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Abstract: Memory is crucial for enabling agents to tackle complex tasks with1

temporal and spatial dependencies. While many reinforcement learning (RL) al-2

gorithms incorporate memory, the field lacks a universal benchmark to assess an3

agent’s memory capabilities across diverse scenarios. This gap is particularly evi-4

dent in tabletop robotic manipulation, where memory is essential for solving tasks5

with partial observability and ensuring robust performance, yet no standardized6

benchmarks exist. To address this, we introduce MIKASA (Memory-Intensive7

Skills Assessment Suite for Agents), a comprehensive benchmark for memory8

RL, with three key contributions: (1) we propose a comprehensive classification9

framework for memory-intensive RL tasks, (2) we collect MIKASA-Base – a10

unified benchmark that enables systematic evaluation of memory-enhanced agents11

across diverse scenarios, and (3) we develop MIKASA-Robo – a novel benchmark12

of 32 carefully designed memory-intensive tasks that assess memory capabilities13

in tabletop robotic manipulation. Our work introduces a unified framework to14

advance memory RL research, enabling more robust systems for real-world use.15

Keywords: Memory, Benchmark, Robots16

1 Introduction17

Space of all memory tasks My metrics are better in     ,
so my memory is better!

Can't evaluate whose
memory mechanism 


is better

But I beat you in     , so my
memory is better...

Memory testing
on a single set

of tasks

Separation by type of 

memory utilization

B
EF

O
R

E
W

IT
H

 O
U

R
 B

EN
C

H

Has better
memory!

Standard memory
RL benchmark

Memory testing 

on conceptually
different tasks

Figure 1: Systematic classification of
problems with memory in RL reveals
distinct memory utilization patterns and
enables objective evaluation of memory
mechanisms across different agents.

Many real-world problems involve partial observabil-18

ity [1], where agents lack full access to the environ-19

ment’s state. Such tasks often require sequential decision-20

making [2], long-term information retention [3, 4], and21

handling delayed rewards. A common solution is to22

equip agents with memory to exploit historical con-23

text [5, 6]. While NLP has well-established memory24

benchmarks [7, 8], evaluation in reinforcement learn-25

ing (RL) remains fragmented. Existing suites like POP-26

Gym [9], DMLab-30 [10], and MemoryGym [11] address27

only specific domains of memory use.28

Unlike classical RL, where benchmarks like Atari [12] and29

MuJoCo [13] serve as universal standards, memory-based30

agents are usually tested on custom environments tied to their proposals Table 2. This fragmentation31

masks key differences in performance across memory tasks—for example, an agent may retain object32

attributes well but struggle with sequential recall. Such narrow evaluations hide task-specific strengths33

and weaknesses, highlighting the need for a unified benchmark covering diverse memory demands.34

The challenge of evaluating memory is especially evident in robotics. While some tasks naturally35

involve partial observability, e.g., navigation [14, 15], many studies simulate it by adding noise or36

masking MDP states [16, 17, 5, 18]. Yet, these simplifications fail to capture real-world complex-37
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Table 1: MIKASA-Robo: A benchmark comprising 32 memory-intensive robotic manipulation
tasks across 12 categories. Each task varies in difficulty and configuration modes. The table specifies
episode timeout (T), the necessary information that the agent must memorize in order to succeed
(Oracle Info), and task instructions (Prompt) for each environment. See Appendix H for details.

Memory Task Mode Brief description of the task T Oracle Info Prompt Memory

ShellGame Touch
Push
Pick

Memorize the position of the ball after some time being covered by the
cups and then interact with the cup the ball is under 90 cup_with_ball_number — Object

Intercept Slow
Medium
Fast

Memorize the positions of the rolling ball, estimate its velocity through
those positions, and then aim the ball at the target 90 initial_velocity — Spatial

InterceptGrab Slow
Medium
Fast

Memorize the positions of the rolling ball, estimate its velocity through
those positions, and then catch the ball with the gripper and lift it up 90 initial_velocity — Spatial

RotateLenient Pos
PosNeg

Memorize the initial position of the peg and rotate it by a given angle 90 y_angle_diff target_angle Spatial

RotateStrict Pos
PosNeg

Memorize the initial position of the peg and rotate it to a given angle
without shifting its center 90 y_angle_diff target_angle Spatial

TakeItBack-v0 — Memorize the initial position of the cube, move it to the target region,
and then return it to its initial position

180 xyz_initial — Spatial

RememberColor 3 \ 5 \ 9 Memorize the color of the cube and choose among other colors 60 true_color_indices — Object
RememberShape 3 \ 5 \ 9 Memorize the shape of the cube and choose among other shapes 60 true_shape_indices — Object
RememberShape-
AndColor

3×2\3×3\
5×3

Memorize the shape and color of the cube and choose among other
shapes and colors 60 true_shapes_info

true_colors_info
— Object

BunchOfColors 3 \ 5 \ 7 Remember the colors of the set of cubes shown simultaneously in the
bunch and touch them in any order

120 true_color_indices — Capacity

SeqOfColors 3 \ 5 \ 7 Remember the colors of the set of cubes shown sequentially and then
select them in any order

120 true_color_indices — Capacity

ChainOfColors 3 \ 5 \ 7 Remember the colors of the set of cubes shown sequentially and then
select them in the same order

120 true_color_indices — Sequential

Total: 32 tabletop robotic manipulation memory-intensive tasks in 12 groups

ity [17], where robots must recall past object states, manipulate occluded items, or execute multi-step38

procedures requiring memory. Examples include a service robot remembering a plate hidden under a39

towel, or a home robot wiping a microwave door multiple times; without memory, the plate would be40

missed and the door wiped endlessly.41

In this paper, we aim to address these challenges with the following four contributions:42

1. Memory Tasks Classification. We propose a simple yet comprehensive framework that43

organizes memory-intensive tasks into four key categories. This structure enables system-44

atic evaluation without added complexity (Figure 1), offering a clear guide for selecting45

environments that reflect core memory challenges in RL and robotics (Section 4).46

2. Memory-RL Benchmark. We introduce MIKASA-Base, a Gymnasium-based [19] frame-47

work for evaluating memory-enhanced RL agents (Section 5).48

3. Robotic Manipulation Tasks. We introduce MIKASA-Robo, a suite of 32 robotic tasks49

targeting specific memory-dependent skills in realistic settings (Section 6), and evaluate50

them using popular Online RL baselines (Subsection 6.2) and Visual-Language-Action51

(VLA) models (Subsection 6.4).52

4. Robotic Manipulation Datasets. We release datasets for all 32 MIKASA-Robo memory-53

intensive tasks to support Offline RL research (see Appendix B), and conduct extensive54

evaluations using a range of Offline RL baselines (Subsection 6.3).55

2 Related Works56

Several RL benchmarks assess agents’ memory abilities. DMLab-30 [10] provides 3D navigation57

and puzzle tasks focused on long-horizon exploration, while PsychLab [20] adds working-memory58

probes. MiniGrid and MiniWorld [21] emphasize partial observability in lightweight 2D/3D settings,59

and MiniHack [22], built on NetHack [23], offers roguelike scenarios requiring both short- and long-60

term memory. BabyAI [24] combines natural language with grid tasks demanding multi-step recall.61

POPGym [9] standardizes memory evaluation with diverse puzzles and decision tasks. BSuite [25]62

tests exploration, credit assignment, and scalability under controlled setups. Memory Gym [11]63

introduces partially observable 2D grids, including endless variants for long-term evaluation, while64

Memory Maze [26] presents 3D mazes requiring efficient memory use.65

While existing benchmarks shed light on memory mechanisms, they largely focus on abstract66

puzzles or navigation and lack coverage of the full spectrum of memory use. Tasks also differ67
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RememberColor9-v0

RotateLenientPos-v0ShellGameTouch-v0

Figure 2: Illustration of demonstrative memory-intensive tasks execution from the proposed MIKASA-
Robo benchmark. The ShellGameTouch-v0 task requires the agent to memorize the ball’s
location under mugs and touch the correct one. In RememberColor9-v0, the agent must memorize
a cube’s color and later select the matching one. In RotateLenientPos-v0, the agent must
rotate a peg while keeping track of its previous rotations.

fundamentally across suites, hindering direct comparison of memory-enhanced agents. In robotics,68

memory demands are more challenging: manipulation involves complex interactions and multi-step69

procedures requiring both spatial and temporal recall. Current benchmarks, though diagnostic,70

fail to capture these domain-specific difficulties, as the physical control and object interaction in71

manipulation introduce complexities beyond traditional evaluation frameworks.72

Table 2: Key memory-intensive environments
from the reviewed studies for evaluating agent
memory. The Atari [12] environment with
frame stacking is included to illustrate that many
memory-enhanced agents are tested solely in MDP.
Benchmark first introduced in the same work .

Benchmark is open-sourced.
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Atari w/o FrameStack ✓ ✓ ✓
Atari with FrameStack ✓ ✓ ✓ ✓ ✓ ✓ ✓

gym-gridverse ✓
car flag ✓
memory card ✓
Hallway ✓
HeavenHell ✓
Ballet ✓
Object Permanence ✓
DMLab-30 ✓ ✓ ✓
POPGym ✓ ✓ ✓ ✓
Passive T-Maze ✓ ✓
ViZDoom-Two-Colors ✓
Numpad ✓
Memory Maze ✓ ✓
Memory Maze (apples) ✓
Minigrid-Memory ✓
BSuite ✓ ✓
Goal-Search ✓
Doom Maze ✓
PsychLab ✓
Spot the Difference ✓
Goal Navigation ✓
Transitive Inference ✓
I-Maze ✓
Pattern Matching ✓
Random Maze ✓
Unity Fast-Mapping Task ✓
Action Associative Retrieval ✓
BabyAI ✓

Prior work classifies memory-intensive environ-73

ments along different axes. Ni et al. [44] distin-74

guish memory vs. credit assignment by tempo-75

ral horizon, while Yue et al. [45] propose mem-76

ory dependency pairs linking past events to cur-77

rent decisions. Cherepanov et al. [46] define78

memory as long- vs. short-term (context length)79

and declarative vs. procedural (environmental80

vs. episodic), and Leibo et al. [20] adapt cogni-81

tive psychology tasks for RL. Though insight-82

ful, these taxonomies neglect physical aspects83

of robotics, where interaction and memory are84

tightly coupled, motivating a spatio-temporal85

framework for real-world tasks.86

Concurrent with our work, Fang et al. [47] in-87

troduced MemoryBench, a manipulation bench-88

mark with three tasks targeting only spatial89

memory. Built on RLBench [48], it lacks ef-90

ficient training parallelization.91

3 Background92

3.1 Partially Observable Markov Decision Process93

Partially Observable Markov Decision Process (POMDP) [49] extend MDP to account for partial ob-94

servability, where an agent observes only noisy or incomplete information about the true environments95

state. POMDP defined by a tuple (S,A, T,R,Ω, O, γ), where: S is the set of states representing96

the complete environment configuration; A is the action space; T (s′|s, a) : S × A× S → [0, 1] is97

the transition function defining the probability of reaching state s′ from state s after taking action a;98

