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ABSTRACT

Diffusion transformers currently lead the field in high-quality video generation,
but their slow iterative denoising process and prohibitive quadratic attention costs
for long sequences create significant inference bottlenecks. While both step dis-
tillation and sparse attention mechanisms have shown promise as independent
acceleration strategies, effectively combining these approaches presents critical
challenges—training-free integration yields suboptimal results, while separately
training sparse attention after step distillation requires prohibitively expensive
high-quality video data. To overcome these limitations, we propose BLADE, an
innovative data-free joint training framework that introduces: (1) an Adaptive
Block-Sparse Attention (ASA) mechanism for dynamically generating content-
aware sparsity masks to focus computation on salient spatiotemporal features, and
(2) a sparsity-aware step distillation paradigm, built upon Trajectory Distribution
Matching (TDM), directly incorporates sparsity into the distillation process rather
than treating it as a separate compression step and features fast convergence.
We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-
1.3B, and our framework demonstrates remarkable efficiency gains across differ-
ent scales. On Wan2.1-1.3B, BLADE achieves a 14.10× end-to-end inference
acceleration over a 50-step baseline, and an 8.89× speedup on the short-sequence
model CogVideoX-5B. Crucially, the acceleration is achieved while maintaining
generation quality comparable to the original 50-step baseline. On the VBench-
2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534)
and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by
superior ratings in human evaluations.

1 INTRODUCTION

Diffusion models have emerged as the state-of-the-art for a wide array of generative tasks (Dhariwal
& Nichol, 2021), achieving unprecedented quality in image synthesis (Cao et al., 2024; Esser et al.,
2024; Labs et al., 2025) and now pushing the frontier in the complex domain of video generation
(Blattmann et al., 2023; Xing et al., 2024). By modeling generation as a gradual reversal of a noising
process (Ho et al., 2020), these models can produce diverse and high-fidelity content. However,
for diffusion transformers, this power comes at a severe computational cost (Shen et al., 2025).
The introduction of the temporal dimension dramatically inflates the complexity of the attention
mechanism, which scales quadratically with sequence length (Wan et al., 2025; Yang et al., 2024;
Kong et al., 2025). This, combined with the iterative nature of the denoising process, results in
prohibitively slow inference speeds that hinder practical deployment.

To mitigate this critical efficiency bottleneck, two primary research directions have gained promi-
nence: reducing the number of inference steps via step distillation (Song et al., 2023; Salimans & Ho,
2022; Liu et al., 2024; Zheng et al., 2024; Gu et al., 2023; Goodfellow et al., 2014; Yin et al., 2024)
and lowering the per-step cost via sparse attention (Zhang et al., 2025b; Yuan et al., 2024; Zhang
et al., 2025a; Li et al., 2025; Xu et al., 2025; Dao et al., 2022). However, effectively integrating
these two powerful paradigms is non-trivial and presents a critical dilemma. A naive, training-free
combination, where a pre-trained sparse attention mechanism is applied to a distilled model, yields
suboptimal results because the distillation process is agnostic to sparse attention. Conversely, a
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sequential training pipeline that involves first performing step distillation and then fine-tuning the
model for sparsity is equally impractical, as it re-introduces the need for prohibitively large and ex-
pensive high-quality video datasets, counteracting the key benefits of modern data-free distillation
methods (Gu et al., 2023; Sauer et al., 2024; Luo et al., 2025).

The challenge of designing an appropriate sparse attention mechanism is further exacerbated in the
video domain. Many existing methods rely on static, content-agnostic sparsity patterns (Zhang et al.,
2025b; Li et al., 2025; Xi et al., 2025). These fixed patterns, such as rigid local windows or pre-
determined striding, fail to adapt to the dynamic and diverse spatiotemporal features of video con-
tent. Consequently, they often struggle to preserve important details and long-range dependencies,
leading to significant quality degradation, especially at higher sparsity levels required for meaning-
ful acceleration. In contrast, another line of work explores dynamically generated attention masks,
which allow the sparsity pattern to adapt to content-specific structure. While dynamic masking
methods such as VSA (Zhang et al., 2025c) improve the trade-off between efficiency and fidelity,
they conceptually operate on structured 3D token grids. For irregular latent shapes, this design
typically necessitates padding dimensions to align with tile boundaries, introducing computational
overhead that can diminish practical sparsity gains. On the other hand, SpargeAttention (Zhang
et al., 2025a) supports training-free inference but cannot be trained and exhibits limited sparsity.
Limited flexibility and applicability restrict the widespread adoption of dynamic sparse attention in
video generation

This landscape highlights a clear need for a sparse attention mechanism that is computationally ef-
ficient, dynamically content-aware, and flexible enough to support arbitrary resolutions and both
training-free and training-aware modes at high sparsity without sacrificing visual fidelity. To this
end, we introduce ASA, a training-free sparse attention framework with dynamic token selection, ca-
pable of adapting to input content while maintaining high generation quality across various settings.
For cases where training is permitted, we further present ASA G, a distillation-based variant that
leverages global token prediction to enable end-to-end training. Together, ASA and ASA G offer a
unified solution to both inference and training scenarios in efficient video generation.

Overall, this paper argues that a truly effective solution requires moving beyond treating distillation
and sparsity as separate, post-hoc optimizations. We introduce BLADE (BLock-sparse Attention
Meets step Distillation for Efficient video generation), a novel framework that pioneers the syn-
ergistic, data-free joint training of dynamic sparsity and step distillation. Our approach directly
incorporates sparsity-awareness into the distillation process, allowing the student model to learn a
compact and efficient trajectory from the teacher, conditioned on a dynamic attention pattern.

The main contributions of this work are as follows:

• We propose BLADE, a data-free joint training framework that synergistically integrates an adap-
tive sparse attention mechanism directly into a sparsity-aware step distillation process, overcom-
ing the limitations of prior sequential or training-free integration approaches.

• We introduce Adaptive Block-Sparse Attention (ASA), a dynamic, content-aware, and hardware-
friendly attention mechanism that generates sparsity masks on-the-fly to focus computation on
salient features.

• We demonstrate significant end-to-end inference acceleration on diverse models, achieving a
14.10× speedup on Wan2.1-1.3B and a robust 8.89× on the shorter-sequence CogVideoX-5B.
Crucially, this acceleration is accompanied by a consistent quality improvement, with VBench-2.0
scores increasing for both Wan2.1-1.3B (0.563→ 0.570) and CogVideoX-5B (0.534→ 0.569).

