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ABSTRACT

Large language models (LLMs) have been effectively used for many computer
vision tasks, including image classification. In this paper, we present a simple
yet effective approach for zero-shot image classification using multimodal LLMs.
By employing multimodal LLMs, we generate comprehensive textual representa-
tions from input images. These textual representations are then utilized to gener-
ate fixed-dimensional features in a cross-modal embedding space. Subsequently,
these features are fused together to perform zero-shot classification using a lin-
ear classifier. Our method does not require prompt engineering for each dataset;
instead, we use a single, straightforward, set of prompts across all datasets. We
evaluated our method on several datasets, and our results demonstrate its remark-
able effectiveness, surpassing benchmark accuracy on multiple datasets. On aver-
age over ten benchmarks, our method achieved an accuracy gain of 4.1 percentage
points, with an increase of 6.8 percentage points on the ImageNet dataset, com-
pared to prior methods. Our findings highlight the potential of multimodal LLMs
to enhance computer vision tasks such as zero-shot image classification, offering
a significant improvement over traditional methods.

1 INTRODUCTION

Zero-shot image classification aims to categorize images into classes unseen during training, pre-
senting a significant challenge in computer vision. Recent approaches leverage the power of large
language models (LLMs) like GPT-4 (Brown et al. (2020)) to generate prompts for target classes,
often in conjunction with vision-language models such as CLIP (Radford et al. (2021)) to embed
images and text in a common space. Open-vocabulary models like CLIP (Radford et al. (2021)) and
VirTex (Desai & Johnson (2021)) have shown promise in this area due to their ability to generalize
to unseen classes. These models learn to match images with captions from vast amounts of image-
text data, allowing for dynamic classification without retraining. Early works like DeViSE (Frome
et al. (2013)) pioneered the concept of a joint embedding space for images and text, enabling gen-
eralization to unseen classes. Approaches like CLIP (Radford et al. (2021)), based on contrastive
learning, and ALIGN (Jia et al. (2021)), employing a two-stage framework, further refined the align-
ment of image and text representations. More recent approaches for zero-shot image classification
(e.g., Pratt et al. (2023); Menon & Vondrick (2023)) have utilized LLMs to generate prompts (i.e.,
captions or descriptions) for the target classes to further improve the classification accuracy.

However, relying solely on visual features of the input images during inference can limit accuracy,
as these features may not be sufficient to fully capture the nuances present in textual descriptions.
To address this, we propose a novel method that leverages the capabilities of multimodal LLMs to
generate rich textual representations of the input images. Multimodal LLMs, such as GPT-4 (Brown
et al. (2020)) and Gemini (Gemini Team Google (2023)), have demonstrated remarkable abilities
in various tasks. They are capable of processing and integrating information from various sources
like text, images, and audio. This allows them to perform tasks that were previously impossible,
such as generating detailed image descriptions, answering complex visual questions, and even cre-
ating realistic images from text. Inspired by these advancements, we utilize a straightforward set
of prompts to generate detailed textual descriptions of the input images, eliminating the need for
complex prompt engineering seen in previous works (e.g., Radford et al. (2021); Guo et al. (2023)).
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Input image

The image shows a branch of a tree with two
small, round, red fruits. The fruits are about …

(2) Image description (at inference)

Wild rose fruits (hips) are the fleshy, berry-like
structure that develops after the flower …

A rosehip looks similar to a strawberry, but with a
more oblong shape. It is typically red or …Multimodal LLM

Class label: rosehip

…

(1) [Optional] Class label descriptions (offline)

apple

(3) LLM’s prediction (at inference)

LLM

Class label: rosehip

Class label descriptions (offline)

Wild rose fruits (hips) are the fleshy, berry-like
structure that develops after the flower …

A rosehip looks similar to a strawberry, but with a
more oblong shape. It is typically red or …

…

Our method’s utilization of Multimodal LLMsPrior work’s (e.g., CuPL) utilization of LLMs

Figure 1: An illustration of the difference between our work and prior work (e.g., CuPL (Pratt et al.
(2023))) in terms of using LLMs. Prior works use LLMs to describe class labels while we use
multimodal LLMs to describe input images and class labels as well as making initial predictions.
The shown image is sourced from the ImageNet dataset (Deng et al. (2009)).

These textual representations are then fused with visual features to perform zero-shot classification.
See Figure 1.

Our method offers several key advantages: it significantly improves classification accuracy by in-
corporating richer textual information extracted directly from the input images; it employs a simple
and universal set of prompts, eliminating the need for dataset-specific prompt engineering; and it
outperforms existing methods on a variety of benchmark datasets. By employing multimodal LLMs
and a straightforward set of prompts, our method outperforms previous zero-shot image classifica-
tion methods. Specifically, our method achieves an average accuracy gain of 4.1 percentage points
over ten image classification benchmark datasets and an accuracy increase of 6.8% on the ImageNet
dataset (Deng et al. (2009)).

In the following sections, we detail our proposed approach for zero-shot image classification using
LLMs (Section 2), present experimental results across ten benchmark datasets (Section 3), analyze
the computational resources used (Section 4), discuss limitations (Section 5), and conclude with
future directions (Section 6).

2 METHOD

Given an input image, X, containing object(s) belonging to a single class label from a finite set of
class labels, {li}mi=1, our objective is to classify X without any dataset-specific training process for
image classification. The overview of our method is illustrated in Figure 2. As shown in Figure 2, our
approach relies on a cross-modal embedding encoder models (image encoder, fi, and text encoder,
ft), trained to learn joint representations of images and text, as demonstrated in prior works, such as
Radford et al. (2021); Frome et al. (2013); Jia et al. (2021). Additionally, we utilize a multimodal
LLM, g, which is pre-trained on a large corpus of multimodal data. This model, g, is designed to
generate responses that align with both textual and visual inputs, effectively integrating information
from both modalities for enhanced predictions (e.g., Gemini Team Google (2023)).

2.1 CLASS LABEL FEATURES

Our zero-shot classifier utilizes class label features of the target dataset. We first encode the set of
class labels, {li}mi=1, in some embedding space by the cross-modal encoder models, fi, and ft, such
that {Li}mi=1 refers to the set of encoded class label features, where Li ∈ Rn is a normalized n-D
class label feature of the class label li and n is the dimensionality of the embedded features.