R(s, a) : S ×A → R is the reward function specifying the immediate reward for taking action a in99

state s; Ω is the observation space containing all possible observations; O(o|s, a) : S×A×Ω → [0, 1]100

is the observation function defining the probability of observing o after taking action a and reaching101

state s; γ ∈ [0, 1) is the discount factor determining the importance of future rewards. The objective is102

to find a policy π that maximizes the expected discounted cumulative reward: Eπ [
∑∞

t=0 γ
tR(st, at)],103

where at ∼ π(·|o1:t) depends on the history of observations rather than the true state. Relying on104

partial observations makes POMDPs harder to solve than MDPs.105
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Human Memory TasksAgent Memory Tasks
Too simple to capture the full range of

real world problems
Too sophisticated to be formulated as

RL problems

MIKASA
Concise but succinct

Figure 3: MIKASA bridges the gap between human-like memory complexity and RL agents require-
ments. While agents tasks don’t require the full spectrum of human memory capabilities, they can’t
be reduced to simple spatio-temporal dependencies. MIKASA provides a balanced framework that
captures essential memory aspects for agents tasks while maintaining practical simplicity.

3.2 Memory-intensive environments106

Memory-intensive environment is an environment where agents must leverage past experiences107

to make decisions, often in problems with long-term dependencies or delayed rewards. More108

formally, following Cherepanov et al. [46], a memory-intensive task is a POMDP where there exists109

a correlation horizon ξ > 1, representing the minimum number of timesteps between an event110

critical for decision-making and when that information must be recalled. Popular memory-intensive111

environments in RL are listed in Table 2. One way to solving memory-intensive environments is to112

augment agents with memory mechanisms (see Appendix E).113

4 Classification of memory-intensive tasks114

The evaluation of memory capabilities in RL faces two major challenges. First, as shown in Table 2,115

research studies use different sets of environments with minimal overlap, making it difficult to116

compare memory-enhanced agents across studies. Second, even within individual studies, benchmarks117

may focus on testing similar memory aspects (e.g., remembering object locations) while neglecting118

others (e.g., reconstructing sequential events), leading to incomplete evaluation of agents’ memory.119

Different architectures may exhibit varying performance across memory tasks. For instance, an120

architecture optimized for long-term object property recall might struggle with sequential memory121

tasks, yet these limitations often remain undetected due to the narrow focus of existing evaluation122

approaches. To address these challenges, we propose a systematic approach to memory evaluation in123

RL. Drawing from established research in developmental psychology and cognitive science, where124

similar memory challenges have been extensively studied in humans, we develop a categorization125

framework consisting of four distinct memory task classes, detailed in Subsection 4.2.126

4.1 Memory: From Cognitive Science to RL127

In developmental psychology and cognitive science, memory is classified into categories based on128

cognitive processes. Key concepts include object permanence [50], which involves remembering the129

existence of objects out of sight, and categorical perception [51], where objects are grouped based on130

attributes like color or shape. Working memory [52] and memory span [53] refer to the ability to131

hold and manipulate information over time, while causal reasoning [54] and transitive inference [55]132

involve understanding cause-and-effect relationships and deducing hidden relationships, respectively.133

The RL field has attempted to utilize these concepts in the design of specific memory-intensive134

environments [37, 3], but these have been limited at the task design level. Of particular interest,135

however, is how existing memory-intensive tasks can be categorized using these concepts to develop a136

benchmark on which to test the greatest number of memory capabilities of memory-enhanced agents,137

and it is this problem that we address in this paper. Thus, we aim to provide a balanced framework138

that covers important aspects of memory for real-world applications while maintaining practical139

simplicity (see Figure 3).140

4.2 Taxonomy of Memory Tasks141

We introduce a comprehensive task classification framework for evaluating memory mechanisms in142

RL. Our framework categorizes memory-intensive tasks into four fundamental types, each targeting143

distinct aspects of memory capabilities:144
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1. Object Memory. Tasks that evaluate an agent’s ability to maintain object-related information145

over time, particularly when objects become temporarily unobservable. These tasks align146

with the cognitive concept of object permanence, requiring agents to track object properties147

when occluded, maintain object state representations, and recognize encountered objects.148

Example: a robot remembers which fruit it put in the fridge.149

2. Spatial Memory. Tasks focused on environmental awareness and navigation, where agents150

must remember object locations, maintain mental maps of environment layouts, and navigate151

based on previously observed spatial information. Example: the robot remembers the152

position of a mug it moved while cleaning and returns it to its place.153

3. Sequential Memory. Tasks that test an agent’s ability to process and utilize temporally154

ordered information, similar to human serial recall and working memory. These tasks require155

remembering action sequences, maintaining order-dependent information, and using past156

decisions to inform future actions. Example: a robot memorizes the order of the ingredients157

it has added to a soup.158

4. Memory Capacity. Tasks that challenge an agent’s ability to manage multiple pieces159

of information simultaneously, analogous to human memory span. These tasks evaluate160

information retention limits and multi-task information processing. Example: a robot is able161

to memorize the positions of several different objects while cleaning a table.162

This classification framework enables systematic evaluation of memory-enhanced RL agents across163

diverse scenarios. By providing a structured approach to memory task categorization, we establish a164

foundation for comprehensive benchmarking that spans the wide spectrum of memory requirements.165

In the following section, we present a carefully curated set of tasks based on this classification,166

forming the basis of our proposed MIKASA benchmark.167

5 MIKASA-Base168

Table 3: Analysis of established robotics frame-
works with manipulation tasks, comparing their
support for memory-intensive tasks. † – excluding
Franka Kitchen. ∗ – concurrent work with three
memory tasks with only one type of memory.

Robotics Framework
with Manipulation Tasks

Memory Tasks

Manipulation Atomic Low-level
actions

MIKASA-Robo (Ours) ✓ ✓ ✓

MemoryBench∗ [47] ✓ ✓ ✓
ManiSkill3 [56] ✗ ✗ ✗
ManiSkill-HAB [57] ✗ ✗ ✗
FetchBench [58] ✗ ✗ ✗
RoboCasa [59] ✗ ✗ ✗

Gymnasium-Robotics† [60] ✗ ✗ ✗
BEHAVIOR-1K [61] ✓ ✗ ✗
ARNOLD [62] ✗ ✗ ✗
iGibson 2.0 [63] ✓ ✗ ✗
VIMA [64] ✓ ✓ ✗
Isaac Sim [65] ✗ ✗ ✗
panda-gym [66] ✗ ✗ ✗
Habitat 2.0 [67] ✗ ✗ ✗
Meta-World [68] ✗ ✗ ✗
CausalWorld [69] ✗ ✗ ✗
RLBench [48] ✗ ✗ ✗
robosuite [70] ✗ ✗ ✗
dm_control [71] ✗ ✗ ✗
Franka Kitchen [72] ✗ ✗ ✗
SURREAL [73] ✗ ✗ ✗
AI2-THOR [74] ✗ ✗ ✗

Motivation and Overview. Despite the im-169

portance of memory in decision-making, the RL170

community lacks standardized tools for bench-171

marking memory capabilities. Existing studies172

typically introduce bespoke environments tai-173

lored to their proposed algorithms, leading to174

fragmentation and limited comparability across175

works (see Table 2). Moreover, many pop-176

ular memory benchmarks focus narrowly on177

specific memory types, overlooking the diver-178

sity of memory demands found in real-world179

applications. To address this gap, we intro-180

duce MIKASA-Base, a unified benchmark that181

consolidates widely used open-source memory-182

intensive environments under a common Gym-183

like API. Our goal is to streamline reproducibil-184

ity, support fair comparisons, and promote sys-185

tematic evaluation of memory in RL.186

Benchmark Design Principles. MIKASA-Base is designed around core principles that support187

rigorous and interpretable evaluation of memory in RL. To disentangle memory from unrelated188

challenges, we organize tasks into two tiers. The first tier consists of diagnostic vector-based189

environments that isolate specific memory mechanisms. The second tier includes complex image-190

based tasks that incorporate realistic perception challenges, thus more closely resembling real-world191

settings. This hierarchical structure enables researchers to validate memory capabilities incrementally192

– from atomic reasoning to high-dimensional sensory input.193
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Task Classification and Selection. Building on our taxonomy from Subsection 4.2, we system-194

atically reviewed open-source memory benchmarks and categorized their tasks into four distinct195

types of memory usage. We selected a diverse yet representative subset of environments to cover196

this taxonomy – ranging from object permanence to sequential planning. All selected tasks are197

unified under a single, consistent API. Descriptions are provided in Appendix I, and an overview of198

MIKASA-Base tasks appears in Table 7. This consolidation supports architectural ablations, direct199

comparison of methods, and simplified evaluation pipelines. Implementation details can be found200

in Appendix C.201

MIKASA-Base provides the first systematic and unified benchmark for evaluating memory in RL. It202

mitigates fragmentation by standardizing task access and evaluation, and its structured progression203

enables precise attribution of memory-related agent failures. By covering a broad spectrum of204

memory challenges within a common framework, MIKASA-Base offers a foundation for robust,205

reproducible research in memory-centric RL.206

6 MIKASA-Robo207

Robotic manipulation frameworks show gaps in addressing memory-intensive tasks. While navigation208

widely studies partial observability, manipulation is mostly tested under full observability with little209

emphasis on memory (see Table 3). Existing efforts like BEHAVIOR-1k [61] and iGibson 2.0 [63]210

feature highly complex tasks that obscure specific memory mechanisms, while VIMA [64] uses211

high-level action abstractions, limiting temporal memory evaluation. To fill these gaps, we present212

MIKASA-Robo, a benchmark for diverse memory skills in manipulation via fine-grained, isolated213

tasks. Concurrent with our work, Fang et al. [47] proposed MemoryBench, a benchmark focused on214

spatial memory with three robotic tasks. In contrast, MIKASA-Robo spans four memory categories215

and 32 tasks, enabling broader, more systematic evaluation of memory mechanisms in RL agents.216