2 RELATED WORK

2.1 VIDEO GENERATION WITH DIFFUSION MODELS

Recent years have witnessed remarkable progress in video generation, largely driven by the success
of diffusion models (Ho et al., 2020; Song et al., 2021; Ma et al., 2025; Cao et al., 2024; He et al.,
2023). These models have become the de facto standard for synthesizing high-fidelity and tempo-
rally coherent video content, achieving state-of-the-art results on various benchmarks (Huang et al.,
2024; Zheng et al., 2025).
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The operating principle of diffusion models is to learn the reversal of a fixed data corruption process.
Specifically, a noisy sample xt is generated by corrupting a clean sample x0 ∼ preal using a simple
formulation: xt = αtx0 + σtϵ, where ϵ ∼ N (0, I) is standard Gaussian noise. The positive scalars
αt and σt are dictated by a noise schedule, which controls the signal-to-noise ratio at each timestep
t (Karras et al., 2022).

The model’s task is to learn this reversal. A network, often termed a denoiser µθ(xt, t), is trained to
predict the original clean sample x0 from its corrupted version xt. This learned denoiser provides
an estimate of the score function (Song et al., 2021):

sθ(xt, t) = ∇xt
log preal,t(xt) ≈ −

xt − αtµθ(xt, t)
σ2
t

. (1)

Generation is then achieved by starting with pure noise xT ∼ N (0, I) and iteratively applying the
learned denoising function to reverse the corruption process, step-by-step, until a clean sample x0 is
obtained.

2.2 ACCELERATION VIA STEP DISTILLATION

Step distillation has emerged as a primary strategy for accelerating diffusion models (Song et al.,
2023; Salimans & Ho, 2022; Liu et al., 2024; Zheng et al., 2024; Gu et al., 2023; Goodfellow et al.,
2014). The goal is to transfer the knowledge from a slow “teacher” model (e.g., a 50-step sampler)
to a faster “student” model that can generate comparable results in very few steps (e.g., 1–8 steps).
Early methods like Progressive Distillation (Salimans & Ho, 2022; Luhman & Luhman, 2021) iter-
atively halve the number of sampling steps. Distillation strategies can be broadly categorized into
output distillation, which trains the student to match the final output of a multi-step teacher process,
and trajectory distillation (Luhman & Luhman, 2021; Song et al., 2023), which guides the student
to follow the teacher’s intermediate generation path. Trajectory Distribution Matching (TDM) rep-
resents a recent and sophisticated advancement in this area (Luo et al., 2025). TDM unifies the
concepts of distribution matching and trajectory matching. Instead of enforcing a strict instance-
level match of the trajectory, it aligns the distribution of the student’s intermediate samples with
the teacher’s corresponding diffused distributions at each step. A key advantage of TDM is that it
is a data-free method; it does not require access to the original, often proprietary, training dataset,
relying only on the pre-trained teacher model to generate guidance signals. This makes it a highly
practical and versatile distillation framework, which we adopt as the foundation for our work.

2.3 VIDEO-SPECIFIC SPARSE ATTENTION

Several promising approaches have been proposed to accelerate attention computation, each with
distinct mechanisms and trade-offs. Early methods such as STA (Zhang et al., 2025b) and Radial
Attention (Li et al., 2025) primarily utilize static attention masks. STA employs a fixed local window,
a design choice that makes it most effective for specific input dimensions, while Radial Attention
proposes a heuristic whose resulting sparsity is less pronounced on shorter sequences, limiting its
adaptability. To introduce more dynamism, SVG (Xi et al., 2025) selects between two pre-defined
masks, a binary choice that offers limited granularity and may create a trade-off between quality
and sparsity. Other methods like SpargeAttention (Zhang et al., 2025a) also shows potential in
training-free scenarios. However, it is not applicable to training, and its sparsity level must be
kept moderately low to preserve video quality. VSA (Zhang et al., 2025c) introduces training and
offers finer-grained control via fixed attention cubes, a design that influences the range of applicable
resolutions. To bridge these varied trade-offs, we propose Adaptive Block-Sparse Attention (ASA),
a dynamic, content-aware mechanism that generates hardware-friendly sparsity masks on-the-fly,
providing a unified solution for both training-free and distillation-based scenarios.

3 METHOD

3.1 OVERALL ARCHITECTURE

BLADE is a holistic framework for accelerating video diffusion models by synergistically inte-
grating dynamic sparsity into a powerful step distillation process. As illustrated in Figure 1, our
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Figure 1: The training mechanism of Video-BLADE within a single distillation interval [ti−1, ti).
The Sparse Generator (Gθ) denoises the input xti to produce the sample xti−1

. Crucially, this
output is then re-corrupted with Gaussian noise to create an intermediate sample xtj . A dedicated
Fake Score model evaluates this re-noised sample. Its output is contrasted with the score from the
Real Score model (which is the pre-trained teacher model) to compute the Distribution Matching
Loss (∇θDKL). This loss directly updates the student generator, forcing it to align its generation
trajectory with the teacher’s at a distributional level.

architecture is based on a student-teacher paradigm. The teacher, fϕ, is a pre-trained, high-quality
but computationally expensive multi-step diffusion model. The student, Gθ, initially shares the
same Transformer-based (DiT) (Peebles & Xie, 2023) architecture and weights as the teacher. Our
key innovation, designed to enable few-step generation, is the replacement of the standard self-
attention layers within the student with our proposed Adaptive Block-Sparse Attention (ASA) mech-
anism. The training process follows the Trajectory Distribution Matching (TDM) (Luo et al., 2025)
paradigm. In each iteration, the sparse student model Gθ generates an intermediate trajectory. This
trajectory is then guided to match the distribution of the teacher’s trajectory via a data-free score
distillation loss. This ensures the student learns to produce high-quality outputs while operating
under the computational constraints imposed by ASA.

3.2 PRELIMINARIES: TRAJECTORY DISTRIBUTION MATCHING (TDM)

Trajectory Distribution Matching (TDM) (Luo et al., 2025) is an advanced distillation framework
designed to create efficient, few-step diffusion models. Its core idea is to align the entire generation
trajectory of a student model with that of a teacher model at the distribution level, rather than re-
quiring an exact instance-level match. This is operationalized through a data-free score distillation
process that relies on three key components:

1. The pre-trained teacher model fϕ, which provides the real data score sϕ.

2. The student generator Gθ, which learns to produce high-fidelity samples in a few steps.

3. A fake score model fψ , which provides the fake score sψ by approximating the student’s
intractable sample score.

The training process involves two intertwined objectives, one for the fake score model and one for
the student generator.

Training the fake score model (fψ). The score distillation process requires the student model’s
score function ∇xj log pθ,j|ti(xj), which is intractable. TDM resolves this by introducing a fake
score model, fψ , a neural network trained concurrently to approximate the student’s score. To
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ensure this approximation is accurate, the fake score model fψ is trained using a denoising objective
as follows:

L(ψ) =
K−1∑
i=0

Epθ,ti (xti
)Eq(xj |x̂ti

)∥fψ(xj , j)− x̂ti∥22, (2)

where the clean target x̂ti is first obtained by the student model by denoising an input xti . A noisy
sample xj is then created by perturbing this target, and the model learns to predict the clean sample
x̂ti from this noisy input xj .