Our zero-shot classifier uses the embedded class labels by representing {Li} as a 2D matrix, M ∈
Rn×m, by stacking all encoded class label features:
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Testing image, 𝐗

Text encoder, 𝑓!

What do you see?

Classify the image 

given the class labels

Multimodal LLM

Image description

Initial class prediction

Image 
encoder, 𝑓"

Image 
feature, 𝐗𝐢𝐟

Description 
feature, 𝐗𝐝𝐟

Initial prediction 
feature, 𝐗𝐩𝐟

Query feature, 
𝐗𝐪 Linear 

classifier

Standard zero-shot

Class label 
features, {𝐋𝐢} 

…

<British 
Shorthair>

<Egyptian 
Mau>

<Siamese>

<Predicted class>

Proposed method
<Predicted class>

Proposed method

Standard zero-shot

Figure 2: We propose a zero-shot image classification method that leverages multimodal large lan-
guage models (LLMs) to enhance the accuracy of standard zero-shot classification. Our method
employs a set of engineered prompts to generate image description and initial class prediction by
the LLM. Subsequently, we encode this data along with the input testing image using a cross-modal
embedding encoder to project the inputs into a common feature space. Finally, we fuse the gener-
ated features to produce the final query feature, which is then utilized by a standard zero-shot linear
image classifier to predict the final class. The shown image is sourced from the Pets dataset (Parkhi
et al. (2012)).

The image shows a living room with a fireplace, a rocking chair, and two paintings 
on the wall. The fireplace is made of brick and has a mantel above it. The rocking 
chair is made of wood and has a green cushion. The paintings are both 
landscapes.

Input image

CLIP predicted class label        : bell cote, bell cot

Our initial predicted class label : fireplace

Our final predicted class           : rocking chair, rocker

Ground-truth class                    : rocking chair, rocker

bell cote

patio

rocking chair

bolete
recreational 

vehicle

CLIP top-5

rocking chair

bell cote

fire screen

tile roof

briard

Our top-5

Figure 3: Our method utilizes image description and initial class prediction generated by LLM, in
addition to the input image, to improve the zero-shot classification accuracy of cross-modal embed-
ding models, such as CLIP (Radford et al. (2021)). The shown image is from the ImageNet dataset
(Deng et al. (2009)).

M = [L1, . . . ,Lm]. (1)

Such an encoded feature matrix can be generated using one of three options: (1) directly
from the textual class labels, (2) using a human-designed template – e.g., ‘‘A photo of
{class label}” (Radford et al. (2021); Guo et al. (2023)), where {class label} refers to
the textual label of one of our classes {li}mi=1, or (3) LLM-generated class description(s) (Pratt et al.
(2023)). In option (3), the LLM-generated class description(s) are then converted to embedded fea-
tures, followed by fusion (e.g., averaging) to generate a single embedded feature for each class label
in the dataset. Optionally, all features from the three options can be fused together (e.g., averaged)
for increased robustness.

2.2 CROSS-MODAL INPUT FEATURES

To predict the final class, we first encode the input image by the cross-modal image encoder model,
fi, to generate the image feature Xif ∈ Rn as described below:
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X̃if = fi (X) , (2)

Xif =
1

‖X̃if‖
X̃if, (3)

where ‖ · ‖ performs vector normalization. Traditionally, the image feature serves as the sole input
to prior zero-shot image classifiers (Pratt et al. (2023); Radford et al. (2021); Guo et al. (2023)). Our
method enhances this input by incorporating the LLM, g, which generates additional textual-based
inputs for our zero-shot image classifier (see Figure 3). To achieve this, we employ an engineered
prompt that instructs the LLM to describe the input image, X, and perform initial image classifica-
tion using the textual names of the class label set {li}mi=1. Denoting pd and pc as our prompts for
image description and initial image classification, respectively, we generate two additional embed-
ded features alongside Xif by:

X̃df = (ft ◦ g) (X, pd) , (4)

Xdf =
1

‖X̃df‖
X̃df, (5)

X̃pf = (ft ◦ g) (X, pc) , (6)

Xpf =
1

‖X̃pf‖
X̃pf, (7)

where Xdf ∈ Rn and Xpf ∈ Rn refer to the image description feature and initial class prediction
feature, respectively. Notably, in our method, unlike prior methods (e.g., Pratt et al. (2023); Radford
et al. (2021); Guo et al. (2023)), such prompts pd and pc do not require dataset-specific engineering
for each dataset. Instead, we employ fixed prompts: the first prompt instructs the LLM to provide
a generic image description, while the second prompt includes the textual class labels of the target
dataset. Further details regarding our prompts are provided in the supplemental materials (Appendix
A).

After generating the three input features (image feature, description feature, and initial prediction
feature), we fuse them to generate our final query feature, Xq. One can interpret this fusion as an
ensemble of different candidate features to generate a more precise query feature (see Figure 4). We
adopted a simple fusion, where the final query feature, Xq, is generated by:

X̃q = Xif + Xdf + Xpf , (8)

Xq =
1

‖X̃q‖
X̃q . (9)

We found that this simple fusion yields good results compared to alternative fusion approaches.
Refer to Section 3.2 for ablation studies.

2.3 CLASS LABEL PREDICTION

After computing our query feature, Xq, we apply our zero-shot linear classifier weights, M, to the
fused query feature, Xq, to generate the final similarity scores (i.e., “logits”) of our prediction. This
process can be described as follows:

W = XT
q M, (10)
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There are five pencils in a row. They are all yellow with 
green ferrules and pink erasers. The pencils are arranged 
in order from left to right, with the smallest pencil on the 
left and the largest pencil on the right.

CLIP predicted class label        : pencil sharpener

Our initial predicted class label : pencil

Our final predicted class           : rubber eraser, rubber

Ground-truth class                    : rubber eraser, rubberInput image

Other classes
Input features
Query feature
Ground-truth class

Figure 4: Our query feature is a fusion of features extracted from the input image, image description,
and initial prediction. This fusion operates similarly to ensembling, where our fused query feature
demonstrates better robustness, achieving higher accuracy compared to traditional image features
used in cross-modal-based zero-shot image classification; e.g., CLIP (Radford et al. (2021)). On the
right, the t-SNE (Van der Maaten & Hinton (2008)) plot shows the class-embedded features of the
ImageNet dataset (Deng et al. (2009)) (in gray, with the ground-truth class of the shown image in
green), our input features (in red), and the query feature after fusion (in blue).

where T represents the vector transpose operation to transform Xq into a row vector of shape 1×n,
and W ∈ R1×m contains the similarity scores of the generated query feature to the class label
features in the target dataset. The index of the final predicted class is then computed as argmax (W)
that corresponds to the maximum similarity score.

