
Under review as a conference paper at ICLR 2021

KNAPSACK PRUNING WITH INNER DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural network pruning reduces the computational cost of an over-parameterized
network to improve its efficiency. Popular methods vary from `1-norm sparsifi-
cation to Neural Architecture Search (NAS). In this work, we propose a novel
pruning method that optimizes the final accuracy of the pruned network and distills
knowledge from the over-parameterized parent network’s inner layers. To enable
this approach, we formulate the network pruning as a Knapsack Problem which
optimizes the trade-off between the importance of neurons and their associated
computational cost. Then we prune the network channels while maintaining the
high-level structure of the network. The pruned network is fine-tuned under the su-
pervision of the parent network using its inner network knowledge, a technique we
refer to as the Inner Knowledge Distillation. Our method leads to state-of-the-art
pruning results on ImageNet, CIFAR-10 and CIFAR-100 using ResNet backbones.
To prune complex network structures such as convolutions with skip-links and
depth-wise convolutions, we propose a block grouping approach to cope with these
structures. Through this we produce compact architectures with the same FLOPs
as EfficientNet-B0 and MobileNetV3 but with higher accuracy, by 1% and 0.3%
respectively on ImageNet, and faster runtime on GPU.

1 INTRODUCTION
Deep and wide networks such as VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2015)
and EfficientNet (Tan & Le, 2019) achieve high classification accuracy on challenging benchmarks
such as ImageNet (Deng et al., 2009). While these architectures perform well, in many scenarios it
is desired to reduce their computational cost and model size. One approach to achieve this goal is
via network pruning which has been a topic of research for decades (Lecun et al., 1989). Network
pruning is a way to identify and remove the insignificant parameters of a network. These are the ones
with little effect on accuracy.

Previous pruning methods show promising results. However, they suffer from two key shortcomings.
The first is the heuristic expression of the problem, often relying on a coarse approximation of the
contribution of each weight to the final accuracy, neglecting its direct trade off with its computational
cost, or through a non-convex optimization problem that can lead to sub-optimal solution. For
example, (Molchanov et al., 2019; Han et al., 2015; Li et al., 2017; Yang et al., 2018; Yu et al.,
2018; Hu et al., 2016) measure the post-factum empirical influence of several pruning options in
order to choose the best one, where only the pruning criterion is used to decide if to keep the weight.
The second is not leveraging the expressive power of the parent network. Knowledge Distillation
(KD) (Hinton et al., 2015) from the unpruned network could improve performance as shown by (Dong
& Yang, 2019) who used KD on the network outputs to fine-tune the child network. Their approach,
however, does not leverage to the full extent the fact that the inner structures of the unpruned and
pruned networks are highly isomorphic.

In this paper we present a novel pruning approach that optimizes explicitly on the trade-off between
accuracy and computational cost. Our first key idea is to formulate the pruning as a Knapsack Problem
which enables the trade-off optimization. The second key idea is to introduce an Inner Knowledge
Distillation (IKD) mechanism between the inner layers of the pruned and unpruned network. The
IKD guides the child network to reproduce the inner layer’s mapping patterns of the unpruned parent
network as much as possible, leading to higher accuracy after fine-tuning.

The integration of the above two key ideas allows us to develop a novel method with strong empirical
performance. Our method is one-shot, fast and does not require iterative re-training during pruning.
The Knapsack formulation we suggest enables the pruning of non-sequential convolutions such as
skip-connections and Squeeze-and-Excitation modules which are common in modern architectures,

1

Under review as a conference paper at ICLR 2021

e.g., ResNet and EfficientNet (Tan & Le, 2019). We show that our method leads to state-of-the-art
results on ImageNet, CIFAR-10 and CIFAR-100 when using ResNets and EfficientNets as backbones.

The structure of the paper is as follows: In Section 2, we briefly review previous works on pruning
and knowledge distillation. In Section 3, we describe the technical aspects of our method to prune
sequential convolutions or convolutions that are not connected to a skip-connection. In Section 4,
we extend our method to more complicated architectures, that include skip-connections, dilated
convolutions or Squeeze-and-Excitation modules which enforce constraints on the convolutional
channels to be pruned. In Section 5, we describe our fine-tuning method with IKD. Finally, in Section
6, we present the results of our pruning method on different benchmarks and backbones.

2 RELATED WORKS
In this section, we briefly review previous works on pruning and knowledge distillation that closely
relate to our work.
NETWORK PRUNING Network pruning dates back to (Lecun et al., 1989) where the importance of a
neuron is estimated by the diagonal elements of the Hessian matrix of the network’s loss function. For
modern neural networks estimating the Hessian matrix is prohibitive due to the high dimensionality.
Therefore, inspired by the success of compressed sensing techniques (Donoho, 2006), many `1-norm
sparsification methods and sparse proximal projection methods have been introduced to prune over-
parameterized networks (Liu et al., 2015; Ding et al., 2019b; Liu et al., 2017). These methods require
iterative pruning during training which makes them inapplicable to pre-trained networks.