MIKASA-Robo is a benchmark designed for memory-intensive robotic tabletop manipulation tasks,217

simulating real-world challenges commonly encountered by robots. These tasks include locating218

occluded objects, recalling previous configurations, and executing complex sequences of actions over219

extended time horizons. By incorporating meaningful partial observability, this framework offers a220

systematic approach to test an agent’s memory mechanisms.221

Building upon the robust foundation of ManiSkill3 framework [56], our benchmark leverages its222

efficient parallel GPU-based training capabilities to create and evaluate these tasks.223

6.1 MIKASA-Robo Manifestation224

Our tasks build on the four memory types in our classification framework (Subsection 4.2). We225

designed 32 tasks in 12 categories of robotic tabletop manipulation, each probing object, spatial,226

sequential memory, or memory capacity. Tasks vary in complexity to systematically test different227

mechanisms—for example, tracking occluded objects for object permanence or reproducing strict228

action sequences for sequential recall. Table 1 summarizes tasks by memory type, with details229

in Appendix H.230

To illustrate the concept of our memory-intensive framework, we present ShellGameTouch-v0,231

RememberColor-v0, and RotateLenientPos-v0 tasks in Figure 2. In the232

ShellGameTouch-v0 task, the agent observes a red ball placed in one of three positions over the233

first 5 steps (t ∈ [0, 4]). At t = 5, the ball and the three positions are covered by mugs. The agent234

must then determine the location of the ball by interacting with the correct mug. In the simplest mode235

(Touch), the agent only needs to touch the correct mug, whereas in other modes, it must either push236

or lift the mug. In the RememberColor-v0 task, the agent observes a cube of a specific color for237

5 steps (t ∈ [0, 4]). After the cube disappears for 5 steps, 3, 5, or 9 (depending on task mode) cubes238

of different colors appear at t = 10. The agent’s task is to identify and select the same cube it initially239

saw. In the RotateLenientPos-v0 task, the agent must rotate a randomly oriented peg by a240

specified clockwise angle.241
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Figure 4: Performance of PPO-MLP trained in
state mode, i.e., in MDP mode without the
need for memory. These results suggest that the
proposed tasks are inherently solvable with a
success rate of 100%.

Figure 5: Online RL baselines with MLP
and LSTM backbones trained in RGB+joints
mode on the RememberColor-v0 environ-
ment with dense rewards. Both architectures
fail to solve medium and high complexity tasks.

The MIKASA-Robo benchmark offers multiple training modes: state (complete vector information242

including oracle data and Tool Center Point (TCP) pose), RGB (top-view and gripper-camera images243

with TCP position), joints (joint states and TCP pose), oracle (task-specific environment data244

for debugging), and prompt (static task instructions). While any mode combination is possible,245

RGB+joints serves as the standard memory testing configuration, with state mode reserved246

for MDP-based tasks.247

The MIKASA-Robo benchmark implements two types of reward functions: dense and sparse. The248

dense reward provides continuous feedback based on the agent’s progress towards the goal, while249

the sparse reward only signals task completion. While dense rewards facilitate faster learning in our250

experiments, sparse rewards better reflect real-world scenarios where intermediate feedback is often251

unavailable, making them crucial for evaluating practical applicability of memory-enhanced agents.252

6.2 Online RL baselines253

ChainOfColors7

ShellGameTouch

ShellGamePush

ShellGamePick

InterceptSlow

InterceptMedium

InterceptFast

InterceptGrabSlow
InterceptGrabMedium

InterceptGrabFast

RotateLenientPos

RotateLenientPosNeg

RotateStrictPos

RotateStrictPosNeg

TakeItBack

RememberColor3

RememberColor5

RememberColor9

RememberShape3

RememberShape5

RememberShape9

RememberShapeAndColor3x2

RememberShapeAndColor3x3

RememberShapeAndColor5x3
BunchOfColors3

BunchOfColors5

BunchOfColors7

SeqOfColors3

SeqOfColors5

SeqOfColors7

ChainOfColors3

ChainOfColors5

0.01 0.1 1.0

Sequential Memory
Memory Capacity
Spatial Memory
Object Memory
DP
RATE
BC
DT
CQL

Figure 6: Results of Offline RL baselines
with memory (RATE, DT) and without
memory (BC-MLP, CQL-MLP, DP) on
all 32 MIKASA-Robo tasks. Training
was performed in RGB mode with sparse
rewards (success condition).

For the experimental evaluation, we chose on-policy Prox-254

imal Policy Optimization (PPO, [75]) with two underly-255

ing architectures: Multilayer Perceptron (MLP) and Long256

Short-Term Memory (LSTM, [76]), as well as popular257

in robotics off-policy Soft Actor-Critic (SAC, [77]) and258

model-based Temporal Difference Learning for Model259

Predictive Control (TD-MPC2, [78]).260

We use an MLP as a memory-less baseline and an261

LSTM as a standard memory mechanism effective in262

POMDPs [6]. This allows direct comparison of memory-263

less vs. memory-enabled agents and validates our bench-264

mark’s ability to assess memory. We focus on these funda-265

mental models for benchmark validation rather than broad266

algorithm comparison. To confirm all environments are267

solvable with 100% success rate (SR), we trained a PPO-MLP agent in state mode with full system268

access. Selected results appear in Figure 4, full results in Appendix F.269

Training under the RGB+joints mode with dense rewards reveals the memory-intensive nature of270

our tasks. Using the RememberColor-v0 task as an example, PPO-LSTM demonstrates superior271

performance compared to PPO-MLP when distinguishing between three colors (see Figure 5).272

However, both agents’ success rates drop dramatically to near-zero as the task complexity increases273

to five or nine colors. Moreover, under sparse reward conditions, both architectures fail to solve274

even the three-color variant (see Appendix F, Figure 10). Additionally, our findings indicate that,275

while SAC and TD-MPC2 exhibit higher sample efficiency compared to PPO-MLP, when faced with276

more complex challenges, the lack of an explicit memory mechanism becomes a critical shortcoming,277

resulting in low performance, which also emphasizes the inappropriateness of algorithms common278

in the robotics community for memory-intensive tasks. These results validate our benchmark’s279

effectiveness in evaluating agents’ memory, showing clear performance degradation as memory280

demands increase.281
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Table 4: Performance of VLA models on selected memory-intensive tasks from the MIKASA-
Robo benchmark. Reported values denote average success rates over 100 evaluation episodes
(mean ± sem). Tasks include spatial reasoning (ShellGameTouch, InterceptMedium) and
color-based memory retrieval (RememberColor3/5/9).

Model ShellGameTouch InterceptMedium RememberColor3 RememberColor5 RememberColor9

Octo-small 0.46 ± 0.05 0.39 ± 0.04 0.45 ± 0.06 0.17 ± 0.03 0.11 ± 0.03
OpenVLA (K=4) 0.12 ± 0.05 0.06 ± 0.02 0.21 ± 0.00 0.09 ± 0.02 0.08 ± 0.02
OpenVLA (K=8) 0.47 ± 0.05 0.14 ± 0.03 0.59 ± 0.04 0.16 ± 0.03 0.06 ± 0.02

6.3 Offline RL baselines282

Since dense rewards are rarely available in the real world, we focus on sparse rewards represented as283

a binary success flag. Online learning models are difficult to train in this setting, so we evaluate five284

Offline RL methods: Decision Transformer (DT) [2] and Recurrent Action Transformer with Memory285

(RATE) [31] using Transformer backbones, Standard Behavioral Cloning (BC) and Conservative286

Q-Learning (CQL) [79] with MLP backbones, and Diffusion Policy (DP) [80], a recent method for287

robotic manipulation using diffusion models for direct action prediction.288

Experimental results with Offline RL models trained on two RGB views and sparse rewards are shown289

in Figure 6. None of the models—including sequence-based ones—solved most MIKASA-Robo290

tasks, highlighting the benchmark’s difficulty. Training used 1000 successful trajectories per task291

(see Appendix B). In particular, no model succeeded on tasks demanding high Memory Capacity292

or Sequential Memory, underscoring their complexity. Detailed Offline RL results are provided in293

Appendix Table 6.294

6.4 VLA baselines295

To assess Visual-Language-Action (VLA) models on memory-intensive robotic tasks, we evaluate296

two baselines: Octo [81] and OpenVLA [82]. While neither claims advanced memory mechanisms,297

these experiments reveal current memory capabilities in VLA agents.298

Octo is a transformer with diffusion heads trained on 25 Open X-Embodiment datasets [83]; we299

fine-tuned only the readout heads with context length 10 and action chunk size K=4. OpenVLA300

employs a Prismatic-7B backbone [84], fine-tuned with LoRA adapters, chunking, and L1 loss [85];301

we tested K=4 and K=8. Both models were trained on 250 expert trajectories per task with 128× 128302

RGB base/wrist views and end-effector control (see Appendix D).303

Experimental results (Table 4) show clear trends. Octo (context size 10) surpasses random on simple304

tasks, hinting at limited memory, but fails to scale with complexity. OpenVLA behaves differently:305

with K = 8, it beats random on tasks like RememberColor3 and ShellGameTouch, but306

collapses on harder tasks; with K = 4, it fails entirely. Larger chunks partly bypass memory by307

generating trajectories from early cues, but this breaks down with smaller chunks, exposing the lack308

of true memory.309

The sharp performance drop on harder tasks underscores the need for dedicated memory architec-310

tures and validates MIKASA-Robo’s multi-difficulty design to prevent such “shortcuts.” Our Octo311

and OpenVLA results highlight a core gap in VLA models: without effective long-term memory,312

performance remains brittle, reinforcing the value of MIKASA-Robo.313

7 Conclusion314

We present MIKASA, a unified benchmark suite for evaluating memory in RL. Our work addresses315

key gaps in the field by introducing: (1) a taxonomy of memory types – object, spatial, sequential,316

and capacity; (2) MIKASA-Base, a standardized collection of open-source memory tasks; (3)317

MIKASA-Robo, a suite of 32 robotic manipulation tasks targeting diverse memory demands; and (4)318

accompanying offline datasets to support reproducible evaluation. Experiments with online, offline,319

and VLA agents reveal that current methods struggle with many tasks, highlighting the need for better320

memory architectures. MIKASA aims to guide and accelerate progress in memory-intensive RL for321

real-world applications.322
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A MIKASA-Robo Implementation Details673