3 EXPERIMENTS

In our experiments, we employed Gemini Pro (Gemini Team Google (2023)) as our multimodal
LLM, g, for generating image descriptions and initial predictions. We utilized CLIP (ViT-L/14)
(Radford et al. (2021)) as our cross-modal embedding encoder models, fi and ft, to encode input
testing images, image descriptions, and initial predictions generated by Gemini Pro.

We explored four different versions of class label features, M, in Equation 1. Specifically, we
used CLIP to encode the following representations of class labels: 1) class label names, 2) the
text template ‘‘A photo of {class label}’’, where {class label} denotes each class
label in each dataset, and 3) class descriptions, similar to those generated by CuPL (Pratt et al.
(2023)), and 4) a combination of the aforementioned three options—akin to the fusion of our input
features, we combined the three encoded features of each class and computed their average feature.
The class descriptions were produced by prompting Gemini Pro to describe each class label in the
dataset 50 times, resulting in 50 different class descriptions for each class. Subsequently, we utilized
CLIP to encode the 50 class descriptions for each class and compute the average encoded feature
vector to represent each class label. The class description features are generated once as described
in Section 2. The exact prompts used to generate image descriptions, initial predictions, and class
description are detailed in Appendix A.

3.1 RESULTS

We evaluated our method on the following datasets: ImageNet (Deng et al. (2009)), Pets (Parkhi
et al. (2012)), Places365 (Zhou et al. (2017)), Food-101 (Bossard et al. (2014)), SUN397 (Xiao
et al. (2010; 2016)), Stanford Cars (Krause et al. (2013)), Describable Textures Dataset (DTD)
(Cimpoi et al. (2014)), Caltech-101 (Fei-Fei et al. (2004)), CIFAR-10 (Krizhevsky et al. (2009)),
and CIFAR-100 (Krizhevsky et al. (2009)). We compared our results against the following zero-shot
classification methods: CLIP (Radford et al. (2021)), SLIP (Mu et al. (2022)), PyramidCLIP (Gao
et al. (2022)), nCLIP (Zhou et al. (2023)), NLIP (Huang et al. (2023)), UniCLIP (Lee et al. (2022)),
ALIP (Yang et al. (2023)), CALIP (Guo et al. (2023)), and CuPL (Pratt et al. (2023)). For CuPL
(Pratt et al. (2023)), we utilized Gemini Pro (Gemini Team Google (2023)) for computing class
descriptions instead of GPT-3 (Brown et al. (2020)), ensuring a fair comparison with our method,
which also employs Gemini Pro. Additionally, it is worth mentioning that the results reported in
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Table 1: Comparison of classification accuracy between our method and prior work across various
datasets, including ImageNet (Deng et al. (2009)), CIFAR-10 (C-10) (Krizhevsky et al. (2009)),
CIFAR-100 (C-100) (Krizhevsky et al. (2009)), Food-101 (Bossard et al. (2014)), SUN397 (Xiao
et al. (2010; 2016)), Cars (Krause et al. (2013)), DTD (Cimpoi et al. (2014)), Caltech-101 (Fei-Fei
et al. (2004)), Pets (Parkhi et al. (2012)), and Places (Zhou et al. (2017)). We report our results
with the following class label features: 1) class descriptions, 2) class labels, 3) the template “A
photo of {class}”, and combined features of (1-3). The symbol ∗ denotes training-free meth-
ods, whereas the symbol♦ represents few-shot methods. The best results are highlighted in yellow ,
and the best zero-shot classification results are highlighted in bold.

Dataset (number of classes/number of testing images)

Method ImageNet
(1K/50K)

C-10
(10/10K)

C-100
(100/10K)

Food
(101/25.3K)

SUN
(397/19.9K)

Cars
(196/8K)

DTD
(47/1.9K)

Caltech
(101/8.7K)

Pets
(37/3.7K)

Places
(365/36.5K)

CLIP (ViT-L/14) (Radford et al. (2021)) 65.1 87.6 54.3 86.8 61.2 65.1 46.7 83.4 87.9 37.3
CLIP (ViT-B/32) (Radford et al. (2021)) 47.0 73.4 41.4 70.8 56.5 43.8 37.0 84.4 72.9 35.6
CLIP (ViT-B/16) (Radford et al. (2021)) 54.9 66.5 37.6 80.1 58.5 52.6 37.9 85.3 80.4 36.3
CLIP (RN50) (Radford et al. (2021)) 43.0 42.7 16.0 57.4 46.3 34.3 30.5 79.1 64.7 29.7
CLIP (RN101) (Radford et al. (2021)) 44.0 49.0 22.4 64.3 50.2 44.5 34.0 83.2 66.3 30.9
SLIP (Mu et al. (2022)) 47.9 87.5 54.2 69.2 56.0 9.0 29.9 80.9 41.6 -
PyramidCLIP (Gao et al. (2022)) 47.8 81.5 53.7 67.8 65.8 65.0 47.2 81.7 83.7 -
nCLIP (Zhou et al. (2023)) 48.8 83.4 54.5 65.8 59.9 18.0 57.1 73.9 33.2 -
NLIP (Huang et al. (2023)) 47.4 81.9 47.5 59.2 58.7 7.8 32.9 79.5 39.2 -
UniCLIP (Lee et al. (2022)) 54.2 87.8 56.5 64.6 61.1 19.5 36.6 84.0 69.2 -
ALIP (Yang et al. (2023)) 40.3 83.8 51.9 45.4 47.8 3.4 23.2 74.1 30.7 -
CALIP (ViT-B/32) (Guo et al. (2023)) 60.6 76.5 44.2 77.4 58.6 56.3 42.4 87.7 86.2 36.9
CALIP (ViT-B/16) (Guo et al. (2023)) 57.5 70.2 41.3 80.7 60.6 50.1 39.5 86.2 79.1 38.4
CALIP (RN101) (Guo et al. (2023)) 50.0 49.7 24.5 67.3 51.8 39.4 35.4 84.3 70.5 33.8
CuPL (Pratt et al. (2023)) 66.6 86.6 57.7 89.0 65.3 63.9 49.1 90.5 80.0 39.7
Tip-Adapter (∗) (Zhang et al. (2022)) 62.0 - - - - - - - - -
SuS-X (∗) (Udandarao et al. (2023)) 61.9 - - - - - 50.6 - 77.6 -
Tip-Adapter-F (♦) (Zhang et al. (2022)) 65.5 - - - - - - - - -
CLIP-Adapter (♦) (Gao et al. (2024)) 61.3 - - - - - 66.1 93.4 - -
APE-T (♦) (Zhu et al. (2023)) 66.1 - - - - - - - - -
Ours (descriptions) 71.3 91.2 65.3 92.5 68.8 72.0 55.1 91.3 85.0 42.0
Ours (class labels) 69.9 91.8 65.4 92.0 66.8 74.3 53.2 88.5 90.0 41.3
Ours (template) 69.0 93.1 65.8 89.3 64.5 73.6 52.3 84.5 87.9 39.4
Ours (combined) 73.4 93.4 70.2 93.0 70.6 76.6 58.0 89.4 90.9 43.4