Methods that perform post-training pruning over pre-trained neural networks are under active research
(Han et al., 2015; Li et al., 2017; Yang et al., 2018; Yu et al., 2018; Hu et al., 2016). Their key idea
is estimating the importance of a neuron via heuristics. A comprehensive comparison of pruning
heuristics is presented in (Molchanov et al., 2017), including Minimum `2 Weight, Activation,
Mutual Information, Taylor Expansion, and Average Percentage of Zeros. They show that the best
criterion is the Taylor Expansion which approximates the change in the loss function induced by the
pruning.

More recently, (Molchanov et al., 2019) demonstrated the high correlation between the importance
approximation to a reliable estimate of the true importance of the neurons. However, their decision of
removing N neurons with the smallest importance scores is rather heuristic and does not account for
the induced change of FLOPs.
KNOWLEDGE DISTILLATION Knowledge distillation refers to training a student network using a
teacher network by distilling information from the teacher to the student. (Hinton et al., 2015) uses
a penalty term consisting of the cross entropy between the output logits of the teacher and that of
the student in the loss function. A few methods use knowledge distillation inside the network. For
example, (Li et al., 2019; Wang et al., 2018) consider the `2 distance between the teacher and the
student feature maps as part of the loss. When the dimensions of the feature maps of the two networks
differ, a popular method is to penalize the distance between the embeddings of the features maps in a
subspace of lower dimension. For instance, (Crowley et al., 2018) computes the `2 distance between
the squared sum of the teacher and the student feature maps while (Tung & Mori, 2019) penalizes
the distance between the activation correlation matrices. A distillation at the level of the feature maps
has been already studied by previous works such as (Romero et al., 2015; Heo et al., 2019), but the
internal feature maps on which the distillation is performed are chosen arbitrarily.
KNAPSACK PROBLEM The knapsack problem is extensively used in a wide variety of fields
including financial trading (Markowitz & Manne, 1957), cryptography (Odlyzko, 1990) and resource
distribution (Vanderster et al., 2009). Recent works utilize deep neural networks for efficient and
accurate optimization for solving the knapsack problem (Gu & Hao, 2018; Martini, 2019) To the best
of our knowledge, this work is the first to utilize a Knapsack Problem to prune deep neural networks.

3 METHODOLOGY TO PRUNE SEQUENTIAL CONVOLUTIONS
In this section, we present our method for pruning sequential convolutions. This allows us to prune
networks such as VGG as well as all the convolutions inside ResNet that are not preceding a skip-
connection. Generalization to non-sequential operations such as skip-connections or integration of
operations, is presented in Section 4.
3.1 KNAPSACK PROBLEM AND PRUNING

Suppose we have a knapsack with a capacity C and a collection of n items I where every item oi ∈ I
has a weight fi and a value vi. The Knapsack Problem aims to fill the knapsack with maximal value,

2

Under review as a conference paper at ICLR 2021

considering the weight capacity C. That is

max
b

∑
i

vibi (1)

s.t
∑
i

fibi ≤ C, bi ∈ {0, 1} 1 ≤ i ≤ n

where the indicator variable bi equals 1 if oi is selected and 0 otherwise.

The above formulation is an integer programming problem which is NP-hard. If the weights fi are
integers, the problem has an exact solution that can be found with a Dynamic Programming algorithm
in a O

(
nmax

i
fi

)
time complexity. An approximate solution of the problem can also be found with

a greedy approximation algorithm (Dantzig, 1957) in O(n log(n)) time complexity. The method
relaxes the original problem by replacing the constraint bi ∈ {0, 1} with 0 ≤ bi ≤ 1 . Then the
approximated solution can be derived in a closed form.

We formulate the network pruning task as a approximate Knapsack problem. Given a network N
with convolutional layers Cl, 1≤ l≤L, we seek to prune its output channels with the least impact
on the classification accuracy under a target FLOPs budget C. Denote by PN the space of pruned
versions of N and by Acc the accuracy on a validation set X . We formulate the problem as follows:

max
Npruned

Acc(Npruned,X) (2)

s.t Npruned ∈ PN , FLOPs(Npruned) ≤ C

Optimizing the above problem is not straightforward as the accuracy Acc is not differentiable.
Therefore, it is common to use an approximated formulation that minimize the cross-entropy loss to
replace the Acc.