Training the student generator (Gθ). With access to both the teacher’s score fϕ and the student’s
own score estimate fψ , the student generator Gθ can be trained. The objective is to minimize the
KL divergence between the student’s trajectory distribution and the teacher’s trajectory distribution.
This alignment is performed across K stages of the diffusion process, ensuring that the student
learns to follow the teacher’s path efficiently. The core distillation loss is:

L(θ) =
K−1∑
i=0

λiDKL (pθ,ti(xti)∥pϕ,ti(xti)) . (3)

In practice, minimizing this KL divergence is achieved by matching the scores. The gradient of this
objective is computed by replacing the student’s intractable true score, ∇xj log pθ,j|ti(xj), with the
output of the fake score model, sψ . This results in the following gradient approximation:

∇θL(θ) =
K−1∑
i=0

ti+1∑
j=ti

λj [∇xj
log pθ,j|ti(xj)− sϕ(xj , j)]

∂xti
∂θ

(4)

≈
K−1∑
i=0

ti+1∑
j=ti

λj [sψ(xj , j)− sϕ(xj , j)]
∂xti
∂θ

.

Following the TDM framework (Luo et al., 2025), this process is made both practical and memory-
efficient through two key implementation choices. First, we ensure the distillation intervals [ti, ti+1)
are non-overlapping. This design allows a single fake score model fψ to be sufficient for all stages,
as the timestep naturally separates the different underlying sample distributions. Second, to conserve
GPU memory, backpropagation through the student generator is constrained to only one ODE step
at a time.

3.3 ADAPTIVE BLOCK-SPARSE ATTENTION (ASA)

A core design of our work is the Adaptive Block-Sparse Attention (ASA) mechanism, developed
upon block-sparse attention. ASA leverages the prior that neighboring tokens in the latent repre-
sentations of video often share similar semantics, which makes it reasonable for queries within the
same block to share a mask, and pooling operation can keep meaningful semantic information. By
allowing each query in a block to selectively attend to only the most relevant keys and values, ASA
achieves superior performance over traditional static masks. In the following, we provide a detailed
introduction to our method.

Preprocessing: Locality-preserving token rearrangement. The input matrix Q, K, and V , repre-
senting a flattened sequence of video tokens, are first restructured into blocks. A critical preliminary
step is rearranging the tokens to preserve their inherent spatial locality, which is often disrupted by
standard raster-scan tokenization. To this end, we employ a Gilbert space-filling curve (Zhang et al.,
2025a) to reorder the tokens before blocking. This ensures that the resulting blocks are more se-
mantically coherent, containing spatially contiguous information, which significantly enhances the
effectiveness of the subsequent threshold-based pruning.

Step 1: Efficient block importance estimation. Conceptually, one could compute the full, dense
attention matrix P = softmax(QK⊤/

√
dk), partition it into blocks of size b × b, and then apply

max-pooling over each block. This would yield a downsampled importance matrix, Pimp, where
each element signifies the importance of the corresponding block. A sparse mask could then be
generated by applying a threshold to each row of Pimp, allowing each query block to focus only on
the most salient key-value blocks. However, the initial computation of the full matrix P makes this
method impractical for achieving actual acceleration.

5
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Figure 2: The two-stage process for Adaptive Block-Sparse Attention mask generation. (1) The
Efficient Attention Prober samples a few representative tokens (e.g., k = 16) from each block to
compute a low-cost max-pooled attention matrix P . (2) The Threshold-based Mask Generator sorts
the scores in P and selects the top blocks that contain a specified threshold (e.g., 95%), producing
the final binary mask M . To enrich the context for training, we augment the key matrix K by
concatenating it with a pooled version: K = Concat(K,MeanPooln(K)), where MeanPooln(K)
denotes mean pooling over a window of size n. During attention computation, the original K region
uses the binary block mask M , while the pooled region receives a fixed additive mask of lnn, softly
guiding attention without disrupting sparsity.

To overcome this limitation, we propose an efficient online approximation. Instead of the full matrix,
we sample k representative tokens (k < b) from each block of Q and K to form smaller matrix,
Qs and Ks. We then compute a much smaller, low-resolution attention map, Papprox, from these
sampled tokens. The block importance matrix Pimp is derived from this approximate map. This
approach reduces the complexity of mask generation fromO(N2) to approximatelyO(N2 ·(k/b)2),
where N is the sequence length. This makes online mask generation feasible. This sampling-based
scheme not only reduces the complexity of mask generation, but also improves the accuracy of block
importance estimation. Unlike SpargeAttention (Zhang et al., 2025a), which collapses each block
into a single mean token and derives importance from a coarse N/b × N/b attention map, ASA
retains intra-block structure by computing attention over sampled tokens and then applying max-
pooling within each sub-block. This finer-grained approximation enables ASA to better capture
salient patterns within each block. Detailed experimental comparisons with SpargeAttention are
provided in Table 8.

Step 2.1: Sparse mask construction. Once the block importance matrix Pimp is obtained, we
generate the final sparse attention mask based on a threshold-based masking strategy. Specifically,
we sort each row of Pimp in descending order and include the minimal number of key blocks such
that their cumulative attention scores exceed a specified threshold (e.g., 90%). This threshold-based
dynamic pruning preserves the most salient attention paths while skipping less informative blocks,
offering a flexible trade-off between accuracy and efficiency.

The resulting binary mask is then used to restrict the computation of attention during both training
and inference, ensuring that the majority of computational resources are focused on the most relevant
interactions. We provide the pseudocode of ASA in Algorithm 3.

Step 2.2: Computation. Based on this mask generation technique, we introduce two variants of
our mechanism tailored to different application scenarios:

1) Standard ASA (Training-Free): In its primary form, the generated binary sparse mask M is
directly integrated with a block-sparse attention kernel. This variant can be applied to pre-trained
models without any retraining, offering a direct inference speed-up by focusing computation on
fine-grained, salient information.

6
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Table 1: Video Quality Evaluation on VBench-2.0.
Model Method Sparsity Total Creativity Commonsense Controllability Human Physics Speedup

CogvideoX-5B
Baseline - 0.534 0.458 0.523 0.341 0.808 0.539 1×
FA2 - 0.539 0.458 0.498 0.354 0.813 0.570 7.93×
ASA G 0.82 0.569 0.546 0.514 0.367 0.802 0.618 8.89×

Wan2.1-1.3B

Baseline - 0.563 0.508 0.549 0.338 0.820 0.600 1×
FA2 - 0.580 0.631 0.485 0.311 0.841 0.631 9.37×
STA 0.74 0.528 0.504 0.471 0.265 0.855 0.543 10.53×
ASA G 0.8 0.570 0.472 0.532 0.312 0.918 0.617 14.10×

Note: Baseline refers to the official 50 steps baseline. All methods except the Baseline are distilled to 8
steps using TDM.