the original paper of CuPL (Pratt et al. (2023)) use different class labels for the ImageNet dataset
(Deng et al. (2009)) compared to the original class labels of the dataset. Consequently, we decided
to re-compute the results for CuPL using Gemini Pro with the standard ImageNet class labels.

For CLIP (Radford et al. (2021)) and CALIP (Guo et al. (2023)), we employed the template “A
photo of {class label}” to encode textual class labels across all datasets, except for Pets
(Parkhi et al. (2012)), DTD (Cimpoi et al. (2014)), and Cars (Krause et al. (2013)) datasets. For these
exceptions, we employed specific templates: “A photo of {class label}, a type of
pets”, “A photo of {class label}, a textural category”, and “A photo of
{class label}, a car model”, respectively. This approach was found to enhance results,
consistent with prior findings (Radford et al. (2021); Li et al. (2023); Allingham et al. (2023); Popp
et al. (2024)).

For consistency, we resize all images to 224×224 before processing them with our method, CLIP,
CuPL, and CALIP methods. Additionally, we report results from training-free and few-shot learning
methods for a comprehensive comparison, including: Tip-Adapter (Zhang et al. (2022)), SuS-X
(Udandarao et al. (2023)), CLIP-Adapter (Gao et al. (2024)), and APE-T (Zhu et al. (2023)).

The top-1 accuracy results are reported in Table 1 (see Appendix B for top-5 accuracy results). As
can be seen, our method consistently achieves state-of-the-art results when compared with prior
work across all datasets in zero-shot image classification methods, and in the majority of datasets
when considering other methods (i.e., training-free and few-shot methods). Using the combined
class features yields the most promising results across the majority of datasets, with the exception of
Caltech-101 (Fei-Fei et al. (2004)), where the best results were achieved using the class description
features.

Figure 5 shows visual examples, where we highlight parts of input modalities (image, initial predic-
tion, and image description) based on their contribution to the final predicted class. To emphasize
the significance of each input component in the final prediction, we employ a straightforward ap-
proach. Specifically, we utilize a 2D sliding kernel that traverses the image, masking out patches of
the image. Subsequently, we measure the difference between the initial prediction and the prediction
after masking to highlight areas of the image that contribute most significantly to the final prediction.
Similarly, we apply this approach to the textual inputs. Given two distinct input texts – namely, the
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The image shows a dark, narrow tunnel with brick walls and a 
stone floor. The tunnel is about 6 feet tall and 4 feet wide. The 
entrance to the tunnel is about 3 feet wide and 2 feet tall. The 
tunnel is located in a grassy area.

tunnelImage description

Initial prediction
Low contribution

High contribution

Input image Highlighted regions 
based on contribution 

Predicted class      : catacomb
Ground-truth class : catacomb

Internet-sourced class example 
for reference

The object is a blue mechanical pencil with a black cap. The cap 
has a picture of Snoopy, a cartoon character, dressed in a ninja 
costume. The pencil is made of plastic and has a metal tip. It is 
about 5 inches long and has a diameter of about 0.5 inches.

SnoopyImage description

Initial prediction
Low contribution

High contribution

Input image Highlighted regions 
based on contribution 

Internet-sourced class example 
for reference

Predicted class      : ballpoint, 
ballpoint pen, ballpen, 
Biro
Ground-truth class : ballpoint, 
ballpoint pen, ballpen, 
Biro

The image shows a bowl of food. The food is a mixture of pasta, 
vegetables, and cheese. The pasta is small and round, and it is 
cooked al dente. The vegetables are asparagus and peas. The 
cheese is grated Parmesan. The food is topped with a sprinkle of 
pine nuts.

gnocchiImage description

Initial prediction
Low contribution

High contribution
Input image Highlighted regions 

based on contribution 

Predicted class      : gnocchi
Ground-truth class : gnocchi

Internet-sourced class example 
for reference

The image is of a small, tan-colored rodent with a white belly. It 
has large, round ears and a long, thin tail. The rodent is sitting on 
a gray surface.

hamsterImage description

Initial prediction
Low contribution

High contribution

Input image Highlighted regions 
based on contribution 

Predicted class      : hamster
Ground-truth class : hamster

Internet-sourced class example 
for reference

High

Low

High

Low

High

Low

High

Low

Figure 5: Input data highlighted based on its contribution to the final prediction. Examples are
shown from the Places (Zhou et al. (2017)) (first row), ImageNet (Deng et al. (2009)) (second row),
Food-101 (Bossard et al. (2014)) (third row), and CIFAR-100 (Krizhevsky et al. (2009)) (last row)
datasets.

initial prediction and the image description generated by the LLM (Gemini Team Google (2023)) –
we utilize a sliding kernel with a stride of one word. We mask out words that match the kernel and
quantify their importance in our final prediction. As shown in Figure 5, the three inputs collectively
contribute to predicting the final class label. In some cases, one or two inputs exhibit a higher level
of influence than the others, as demonstrated in the first, second, and third examples.