Yet, Eq. (2) remains costly to solve, therefore we next propose an additional approximation. Instead
of maximizing the accuracy (minimizing the cross-entropy loss), we minimize the change of the loss
due to zeroing-out the pruned network neurons. Correspondingly, we adjust the constraint of FLOPs
to constrain the accumulated FLOPs that are associated with the selected weights. The space PN can
be represented with a binary indicator vector b where bi∈{0, 1} indicates if the network’s weight wi

is zero or not. We denote by I(wi) the change of the loss LCE(x,Npruned) and by F (wi) the saving
of the FLOPs when setting bi to zero. Problem (2) can be now approximated as:

max
b

∑
i

biI(wi) (3)

s.t
∑
i

biF (wi) ≤ C, bi ∈ {0, 1} ∀i

The above Eq. (3) is equivalent to the Knapsack Problem Eq. (1). We will now describe how we
compute I(wi) and F (wi).

The change of loss I(wi) can be approximated by the first order Taylor Expansion of the loss function
(Molchanov et al., 2017). Formally, given a function f : Rn → R and a vector w ∈ Rn =

∑
i

wiei

where ei is the i-th canonical vector of Rn filled with 0 everywhere except for the 1-th coordinate.
Denote w̃j =

∑
i 6=j

wiei a copy of the vector w with the j-th coordinate replaced by zero. We have

f(w̃j) = f(
∑
i 6=j

wiei) ≈ f(w)− wj
∂f(w)

∂wj
.

Therefore the impact on the loss of zeroing the weight wo
l of the o-th output channel of the l-th layer

can be approximated by:

I(wo
l) ≈ −Ex

(
wo

l
T ∂L(x,w)

∂wo
l

)
(4)

where x is the input instances (images for example). The higher this value, the higher the impact
of the weight on the total loss. Unfortunately, the above approximation may be too noisy since the

3

Under review as a conference paper at ICLR 2021

expectation of the gradient is zero at the convergence point of the loss function. In (Molchanov

et al., 2017), they show that the variance of the quantity zol = wo
l
T ∂L(x,w)

∂wo
l

is usually non-zero

and correlates with the stability of the local function with respect to wo
l proposing the following

approximation instead:

I(wo
l) ≈ Ex

∣∣∣∣wo
l
T ∂L(x,w)

∂wo
l

∣∣∣∣ . (5)

Empirically, we observe that using the below approximation leads to better performances:

I(wo
l) ≈ Ex

(∣∣∣wo
l
T
∣∣∣ ∣∣∣∣∂L(x,w)

∂wo
l

∣∣∣∣) . (6)

In practice, the expectation in Eq. (4) can be approximated by averaging over a validation set.

Last, we need a formula to calculate the saving of FLOPs F (wi) after removing the network weight
wo

l . Up to now, we focus on the single weight. But in pruning we remove weights in groups. More
particularly, we remove a group of weights that are used to compute a channel, such as a filter in a
common convolutional layer. Given a convolution with Cl

i input channels of size H l×W l and Cl
o

output channels with kernel size kl×kl and stride sl, its FLOPs is Cl
oC

l
iH

lW l(kl)2/(sl)2. Zeroing
a group of weights related to wo

l requires removing both an output channel from layer Cl and an input
channel from layer Cl+1. Therefore, the saving of FLOPs is given by

F (wo
l) =

Cl
iH

lW l(kl)2

(sl)2
+
Cl+1

o H l+1W l+1(kl+1)2

(sl+1)2
. (7)

Solving the Knapsack Problem (3) could be done via dynamic programming. The complexity of the
dynamic programming is O(nFmax), and in our case, Fmax = max

i
F (wo

l) represents the maximum

FLOPs required by a convolutional channel of the network, and can be computed with Eq. (7). In
practice, we can reduce the computational complexity from O(nFmax) to O (nFmax/g), where g is
the Greatest Common Divisor (GCD) of the set {F (wo

l) ∀1≤ l≤L}. Dividing both F (wo
l) and C

by g accelerates the convergence time without changing the solution. The total knapsack runtime is
negligible in comparison to the network fine-tuning process discussed in Section 5. The details of
the optimization procedure are described in Algorithm (1) in the supplementary. In addition, we can
replace the FLOPS constraint by a running time constraint. In the supplementary material, we present
the results of some networks trained with such a method, and show that our formulation allows to get
time-pruned networks with the highest accuracy for a given inference time constraint.

4 PRUNING NON-SEQUENTIAL CONVOLUTIONS

To date, most pruning methods are restricted to sequential connections as non-sequential connections
are non trivial to prune. For example, pruning a filter whose output is to be added to the output of
another filter is problematic, because the addition operation implies that their impact is intertwined.
Even though there are several methods that prune ResNet, most of them will either avoid pruning
the convolutions connected to a skip-connection, provide a network whose inherent structure is not
pruned per-se but contains sparse convolutions, or use a scatter-add operation that empirically can
take more time than the gain by pruning itself.

