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Abstract

Recent analysis on the training dynamics of Transformers has unveiled an inter-
esting characteristic: the training loss plateaus for a significant number of training
steps, and then suddenly (and sharply) drops to near–optimal values. To understand
this phenomenon in depth, we formulate the low-rank matrix completion problem
as a masked language modeling (MLM) task, and show that it is possible to train a
BERT model to solve this task to low error. Furthermore, the loss curve shows a
plateau early in training followed by a sudden drop to near-optimal values, despite
no changes in the training procedure or hyper-parameters. To gain interpretability
insights into this sudden drop, we examine the model’s predictions, attention heads,
and hidden states before and after this transition. Concretely, we observe that (a)
the model transitions from simply copying the masked input to accurately predict-
ing the masked entries; (b) the attention heads transition to interpretable patterns
relevant to the task; and (c) the embeddings and hidden states encode information
relevant to the problem. We also analyze the training dynamics of individual model
components to understand the sudden drop in loss.

1 Introduction

Large Language Models (LLMs) have revolutionized the field of natural language processing (NLP).
However, there are still gaps in our understanding of these models, leading to challenges in controlling
their behavior. As a pertinent example, the training of these models appears to demonstrate sudden
improvements in metrics correlated with various capabilities [8], prompting questions about whether
learning of a given capability can be predicted by tracking predefined progress measures and why
such sudden changes occur. If undesirable capabilities can suddenly ‘emerge’ (despite any explicit
supervision for them) [16], such sudden changes can be a challenge for AI regulation [21].

To better understand such sudden changes during model training, this work investigates training
BERT [12] on the classical mathematical task of low-rank matrix completion (LRMC) [6]. Making
an analogy with masked language modeling (MLM), where sudden learning of syntactical structures
was recently demonstrated [8], we argue matrix completion captures the core aspect of this learning
problem (Fig. 1): given some relevant context (observed tokens), fill the missing elements (masked
tokens). Specifically, we assume access to a matrix with some fraction of its entries missing, and
would like to complete the missing entries of this matrix assuming the ground truth matrix is low-rank.
We find that despite being a simplified abstraction of MLM, this setting already demonstrates a
sharp decrease in loss as the model undergoes training (Fig. 1 (B)), preceded by a loss plateau for a
significant number of training steps (akin to Chen et al. [8]). The simplicity of our setting further
affords us interpretability, as we find that the point of sudden drop coincides with a precise change in
how the model solves the task—we call this change an algorithmic transition. Specifically, we show
that the pre–transition model simply copies the input (predicting 0 at masked positions), while the
post–transition model accurately predicts missing values at masked positions. To perform the latter,
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Figure 1: (A) Matrix completion using BERT. Similar to completing missing words in an English
sentence in MLM, we complete missing entries in a masked low–rank matrix. (B) Sudden drop
in loss. During training, the model undergoes an algorithmic shift marked by a sharp decrease in
mean–squared–error (MSE) loss. Here, the model shifts from simply copying the input (copying
phase) to computing missing entries accurately (completion phase).

distinctive changes occur in the model’s attention heads during the period of sudden drop, wherein
the model learns to identify relevant positional information to combine various elements in the input
matrix and compute missing entries for matrix completion. We perform a range of interventions
on the input, model (before and after the transition), and training process to further understand this
phenomenon, leading to the following observations.

• Pre–transition: Copying the Input Matrix Before the transition, the model is simply
copying the input matrix both at observed entries as well as missing entries, predicted value
for missing entries being nearly 0. The attention maps at this stage do not correspond to a
particularly interpretable structure, and contribute little to the model output.

• Post–Transition: Computing Missing Entries After the transition, the model accurately
completes the missing entries, while still copying observed entries. The attention maps
at this stage clearly demonstrate that the model ‘attends’ to relevant tokens in the input,
and the attention layers are crucial for accurate matrix completion. Interestingly, the post–
transition model can outperform the classical nuclear norm minimization algorithm for
matrix completion, suggesting that it does not simply recover this algorithm.

• Model Components and Sudden Drop We analyze the training dynamics of individual
components, keeping other components fixed to their final values. We find that different
components converge to their optimal values at quite different points during this training.