It is worth mentioning that, while Gemini’s initial predictions do not match the ground-truth class
in the first and second examples, the predictions are contextually sensible. In the first example,
Gemini’s prediction was ‘tunnel’ which, while not directly matching any class label in the Places
dataset (Zhou et al. (2017)), conceptually aligns with the displayed ‘catacomb’ image as an under-
ground passage. Similarly, in the second example, Gemini’s initial prediction was ‘Snoopy’, which
corresponds to the character drawn on the pen shown in the input image. However, ‘Snoopy’ is
not one of the ImageNet (Deng et al. (2009)) class labels and the correct class of the shown image
in second row of Figure 5 is ‘ballpoint pen’. This behavior of LLMs is the reason we cannot
use them directly as image classifiers, because they sometimes do not restrict the output class to the
provided list of target classes. However, such behavior might be beneficial to other classification
tasks that are not restricted to a specific set of classes. Additional examples are provided in the
supplemental materials (Appendix B).

3.2 ABLATION STUDIES

We conducted a series of ablation studies to explore different versions of our method and investigate
the impact of each feature, different fusion approaches, and different cross-modal embedding mod-
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Table 2: Ablation study on the impact of features used by our method on the classification accuracy.
DF refers to the description feature, PF refers to the prediction feature, and IF refers to the image
feature. In all datasets, we employed the best class feature as indicated in Table 1. Specifically, we
utilized the combined class feature for all datasets except for Caltech-101 (Fei-Fei et al. (2004)),
where we opted for the class description feature. The best results are highlighted in bold .

Dataset
Method ImageNet C-10 C-100 Food SUN Cars DTD Caltech Pets Places
Ours (DF) 58.6 90.1 64.5 82.7 49.0 65.4 49.8 83.7 48.3 30.1
Ours (PF) 55.7 94.6 73.2 89.6 60.9 70.8 57.7 89.0 87.1 36.1
Ours (DF and PF) 64.5 94.4 74.0 89.8 61.6 71.6 57.7 89.3 87.5 37.0
Ours (DF and IF) 70.7 90.4 64.0 90.8 67.9 71.4 52.6 90.9 85.5 42.1
Ours (PF and IF) 71.6 92.0 67.2 92.2 69.7 74.1 56.4 91.1 90.6 42.7
Ours (DF, PF, and IF) 73.4 93.4 70.2 93.0 70.6 76.6 58.0 91.3 90.9 43.4

Table 3: Ablation study on various fusion approaches using 5,000 images randomly selected from
the ImageNet dataset (Deng et al. (2009)). The best results are highlighted in bold .

CLIP model (Radford et al. (2021))
Fusion Approach ViT-L/14 ViT-B/32 ViT-B/16
Max similarity 57.6 57.8 57.9
Avg similarity 66.1 65.5 65.8
Avg feature 72.5 65.7 68.5

els. Table 2 presents the results of our method using solely the encoded image description, referred
to as the description feature (DF), as our input. We also report the results obtained by using encoded
initial predictions, termed as the prediction feature (PF), as our input, as well as using both DF and
PF concurrently as inputs. Additionally, Table 2 shows the results of employing image feature (IF)
alongside DF or PF as inputs, and finally, we present the results when leveraging all available inputs
– specifically, DF, PF, and IF.

From the results in Table 2, it is clear that incorporating all three features (DF, PF, and IF) yields
the best performance across most datasets, except for the CIFAR datasets (Krizhevsky et al. (2009)).
This discrepancy may arise from the low resolution of CIFAR images (originally 32×32), where
utilizing the IF may degrade accuracy compared to using only DF and PF.

Table 3 shows the results of our second set of ablation studies, where we report the results for 5,000
randomly selected images from the ImageNet dataset (Deng et al. (2009)). We explore the use
of different cross-modal embedding models (CLIP [ViT-L/14], CLIP [ViT-B/32], and CLIP [ViT-
B/16]) (Radford et al. (2021)), and additionally investigate different fusion approaches. Rather than
using the mean feature vector of our input features (DF, PF, and IF), we calculated the similarity
between each input feature separately and the dataset class label features. Subsequently, we fused
the similarity scores to generate a single similarity score for each class label in each dataset. We
explored two fusion methods: averaging and taking the maximum for each class label. As shown,
averaging our three features (IF, DF, PF) yields the best results.

4 COMPUTATION RESOURCES

Our method relies on a multimodal LLM and cross-modal encoders. The cross-modal encoding
takes around 15 ms to encode an image or text on an NVIDIA V100 GPU, while the LLM can
be accessed through: 1) Cloud API calls, which do not require local resources to load the model,
or 2) loading the model locally for processing, which requires an estimated 16 GPUs/TPUs with
approximately 256 GB of memory. Each LLM query takes roughly 700 ms to process. The LLM
model is the most intensive operation (as discussed in Section 5), but it can be accelerated using
multi-threading.
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The image shows a lobster. It is a crustacean with a hard 
exoskeleton and five pairs of legs. The first pair of legs are 
modified into claws. The lobster has two antennae and two 
compound eyes. It is red in color.

lobsterImage description

Initial prediction
Input image

Our predicted class    : lobster
Ground-truth class      : crayfish

Internet-sourced predicted class 
example for reference

CLIP predicted class  : crayfish
CuPL predicted class : lobster

The image shows a cat. It is a small, furry animal with four legs, a 
tail, and a head. The cat is lying down and looking at the camera. It 
has a gray and white coat with black stripes. The cat is a domestic 
animal and is often kept as a pet.

BengalImage description

Initial prediction
Input image

Our predicted class    : Bengal

Ground-truth class      : Egyptian Mau
Internet-sourced predicted class 

example for reference

CLIP predicted class  : Egyptian Mau
CuPL predicted class : Egyptian Mau

Internet-sourced ground-truth class 
example for reference

Internet-sourced ground-truth class 
example for reference

Figure 6: Failure examples of our method, where the initial prediction (and the image description
in the first example) adversely influenced our final decision. Results are shown for the Caltech-101
dataset (Fei-Fei et al. (2004)) (first row) and the Pets dataset (Parkhi et al. (2012)) (second row).