We now suggest a novel method that allows pruning of non-sequential connections as part of the
proposed knapsack framework. The key idea is to group operations that together directly form a
channel or a group of channels in a feature map, such as all the convolutions whose outputs are
connected through a summation, a multiplication or any inherent constraint like the one in separable
convolution. In this setting, the channels of every group are pruned together, and the pruned network
structure is consistent with the unpruned one. This is only possible due to our knapsack formulation.

To make this more clear we take as an example a cell called inverted residual as shown in Figure 1
where we neglect activation functions for brevity. This cell appears in EfficientNet (Tan & Le,
2019), MNASnet (Tan et al., 2018) and MobileNet (Howard et al., 2019). This cell contains both
Squeeze-and-Excitation components (Hu et al., 2018) and dilated convolutions.

4

Under review as a conference paper at ICLR 2021

input
Point-
wise

expansion

Depth-
wise

convo-
lution

Squeeze-
and-

Excitation

Point-
wise
linear

projection

+ output

Average
Pooling

Reduction
Convo-
lution

Expansion
Convo-
lution

Gate *

Figure 1: Inverted Residual Block with Squeeze-and-
Excitation

There are three constraints on the inverted resid-
ual block. First, the output channels of the
’Point-wise linear projection’ have to match the
input of the current block because of the skip-
connection. Second, the output channels of the
’Point-wise expansion’ have to match the out-
put channels of the ’Depth-wise convolution’
since a Depth-wise convolution has a number of
output channels that corresponds the the num-
ber of input channels. Lastly, the output chan-
nels of the ’Depth-wise convolution’ have to
match the output channels of the ’Squeeze-and-
Excitation Expansion Convolution’ because of
the skip multiplication.

In order to prune this cell we build three groups of convolutions. The first includes the successive
’Point-wise linear projections’. The second includes the ’Point-wise expansions’, the ’Depth-wise
convolutions’ and ’Squeeze-and-Excitation Expansion convolutions’ of the same block. The third
consists of the ’Squeeze-and-Excitation Reduction Convolutions’. As mentioned above, for each of
these three groups we prune their associated channels together.

To the best of our knowledge, we are the first to suggest a pruning method that applies effectively to a
non-sequential architecture such as EfficientNet.

5 INNER KNOWLEDGE DISTILLATION AND FINE-TUNING

After we get the architecture of the pruned network, we fine-tune its weights. Here we present a
method that accelerates the process of fine-tuning by reducing the number of steps. For instance, in
TAS (Dong & Yang, 2019), they require 236 GPU hours to search for the pruned version of ResNet-18
using NVIDIA Tesla V100 GPUs. Our method finds the pruned network in less that 0.1 GPU hours
and requires 19 GPU hours to fine-tune the network. That is 12 times faster.

A common practice in fine-tuning is to incorporate a Knowledge Distillation term (Hinton et al.,
2015; Tian et al., 2020) in the loss function. This has proven to be very efficient and increases the
final accuracy of a student network when using a high accuracy teacher network.

Denote by NTeacher,NStudent, the teacher and student networks, and their respective output logits by

F t
out,Fs

out. Let SM(·) denote the softmax operator defined by SM(y)i =
exp(yi)∑
j exp(yj)

. The KD

enforces the output logits distributions of the teacher and student networks to be as similar as possible.
This is achieved by adding Kullback–Leibler divergence in the loss function as

LIKD =
∑
x,i

− log (SM (Fs
out(x))i) SM

(
F t

out(x)
)
i
. (8)

We next suggest a further loss term that aims for similarity between NTeacher and NStudent, not only
between their output logits but also between their internal feature maps.

A distillation at the level of the feature maps between two different networks has already been studied
by previous works such as (Romero et al., 2015; Heo et al., 2019), but the internal feature maps on
which the distillation is performed are chosen arbitrarily, since the teacher and student networks have
different structures. In the scope of pruning, we do not have this limitation since the teacher and
student networks have the exact same structure up to the number of channels in every convolution.
As far as we know, we are the first to use a feature maps distillation for pruning. What allows us to
perform such a distillation is the one-shot nature of our method, meaning that we choose only once
the channel to be pruned, unlike iterative methods such as (Peng et al., 2019; He et al., 2019; Dong &
Yang, 2019) where the choice of the weights to be pruned is constantly updated during the process.

Let F t
l be the output feature map at the l-th layer of NTeacher with Ct

l channels. Similarly, the output
feature map at the l-th layer of NStudent is Fs

l with Cs
l channels. In our case, NTeacher and NStudent

have the same structure apart from their convolutional channel numbers. Hence we could transfer the
knowledge inside the network at the level of the convolutional layers. Since the convolution before
activation is a linear operator, we require the pruned network to reconstruct the original feature map.