2) ASA with Global Tokens (for Distillation): To mitigate potential global information loss at high
sparsity ratios, we introduce an enhanced variant. We augment the Key (K) and Value (V ) by creat-
ing a set of “global tokens”. These are generated by applying mean pooling over a window of size
n, reducing the sequence length to 1/n of the original lengths of K and V . The augmented K are
formed asKaug = Concat(K,MeanPooln(K)) (and similarly for V ). During attention computation,
a query’s interaction with the original K region is governed by the binary sparse mask M , preserv-
ing fine-grained details. For the augmented ”global tokens” region, we apply a fixed additive mask
of ln(n) to the pre-softmax scores. This bias compensates for the averaging effect of mean pooling,
ensuring that each global token contributes attention as if it represents the full importance of its n
constituent fine-grained tokens. This softly guides every query to maintain awareness of the global
context, preventing catastrophic information loss when most blocks are pruned.

Throughout this paper, we refer to the standard implementation as ASA and the augmented version
as ASA with Global Tokens (ASA G in short).

3.4 SPARSITY-AWARE DISTILLATION

A cornerstone of the BLADE framework is the principle of sparsity-aware distillation. Unlike pre-
vious approaches that apply sparsity as a post-training compression step, we integrate ASA directly
into the TDM training loop. At every training iteration, the student model Gθ generates its trajec-
tory using the ASA mechanism. The distribution matching loss then updates the student’s weights
to improve its output quality given these dynamic sparsity constraints. This co-design strongly reg-
ularizes the model, forcing it to learn a robust, semantic representation that often yields superior
perceptual quality.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Models. We evaluate BLADE on two text-to-video diffusion models: CogVideoX-5B (Hong et al.,
2022) and Wan2.1-1.3B (Wan et al., 2025). These models represent different architectures and
scales, allowing us to test the generalizability of our approach.

Dataset. Our training process is guided by a dataset of 10,000 text prompts. These prompts were
sampled from the JourneyDB benchmark (Sun et al., 2023) and subsequently enhanced for quality
and diversity using the Qwen2.5-3B-Instruct (Team, 2024) model.

Implementation details. Unless otherwise specified, we use a block size b = 128, k = 16 sam-
pled tokens per block for the attention prober. Distillation is typically run for 100-200 iterations.
Experiments on CogVideoX-5B and Wan2.1-1.3B were conducted on a cluster of 8 A800(80GB)
GPUs. We use a suite of standard metrics to evaluate performance:VBench-1.0 (Huang et al., 2024),
VBench-2.0 (Zheng et al., 2025), SSIM & PSNR (Hor & Ziou, 2010), Human Evaluation.

Compared methods. ASA G, ASA, STA (Zhang et al., 2025b), and RaA(Li et al., 2025) respec-
tively denote using our adaptive attention, its training-free variant, and the Sliding Tile Attention
(Zhang et al., 2025b) Radial Attention (Li et al., 2025). FA2 refers to FlashAttention-2 (Dao, 2024).

7
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4.2 MAIN RESULTS: EFFICIENCY AND QUALITY

Our experiments demonstrate that Video-BLADE achieves significant acceleration without compro-
mising, and often improving, generation quality.

Quality Analysis. Table 1 presents the VBench-2.0 benchmark results for CogVideoX-5B and
Wan2.1-1.3B across several methods, including our proposed ASA G, the sparse baseline STA,
FA2, and the 50-step dense baseline.

For CogVideoX-5B, ASA G delivers consistent and comprehensive improvements across all major
quality dimensions. It achieves the highest overall VBench-2.0 score (0.569), outperforming both
the 50-step baseline and FA2, and leads in Creativity, Controllability, and Physicsall key for gener-
ating plausible and engaging video content. Notably, ASA G achieves this performance using only
8 decoding steps over a short 17k-token sequence, resulting in an 8.89× speedup while simultane-
ously improving generation quality. These results demonstrate that even with extremely constrained
sequence lengths, ASA G achieves robust generation quality.

For Wan2.1-1.3B, ASA G continues to show clear advantages. It achieves a strong VBench-2.0 score
(0.570), the highest Human Fidelity (0.918), and strong Physics performance, all while operating
at just 7.09% of the original inference time (14.10 speedup). Compared to STA, which shares
similar sparsity, ASA G performs significantly better in almost all metrics. Although FA2 slightly
outperforms ASA G in total score, its performance on controllability is weaker and comes at a
higher computational cost. A gallery-style visual comparison, showcasing video samples across
diverse models and inference strategies, is presented in the Appendix F.

An intriguing observation from our results is that BLADE, despite its high sparsity and few inference
steps, can surpass the quality of the 50-step dense baseline. We attribute this phenomenon to a
regularization effect induced by our joint training framework. The long, iterative trajectory of the
50-step teacher can sometimes accumulate numerical errors or overfit to noisy, less coherent details.
In contrast, our sparsity-aware distillation compels the student model to learn a more direct and
stable generation path (a principle that echoes findings in prior works like DMD2 (Yin et al., 2024)),
forcing it to capture the most essential semantics while implicitly filtering out the “detours” and
noise from the teacher’s process. The adaptive sparsity further aids this by focusing computation
only on the most salient features. We provide a visual corroboration of this effect with attention
map analyses in the Appendix B. The resulting model is therefore not merely a faster approximation
but can be a more robust and coherent generator. We evaluate our models on VBench-2.0, which
places greater emphasis on semantic faithfulnessassessing how well the generated videos preserve
high-level meaning rather than just pixel-wise accuracy. This aligns closely with the strengths of our
approach.

Table 2: Efficiency analysis on Wan2.1-1.3B
(test on an H20).

Metric FA2-50 FA2-8 ASA-8

Kernel Time (ms) 73.25 73.25 22.21
Kernel Speedup 1.00× 1.00× 3.30×
E2E Time (s) 338.41 36.11 24.00
E2E Speedup 1.00× 9.37× 14.10×

Note:The number suffix (e.g. FA2-50) indicates the
number of inference steps used in each model.

Table 3: Comparison of training-free sparse at-
tention methods on Wan2.1-1.3B (8-step dis-
tilled model).