5 LIMITATIONS

Our method introduces a new approach by leveraging multimodal LLMs to enhance the accuracy
of zero-shot image classification. However, it is important to acknowledge that there are still some
limitations inherent in our proposed method. Since our method relies on multiple queries to a mul-
timodal LLM to generate the required features (i.e., DF and PF), there may be potential constraints
when running on devices with limited computational power, and it may consume more time com-
pared to other methods. Nevertheless, we believe that advancements in LLMs will lead to models
that can run efficiently on lower computational power. This would enable broader accessibility and
applicability of such models, such as Gemini (Gemini Team Google (2023)), GPT (Brown et al.
(2020)), and LLaMA (Touvron et al. (2023)).

Our method fails in some cases. Figure 6 shows examples of failure cases, where our method
misclassify the input image. While the initial prediction and image description features generally
enhance classification accuracy, as demonstrated in Table 2, they can sometimes lead to misclassi-
fications. In the first example in Figure 6, both the image description and initial prediction suggest
that the image show a ‘lobster’, whereas it actually shows a ‘crayfish’. Similarly, in the
second example, the image description lacks specific features of the cat, while the initial prediction
suggests the ‘Bengal’ class label, whereas the actual class label is ‘Egyptian Mau’.

6 CONCLUSION

In this work, we introduced a zero-shot image classification method that relies on multimodal large
language models (LLMs). Our approach involves using a multimodal LLM to describe the input
testing image and make an initial class prediction based on input testing image and the target class
label names. Subsequently, we fuse the encoded features of the image description, initial LLM’s
prediction, and input testing image to retrieve similar encoded features to class labels from the target
dataset. Our method is straightforward and easy to implement, resulting in significant improvements
in zero-shot classification accuracy when compared with prior methods in this domain.
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A ADDITIONAL DETAILS

In the main paper, we presented our method for zero-shot image classification. The inference process
of our method is concisely described in Algorithm 1. As part of our method, we employed a set of
prompts. Table 4 shows the prompts used for each step discussed in the main paper that employs the
LLM (Gemini Pro (Gemini Team Google (2023))). Specifically, we detail the prompts used to: 1)
conduct zero-shot image classification with Gemini Pro (Gemini Team Google (2023)), 2) describe
a given testing image, and 3) generate class labels descriptions.

The class descriptions were generated using five prompts, as shown in Table 4, with 10 responses
generated for each prompt and class, resulting in 50 class descriptions per class label. To encourage
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Table 4: Details of prompts utilized in our work. Each row represents one query task to the LLM. For
instance, ‘image classification’ indicates the utilization of LLM to conduct initial zero-shot image
classification, which serves as one of the features in our method. The {classes} variable refers
to the class labels of the dataset. The {predicted class} refers to Gemini Pro’s output of the
image classification prompt. The {class label} variable denotes one of the class labels in the
given dataset.

Task Prompt
Image classification You are given an image and a list of

class labels. Classify the image
given the class labels. Answer using
a single word if possible. Here are
the class labels: {classes}

Image description What do you see? Describe any object
precisely, including its type or class.

Class description 1. Describe what a {class label} looks
like in one or two sentences.
2. How can you identify a {class label}
in one or two sentences?
3. What does a {class label} look like?
Respond with one or two sentences.
4. Describe an image from the internet
of a {class label}. Respond with one or
two sentences.
5. A short caption of an image of a
{class label}:

Table 5: Additional results on 5,000 images from the ImageNet dataset (Deng et al. (2009)). Best
result is highlighted in yellow

L/14 B/16 B/32 DistilBERT RoBERTa ROUGE-N-F1 ROUGE-F1 Ours
Top-1 52.1 52.0 55.6 43.7 28.8 54.8 54.9 70.2

diversity in Gemini Pro’s responses, we set the temperature parameter to a high value of 0.99, as
done in Pratt et al. (2023). An example of implementing our method, including both classifier
construction and the inference process, is shown in Code 1.

In Section 3.1, we visualize examples that highlight the important parts of the inputs contributing to
the final predicted class label. In the main paper, we described the approach of sequentially masking
out patches from the image and comparing the predicted class with the prediction obtained using the
entire unmasked image. Similarly, we follow the same approach for text input by sliding a kernel,
masking out words, and comparing the predicted class with our original prediction using inputs
without any masking. We used a 2D kernel of size 50×50 pixels with a stride of 10 pixels. If there
are no highlighted regions in the image due to the small size of the kernel, we enlarge it by 50 until
we reach a kernel size of 200×200 pixels.

For the text kernel, we start with a kernel width of 3 words. If none of the words are highlighted, we
reduce it by 1 until we use a 1-word kernel sliding over the text. Each prediction was made using the
three inputs: the image, initial prediction, and image description, with one of them having masked
out patches or words.

B ADDITIONAL RESULTS

In this section, we provide supplementary results to those presented in the main paper. Figure 7
shows the confusion matrix for CLIP (ViT-L/14) (Radford et al. (2021)) and our method across two
datasets (Caltech-101 (Fei-Fei et al. (2004)) and CIFAR-100 (Krizhevsky et al. (2009))). The shown
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Algorithm 1 Performs zero-shot image classification.
Input: Image X, class labels {li}mi=1, class label feature matrix M (Equation 1), multimodal LLM g, cross-

modal encoders fi & ft, initial class prediction prompt pc, image description prompt pd
X̃if = fi (X) . Image feature
Xif = X̃if/‖X̃if‖ . Vector normalization
X̃df = (ft ◦ g) (X, pd) . Image description feature
Xdf = X̃df/‖X̃df‖ . Vector normalization
X̃pf = (ft ◦ g) (X, pc) . Initial class prediction feature
Xpf = X̃pf/‖X̃pf‖ . Vector normalization
X̃q = Xif + Xdf + Xpf . Fused feature
Xq = X̃q/‖X̃q‖ . Vector normalization
W = XT

q M . Similarity scores
x← argmax (W) . Predicted class index

Output: Predicted class label lx of input image

Table 6: Top-5 classification accuracy of CLIP (Radford et al. (2021)), CuPL (Pratt et al. (2023)),
and our method on the following datasets: ImageNet (Deng et al. (2009)), CIFAR-10 (C-10)
(Krizhevsky et al. (2009)), CIFAR-100 (C-100) (Krizhevsky et al. (2009)), Food-101 (Bossard et al.
(2014)), SUN397 (Xiao et al. (2010; 2016)), Cars (Krause et al. (2013)), DTD (Cimpoi et al. (2014)),
Caltech-101 (Fei-Fei et al. (2004)), Pets (Parkhi et al. (2012)), and Places (Zhou et al. (2017)). We
report our results with the following class label features: 1) class descriptions, 2) class labels, 3)
the template “A photo of {class}”, and 4) combined features of (1-3). The best results are
highlighted in yellow .