5

Under review as a conference paper at ICLR 2021

1 2 3 4 5 6 7 8 9
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

ResNet-50

ResNet-101

ResNet-18

DenseNet169

DenseNet201
DenseNet264

Inception-v3

Inception-v2

Xception
ResNext50

FLOPs (Billions)

To
p-

1
A

cc
ur

ac
y

(%
)

Accuracy vs FLOPs on ImageNet

ResNet-101-Pruned

ResNet-101-Baseline

ResNet-50-Pruned

ResNet-50-Baseline

ResNet-18-Pruned

ResNet-18-Baseline

(a) Comparison of deep pruned and shallower unpruned
networks. Pruning ResNet-101 provides a network with
less FLOPs and better accuracy than other networks.

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
74.25
74.5
74.75

75
75.25
75.5
75.75

76
76.25
76.5
76.75

77
77.25
77.5
77.75

78
78.25
78.5

SFPTaylor

AutoSlim
FPGM

FPGM

Taylor-FO-BN

Slimable

CCP AOFP-C1

TAS

FLOPs (Billions)

To
p-

1
A

cc
ur

ac
y

(%
)

Accuracy vs FLOPs of ResNet-50 on ImageNet

Ours
Others

(b) Impact of baseline. Every color is a different base-
line. Red, blue and green entries are respectively from
our, PyTorch and TAS baseline (dotted lines).

Figure 2: Top-1 accuracy v.s. FLOPs for pruned ResNets on ImageNet.

We call this the Inner Knowledge Distillation (IKD). Mathematically, we define the IKD loss term as

LIKD =
∑
x

(∑
l

∥∥F t
l (x,Wt)−M lFs

l (x,Ws)
∥∥2
2

)
(9)

whereWl represents the weight matrix at layer l and M l is a (Ct
l×Cs

l) matrix that aims to reconstruct
the features maps F t

l from Fs
l , and is added to the list of learnable variables in the fine-tuning process.

To avoid degenerate solutions, we add a weight decay regularization term to M l, that behaves like a
ridge regression regularizer.

The final loss used in the fine-tuning combines the original cross-entropy loss LCE, the Knowledge
Distillation loss (8) and the Inner Knowledge Distillation loss (9):

L = LCE + λIKDLIKD + λKDLKD (10)
6 EXPERIMENTS

In this section, we present empirical results of our pruning method on three different benchmarks:
ImageNet (Deng et al., 2009), CIFAR-10 and CIFAR-100 (Krizhevsky, 2009). To show robustness
to the architecture, we experiment with a variety of depths of ResNet (He et al., 2015) as well as
EfficientNet (Tan & Le, 2019).

The experimental protocol is as follows: We first train a full-size baseline network on the selected
dataset, next we prune it using our Knapsack formulation and last we apply fine-tuning with IKD for
50 epochs only, even though most of the other methods fine-tune for more than 100 epochs. In both
datasets, we show significant accuracy improvement compared to the other methods. In particular,
when pruning ResNet-50 on imagenet using the standard Pytorch baseline, we get an network
with 1% more accuracy than other SOTA methods for same pruning ratio (see Fig 2b).

6.1 IMAGENET

COMPARISON TO OTHER PRUNING METHODS To test our method on ImageNet, we used three
versions of ResNet (He et al., 2015): ResNet-18, ResNet-50, and ResNet-101.

Table 3 and Figure 2b compare our results for different pruning ratios with previous works. It can be
seen that our results are consistently better than the state-of-the-art.

COMPARISON TO COMMON CLASSIFICATION NETWORKS To further evaluate the benefits of
our pruning approach we present in Figure 2a a comparison of the performance of our pruned
networks with popular architectures: Inception (Szegedy et al., 2016), DenseNet (Huang et al., 2017),
ResNext (Xie et al., 2017) and Xception (Chollet, 2017). We compare both Top-1 accuracy and
computational cost (FLOPs). It can be seen that our pruned networks consistently provide higher
accuracy than other networks, for a given number of FLOPs.

6

Under review as a conference paper at ICLR 2021

Baseline IKD Prune Acc Acc Drop FLOPs Prune Ratio ↓
High 3 78.20% 0.27% 2.46E9 40.64%High 7 77.12% 1.35%

PyTorch 3 76.60% -0.46% 2.38E9 42.56%PyTorch 7 76.17% -0.03%
High 3 77.82% 0.65% 2.05E9 50.50%High 7 76.70% 1.77%

PyTorch 3 76.21% -0.07% 2.03E9 50.80%PyTorch 7 75.94% 0.21%

Table 1: Ablation study of ResNet-50 on ImageNet.