Method Sparsity PSNR SSIM

STA 0.74 16.72 0.6190
SVG 0.75 16.68 0.6390
ASA 0.75 19.55 0.7433

RaA 0.50 22.07 0.8191
ASA 0.50 22.20 0.8290

Efficiency analysis. At the kernel level, our ASA implementation achieves a 3.30× speedup over
the standard dense attention used in the 8-step FA2 baseline (22.21 ms vs. 73.25 ms), benefiting
from an effective sparsity rate of 0.798. This low-level gain directly translates to a substantial end-
to-end acceleration: our ASA-based model completes generation in 24.00 seconds, compared to
36.11 seconds for its dense counterpartyielding a 1.504× E2E speedup.

Notably, while the kernel speedup is more than 3×, the E2E gain is sub-linear. This suggests that at-
tention is no longer the dominant bottleneck in the distilled model; instead, other operations (e.g.,the
VAE encoder/decoder and non-attention layers within the transformer) begin to dominate the run-
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time. This shift validates the effectiveness of our targeted kernel optimization in minimizing atten-
tion overhead within modern diffusion pipelines.

4.3 COMPARISON OF SPARSE ATTENTION MECHANISMS

To isolate the performance of the ASA mechanism itself, we compare it against other sparse attention
methods in a training-free inference setting on Wan2.1-1.3B. For sparse inference, the first two steps
adopt FA2, while the remaining steps use sparse attention. Table 3 shows that at at a similar sparsity
level, ASA significantly outperforms STA(Zhang et al., 2025b), RaA(Li et al., 2025) and SVG(Xi
et al., 2025) in both PSNR and SSIM, establishing its superiority as a dynamic attention mechanism.
Videos sampled by different methods are shown in Figure 3. Further ablation studies, including
human evaluation results, are provided in the Appendix A.

FA2 ASA (Ours) STA SVG

Figure 3: Comparison of generated videos at frame 0,40,80 for the prompt “A tranquil tableau of
bedroom”. Each row shows the same frame index across 4 methods.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented BLADE, a novel framework that effectively addresses the critical
efficiency challenge in video diffusion models. By synergistically co-designing a dynamic, content-
aware adaptive block-sparse attention mechanism with a data-free trajectory distribution matching
distillation process, our method achieves significant inference acceleration without sacrificing gen-
eration quality. Our results demonstrate that by making the model sparsity-aware during training,
it often achieves superior visual quality and intrinsic faithfulness (Zheng et al., 2025) compared to
both the original multi-step teacher and a densely distilled student model. Our contributions are
validated through extensive experiments on various video models, demonstrating marked improve-
ments in kernel-level efficiency, end-to-end inference speed, and generation quality as measured by
both automated benchmarks (VBench-2.0) and human evaluations.

Limitations and future work. While BLADE exhibits strong performance, we acknowledge sev-
eral limitations that point to promising directions for future research. First, our current experiments
are limited to video sequences of moderate length. Extending and validating the ASA mechanism
for generating minute-long videos with hundreds of thousands of tokens remains an important next
step. Additionally, our current ASA kernel is implemented in Triton for simplicity, which prevents
it from fully realizing its theoretical speedup. Future work will focus on developing a more opti-
mized CUDA implementation to better leverage the efficiency potential of ASA. These directions
underscore the importance of evaluating ASA in more demanding settings and exploring further
architectural enhancements. Lastly, the idea of sparsity-aware training as a form of regularization

9
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shows promise and could be extended to other generative domains beyond video synthesis, such as
3D content generation and high-resolution image synthesis.
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A ADDITIONAL EXPERIMENTS

We conducted a comprehensive set of experiments to analyze the contribution of each component
and investigate the performance of BLADE under broader settings.

A.1 IMPACT OF REARRANGEMENT STRATEGY

Table 4: Ablation results for the token rearrangement strategy, evaluated with the VBench-1.0 qual-
ity score.

Configuration Quality Score
Without Rearrange 0.779
With Rearrange (Ours) 0.788

We validated the importance of the Gilbert rearrangement strategy. As shown in Table 4,
CogVideoX-5B model distilled (using ASA) with this strategy achieve a higher VBench-1.0 quality
score (0.788) compared to those without it (0.779), confirming its role in preserving spatial locality
for more effective block-wise pruning.

A.2 IMPACT OF ADDITIVE MASK AND GLOBAL TOKEN IN ASA G

Table 5: Effect of Global Token (G) and Additive Mask (AM) in ASA on CogVideoX-5B (VBench-
2.0).

Config Sparsity (%) VBench-2.0

ASA 0.8 0.539
ASA G 0.82 0.569
ASA G w/o AM 0.82 0.559
Baseline-50 - 0.534

Note: G = Global Token, AM = Additive Mask. Baseline-50 is the original 50-step FA2 model.

We conduct ablation studies on VBench-2.0 to validate the effectiveness of our key designs: the
Global Token (G) and the Additive Mask (AM). As shown in Table 5, our base model, ASA, al-
ready surpasses the baseline (0.539 vs. 0.534). Upon integrating the GT, the performance of our
model, ASA G, significantly leaps to 0.569. This substantial gain underscores the critical role of
GT in aggregating global spatio-temporal information. Furthermore, removing the AM from the
full model (i.e., ASA G w/o AM) leads to a noticeable performance drop to 0.559, which confirms
the necessity of AM in preserving model integrity under the sparse attention mechanism. Collec-
tively, these results demonstrate that both GT and AM are indispensable components, synergistically
contributing to the superior performance of our final model.

A.3 IMPACT OF BLOCK SIZE CONFIGURATION

Table 6: Ablation study on block size configuration for ASA on Wan2.1-1.3B (sparsity ratio 0.8).
Smaller block sizes offer finer granularity but incur higher overhead.

Block Size (Q×K) PSNR ↑ SSIM ↑ LPIPS ↓
64× 64 22.24 0.818 0.144
128× 64 22.05 0.803 0.162
128× 128 21.75 0.793 0.169

Block size determines the granularity of the attention masking, acting as a pivotal hyperparameter
in the ASA mechanism. We analyze three block configurations (64× 64, 128× 64, and 128× 128)
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under a constant sparsity ratio of 0.8. Table 6 demonstrates a monotonic improvement in generation
quality as block size decreases. Specifically, the 64 × 64 configuration outperforms the coarser
128× 128 setting by 0.49 in PSNR and 0.025 in SSIM.

This performance gain stems from the finer granularity of smaller blocks, which allows the ASA
mechanism to preserve salient regions with higher precision, adapting more effectively to local se-
mantic structures. However, finer blocking introduces non-negligible computational overhead dur-
ing mask generation and memory access. Consequently, we adopt 128×128 in our main experiments
as a strategic trade-off, prioritizing system throughput while maintaining competitive generation
quality.

A.4 IMPACT OF ATTENTION THRESHOLD

Table 7: Ablation study on the attention threshold (τ ) in ASA. Experiments are conducted on
Wan2.1-1.3B (50 steps; ASA enabled after a 12-step warm-up). τ governs the sparsity-quality
frontier.