Dataset
Method ImageNet C-10 C-100 Food SUN Cars DTD Caltech Pets Places
CLIP (ViT-L/14) (Radford et al. (2021)) 88.4 98.5 77.0 97.8 89.1 93.7 72.8 95.2 96.6 64.5
CuPL (Pratt et al. (2023)) 91.0 98.1 79.3 98.3 92.1 94.2 77.7 99.8 96.2 68.8
Ours (class descriptions) 92.7 99.3 85.4 98.9 93.8 97.6 81.0 99.9 96.9 70.7
Ours (class labels) 89.9 99.2 84.3 98.8 91.1 97.5 77.6 98.9 98.6 67.5
Ours (template) 89.8 99.6 84.8 97.9 90.1 97.5 77.2 96.6 97.3 65.3
Ours (combined) 93.0 99.6 88.5 99.0 94.4 97.9 83.8 99.9 99.5 70.9

results demonstrate that our method enhances classification accuracy and reduces misclassification
rates.

In Table 2, encouraging results were demonstrated by utilizing the feature of initial prediction pro-
duced by the LLM (i.e., Gemini Pro (Gemini Team Google (2023))) for zero-shot image classifica-
tion. Based on these results, one might argue for the direct utilization of Gemini’s class prediction,
aiming to match a specific class label from the dataset. However, in several cases, Gemini’s re-
sponse does not precisely match one of the class labels (as shown in Figure 5). For example, if a
ground-truth class label is ‘cat’, Gemini’s response might be ‘The image class is cat’.
This discrepancy motivated us to report results of using only Gemini prediction.

In this section, we present additional results from early experiments aimed at utilizing Gemini’s
predictions to precisely match one of the class labels in the given dataset. Specifically, we randomly
selected 5,000 images from ImageNet (Deng et al. (2009)) for evaluation. While our method, as
presented in the main paper, offers a practical way of utilizing Gemini’s predictions, we also present
the results of some alternative approaches aimed at precisely identifying one of the dataset class
labels, rather than solely relying on the class prediction text generated by Gemini.

Table 5 show the results on the 5,000 images from ImageNet (Deng et al. (2009)) of our main method
and alternatives that utilize Gemini’s class prediction to conduct similarity matching with the target
dataset class labels. Specifically, we report the results of encoding Gemini’s class prediction using an
open-vocabulary language model and measuring the similarity with the encoded class label features.
Here, we show the results of using CLIP (ViT-L/14, ViT-B/32, ViT-B/16) (Radford et al. (2021)),
DistilBERT (Sanh et al. (2019)), and RoBERTa (Liu et al. (2019)).

In addition, we explored classical text similarity metrics – namely, ROUGE-N-F1 and ROUGE-
F1 (Lin (2004)) – rather than encoding both Gemini’s prediction and class labels using an open-
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1 import tensorflow as tf
2 import cross_modal_encoder as encoder # for example CLIP
3 import llm # for example Gemini Pro
4 from fixed_prompts import classification_p, description_p, class_ps # see Table 4.
5
6 def create_classifer(class_names, k=50):
7 ’’’Constructs zero-shot image classifier.
8 Args:
9 class_names: A list of class names.

10 k: Number of class descriptions to be generated by the LLM.
11 Returns:
12 A zero-shot image classification model.
13 ’’’
14 assert k >= len(class_ps)
15 assert k % len(class_ps) == 0
16 weights = []
17 for class_name in class_names:
18 class_name_feature = encoder.encode_text(class_name)
19 template_feature = encoder.encode_text(f"A photo of {class_name}")
20 llm_class_description = tf.zeros((1, encoder.output_feature_length))
21 for _ in range(k // len(class_ps)):
22 for class_p in class_ps:
23 llm_class_feature = llm.process(class_p.format(class_name), temperature=0.99)
24 llm_class_description += encoder.encode_text(llm_class_feature)
25 llm_class_description /= k
26 class_feature = class_name_feature + template_feature + llm_class_description
27 normalized_class_feature = class_feature / tf.norm(class_feature)
28 weights.append(tf.squeeze(normalized_class_feature))
29 model = {"weights": tf.transpose(tf.convert_to_tensor(weights)),
30 "class_names": class_names}
31 return model
32
33
34 def classify(image, classifier):
35 ’’’Performs zero-shot image classification.
36 Args:
37 image: Input testing image.
38 classifier: A zero-shot classification model generated by create_classifier function.
39 Returns:
40 Predicted class name.
41 ’’’
42 image_feature = encoder.encode_image(image)
43 image_feature /= tf.norm(image_feature)
44 initial_prediction = llm.process([classification_p, image], temperature=0)
45 prediction_feature = encoder.encode_text(initial_prediction)
46 prediction_feature /= tf.norm(prediction_feature)
47 image_description = llm.process([description_p, image], temperature=0)
48 description_feature = encoder.encode_text(image_description)
49 description_feature /= tf.norm(description_feature)
50 query_feature = image_feature + prediction_feature + description_feature
51 query_feature /= tf.norm(query_feature)
52 index = tf.argmax(tf.linalg.matmul(query_feature, classifier["weights"]))
53 return classifier["class_names"][index.numpy().squeeze()]

Code 1: Example Python implementation of our method. In this example, we utilize the combined
class feature, as described in Section 3.

vocabulary encoding model. As shown in Table 5, our method, which utilizes Gemini’s class pre-
diction as one of the input features, achieves the best results when compared with the alternative
approaches.

In the main paper, we reported the top-1 classification accuracy on several datasets (Deng et al.
(2009); Fei-Fei et al. (2004); Bossard et al. (2014); Krause et al. (2013); Krizhevsky et al. (2009);
Cimpoi et al. (2014); Zhou et al. (2017); Xiao et al. (2010; 2016); Parkhi et al. (2012)). Table
6 presents the top-5 classification accuracy of our method compared to prior work, while Table 7
shows the Cohen’s kappa coefficient. As can be seen, our method achieves a notable improvement
while remaining simple and easy to implement.