An example of running the environment from the MIKASA-Robo benchmark is shown674

in Code 1. For ease of debugging, we also added various wrappers (found in675

mikasa_robo_suite/utils/wrappers/) that display useful information about the episode676

on the video (Code 2). Thus, RenderStepInfoWrapper() displays the current step in the envi-677

ronment; DebugRewardWrapper() displays information about the full reward at the current step678

in the environment; DebugRewardWrapper() displays information about each component that679

generates the reward function at the current step. In addition, we also added task-specific wrappers680

for each environment. For example, RememberColorInfoWrapper() displays the target color681

of the cube in the RememberColor-v0 task, and ShellGameRenderCupInfoWrapper()682

displays which mug the ball is actually under in the ShellGame-v0 task.683

Code 1: Getting started with MIKASA-Robo using the RememberColor9-v0 environment. �
684

import mikasa_robo_suite685

from mikasa_robo_suite.utils.wrappers import686

↪→ StateOnlyTensorToDictWrapper687

from tqdm.notebook import tqdm688

import torch689

import gymnasium as gym690

691

# Create the environment via gym.make()692

# obs_mode="rgb" for modes "RGB", "RGB+joint", "RGB+oracle" etc.693

# obs_mode="state" for mode "state"694

episode_timeout = 90695

env = gym.make("RememberColor9-v0", num_envs=512 obs_mode="rgb",696

↪→ render_mode="all")697

env = StateOnlyTensorToDictWrapper(env) # * always use this wrapper!698

699

obs, _ = env.reset(seed=42)700

print(obs.keys())701

for i in tqdm(range(episode_timeout)):702

action = torch.from_numpy(env.action_space.sample())703

obs, reward, terminated, truncated, info = env.step(action)704

705

env.close()706 
� �707

Code 2: MIKASA-Robo wrappers system. �
708

import mikasa_robo_suite, torch709

from mikasa_robo_suite.dataset_collectors.get_mikasa_robo_datasets710

↪→ import env_info711

import gymnasium as gym712

from mani_skill.utils.wrappers import RecordEpisode713

from IPython.display import Video714

715

env = gym.make("RememberColor9-v0", num_envs=512, obs_mode="rgb",716

↪→ render_mode="all")717

state_wrappers_list, episode_timeout = env_info("RememberColor9-v0")718

for wrapper_class, wrapper_kwargs in state_wrappers_list:719

env = wrapper_class(env, **wrapper_kwargs)720

env = RecordEpisode(env, f"./videos", max_steps_per_video=721

↪→ episode_timeout)722

723

obs, _ = env.reset(seed=42)724

for i in range(episode_timeout):725

action = torch.from_numpy(env.action_space.sample())726

obs, reward, terminated, truncated, info = env.step(action)727

728

Video(f"./videos/0.mp4", embed=True, width=640)729

env.close()730 
� �731
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B MIKASA-Robo Datasets for Offline RL732

To train Offline RL baselines on camera images (in “RGB” mode) with sparse rewards (success733

condition), we collected datasets for each of the 32 MIKASA-Robo tasks. Datasets were collected734

using a PPO-MLP agent trained to SR=100% in “state” mode (i.e., with full information about the735

task being solved) with sparse rewards (success condition). Thus, each dataset is represented by 1000736

successful trajectories, where each trajectory consists of:737

1. “rgb” (shape: (T, 128, 128, 6)) - two RGB images (view from above and from the gripper)738

2. “joints” (shape: (T, 25)) - Tool Center Point (TCP) position and rotation, and joint positions739

and velocities740

3. “action” (shape: (T, 8)) - action (8-dimensional vector)741

4. “reward” (shape: (T, )) - (dense) reward for each step742

5. “success” (shape: (T,)) - (sparse) success flag for each step743

6. “done” (shape: (T,)) - done flag for each step744

These datasets are available for download from the project website. We have also published the745

weights of the PPO-MLP agent used to collect the dataset, as well as scripts for collecting datasets of746

any size, to our repository.747

C MIKASA-Base Implementation Details748

An example of running an environment from the MIKASA-Base benchmark is shown in Code 3.749

MIKASA-Base supports the standard Gymnasium API and is fully compatible with all its750

wrappers. This allows users to leverage various functionalities, including parallelization using751

AsyncVectorEnv. MIKASA-Base provides a predefined set of environments with different levels752

of difficulty. However, users can customize the environment parameters by passing specific arguments753

(see Code 3).754

Code 3: Example code for running MemoryLength-v0 environment. �
755

import mikasa_base756

import gymnasium as gym757

758

# use pre-defined env759

# env_id = "MemoryLengthEasy-v0"760

# env_kwargs = None761

762

# create env using custom parameters763

env_id = "MemoryLength-v0"764

env_kwargs = {"memory_length": 10, "num_bits": 1}765

seed = 123766

767

env = gym.make(env_id, env_kwargs)768

769

obs, _ = env.reset(seed=seed)770

771

for i in range(11):772

action = env.action_space.sample()773

next_obs, reward, terminations, truncations, infos = env.step(774

↪→ action)775

env.close()776 
� �777

D MIKASA-Robo setup for VLA baselines778

For experiments involving Vision-Language-Action (VLA) models, we focused on a representative779

subset of spatial and object memory tasks from MIKASA-Robo. For each task, we generated a780
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Table 5: Tasks configurations for fine-tuning VLA models. The table lists the task ID, number of
evaluation steps (T), and the associated language instruction

Task T Language instruction

RememberColor3/5/9-v0 60 Remember the color of the cube and then pick the matching one
ShellGameTouch-v0 90 Memorize the position of the cup covering the ball, then pick that cup
InterceptMedium-v0 90 Track the ball’s movement, estimate its velocity, then aim the ball at the target

dataset of 250 episodes using an oracle PPO policy with full access to the environment state. At781

every timestep, the policy recorded two synchronized RGB frames (one from the static “base” camera782

and one from the robot’s wrist camera) along with the corresponding end-effector control actions783

( pd_ee_delta_pose controller from [56]). Each task was also paired with a concise language784

instruction (see Table 5).785

All VLA baselines were trained for 50000 iterations and evaluated independently on each task. Com-786

plete training/evaluation scripts, language instruction templates, and detailed model hyperparameter787

settings are provided in the accompanying supplementary code.788

E Memory Mechanisms in RL789

In RL, memory mechanisms are techniques or models used to enable agents to retain and recall790

information from past interactions with the environment.791

There are several approaches to incorporating memory into RL, including recurrent neural networks792

(RNNs) [86, 76, 87] which uses hidden states to store information from previous steps [88, 27],793

state-space models (SSMs) [89, 90, 91] which uses system state to store historical information [92,794

30], transformers [93] which uses attention mechanism to capture sequential dependencies inside795

the context window [4, 3, 44], graph neural networks (GNNs) [94] which uses graphs to store796

information [95, 35] etc. Popular agents with memory mechanisms are summarized in Table 2.797

F Classic baselines performance on the MIKASA-Robo benchmark798

In this section, we present a comprehensive evaluation of PPO-MLP and PPO-LSTM baselines on799

our MIKASA-Robo benchmark. Our experiments with PPO-MLP in state mode using dense800

rewards demonstrate perfect performance across all tasks, consistently achieving 100% success rate,801

as shown in Figure 7 and Figure 8. This remarkable performance serves as a crucial validation802

of our benchmark design: when an agent has access to complete state information and receives803

dense rewards, it can master these tasks completely. Therefore, any performance degradation in804

RGB+joints mode observed with other algorithms or training configurations must stem from805

the algorithmic limitations or learning challenges rather than any inherent flaws in the task design.806

This empirical evidence confirms that our environments are well-calibrated and properly designed,807

establishing a solid foundation for evaluating memory-enhanced algorithms. All results are presented808

as mean ± standard error of the mean (SEM), where the mean is computed across three independent809

training runs, and each trained agent is evaluated on 16 different random seeds to ensure robust810

performance assessment.811

The performance evaluation of PPO-MLP and PPO-LSTM with dense rewards in the RGB+joints812

mode is presented in Figure 9. This mode specifically tests the agents’ memory capabilities, as it813

requires remembering and utilizing historical information to solve the tasks. Our results demonstrate814

a clear distinction between memory-less and memory-enhanced architectures, while also revealing815

the limitations of conventional memory mechanisms.816

Consider the RememberColor-v0 environment as an illustrative example. In its simplest config-817

uration with three cubes, the memory-less PPO-MLP achieves only 25% success rate. In contrast,818

PPO-LSTM, leveraging its memory mechanism, achieves perfect performance with 100% success rate.819
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However, as task complexity increases to five or nine cubes, even the LSTM’s memory capabilities820

prove insufficient, with performance degrading significantly.821

These results validate two key aspects of our benchmark: first, its effectiveness in distinguishing822

between memory-less and memory-enhanced architectures, and second, its ability to challenge823

even sophisticated memory mechanisms as task complexity increases. This demonstrates that824

MIKASA-Robo provides a competitive yet meaningful evaluation framework for developing and825

testing advanced memory-enhanced agents.826

Our evaluation of PPO-MLP and PPO-LSTM baselines under sparse reward conditions in827

