duration to show each cube
EMPTY_DURATION = 5 # Duration of empty table
DELTA_TIME = 100 # empty table duration (seconds)

env = gym.make("SeqOfColors6Debug-v0", num_envs=256, obs_mode="rgb
↪→ ", render_mode="all", delta_time=DELTA_TIME) 
� �
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