Lastly, Figure 8 shows additional visual examples, where we highlight the most significant contrib-
utors from input parts that influence the final predictions of our method.
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Figure 7: Confusion matrices for zero-shot image classification results of (A) CLIP (ViT-L/14)
(Radford et al. (2021)) and (B) our method on the Caltech-101 (Fei-Fei et al. (2004)) and CIFAR-
100 (Krizhevsky et al. (2009)) datasets.

Table 7: Cohen’s Kappa score of CLIP (Radford et al. (2021)), CuPL (Pratt et al. (2023)), and our
method on the following datasets: ImageNet (Deng et al. (2009)), CIFAR-10 (C-10) (Krizhevsky
et al. (2009)), CIFAR-100 (C-100) (Krizhevsky et al. (2009)), Food-101 (Bossard et al. (2014)),
SUN397 (Xiao et al. (2010; 2016)), Cars (Krause et al. (2013)), DTD (Cimpoi et al. (2014)), Caltech-
101 (Fei-Fei et al. (2004)), Pets (Parkhi et al. (2012)), and Places (Zhou et al. (2017)). We report our
results with the following class label features: 1) class descriptions, 2) class labels, 3) the template
“A photo of {class}”, and 4) combined features of (1-3). The best results are highlighted in
yellow .

Dataset
Method ImageNet C-10 C-100 Food SUN Cars DTD Caltech Pets Places
CLIP (ViT-L/14) (Radford et al. (2021)) 0.651 0.862 0.539 0.867 0.611 0.656 0.452 0.830 0.835 0.372
CuPL (Pratt et al. (2023)) 0.665 0.851 0.573 0.889 0.652 0.637 0.480 0.902 0.795 0.395
Ours (class descriptions) 0.713 0.902 0.650 0.924 0.687 0.718 0.541 0.911 0.846 0.418
Ours (class labels) 0.699 0.909 0.650 0.920 0.667 0.742 0.522 0.882 0.897 0.411
Ours (template) 0.709 0.925 0.675 0.919 0.668 0.747 0.545 0.874 0.892 0.412
Ours (combined) 0.734 0.927 0.699 0.929 0.706 0.764 0.571 0.890 0.907 0.432

C BROADER IMPACT

Our work introduces a method for zero-shot image classification that leverages the power of mul-
timodal large language models (LLMs) not only during the classifier model construction phase but
also at inference time. We achieve this by generating comprehensive textual representations directly
from input images. These representations are then combined with the input images for classification,
resulting in a significant enhancement in accuracy.

Importantly, our approach eliminates the need for dataset-specific prompt engineering, as commonly
required in prior approaches, thereby simplifying the implementation process and enhancing acces-
sibility – effectively acting as a plug-and-play solution. By removing the requirement for dataset-
specific customization, our method offers a straightforward and user-friendly approach to zero-shot
image classification, making it more accessible to a broader range of users.

By demonstrating its effectiveness across diverse datasets,we illustrate the utility of our method
for robust and generalizable real-world computer vision systems reliant on image classification,
eliminating the need for dataset-specific training, tuning, or prompt engineering. This approach
holds promise for simplifying the deployment of image classification systems and advancing the
field of computer vision.
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The image shows a natural rock formation in the shape of an arch. 
The arch is made of sandstone and is located in a desert 
environment. The arch is about 30 feet high and 50 feet wide. The 
arch is surrounded by other rock formations, including a large rock 
tower to the left of the arch. There is a tree to the right of the arch. 
The sky is blue and there are no clouds.

archImage description

Initial prediction
Low contribution

High contributionInput image Highlighted regions 
based on contribution 

Predicted class      : rock_arch
Ground-truth class : rock_arch

Internet-sourced class example 
for reference

High

Low

A black and white checkered floor.

chequeredImage description

Initial prediction
Low contribution

High contribution

Input image Highlighted regions 
based on contribution 

Predicted class      : chequered
Ground-truth class : chequered

Internet-sourced class example 
for reference

High

Low

A squirrel is sitting on a tree branch. It is a small, furry mammal 
with a long, bushy tail. The squirrel is brown and white in color. It 
has large, black eyes and a pointed nose. The squirrel is holding a 
nut in its paws.

squirrelImage description

Initial prediction
Low contribution

High contribution

Input image Highlighted regions 
based on contribution 

Predicted class      : fox 
squirrel, eastern fox 
squirrel, Sciurus niger

Ground-truth class : fox 
squirrel, eastern fox 
squirrel, Sciurus niger

Internet-sourced class example 
for reference

Low

High

A small white dog with long, fluffy fur is lying on its back on a 
wooden floor. The dog has its mouth open and its tongue is 
hanging out. The dog's eyes are closed and its ears are perked 
up. The dog's fur is white and fluffy, and it is covering the dog's 
entire body. The dog's tail is tucked between its legs.

dogImage description

Initial prediction
Low contribution

High contribution

Input image Highlighted regions 
based on contribution 

Predicted class      : Maltese 
dog, Maltese terrier, 
Maltese

Ground-truth class : Maltese 
dog, Maltese terrier, 
Maltese

Internet-sourced class example 
for reference

Low

High

The image shows a bedroom with a four-poster bed. The bed is 
covered with a gold and brown patterned bedspread and has a 
white pillow. There are two nightstands on either side of the bed, 
each with a lamp and a picture frame. The walls are covered in a 
gold and brown patterned wallpaper. There is a portrait of a man 
hanging above the bed. The room is lit by two lamps and a candle.

bedImage description

Initial prediction
Low contribution

High contributionInput image Highlighted regions 
based on contribution 

Predicted class      : four-
poster

Ground-truth class : four-
poster

Internet-sourced class example 
for reference

Low

High

Figure 8: Additional examples demonstrating the influence of input data on final predictions. Exam-
ples are provided from the following datasets: SUN397 (Xiao et al. (2010; 2016)) (first row), DTD
(Cimpoi et al. (2014)) (second row), and ImageNet (Deng et al. (2009)) (last three rows).
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