RGB+joints mode reveals the true challenge of our benchmark tasks. As shown in Figure 10,828

both architectures – even the memory-enhanced LSTM – consistently fail to achieve any meaningful829

success rate across nearly all considered environments. This striking result underscores the extreme830

difficulty of memory-intensive manipulation tasks when only terminal rewards are available, high-831

lighting the substantial gap between current algorithms and the level of memory capabilities required832

for real-world robotic applications.833

G Experiments Reproducing and Compute Resources834

All baselines were trained and evaluated under a reproducible standardized setup. Training for every835

algorithm was performed on a single NVIDIA A100 GPU. For evaluation, each task was run for 100836

independent episodes, with environment and agent random seeds ranging from 1 to 100. We report837

performance metrics as the mean success rate ± the standard error of the mean (SEM) over these 100838

trials.839

H MIKASA-Robo Detailed Tasks Description840

In this section, we provide comprehensive descriptions of the 32 memory-intensive tasks that comprise841

the MIKASA-Robo benchmark. Each task is designed to evaluate specific aspects of memory842

capabilities in robotic manipulation, ranging from object tracking and spatial memory to sequential843

decision-making. For each task, we detail its objective, memory requirements, observation space,844

reward structure, and success criteria. Additionally, we explain how task complexity increases across845

different variants and discuss the specific memory challenges they present. The following subsections846

describe each task category and its variants in detail.847

Each of the proposed environment supports multiple observation modes:848

• State: Full state information including ball position849

• RGB+joints: Two camera views (top-down and gripper) plus robot joint states850

• RGB: Only visual information from two cameras851

In the case of RotateLenient-v0 and RotateStrict-v0, the prompt information available852

at each step is additionally added to each observation.853

20



0 1
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

ShellGameTouch

state

0 5
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

ShellGamePush

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

ShellGamePick

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptSlow

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptMedium

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptFast

state

0 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptGrabSlow

state

0 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptGrabMedium

state

0 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptGrabFast

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberColor3

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberColor5

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberColor9

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShape3

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShape5

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00
S

uc
ce

ss
 R

at
e

RememberShape9

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShapeAndColor3x2

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShapeAndColor3x3

state

0 5
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShapeAndColor5x3

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateLenientPos

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateLenientPosNeg

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateStrictPos

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateStrictPosNeg

state

0 1
Training Steps 1e8

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

TakeItBack

state

Figure 7: Demonstration of PPO-MLP performance on MIKASA-Robo benchmark when trained with
oracle-level state information. In this learning mode, MDP problem formulation is considered, i.e.
memory is not required for successful problem solving. At the same time, the obtained results show
that it is possible to solve these problems and obtain 100% Success Rate.
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Figure 8: Demonstration of PPO-MLP performance on MIKASA-Robo benchmark when
trained with oracle-level state information. Results are shown for memory capac-
ity (SeqOfColors[3,5,7]-v0, BunchOfColors[3,5,7]-v0) and sequential memory
(ChainOfColors[3,5,7]-v0).
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Figure 9: Performance evaluation of PPO-MLP and PPO-LSTM on the MIKASA-Robo benchmark
using the “RGB+joints” training mode with dense reward function, where the agent only receives
images from the camera (from above and from the gripper) and information about the state of the
joints (position and velocity). The results demonstrate that numerous tasks pose significant challenges
even for PPO-LSTM agents with memory, establishing these environments as effective benchmarks
for evaluating advanced memory-enhanced architectures.
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Figure 10: Performance evaluation of PPO-MLP and PPO-LSTM on the MIKASA-Robo benchmark
using the “RGB+joints” with sparse reward function training mode, where the agent only receives
images from the camera (from above and from the gripper) and information about the state of the
joints (position and velocity). This training mode with sparse reward function causes even more
difficulty for the agent to learn, making this mode even more challenging for memory-enhanced
agents.

Figure 11: ShellGameTouch-v0: The robot observes a ball in front of it. next, this ball is covered
by a mug and then the robot has to touch the mug with the ball underneath.

H.1 ShellGame-v0855

The ShellGame-v0 task (Figure 11) is inspired by a simplified version of the classic shell game,856

which tests a person’s ability to remember object locations when they become occluded. This task857

evaluates an agent’s capacity for object permanence and spatial memory, crucial skills for real-world858

robotic manipulation where objects frequently become temporarily hidden from view.859

Environment Description The environment consists of three identical mugs placed on a table and860

a red ball. The task proceeds in three phases:861

1. Observation Phase (steps 0-4): The ball is placed at one of three positions, and the agent862

can observe its location.863

2. Occlusion Phase (step 5): The ball and positions are covered by three identical mugs.864

3. Action Phase (steps 6+): The agent must interact with the mug covering the ball’s location.865

The type of target interaction depends on the selected mode: Touch, Push and Pick.866

Task Modes The task includes three variants of increasing difficulty:867

• Touch: The agent only needs to touch the correct mug868

• Push: The agent must push the correct mug to a designated area869

• Pick: The agent must pick and lift the correct mug above a specified height870
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Table 6: Results for Offline RL baselines. The table shows comparison of transformer-based
baselines (RATE, DT), behavior cloning (BC), classic Offline RL baselines (CQL), and Diffusion
Policy (DP) on all 32 tasks from the MIKASA-Robo benchmark. Results are presented as mean ±
sem across the three runs, where each run is averaged over 100 episodes and sem is the standard
error of the mean. Training was performed using only RGB observations (two cameras: top view and
gripper view) and using sparse rewards (success once condition). The results show that even models
with memory (RATE, DT) are not able to solve most of the benchmark problems, which makes it
challenging and promising for further validation of the algorithm.

# Environment RATE DT BC CQL DP
1 ShellGameTouch-v0 0.92±0.01 0.53±0.07 0.28±0.01 0.16±0.04 0.18±0.02
2 ShellGamePush-v0 0.78±0.06 0.62±0.14 0.27±0.01 0.25±0.01 0.22±0.03
3 ShellGamePick-v0 0.02±0.01 0.00±0.00 0.01±0.01 0.00±0.00 0.01±0.00
4 InterceptSlow-v0 0.23±0.02 0.40±0.02 0.37±0.06 0.25±0.01 0.33±0.05
5 InterceptMedium-v0 0.32±0.02 0.56±0.01 0.31±0.14 0.03±0.01 0.68±0.02
6 InterceptFast-v0 0.30±0.04 0.36±0.04 0.03±0.02 0.02±0.02 0.21±0.05
7 InterceptGrabSlow-v0 0.09±0.03 0.00±0.00 0.28±0.18 0.03±0.00 0.03±0.01
8 InterceptGrabMedium-v0 0.09±0.03 0.00±0.00 0.11±0.02 0.08±0.04 0.03±0.01
9 InterceptGrabFast-v0 0.14±0.03 0.11±0.03 0.09±0.02 0.08±0.03 0.18±0.02

10 RotateLenientPos-v0 0.11±0.04 0.01±0.01 0.15±0.03 0.16±0.02 0.11±0.02
11 RotateLenientPosNeg-v0 0.29±0.03 0.05±0.02 0.22±0.01 0.12±0.02 0.14±0.05
12 RotateStrictPos-v0 0.03±0.02 0.05±0.04 0.01±0.00 0.03±0.01 0.06±0.02
13 RotateStrictPosNeg-v0 0.08±0.01 0.05±0.03 0.04±0.02 0.04±0.02 0.15±0.01
14 TakeItBack-v0 0.42±0.24 0.08±0.04 0.33±0.10 0.04±0.01 0.05±0.02
15 RememberColor3-v0 0.65±0.04 0.01±0.01 0.27±0.03 0.29±0.01 0.32±0.01
16 RememberColor5-v0 0.13±0.03 0.07±0.05 0.12±0.01 0.15±0.02 0.10±0.02
17 RememberColor9-v0 0.09±0.02 0.01±0.01 0.12±0.02 0.15±0.01 0.17±0.01
18 RememberShape3-v0 0.21±0.04 0.05±0.04 0.31±0.04 0.20±0.10 0.32±0.05
19 RememberShape5-v0 0.17±0.04 0.04±0.04 0.18±0.01 0.15±0.00 0.21±0.04
20 RememberShape9-v0 0.05±0.00 0.05±0.02 0.10±0.02 0.14±0.01 0.11±0.02
21 RememberShapeAndColor3x2-v0 0.14±0.02 0.04±0.02 0.13±0.02 0.11±0.05 0.14±0.02
22 RememberShapeAndColor3x3-v0 0.08±0.03 0.06±0.06 0.09±0.02 0.09±0.02 0.16±0.01
23 RememberShapeAndColor5x3-v0 0.07±0.02 0.01±0.01 0.09±0.01 0.09±0.02 0.11±0.03
24 BunchOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
25 BunchOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
26 BunchOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
27 SeqOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
28 SeqOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
29 SeqOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
30 ChainOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
31 ChainOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
32 ChainOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Success Criteria Success is determined by:871

• Touch: Contact between the gripper and the correct mug872

• Push: Moving forward the correct mug to the target zone873

• Pick: Elevating the correct mug above 0.1m874

Reward Structure The environment provides both sparse and dense reward variants:875

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)876

• Dense: Continuous reward based on:877

– Distance between gripper and target mug878

– Robot’s motion smoothness (static reward based on joint velocities)879

– Task completion status (additional reward when the task is solved)880
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Figure 12: RememberColor9-v0: The robot observes a colored cube in front of it, then this cube
disappears and an empty table is shown. Then 9 cubes appear on the table, and the agent must touch
a cube of the same color as the one it observed at the beginning of the episode.

H.2 RememberColor-v0881

The RememberColor-v0 task (Figure 12) tests an agent’s ability to remember and identify objects882

based on their visual properties. This capability is essential for real-world robotics applications where883

agents must recall and match object characteristics across time intervals.884

Environment Description The environment presents a sequence of colored cubes on a table. The885

task proceeds in three phases:886

1. Observation Phase (steps 0-4): A cube of a specific color is displayed, and the agent must887

memorize its color.888

2. Delay Phase (steps 5-9): The cube disappears, leaving an empty table.889

3. Selection Phase (steps 10+): Multiple cubes of different colors appear (3, 5, or 9 depending890

on difficulty), and the agent must identify and interact with the cube matching the original891

color.892

Task Modes The task includes three complexity levels:893

• 3 (easy): Choose from 3 different colors (red, lime, blue)894

• 5 (Medium): Choose from 5 different colors (red, lime, blue, yellow, magenta)895

• 9 (Hard): Choose from 9 different colors (red, lime, blue, yellow, magenta, cyan, maroon,896

olive, teal)897

Success Criteria Success is determined by:898

• Correctly identifying and touching the cube that matches the color shown in the observation899

phase900

• Maintaining contact with the correct cube for at least 0.1 seconds901

Reward Structure The environment provides both sparse and dense reward variants:902

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)903

• Dense: Continuous reward based on:904

– Distance between gripper and target cube905

– Robot’s motion smoothness (static reward based on joint velocities)906

– Additional reward for robot being static while touching the correct cube907

– Task completion status (additional reward when the task is solved)908
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Figure 13: RememberShape9-v0: The robot observes an object with specific shape in front of it,
then the object disappears and an empty table appears. Then 9 objects of different shapes appear on
the table, and the agent must touch an object of the same shape as the one it observed at the beginning
of the episode.