ABLATION STUDY Next, we present an ab-
lation study, to assess the contribution of the
various components of our approach. We took
ResNet-50 as backbone and experimented with
two variants: (i) With and without IKD, and (ii)
our baseline training vs. PyTorch baseline. Re-
sults are presented in Table 1. For a fair compari-
son with regard to the impact of our baseline, we
take the original implementation of FPGM (He
et al., 2019) and prune our own baseline ResNet-
50 instead of the original PyTorch one. Next,
we prune ResNet-50 using the same baseline of 77.46% top-1 accuracy as TAS(Dong & Yang, 2019).
In both cases, we can see that our method provides better results, no matter the baseline we start from
as can be seen in Figure 2b.
IKD: When using IKD, we have more than 1% improvement than when not using KID, both for
pruning 50% of ResNet-50 and pruning 41%. As could be expected, when using as baseline the
low-accuracy network provided with PyTorch, the performance improvement by the IKD step is
smaller, going from 76.17% without IKD to 76.60% with IKD.
Baseline: To measure the impact of the baseline on our method, we choose to prune ResNet-50 with
the official PyTorch (Paszke et al., 2019) pre-trained weights (76.15% accuracy on ImageNet). This
is the common evaluation scheme adopted by most works. Comparing our results in Table 1 with
those of previous work in Table 3 shows that our method still provides the highest accuracy.
Knapsack: To assess the contribution of the Knapsack formulation, we have pruned 42.6% of ResNet-
50 on ImageNet on the official Pytorch baseline using Molchanov’s criterion only (Molchanov et al.,
2019), without the Knapsack formulation and have obtained 75.26% accuracy, while the addition of
the Knapsack formulation (without IKD) led to 76.17% accuracy, an improvement 0.91%. This result
stands to demonstrate the importance of the Knapsack formulation, and that our results are not due to
the fact that we use the Taylor Expansion criterion.

6.2 PRUNING THE NON-SEQUENTIAL EFFICIENTNET

Network Acc FLOPs Speed (Im/s)

MobileNetV3 Large 75.2% 0.21E9 1730
EfficientNet B0 Pruned 75.5% 2133
EfficientNet B0 77.3% 0.39E9 1230
EfficientNet B1 Pruned 78.3% 1355
EfficientNet B1 79.2% 0.7E9 784
EfficientNet B2 Pruned 79.9% 882
EfficientNet B2 80.3% 1.0E9 595
EfficientNet B3 Pruned 80.8% 683
EfficientNet B3 81.7% 1.8E9 350
EfficientNet B4 Pruned 81.9% 385

Table 2: Comparison of pruned and original versions of
EfficientNet on GPU NVIDIA P100.

As described in Section 4, our approach can
be applied also to prune architectures with non-
sequential convolutions and skip-connections
such as EfficientNet (Tan & Le, 2019). To the
best of our knowledge, this is the first attempt
to prune these types of networks.

We experimented with 4 variants, comparing
pruned EfficientNet B{n} with EfficientNet
B{n − 1}, where n ∈ {1, 2, 3, 4}. For a fair
comparison with the unpruned baselines, we
followed the published EfficientNet training pro-
tocol without IKD. Results are presented in Ta-
ble 2. It can be observed that the pruned net-
works achieve higher accuracy than the base-
lines with the same number of FLOPs. An in-
teresting observation is that despite having the
same theoretical computational complexity, the pruned networks run faster than the unpruned ones.
Furthermore, our pruned version of EfficientNet B0 led to a network with the same amount of FLOPs
as MobileNetV3-large (Howard et al., 2019) and a better accuracy.

6.3 CIFAR

For the CIFARs datasets, we train ResNet-56 on CIFAR-10 and CIFAR-100 according to the same
protocol used for ImageNet while changing the number of epochs to 300. Our top-1 accuracy baseline
is 94.2% for CIFAR-10 and 73.55% for CIFAR-100. Results and comparisons to other works can be
seen on the left of Table 4.

7

Under review as a conference paper at ICLR 2021

Model Method Top-1 Top-5 FLOPs Prune
RatioPrune Acc Acc Drop Prune Acc Acc Drop

ResNet-18

LCCL (Dong et al., 2017) 66.33% 3.65% 86.94% 2.29% 1.19E9 34.6%
SFP (He et al., 2018a) 67.10% 3.18% 87.78% 1.85% 1.06E9 41.8%

FPGM (He et al., 2019) 68.41% 1.87% 88.48% 1.15% 1.06E9 41.8%
TAS (Dong & Yang, 2019) 69.15% 1.50% 89.19% 0.68% 1.21E9 33.3%

Ours 69.96% 1.23% 89.60% 0.59% 1.17E9 35.77%
Ours 69.35% 1.84% 89.23% 0.96% 1.09E9 40.01%

ResNet-50

SFP (He et al., 2018a) 74.61% 1.54% 92.06% 0.81% 2.38E9 41.8%
CP (He et al., 2017) - - 90.80% 1.40% 2.04E9 50.0%