Threshold (τ ) Sparsity PSNR ↑ SSIM ↑ LPIPS ↓
0.9 0.73 23.93 0.856 0.106
0.8 0.80 22.08 0.812 0.153
0.7 0.84 20.46 0.750 0.209
0.6 0.87 19.20 0.712 0.243
0.5 0.92 15.48 0.583 0.436

The threshold τ directly modulates the trade-off between computational sparsity and generation
fidelity. By varying τ from 0.5 to 0.9, we observe in Table 7 that higher thresholds preserve more
attention blocks, naturally leading to superior metrics. A threshold of τ = 0.9 yields near-dense
quality (PSNR 23.93) but results in a lower sparsity of 0.73. Conversely, aggressive pruning with
τ = 0.5 achieves high sparsity (0.92) but causes a structural collapse in quality (PSNR drops to
15.48), indicating that critical attention contexts are being discarded.

We identify τ = 0.8 as the optimal operating point, achieving a sparsity of 0.80 without severe
degradation in perceptual quality (SSIM > 0.8). This ablation further shows that ASA supports
flexible deployment: higher thresholds are suitable for quality-critical applications, while lower
thresholds benefit latency-sensitive scenarios where minor artifacts are acceptable. Visual examples
across different sparsity levels are provided in Appendix F.1.

A.5 SCALABILITY TO LARGER MODELS WITH LONGER SEQUENCES: WAN2.1-14B

Table 8: Comparison of training-free sparse attention methods on Wan2.1-14B. ASA achieves the
best trade-off between sparsity and visual quality.

Method Sparsity PSNR ↑ SSIM ↑ LPIPS ↓
SVG 0.75 24.86 0.823 0.094
Sparge 0.77 24.03 0.808 0.117
STA 0.75 25.00 0.845 0.079
ASA (Ours) 0.77 26.05 0.865 0.050

To validate the scalability of ASA to larger architectures and longer video sequences, we benchmark
it against state-of-the-art training-free sparse attention methods on Wan2.1-14B. As shown in Ta-
ble 8, ASA maintains superior performance at comparable sparsity levels (≈ 0.75–0.77). Notably,
our method achieves an exceptionally low LPIPS of 0.050, outperforming the strongest baseline,
STA, by a significant margin (0.029 improvement). Compared to SpargeAttention, ASA improves
PSNR by over 2.0 and reduces perceptual loss by more than 50% (0.050 vs. 0.117), underscoring its
capability to preserve fine-grained semantic details even when processing extended contexts. These
results, consistent with the 1.3B evaluation, demonstrate that ASA’s dynamic masking strategy is
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robust across both model scales and sequence lengths, effectively mitigating the quality degradation
observed in static pruning methods on large-scale, long-context foundation models.

A.6 FEASIBILITY ANALYSIS AT LOW-STEP INFERENCE

To investigate the feasibility of BLADE under strict computational constraints, we extend the distil-
lation process to a low-step regime of four sampling steps. Table 9 directly compares these 4-step
sparse models against the standard 50-step dense baselines.

Notably, our method achieves substantial end-to-end inference speedups of 15.2× on CogVideoX-
5B and 17.6× on Wan2.1-1.3B. Despite this aggressive reduction in sampling steps, both models
maintain superior VBench Total scores compared to the 50-step baselines (CogVideoX: 0.562 vs.
0.534; Wan2.1: 0.570 vs. 0.563). These results validate that our joint training framework remains
highly effective even in few-step scenarios, ensuring high-quality generation alongside extreme ac-
celeration.

Table 9: VBench-2.0 comparison of 4-step BLADE models against 50-step baselines.
Model Method Creativity Commonsense Controllability Human Physics Total

CogVideoX-5B Baseline 0.458 0.523 0.341 0.808 0.539 0.534
ASA G 0.425 0.553 0.389 0.840 0.606 0.562

Wan2.1-1.3B Baseline 0.508 0.549 0.338 0.820 0.600 0.563
ASA G 0.467 0.564 0.333 0.897 0.594 0.570

A.7 HUMAN EVALUATION RESULTS

Table 10: Human preference: 8-step models vs. 50-step baseline.
Comparison Win Lose Tie

CogVideoX-5B
ASA G (Ours) vs. Baseline 16 10 24

Wan2.1-1.3B
ASA G (Ours) vs. Baseline 10 12 28
STA vs. Baseline 0 26 24

We conducted a human preference study to evaluate our efficient 8-step ASA G model(sparsity ratio
0.8) and 8-step STA model(sparsity ratio 0.74) against the standard 50-step baseline. The evaluation
was performed using 50 diverse video prompts. The aggregated results are shown in Table 10.

For the CogVideoX-5B model, ASA G was preferred or rated equally in 80% of comparisons, while
achieving an 8.89× speedup in inference time. For Wan2.1-1.3B, ASA G achieved a 56% tie rate,
yielding a 76% non-inferiority rate overall, while reducing inference time to just 7.09% of the base-
line. In contrast, STA was consistently outperformed by the baseline, with 0 wins and a 52% loss
rate. These results highlight that ASA G maintains high visual fidelity despite aggressive accelera-
tion, validating its effectiveness for practical deployment.

B MASK VISUALIZATION

To elucidate the mechanism by which our proposed sparse attention method achieves both significant
acceleration and enhanced quality in video generation, we conducted a visualization analysis of the
model’s internal attention patterns. We hypothesize that constraining the model to operate within a
limited computational budget compels it to disregard low-information, redundant areas (e.g., static
backgrounds) and instead concentrate its focus more efficiently on core semantic objects within the
scene.
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(a) Our Sparse Mask (b) Full Attention (c) Mask on Frame

(a) Our Sparse Mask (b) Full Attention (c) Mask on Frame

(a) Our Sparse Mask (b) Full Attention (c) Mask on Frame

Figure 4: Visualization and analysis of attention masks. Our sparse method (a) is shown to capture
the most salient regions identified by full attention (b), effectively focusing on key semantic objects
within the frame (c).

Figure 4 offers a direct and intuitive validation of this hypothesis. Each row illustrates the attention
behavior for a single sample, comparing our method against a standard full attention baseline across
diverse scenes. Specifically, the three sub-figures within each composite image correspond to:

(a) Our Sparse Mask: This visualizes the attention mask produced by our sparse method for a single
query patch Q. The white areas denote the spatial positions of key patches K that are retained for
the attention score calculation. Conversely, the extensive black regions are the positions pruned by
our method, where attention is not computed, effectively masking out non-salient information prior
to the softmax operation.

(b) Full Attention Map: As a baseline, this map displays the raw attention weight distribution for
the same query patch without sparsity constraints. Brighter colors (e.g., yellow) indicate higher
attention scores.

(c) Mask Overlaid on Frame: The sparse mask, highlighted as a semi-transparent red overlay, is
superimposed on the actual video frame to intuitively show the spatial locus of attention.