H.3 RememberShape-v0909

The RememberShape-v0 task (Figure 13) evaluates an agent’s ability to remember and identify910

objects based on their geometric properties. This capability is crucial for robotic applications where911

shape recognition and recall are essential for successful manipulation.912

Environment Description The environment presents a sequence of geometric shapes on a table.913

The task proceeds in three phases:914

1. Observation Phase (steps 0-4): A shape (cube, sphere, cylinder, etc.) is displayed, and the915

agent must memorize its geometry.916

2. Delay Phase (steps 5-9): The shape disappears, leaving an empty table.917

3. Selection Phase (steps 10+): Multiple shapes appear (3, 5, or 9 depending on difficulty),918

and the agent must identify and interact with the shape matching the original geometry.919

Task Modes The task includes three complexity levels:920

• 3 (Easy): Choose from 3 different shapes (cube, sphere, cylinder)921

• 5 (Medium): Choose from 5 different shapes (cube, sphere, cylinder cross, torus)922

• 9 (Hard): Choose from 9 different shapes (cube, sphere, cylinder cross, torus, star, pyramid,923

t-shape, crescent)924

Success Criteria Success is determined by:925

• Correctly identifying and touching the object with the same shape shown in the observation926

phase927

• Maintaining contact with the correct shape for at least 0.1 seconds928

Reward Structure The environment provides both sparse and dense reward variants:929

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)930

• Dense: Continuous reward based on:931

– Distance between gripper and target object932

– Robot’s motion smoothness (static reward based on joint velocities)933

– Additional reward for maintaining static position when touching correct object934

– Task completion status (additional reward when the task is solved)935
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Figure 14: RememberShapeAndColor5x3-v0: An object of a certain shape and color appears
in front of the agent. Then the object disappears and the agent sees an empty table. Then objects of 5
different shapes and 3 different colors appear on the table and the agent has to touch what it observed
at the beginning of the episode.

H.4 RememberShapeAndColor-v0936

The RememberShapeAndColor-v0 task (Figure 14) evaluates an agent’s ability to remember937

and identify objects based on multiple visual properties simultaneously. This task combines shape938

and color recognition, testing the agent’s capacity to maintain and match multiple object features939

across time intervals.940

Environment Description The environment presents a sequence of colored geometric shapes on a941

table. The task proceeds in three phases:942

1. Observation Phase (steps 0-4): An object with specific shape and color is displayed, and943

the agent must memorize both properties.944

2. Delay Phase (steps 5-9): The object disappears, leaving an empty table.945

3. Selection Phase (steps 10+): Multiple objects with different combinations of shapes and946

colors appear, and the agent must identify and interact with the object matching both the947

original shape and color.948

Task Modes The task includes three complexity levels based on the number of shape-color combi-949

nations:950

• 3x2 (Easy): Choose from 6 objects (3 shapes × 2 colors); shapes: cube, sphere, t-shape;951

colors: red, green952

• 3x3 (Medium): Choose from 9 objects (3 shapes × 3 colors); shapes: cube, sphere, t-shape;953

colors: red, green, blue954

• 5x3 (Hard): Choose from 15 objects (5 shapes × 3 colors); shapes: cube, sphere, t-shape,955

cross, torus; colors: red, green, blue956

Success Criteria Success is determined by:957

• Correctly identifying and touching the object that matches both the shape and color shown958

in the observation phase959

• Maintaining contact with the correct object for at least 0.1 seconds960

Reward Structure The environment provides both sparse and dense reward variants:961

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)962

• Dense: Continuous reward based on:963

– Distance between gripper and target object964

– Robot’s motion smoothness (static reward based on joint velocities)965

– Additional reward for maintaining static position while touching correct object966

– Task completion status (additional reward when the task is solved)967
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Figure 15: InterceptMedium-v0: A ball rolls on the table in front of the agent with a random
initial velocity, and the agent’s task is to intercept this ball and direct it at the target zone.

H.5 Intercept-v0968

The Intercept-v0 task (Figure 16) evaluates an agent’s ability to predict and intercept a moving969

object based on its initial trajectory. This task tests the agent’s capacity for motion prediction and970

spatial-temporal reasoning, which are essential skills for dynamic manipulation tasks in robotics.971

Environment Description The environment consists of a red ball moving across a table and a972

target zone. The task requires the agent to:973

1. Observe the ball’s initial position and velocity974

2. Predict the ball’s trajectory975

3. Guide the ball to reach a designated target zone976

Task Modes The task includes three variants with increasing ball velocities:977

• Slow: Ball velocity range of 0.25-0.5 m/s978

• Medium: Ball velocity range of 0.5-0.75 m/s979

• Fast: Ball velocity range of 0.75-1.0 m/s980

Success Criteria Success is determined by:981

• Guiding the ball to enter the target zone982

• The ball must come to rest within the target area (radius 0.1m)983

Reward Structure The environment provides both sparse and dense reward variants:984

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)985

• Dense: Continuous reward based on:986

– Distance between gripper and ball987

– Distance between ball and target zone988

– Robot’s motion smoothness (static reward based on joint velocities)989

– Task completion status (additional reward when the task is solved)990

28



Figure 16: InterceptGrabMedium-v0: A ball rolls on the table in front of the agent with a
random initial velocity, and the agent’s task is to intercept this ball with a gripper and lift it up.

H.6 InterceptGrab-v0991

The InterceptGrab-v0 task (Figure 16) extends the Intercept-v0 task by requiring the992

agent to not only predict the trajectory of a moving object but also grasp it while in motion. This993

task evaluates the agent’s ability to combine motion prediction with precise manipulation timing,994

simulating real-world scenarios where robots must catch or intercept moving objects.995

Environment Description The environment consists of a red ball moving across a table. The task996

requires the agent to:997

1. Observe the ball’s initial position and velocity998

2. Predict the ball’s trajectory999

3. Position the gripper to intercept the ball’s path1000

4. Time the grasping action correctly to catch the ball1001

5. Maintain a stable grasp while bringing the ball to rest1002

Task Modes The task includes three variants with increasing ball velocities:1003

• Slow: Ball velocity range of 0.25-0.5 m/s1004

• Medium: Ball velocity range of 0.5-0.75 m/s1005

• Fast: Ball velocity range of 0.75-1.0 m/s1006

Success Criteria Success is determined by:1007

• Successfully grasping the moving ball1008

• Maintaining a stable grasp until the ball comes to rest1009

• The robot must be static with the ball firmly grasped1010

Reward Structure The environment provides both sparse and dense reward variants:1011

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1012

• Dense: Continuous reward based on:1013

– Distance between gripper and ball1014

– Grasping reward1015

– Robot’s motion smoothness (static reward based on joint velocities)1016

– Task completion status (additional reward when the task is solved)1017
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Figure 17: RotateLenientPos-v0: A randomly oriented peg is placed in front of the agent.
The agent’s task is to rotate this peg by a certain angle (the center of the peg can be shifted).

H.7 RotateLenient-v01018

The RotateLenient-v0 task (Figure 17) evaluates an agent’s ability to remember and execute1019

specific rotational movements. This task tests the agent’s capacity to maintain and reproduce angular1020

information, which is crucial for manipulation tasks requiring precise orientation control. This task1021

tests the agent’s ability to hold information in memory about how far peg has already rotated at the1022

current step relative to its initial position.1023

Environment Description The environment consists of a blue-colored peg on a table that must be1024

rotated by a specified angle. The task proceeds in one phase, but the static prompt information about1025

the target angle is available to the agent at each timestep:1026

1. Action Phase: The agent must rotate the peg to match the target angle1027

Task Modes The task includes two variants with different rotation requirements:1028

• Pos: Rotate by a positive angle between 0 and π/21029

• PosNeg: Rotate by either positive or negative angle between −π/4 and π/41030

Success Criteria Success is determined by:1031

• Rotating the peg to within the angle threshold (±0.1 radians) of the target angle1032

• Maintaining the final orientation in a stable position1033

• The robot must be static with the peg at the correct orientation1034

Reward Structure The environment provides both sparse and dense reward variants:1035

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1036

• Dense: Continuous reward based on:1037

– Distance between gripper and peg1038

– Angular distance to target rotation1039

– Stability of the peg’s orientation1040

– Robot’s motion smoothness (static reward based on joint velocities)1041

– Task completion status (additional reward when the task is solved)1042
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Figure 18: RotateStrictPos-v0: A randomly oriented peg is placed in front of the agent. The
agent’s task is to rotate this peg by a certain angle (it is not allowed to move the center of the peg)

H.8 RotateStrict-v01043

The RotateStrict-v0 task (Figure 18) extends the RotateLenient-v0 task with more1044

stringent requirements for precise rotational control.1045

Environment Description The environment consists of a blue-colored peg on a table that must be1046

rotated by a specified angle while maintaining its position. The task proceeds in one phase, but the1047

static prompt information about the target angle is available to the agent at each timestep:1048

1. Action Phase: The agent must rotate the peg to match the target angle while keeping it1049

centered1050

Task Modes The task includes two variants with different rotation requirements:1051

• Pos: Rotate by a positive angle between 0 and π/21052

• PosNeg: Rotate by either positive or negative angle between −π/4 and π/41053

Success Criteria Success is determined by:1054

• Rotating the peg to within the angle threshold (±0.1 radians) of the target angle1055

• Maintaining the peg’s position within 5cm of its initial XY coordinates1056

• The robot must be static with the peg at the correct orientation1057

• No significant deviation in other rotation axes1058

Reward Structure The environment provides both sparse and dense reward variants:1059

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1060

• Dense: Continuous reward based on:1061

– Distance between gripper and peg1062

– Angular distance to target rotation1063

– Position deviation from initial location1064

– Stability of the peg’s orientation1065

– Robot’s motion smoothness (static reward based on joint velocities)1066

– Task completion status (additional reward when the task is solved)1067
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Figure 19: TakeItBack-v0: The agent observes a green cube in front of him. The agent’s task
is to move the green cube to the red target, and as soon as it lights up violet, return the cube to its
original position (the agent does not observes the original position of the cube).

H.9 TakeItBack-v01068

The TakeItBack-v0 task (Figure 19) assesses the agent’s ability to perform sequential tasks and1069

memorize the starting position. This task tests the agent’s capacity for sequential memory and spatial1070

reasoning, requiring it to maintain information about past locations and achievements while executing1071

a multi-step plan.1072

Environment Description The environment consists of a green cube and two target regions (initial1073

and goal) on a table. The task proceeds in two phases:1074

1. First Phase: The agent must move the cube from its initial position to a goal region1075

2. Second Phase: After reaching the goal, goal region change it’s color from red to magenta,1076

and the agent must return the cube to its original position (marked by the initial region and1077

invisible for the agent)1078

Success Criteria Success is determined by:1079

• First reaching the goal region with the cube1080

• Then returning the cube to the initial region1081

• Both goals must be achieved in sequence1082

Reward Structure The environment provides both sparse and dense reward variants:1083

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1084

• Dense: Continuous reward based on:1085

– Distance between gripper and cube1086

– Distance to current target region1087

– Progress through the task sequence1088

– Stability of cube manipulation1089

– Robot’s motion smoothness (static reward based on joint velocities)1090

– Task completion status (additional reward when the task is solved)1091
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Figure 20: SeqOfColors7-v0: In front of the agent, 7 cubes of different colors appear sequentially.
After the last cube is shown, the agent observes an empty table. Then 9 cubes of different colors
appear on the table and the agent has to touch the cubes that were shown at the beginning of the
episode in any order.