Taylor (Liu & Liu, 2018) 74.50% 1.68% - - 2.25E9 44.9%
AutoSlim (Yu & Huang, 2019) 76.00% - - - 3.00E9 26.6%

FPGM (He et al., 2019) 75.50% 0.65% 92.63% 0.21% 2.36E9 42.2%
SSS (Huang & Wang, 2018) 71.82% 4.30% 90.79% 2.07% 2.33E9 43.4%

Taylor-FO-BN (Molchanov et al., 2019) 75.48% 0.70% - - 2.66E9 35.5%
Slimable (Yu et al., 2019) 74.90% 1.20% - - 2.30E9 44.0%
CCP (Peng et al., 2019) 75.50% 0.65% 92.62% 0.25% 2.13E9 48.8%

AOFP-C1 (Ding et al., 2019a) 75.53% -0.29% 92.69% -0.13% 2.58E9 32.88%
TAS (Dong & Yang, 2019) 76.20% 1.26% 93.07% 0.48% 2.31E9 43.5%

Ours 78.20% 0.27% 93.98% -0.10% 2.46E9 40.64%
Ours 78.02% 0.45% 93.88% 0.00% 2.30E9 44.47%
Ours 77.80% 0.67% 93.78% 0.10% 2.05E9 50.21%

ResNet-101

Taylor-FO-BN (Molchanov et al., 2019) 75.38% - - - 2.47E9 69.3%
FPGM (He et al., 2019) 77.32% 0.05% 93.56% 0.00% 4.51E9 42.2%

RSNLIA (Ye et al., 2018) 75.27% 2.10% - - 4.13E9 47.0%
AOFP-D2 (Ding et al., 2019a) 76.40% 0.23% 93.07% 0.22% 3.77E9 50.19%

Ours 79.17% 1.25% 94.54% 0.63% 2.48E9 69.21%
Ours 78.36% 2.06% 94.27% 0.90% 1.81E9 77.50%
Ours 77.56% 2.86% 93.68% 1.49% 1.37E9 83.00%

Table 3: Comparison of different pruning algorithms for different ResNet backbones on ImageNet.

Method CIFAR-10 CIFAR-100
Prune Acc Acc Drop FLOPs Prune Acc Acc Drop FLOPs

PFEC (Li et al., 2017) 93.06% -0.02% 9.09E7 (27.6%) − − −
LCCL (Dong et al., 2017) 92.81% 1.54% 7.81E7 (37.9%) 68.37% 2.96% 7.63E7 (39.3%)
AMC (He et al., 2018b) 91.90% 0.90% 6.29E7 (50.0%) − − −
SFP (He et al., 2018a) 93.35% 0.56% 5.94E7 (52.6%) 68.79% 2.61% 5.94E7 (52.6%)

FPGM (He et al., 2019) 93.49% 0.42% 5.94E7 (52.6%) 69.66% 1.75% 5.94E7 (52.6%)
CCP (Peng et al., 2019) 93.69% -0.19% 6.61E7 (47.0%) - - -

TAS (Dong & Yang, 2019) 93.69% 0.77% 5.95E7 (52.7%) 72.25% 0.93% 6.12E7 (51.3%)

Ours 93.83% 0.69% 5.79E7 (53.8%) 72.62% 0.93% 6.25E7 (50.2%)

Table 4: Comparison of different pruning algorithms for ResNet-56 on CIFAR.

7 CONCLUSION

In this paper we have presented a new formulation and method for the pruning task, which enables us
to simultaneously optimize over both accuracy and FLOPs measures, as well as distill knowledge from
the unpruned network. This method has provided state-of-the-art empirical results on ImageNet and
CIFAR datasets, which demonstrate the effectiveness of our proposed solution. We have observed that
pruning a heavy deep network with our method can provide better accuracy than a shallower one with
the same computational complexity (whether the latter was designed with a Network Architecture
Search method or manually). These findings may suggest that the Network Architecture Search task
should focus on finding inflated over-parametrized networks, while leaving the designing of efficient
networks for the pruning and knowledge distillation methods.

8

Under review as a conference paper at ICLR 2021

REFERENCES

François Chollet. Xception: Deep learning with depthwise separable convolutions. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pp. 1800–1807, 2017.

Elliot J. Crowley, Gavin Gray, and Amos Storkey. Moonshine: Distilling with cheap convolutions. In
Advances in Neural Information Processing Systems, 2018.

George Dantzig. Discrete-variable extremum problems. Operation Research, 5(2):266–288, April
1957. ISSN 0030-364X. doi: 10.1287/opre.5.2.266. URL https://doi.org/10.1287/
opre.5.2.266.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, and Chenggang Yan. Approximated oracle
filter pruning for destructive CNN width optimization. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp.
1607–1616, 2019a.