Across the three distinct scenes (a bird, a cartoon, and an elderly man), it is evident that although our
method prunes a substantial number of computations (as shown in column a), the retained attention
regions precisely cover the core semantic objects, such as the bird’s beak, the cartoon character’s
tail, and the man’s beard.Notably, the regions selected by our sparse mask exhibit a high degree of
overlap with the highest-scoring areas in the full attention map. This provides strong evidence that
our sparsity strategy effectively identifies and preserves the most salient semantic information while
filtering out redundant background noise. This focusing mechanism offers a plausible explanation
for the unexpected improvement in the model’s generation quality.
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C PSEUDOCODE

Inspired by the pseudocode in SeerAttention, we adapt it to our implementation to get the max-
pooling of attention mapP from the downsampledQ,K input. The process is detailed in Algorithms
2 and 1.The pseudocode of ASA is detailed in 3.

Algorithm 1 GetMaxPooledAttnMap

Input: Q,K ∈ RH×Ŝ×d, pooling size b̂, scale factor s
Output: A ∈ RH×Tr×Tr , Tr = ⌈Ŝ/b̂⌉

1: Initialize M as −∞ with shape (H, Ŝ)

2: Initialize ℓ as 0 with shape (H, Ŝ)

3: Initialize R as −∞ with shape (H, Ŝ, Tr)
4: for each head h do
5: Split Qh Kh into Tr blocks: Q1, . . . , QTr

K1, . . . ,KTr

6: for i← 1 to Tr do
7: M̃ ←M [h, (i− 1) ∗ b̂ : i ∗ b̂]
8: ℓ̃← ℓ[h, (i− 1) ∗ b̂ : i ∗ b̂]
9: R̃← R[h, (i− 1) ∗ b̂ : i ∗ b̂, :]

10: for j ← 1 to Tr do
11: sij ← Qi ·K⊤

j · s
12: mij ← rowmax(sij), P̃ij ← exp(sij −mij)

13: ℓ̃ij ← rowsum(P̃ij), mnew ← max(M̃,mij)

14: ℓ̃← eM̃−mnew · ℓ̃+ emij−mnew · ℓ̃ij
15: M̃ ← mnew, R̃[:, j]← mij

16: end for
17: for j ← 1 to Tr do
18: sij ← eR̃[:,j]−M̃ , sij ← sij/ℓ̃
19: A[h, i, j]← max(sij)
20: end for
21: end for
22: end for

Algorithm 2 Compute Block Importance Score
Input: Query Q, Key K ∈ RH×S×d, block size b = 128, tokens per block k = 16, scale factor s
Output: P ∈ RH×Tr×Tr where Tr = ⌈S/b⌉

1: Make length divisible by b: Qp ← Pad(Q, b), Kp ← Pad(K, b)
2: Sample k tokens per block:
3: Q̃← BlockSample(Qp, b, k) K̃ ← BlockSample(Kp, b, k)

4: P ← GetMaxPooledAttnMap(Q̃, K̃, k, s)
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Algorithm 3 ASA Mask Generation
Require: Q,K ∈ RN×d, block size b, sample size k, threshold τ

1: Rearrange tokens using Gilbert curve
2: Partition Q,K into Nb = N/b blocks
3: Randomly sample k tokens from each block to get Qs,Ks ∈ RNk×d

4: Compute attention: P̃ = softmax(QsK⊤
s /
√
d)

5: MaxPool over k × k blocks to get Pimp ∈ RNb×Nb

6: for each row i in Pimp do

7: P̃imp(i, j)←
Pimp(i, j)∑
k Pimp(i, k)

8: Sort P̃imp[i, :] descending→ s
9: Find smallest m such that

∑m
j=1 sj ≥ τ , then clamp m within the range defined by minimum

and maximum retention ratios
10: Set M [i, j] = 1 for top m indices, others = 0
11: end for
12: return Binary mask M

D MODEL CONFIGURATION DETAILS

Table 11 presents the detailed model configurations. For the distillation training phase (iterations
100-200), experiments were conducted on 8 × NVIDIA A800 (80GB) GPUs using DeepSpeed
ZeRO-2. The training took approximately 10 hours with a global batch size of 128, and the peak
memory usage reached 76 GB.

Table 11: Detailed configuration parameters for Wan2.1-1.3B and CogVideoX-5B models.
Category Parameter Wan2.1-1.3B CogVideoX-5B

Model Architecture

Number of Layers 30 42
Number of Attention Heads 12 48
Attention Head Dimension 128 64
In/Out Channels 16 16
Temporal Compression Ratio 4 4
Prediction Dtype flow velocity
Sequence Length 32760 17550
Text Dimension 4096 4096
Patch Size [1,2,2] [1,2,2]
Vocab Size 256384 32128
Number of Timesteps 1000 1000

Training & Inference

Student learning rate 1e-4 1e-4
Fake model learning rate 5e-4 5e-4
LoRA Enabled True True
LoRA alpha 64 64
Optimizer AdamW AdamW
Adam Beta1 0 0
Adam Beta2 0.95 0.95
Gradient Clipping 1.0 1.0
Seed 42 42
CFG 5 6
Video Resolution 480×832 480×720
Sample FPS 16 8
Gradient Checkpointing True True
Training Mode Zero2 Zero2
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E RUNTIME BREAKDOWN OF THE ADAPTIVE BLOCK-SPARSE ATTENTION
OPERATOR

We provide additional runtime analysis of our adaptive block-sparse attention (ASA) operator, in-
cluding per-component breakdowns under two sequence lengths (100k and 18k), followed by a
sparsity sweep comparing against FlashAttention2 (FA2) and FlashAttention3 (FA3). All results are
measured with 30 heads and head dimension 128.

For clarity, the first row in each table reports the end-to-end forward time of ASA, while the remain-
ing rows decompose this total into three main stages: (i) Block Importance Estimation (computing
the importance scores for each KV block), (ii) Mask Construction (converting importance scores
into a binary block-sparse mask), and (iii) Block-Sparse Attention Compute (the main attention
kernel executed on the selected blocks), plus a small Other category for residual overheads (re-
shapes, indexing, etc.).

E.1 COMPONENT-LEVEL BREAKDOWN

At sparsity τ=0.8, a simple FLOP-based model suggests that a block-sparse attention kernel should
cost roughly (1 − τ) times the full-attention baseline (FA2), i.e., a 5× theoretical speedup. In
our setting, FA2 at 100k tokens takes ≈ 440ms, so the ideal runtime under 0.8 sparsity would be
≈ 88ms. At 18k tokens, FA2 takes 13.16ms, yielding an ideal 0.8-sparse runtime of ≈ 2.63ms.