H.10 SeqOfColors-v01092

The SeqOfColors-v0 task (Figure 20) evaluates an agent’s ability to remember and reproduce an1093

unordered sequence of colors. This task tests memory capacity capabilities essential for robotic tasks1094

that require following specific patterns or sequences.1095

Environment Description The environment presents a sequence of colored cubes that must be1096

reproduced in any order. The task proceeds in two phases:1097

1. Observation Phase (steps 0-(5N − 1)): A sequence of N colored cubes is shown one at a1098

time, with each cube visible for 5 steps.1099

2. Delay Phase (steps (5N )-(5N + 4)): All cubes disappear1100

3. Selection Phase (steps (5N + 5)+): A larger set of cubes appears, and the agent must1101

identify and touch all previously shown cubes in any order1102

Task Modes The task includes three complexity levels:1103

• 3 (Easy): Remember 3 colors demonstrated sequentially1104

• 5 (Medium): Remember 5 colors demonstrated sequentially1105

• 7 (Hard): Remember 7 colors demonstrated sequentially1106

Success Criteria Success is determined by:1107

• Correctly identifying and touching all cubes from the observation phase1108

• Order of selection doesn’t matter1109

• Each cube must be touched for at least 0.1 seconds1110

• The demonstrated set must be touched without any mistakes1111

Reward Structure The environment provides both sparse and dense reward variants:1112

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1113

• Dense: Continuous reward based on:1114

– Distance between gripper and next target cube1115

– Number of correctly identified cubes1116

– Static reward for stable contact1117

– Robot’s motion smoothness (static reward based on joint velocities)1118

– Task completion status (additional reward when the task is solved)1119
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Figure 21: BunchOfColors7-v0: 7 cubes of different colors appear simultaneously in front of
the agent. After the agent observes an empty table. Then, 9 cubes of different colors appear on the
table and the agent has to touch the cubes that were shown at the beginning of the episode in any
order.

H.11 BunchOfColors-v01120

The BunchOfColors-v0 task (Figure 21) tests an agent’s memory capacity by requiring it to1121

remember multiple objects simultaneously. This capability is crucial for tasks requiring parallel1122

processing of multiple items.1123

Environment Description The environment presents multiple colored cubes simultaneously. The1124

task proceeds in three phases:1125

1. Observation Phase (steps 0-4): Multiple colored cubes are displayed simultaneously1126

2. Delay Phase (steps 5-9): All cubes disappear1127

3. Selection Phase (steps 10+): A larger set of cubes appears, and the agent must identify and1128

touch all previously shown cubes in any order1129

Task Modes The task includes three complexity levels:1130

• 3 (Easy): Remember 3 colors demonstrated simultaneously1131

• 5 (Medium): Remember 5 colors demonstrated simultaneously1132

• 7 (Hard): Remember 7 colors demonstrated simultaneously1133

Success Criteria Success is determined by:1134

• Correctly identifying and touching all cubes from the observation phase1135

• Order of selection doesn’t matter1136

• Each cube must be touched for at least 0.1 seconds1137

• The demonstrated set must be touched without any mistakes1138

Reward Structure The environment provides both sparse and dense reward variants:1139

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1140

• Dense: Continuous reward based on:1141

– Distance between gripper and next target cube1142

– Static reward for stable contact1143

– Number of correctly touched cubes1144

– Robot’s motion smoothness (static reward based on joint velocities)1145

– Task completion status (additional reward when the task is solved)1146
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Figure 22: ChainOfColors7-v0: In front of the agent, 7 cubes of different colors appear
sequentially. After the last cube is shown, the agent sees an empty table. Then 9 cubes of different
colors appear on the table and the agent must unmistakably touch the cubes that were shown at the
beginning of the episode, in the same strict order.

H.12 ChainOfColors-v01147

The ChainOfColors-v0 task (Figure 22) evaluates the agent’s ability to store and retrieve ordered1148

information. This task simulates scenarios where the agent must track changing relationships between1149

objects over time.1150

Environment Description The environment presents am ordered sequence (chain) of colored cubes1151

that must be followed. The task proceeds in multiple phases:1152

1. Observation Phase (steps 0-(5N − 1)): A sequence of N colored cubes is shown one at a1153

time, with each cube visible for 5 steps.1154

2. Delay Phase (steps (5N )-(5N + 4)): All cubes disappear1155

3. Selection Phase (steps (5N + 5)+): A larger set of cubes appears, and the agent must1156

identify and touch all previously shown cubes in the exact order as demonstrated1157

Task Modes The task includes three complexity levels:1158

• 3 (Easy): Remember 3 colors demonstrated sequentially1159

• 5 (Medium): Remember 5 colors demonstrated sequentially1160

• 7 (Hard): Remember 7 colors demonstrated sequentially1161

Success Criteria Success is determined by:1162

• Correctly identifying and touching all cubes from the observation phase in the exact order1163

• Each cube must be touched for at least 0.1 seconds1164

• The demonstrated set must be touched without any mistakes1165

Reward Structure The environment provides both sparse and dense reward variants:1166

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1167

• Dense: Continuous reward based on:1168

– Distance between gripper and next target cube1169

– Static reward for stable contact1170

– Number of correctly touched cubes1171

– Robot’s motion smoothness (static reward based on joint velocities)1172

– Task completion status (additional reward when the task is solved)1173
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Table 7: Classification of environments from the MIKASA-Base benchmark according to the sug-
gested memory-intensive tasks classification from the Subsection 4.2.

Environment Memory Task Brief description of the task Observation Space Action Space

Memory Cards Capacity Memorize the positions of revealed cards and correctly match pairs while minimizing
incorrect guesses.

vector discrete

Numpad Sequential Memorize the sequence of movements and navigate the rolling ball on a 3×3 grid by
following the correct order while avoiding mistakes.

image, vector discrete, continuous

BSuite Memory Length Object Memorize the initial context signal and recall it after a given number of steps to take
the correct action.

vector discrete

Minigrid-Memory Object Memorize the object in the starting room and use this information to select the
correct path at the junction.

image discrete

Ballet Sequential,
Object

Memorize the sequence of movements performed by each uniquely colored and
shaped dancer, then identify and approach the dancer who executed the given pattern.

image discrete

Passive Visual Match Object Memorize the target color displayed on the wall during the initial phase. After a
brief distractor phase, identify and select the target color among the distractors by
stepping on the corresponding ground pad.

image discrete

Passive-T-Maze Object Memorize the goal’s location upon initial observation, navigate through the maze
with limited sensory input, and select the correct path at the junction.

vector discrete

ViZDoom-two-colors Object Memorize the color of the briefly appearing pillar (green or red) and collect items of
the same color to survive in the acid-filled room.

image discrete

Memory Maze Spatial Memorize the locations of objects and the maze structure using visual clues, then
navigate efficiently to find objects of a specific color and score points.

image discrete

MemoryGym Mortar Mayhem Capacity,
Sequential

Memorize a sequence of movement commands and execute them in the correct order. image discrete

MemoryGym Mystery Path Capacity,
Spatial

Memorize the invisible path and navigate it without stepping off. image discrete

POPGym Repeat First Object Memorize the initial value presented at the first step and recall it correctly after
receiving a sequence of random values.

vector discrete

POPGym Repeat Previous Sequential,
Object

Memorize the value observed at each step and recall the value from k steps earlier
when required.

vector discrete

POPGym Autoencode Sequential Memorize the sequence of cards presented at the beginning and reproduce them in
the same order when required.

vector discrete

POPGym Count Recall Object,
Capacity

Memorize unique values encountered and count how many times a specific value
has appeared.

vector discrete

POPGym vectorless Cartpole Sequential Memorize velocity data over time and integrate it to infer the position of the pole for
balance control.

vector continuous

POPGym vectorless Pendulum Sequential Memorize angular velocity over time and integrate it to infer the pendulum’s position
for successful swing-up control.

vector continuous

POPGym Multiarmed Bandit Object, Capacity Memorize the reward probabilities of different slot machines by exploring them and
identify the one with the highest expected reward.

vector discrete

POPGym Concentration Capacity Memorize the positions of revealed cards and match them with previously seen cards
to find all matching pairs.

vector discrete

POPGym Battleship Spatial Memorize the coordinates of previous shots and their HIT or MISS feedback to build
an internal representation of the board, avoid repeat shots, and strategically target
ships for maximum rewards.

vector discrete

POPGym Mine Sweeper Spatial Memorize revealed grid information and use numerical clues to infer safe tiles while
avoiding mines.

vector discrete

POPGym Labyrinth Explore Spatial Memorize previously visited cells and navigate the maze efficiently to discover new,
unexplored areas and maximize rewards.

vector discrete

POPGym Labyrinth Escape Spatial Memorize the maze layout while exploring and navigate efficiently to find the exit
and receive a reward.

vector discrete

POPGym Higher Lower Object,
Sequential

Memorize previously revealed card ranks and predict whether the next card will
be higher or lower, updating the reference card after each prediction to maximize
rewards.

vector discrete

I MIKASA-Base Benchmark Tasks Description1174

This section provides a detailed description of all environments included in the MIKASA-Base1175

benchmark Section 5. Understanding the characteristics and challenges of these environments is1176

crucial for evaluating RL algorithms. Each environment presents unique tasks, offering diverse1177

scenarios to test the memory abilities of RL agents.1178

I.1 Memory Cards1179

The Memory Cards environment [28] is a memory game environment with 5 randomly shuffled pairs1180

of hidden cards. At each step, the agent sees one revealed card and must find its matching pair. A1181

correct guess removes both cards; otherwise, the card is hidden again, and a new one is revealed. The1182

game continues until all pairs are removed.1183

I.2 Numpad1184

The Numpad environment [96] consists of an N ×N grid of tiles. The agent controls a ball that rolls1185

between tiles. At the beginning of an episode, a random sequence of n neighboring tiles (excluding1186

diagonals) is selected, and the agent must follow this sequence in the correct order. The environment1187

is structured so that pressing the correct tile lights it up, while pressing an incorrect tile resets progress.1188