Xiaohan Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, Ji Liu, et al. Global sparse momentum
sgd for pruning very deep neural networks. In Advances in Neural Information Processing Systems,
pp. 6379–6391, 2019b.

Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. In Neural
Information Processing Systems (NeurIPS), 2019.

Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more complicated
network with less inference complexity. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5840–5848, 2017. doi: 10.1109/CVPR.2017.205.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306,
2006.

Shenshen Gu and Tao Hao. A pointer network based deep learning algorithm for 0–1 knapsack
problem. In 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI),
pp. 473–477. IEEE, 2018.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 28, pp. 1135–1143. Curran Associates,
Inc., 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2015.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence, IJCAI’18, pp. 2234–2240. AAAI Press, 2018a. ISBN 978-0-9992411-2-7.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pp. 1398–1406, 10 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In ECCV (7), pp. 815–832, 2018b.

9

https://doi.org/10.1287/opre.5.2.266
https://doi.org/10.1287/opre.5.2.266

Under review as a conference paper at ICLR 2021

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A
comprehensive overhaul of feature distillation. In The IEEE International Conference on Computer
Vision (ICCV), October 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning Workshop, 2015.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching
for MobileNetV3. arXiv e-prints, art. arXiv:1905.02244, May 2019.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. CoRR, abs/1607.03250, 2016. URL
http://arxiv.org/abs/1607.03250.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 2261–2269, 2017.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks.
ECCV, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, Toronto, 2009.

Yann Lecun, John Denker, and Sara Solla. Optimal brain damage. In Advances in Neural Information
Processing Systems, volume 2, pp. 598–605, 01 1989.

Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang Lin, and Xiaojun
Chang. Blockwisely supervised neural architecture search with knowledge distillation, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall F. Tappen, and Marianna Pensky. Sparse
convolutional neural networks. In CVPR, pp. 806–814. IEEE Computer Society, 2015.

Chongyang Liu and Qinrang Liu. Improvement of pruning method for convolution neural network
compression. In Proceedings of the 2018 2Nd International Conference on Deep Learning
Technologies, ICDLT ’18, pp. 57–60, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-6473-
7.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736–2744, 2017.

Harry M Markowitz and Alan S Manne. On the solution of discrete programming problems. Econo-
metrica: journal of the Econometric Society, pp. 84–110, 1957.

Davide Martini. Application of neural network for the knapsack problem. online PDF, 2019.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

10

http://arxiv.org/abs/1607.03250

Under review as a conference paper at ICLR 2021

Andrew M Odlyzko. The rise and fall of knapsack cryptosystems. Cryptology and computational
number theory, 42:75–88, 1990.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou Huang. Collaborative channel pruning for
deep networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 5113–5122, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Adriana Romero, Samira Ebrahimi Kahou, Polytechnique Montréal, Y. Bengio, Université De
Montréal, Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. In in International Conference on
Learning Representations (ICLR, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2818–2826,
2016.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6105–6114, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V. Le. Mnasnet: Platform-aware
neural architecture search for mobile. In CVPR, 2018.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In Interna-
tional Conference on Learning Representations, 2020.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. ArXiv, abs/1907.09682,
2019.

Daniel C Vanderster, Nikitas J Dimopoulos, Rafael Parra-Hernandez, and Randall J Sobie. Re-
source allocation on computational grids using a utility model and the knapsack problem. Future
Generation computer systems, 25(1):35–50, 2009.

Hui Wang, Hanbin Zhao, Xi Li, and Xu Tan. Progressive blockwise knowledge distillation for neural
network acceleration. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, IJCAI’18, pp. 2769–2775. AAAI Press, 2018. ISBN 9780999241127.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 5987–5995, 2017.

Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part X, pp. 289–304, 2018.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. In International Conference on Learning
Representations, 2018.

11

Under review as a conference paper at ICLR 2021

Jiahui Yu and Thomas Huang. Network slimming by slimmable networks: Towards one-shot
architecture search for channel numbers. In arXiv e-prints, 03 2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks. In
International Conference on Learning Representations, 2019.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad Morariu, Xintong Han, Mingfei Gao, Ching-
Yung Lin, and Larry Davis. Nisp: Pruning networks using neuron importance score propagation.
In arXiv e-prints, pp. 9194–9203, 06 2018. doi: 10.1109/CVPR.2018.00958.

12

	Introduction
	Related Works
	Methodology to Prune Sequential Convolutions
	Knapsack Problem and Pruning

	Pruning Non-Sequential Convolutions
	Inner Knowledge Distillation and Fine-Tuning
	Experiments
	ImageNet
	Pruning the Non-Sequential EfficientNet
	CIFAR

	Conclusion