Runtime breakdown at 100k and 18k tokens (sparsity 0.8). Table 12 reports a component-level
breakdown of the Adaptive Sparse Attention (ASA) operator at two sequence lengths under the same
FLOP-equivalent sparsity of 0.8.

Table 12: Runtime breakdown of Adaptive Sparse Attention (ASA) at two sequence lengths (sparsity
0.8).

100k tokens 18k tokens

Component Time (ms) % Time (ms) %
Adaptive Sparse Attention (Total) 116.99 100.0% 8.07 100.0%
Block Importance Estimation 9.34 8.0% 1.36 16.8%
Mask Construction 1.03 0.9% 0.41 5.1%
Block-Sparse Attention Compute 106.32 90.9% 6.06 75.1%
Other 0.31 0.3% 0.25 3.0%

100k tokens, sparsity 0.8. At this sequence length, runtime is dominated by the block-sparse
compute kernel: over 90% of the ASA time is spent in the block-sparse attention compute, while
importance estimation and mask construction together account for only∼ 9% (Table 12). Compared
to the FLOP-based ideal of ≈ 88ms, the measured ASA runtime at 100k tokens is 116.99 ms, i.e.,
1.33× higher than the ideal. The resulting ≈ 29ms gap can be decomposed into ≈ 10.4ms from
importance estimation + mask construction (∼ 36% of the gap, only ∼ 2.4% of the dense FA2
time), and ≈ 18.6ms from the block-sparse compute kernel itself (padding, load imbalance, and
memory/system overhead that are not captured by the simple FLOP count). In other words, at long
sequences we recover about 3.8× speedup over FA2 (vs. the 5× theoretical limit), and the dominant
source of the gap is the block-sparse kernel rather than mask building.

18k tokens, sparsity 0.8. For shorter sequences, the relative share of preprocessing becomes more
visible, and fixed kernel overheads dominate the deviation from the ideal FLOP-level speedup (Ta-
ble 12). Here, the FLOP-based ideal runtime is ≈ 2.63ms (i.e., 0.2 × 13.16ms), whereas the
measured ASA runtime is 8.07 ms. This corresponds to a 1.63× speedup over FA2, recovering only
∼ 33% of the theoretical 5× limit. The ≈ 5.4ms gap to the ideal can again be decomposed into
≈ 1.8ms from importance estimation + mask construction (∼ 33% of the gap, ∼ 13.5% of the
dense FA2 time) and ≈ 3.7ms from the block-sparse compute kernel. Thus, in the short-sequence
regime, the main discrepancy between theoretical and realized speedup comes from fixed kernel and
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system overheads (e.g., launch latency, limited parallelism, and padding), while the cost of building
the sparse mask remains small in absolute terms.

Overall, the gap between the FLOP-based ideal and the realized ASA runtime arises from both the
mask-generation stage and the practical inefficiencies of the block-sparse compute kernel. In the
short-sequence regime, the relative overhead of mask generation appears larger because several per-
layer operations incur fixed costs that do not diminish proportionally with sequence length. As the
sequence length increases, these fixed components become quickly amortized, causing the mask-
generation share to shrink, and leaving the kerneltheoretical mismatch as the dominant contributor
to the remaining gap.

F VISUAL COMPARISON GALLERY

F.1 ASA PERFORMANCE UNDER DIFFERENT SPARSITY LEVELS ON WAN2.1-1.3B

Each panel shows rows corresponding to different threshold values (τ ∈ {0.5, 0.6, 0.8, 0.9}), with
sparsity levels shown alongside. Lower thresholds exhibit severe structural distortion due to aggres-
sive pruning, while higher thresholds restore coherent motion and fine-grained details. Top: results
for prompt “[A small boy, head bowed in determination, sprints through a torrential downpour as
lightning crackles and thunder rumbles in the distance. Sheets of rain lash the ground, while the
faint silhouette of a cozy home in the background glows like a small beacon of safety and warmth.
]”. Bottom: results for prompt “[A golden retriever in black sunglasses sprints across a rain-damp
rooftop terrace, its long fur rippling in the breeze. Seen from a distance, the dog bounds toward
the camera, tail wagging, as water droplets sparkle on the concrete and its golden coat stands out
against the overcast sky. ]”. The final row in each panel shows the dense-attention baseline.
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Figure 5: Effect of attention threshold τ on visual quality across different prompts.
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F.2 WAN2.1-1.3B RESULTS

Baseline

ASA G

Figure 6: “The camera orbits around. Taj Mahal, the camera circles around.”

Baseline

ASA G

Figure 7: “One person opens the door for another person.”

Baseline

ASA G

Figure 8: “A bird is in front of a table, then the bird flies to the right of the table.”

Baseline

ASA G

Figure 9: “A drone is floating in the air.”
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F.3 COGVIDEOX-5B RESULTS

Baseline

ASA G

Figure 10: “The camera orbits around. Rocket, the camera circles around.”

Baseline

ASA G

Figure 11: “A person is eating spaghetti with a fork.”

Baseline

ASA G

Figure 12: “A butterfly’s wings change from yellow to white.”

Baseline

ASA G

Figure 13: “Princess Elsa plunged her northern kingdom into eternal winter.”

This section presents qualitative comparisons between baseline models and our ASA G-distilled 8-
step models. For each comparison, the top row shows results from the baseline 50-step model, while
the bottom row shows results from our ASA G method using only 8 steps(with sparsity ratios of
0.8 for Wan2.1-1.3B and 0.82 for CogVideoX-5B). Each row displays 4 sampled frames from the
generated video sequence, demonstrating temporal consistency and visual quality across different
prompts.
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G ADVANTAGES OF JOINT TRAINING OVER TWO-STAGE PIPELINE

We compare our approach against a conventional two-stage pipeline that separates optimization into
two independent tasks: Step Distillation then Sparse Fine-tuning. Our joint training strategy offers
two critical advantages:

1. Elimination of Dataset Bias. A decoupled two-stage approach inherently relies on external real
datasets for the sparse fine-tuning stage. This introduces significant dataset biasthe resulting model’s
quality becomes heavily dependent on the domain alignment and quality of the collected data. In
contrast, BLADE is fully data-free. By jointly optimizing sparsity with distillation, we leverage
the supervisory signals generated by the Teacher model as guidance. This ensures the student aligns
perfectly with the teacher’s distribution without introducing external dataset bias.

2. Superior Training Efficiency. As analyzed in Appendix D, our joint method achieves conver-
gence within the same iteration budget (100–200 steps) as standard dense distillation. Since sparsity
is applied during training, the computational cost per iteration is reduced compared to dense pro-
cessing. Thus, BLADE achieves both acceleration targets (step reduction and sparsity injection)
in a single, efficient pass, avoiding the substantial computational overhead of a separate sequential
fine-tuning stage.
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