A reward of +1 is given for the first press of each correct tile after a reset. The episode ends after a1189
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fixed number of steps. To succeed, the agent must memorize the sequence and navigate it correctly1190

without mistakes. The ability to “jump” over tiles is not available.1191

I.3 BSuite MemoryLength1192

The MemoryLength environment [25] represents a sequence of observations, where at each step, the1193

observation takes a value of either +1 or -1. The environment is structured so that a reward is given1194

only at the final step if the agent correctly predicts the i-th value from the initial observation vector1195

obs. The index of this i-th value is specified at the last step observation vector in obs[1]. To succeed,1196

the agent must remember the sequence of observations and use this information to make an accurate1197

prediction at the final step.1198

I.4 Minigrid-Memory1199

Minigrid-Memory [21] is a two-dimensional grid-based environment that features a T-shaped maze1200

with a small room at the beginning of the corridor, containing an object. The agent starts at a random1201

position within the corridor. Its task is to reach the room, observe and memorize the object, then1202

proceed to the junction at the maze’s end and turn towards the direction where an identical object is1203

located. The reward function is defined as Rt = 1− 0.9× t
T for a successful attempt; otherwise, the1204

agent receives zero reward. The episode terminates when the agent makes a choice at the junction or1205

exceeds a time limit of steps.1206

I.5 Ballet1207

In the Ballet environment [3] tasks take place in an 11× 11 tiled room, consisting of a 9× 9 central1208

area surrounded by a one-tile-wide wall. Each tile is upsampled to 9 pixels, resulting in a 99× 991209

pixel input image. The agent is initially placed at the center of the room, while dancers are randomly1210

positioned in one of 8 possible locations around it. Each dancer has a distinct shape and color,1211

selected from 15 possible shapes and 19 colors, ensuring uniqueness. These visual features serve1212

only for identification and do not influence behavior. The agent itself is always represented as a white1213

square. The agent receives egocentric visual observations, meaning its view is centered on its own1214

position, which has been shown to enhance generalization.1215

I.6 Passive T-Maze1216

The Passive T-Maze environment [44] consists of a corridor leading to a junction that connects two1217

possible goal states. The agent starts at a designated position and can move in four directions: left,1218

right, up, or down. At the beginning of each episode, one of the two goal states is randomly assigned1219

as the correct destination. The agent observes this goal location before starting its movement. The1220

agent stays in place if it attempts to move into a wall. To succeed, the agent must navigate to the1221

correct goal based on its initial observation. The optimal strategy involves moving through the1222

corridor towards the junction and then selecting the correct path.1223

I.7 ViZDoom-Two-Colors1224

The ViZDoom-Two-Colors [97] is an environment where an agent is placed in a room with constantly1225

depleting health. The room contains red and green objects, one of which restores health (+1 reward),1226

while the other reduces it (-1 reward). The beneficial color is randomly assigned at the beginning1227

of each episode and indicated by a column. The environment is structured so that the agent must1228

memorize the column’s color to collect the correct items. Initially, the column remains visible, but in1229

a harder variant, it disappears after 45 steps, increasing the memory requirement. To succeed, the1230

agent must maximize survival by collecting beneficial objects while avoiding harmful ones.1231
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I.8 Memory Maze1232

The Memory Maze environment [26] is a procedurally generated 3D maze. Each episode, the agent1233

spawns in a new maze with multiple colored objects placed in fixed locations. The agent receives a1234

first-person view and a prompt indicating the color of the target object. It must navigate the maze,1235

memorize object positions, and return to them efficiently. The agent receives a reward of 1 for1236

reaching the correct object and no reward for incorrect objects.1237

I.9 MemoryGym Mortar Mayhem1238

Mortar Mayhem [11] is a grid-based environment where the agent must memorize and execute a1239

sequence of commands in the correct order. The environment consists of a finite grid, where the agent1240

initially observes a series of movement instructions and then attempts to reproduce them accurately.1241

Commands include movements to adjacent tiles or remaining in place. The challenge lies in the1242

agent’s ability to recall and execute a growing sequence of instructions, with failure resulting in1243

episode termination. A reward of +0.1 is given for each correctly executed command1244

I.10 MemoryGym Mystery Path1245

Mystery Path [11] presents an invisible pathway that the agent must traverse without deviating. If1246

the agent steps off the path, it is returned to the starting position, forcing it to remember the correct1247

trajectory. The path is procedurally generated, meaning each episode introduces a new configuration.1248

Success in this environment requires the agent to accurately recall previous steps and missteps to1249

avoid repeating errors. The agent is rewarded +0.1 for progressing onto a previously unvisited tile1250

I.11 POPGym environments1251

The following environments are included from the POPGym benchmark [9], which is designed1252

to evaluate RL agents in partially observable settings. POPGym provides a diverse collection of1253

lightweight vectorized environments with varying difficulty levels.1254

I.11.1 POPGym Autoencode1255

The environment consists of a deck of cards that is shuffled and sequentially shown to the agent1256

during the watch phase. While observing the cards, a watch indicator is active, but it disappears1257

when the last card is revealed. Afterward, the agent must reproduce the sequence of cards in the1258

correct order. The environment is structured to evaluate the agent’s ability to encode a sequence of1259

observations into an internal representation and later reconstruct the sequence one observation at a1260

time.1261

I.11.2 POPGym Concentration1262

The environment represents a classic memory game where a shuffled deck of cards is placed face-1263

down. The agent sequentially flips two cards and earns a reward if the revealed cards form a matching1264

pair. The environment is designed in such a way that the agent must remember previously revealed1265

cards to maximize its success rate.1266

I.11.3 POPGym Repeat First1267

The environment presents the agent with an initial value from a set of four possible values, along with1268

an indicator signaling that this is the first value. In subsequent steps, the agent continues to receive1269

random values from the same set but without the initial indicator. The structure requires the agent to1270

retain the first received value in memory and recall it accurately to receive a reward.1271

38



I.11.4 POPGym Repeat Previous1272

The environment consists of a sequence of observations, where each observation can take one of four1273

possible values at each timestep. The agent is tasked with recalling and outputting the value that1274

appeared a specified number of steps in the past.1275

I.11.5 POPGym Stateless Cartpole1276

This is a modified version of the traditional Cartpole environment [98] where angular and linear1277

position information is removed from observations. Instead, the agent only receives velocity-based1278

data and must infer positional states by integrating this information over time to successfully balance1279

the pole.1280

I.11.6 POPGym Stateless Pendulum1281

In this variation of the swing-up pendulum environment [99], angular position data is omitted from1282

the agent’s observations. The agent must infer the pendulum’s position by processing velocity1283

information and use this estimate to determine appropriate control actions.1284

I.11.7 POPGym Noisy Stateless Cartpole1285

This environment builds upon Stateless Cartpole by introducing Gaussian noise into the observations.1286

The agent must still infer positional states from velocity information while filtering out the added1287

noise to maintain control of the pole.1288

I.11.8 POPGym Noisy Stateless Pendulum1289

This variation extends the Stateless Pendulum environment by incorporating Gaussian noise into1290

the observations. The agent must manage this uncertainty while using velocity data to estimate the1291

pendulum’s position and swing it up effectively.1292

I.11.9 POPGym Multiarmed Bandit1293

The Multiarmed Bandit environment is an episodic formulation of the multiarmed bandit prob-1294

lem [100], where a set of bandits is randomly initialized at the start of each episode. Unlike1295

conventional multiarmed bandit tasks, where reward probabilities remain fixed across episodes, this1296

structure resets them every time. The agent must dynamically adjust its exploration and exploitation1297

strategies to maximize long-term rewards.1298

I.11.10 POPGym Higher Lower1299

Inspired by the higher-lower card game, this environment presents the agent with a sequence of cards.1300

At each step, the agent must predict whether the next card will have a higher or lower rank than the1301

current one. Upon making a guess, the next card is revealed and becomes the new reference. The1302

agent can enhance its performance by employing card counting strategies to estimate the probability1303

of future values.1304

I.11.11 POPGym Count Recall1305

At each timestep, the agent is presented with two values: a next value and a query value. The agent1306

must determine and output how many times the query value has appeared so far. To succeed, the1307

agent must maintain an accurate count of past occurrences and retrieve the correct number upon1308

request.1309

I.11.12 POPGym Battleship1310

A partially observable variation of the game Battleship, where the agent does not have access to1311

the full board. Instead, it receives feedback on its previous shot, indicating whether it was a HIT or1312
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MISS, along with the shot’s location. The agent earns rewards for hitting ships, receives no reward1313

for missing, and incurs a penalty for targeting the same location more than once. The environment1314

challenges the agent to construct an internal representation of the board and update its strategy based1315

on past observations.1316

I.11.13 POPGym Mine Sweeper1317

A partially observable version of the computer game Mine Sweeper, where the agent lacks direct1318

visibility of the board. Observations include the coordinates of the most recently clicked tile and1319

the number of adjacent mines. Clicking on a mined tile results in a negative reward and ends the1320

game. To succeed, the agent must track previous selections and deduce mine locations based on the1321

numerical clues, ensuring it avoids mines while uncovering safe tiles.1322

I.11.14 POPGym Labyrinth Explore1323

The environment consists of a procedurally generated 2D maze in which the agent earns rewards1324

for reaching new, unexplored tiles. Observations are limited to adjacent tiles, requiring the agent to1325

infer the larger maze layout through exploration. A small penalty per timestep incentivizes efficient1326

navigation and discovery strategies.1327

I.11.15 POPGym Labyrinth Escape1328

This variation of Labyrinth Explore challenges the agent to find an exit rather than merely exploring1329

the maze. The agent retains the same restricted observation space, seeing only nearby tiles. Rewards1330

are only given upon successfully reaching the exit, making it a sparse reward environment where the1331

agent must navigate strategically to achieve its goal.1332

J Limitations1333

While our benchmark provides a comprehensive evaluation framework, some limitations remain.1334

In particular, the performance of Octo and OpenVLA may not reflect their full potential, as we1335

performed limited fine-tuning due to computational constraints. Future work could explore more1336

extensive adaptation of large VLA models within MIKASA to better assess their memory capabilities.1337

Additionally, while MIKASA covers a broad range of memory challenges, further extensions could1338

incorporate tasks with longer temporal dependencies or meta-RL.1339

1340
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