2 Preliminaries

2.1 Problem Setup

MLM and LRMC In masked language modeling (MLM), a fraction of tokens in the input sequence
are masked out and the model is required to predict the correct token for those masked entries. In this
setup, the model has access to both the tokens before and after the current token for computing the
prediction. Low-rank matrix completion has a similar structure: given a matrix (assumed low–rank)
with a fraction of its elements available, the goal is to predict missing entries. For a matrix X ∈ Rn×n,
denote its observed entries by the set Ω ⊂ [n]× [n], and the set of missing entries Ωc = [n]× [n] \Ω.
Formally, the problem is

min
U

rank(U) s.t. Uij = Xij ∀(i, j) ∈ Ω.

Importantly, both problems (MLM and LRMC) have the same goal—predict the missing entries in
the input, i.e., either the language tokens (MLM) or matrix elements (LRMC).

Matrix Completion using BERT BERT [12] is an encoder-only Transformer architecture used
widely for MLM. For an input sequence of tokens [t1, t2, . . . , tL], the output is a sequence of
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D−dimensional ‘hidden states’ [e1, . . . , eL]
⊤ ∈ RL×D, that is used for prediction. We train a

BERT model TFθ to predict missing entries in a low–rank masked matrix X̃ . For model output
X̂ := TFθ(X̃) ∈ Rn×n, the training objective L := L(θ) is the mean-squared-error (MSE) loss over
all entries,

L(θ) =
1

n2

n∑
i,j=1

(Xij − X̂ij)
2.

In our experiments, data for matrix completion is generated as

X = UV ⊤; U, V ∈ Rn×r, Uij , Vij
iid∼ Unif[−1, 1] ∀i, j ∈ [n]× [r]

so that X has rank at most r. To mask entries at random, we sample binary matrices M ∈ {0, 1}n×n

such that Mij = 0 with probability pmask, and 1 otherwise; that is, Ω = {(i, j) | Mij = 1}.

Nuclear norm minimization Nuclear norm minimization [6] is a widely used convex optimization
approach to LRMC; for completeness, we compare our trained models to this approach. Since rank is
not a convex function of the matrix, one modifies the low rank completion problem by defining the
nuclear norm ∥U∥∗, i.e., sum of singular values of a matrix U . The overall optimization problem is
as follows.

min
U

∥U∥∗ s.t. Uij = Xij ∀(i, j) ∈ Ω. (1)

2.2 Experiments

Training We use a 4–layer, 8–head BERT model [40] for 7× 7 (rank−2) matrices, with ‘absolute’
positional embeddings, no token–type embeddings, and no dropout. We fix pmask = 0.3 for training,
and 256 matrices are sampled as training data at each step (in an ‘online’ training setup). We use
Adam optimizer with constant step size 1e−4 for 50000 steps, without weight decay or warmup. In
addition to L, we track MSE over observed and masked entries,

Lobs =
1

|Ω|
∑

(i,j)∈Ω

(Xij − X̂ij)
2, and Lmask =

1

|Ωc|
∑

(i,j)∈Ωc

(Xij − X̂ij)
2.

Please see Appendix D for details on tokenizing matrices and other experimental details. Code is
available at this https://github.com/pulkitgopalani/tf-matcomp.

Compute Resources For 7× 7 matrices (training and testing), we used a single {V100 / A100 /
L40S} GPU. A single {A40 / A100 / L40S} GPU was used for matrices of order 10, 12, 15.

3 Sudden Drop in Loss
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Figure 2: Sharp reduction in training loss.

In our training setup, the model converges to a fi-
nal MSE of approximately 4e−3 – that is, it can
solve matrix completion well (as in Fig. 3, this
MSE is lower than nuclear norm minimization).
Fig. 2 demonstrates the loss dynamics over the
course of training the model on this task.

Interestingly, we observe a sudden drop in train-
ing loss at approximately step 15000. This sud-
den drop in loss is reminiscent of phase transi-
tions in physical systems, that are characterized
by sudden observable changes in the system on
continuous variation of some parameter (here
equivalent to the number of training steps). Mo-
tivated by this similarity, we analyse the ‘pre–
shift’ model at step 4000, and ‘post–shift’ model
at the end of training, i.e., step 50000 to understand model properties and sudden drop in loss.
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3.1 Before the Algorithmic Shift – Copying Phase

Since the value of Lobs remains quite low in the first phase of model training (Fig. 2), we ask: what
algorithm does the model use for predicting matrix entries in this phase?

We find that the model learns to copy the input verbatim in the first phase (with output 0 for missing
entries), verified through token interventions (Sec. 3.1.1) and by investigating the contribution of
attention heads (Sec. 3.1.2) towards the output.

3.1.1 Verifying Copying via Token Intervention

To rigorously verify that the pre-shift model indeed copies the input, we replace the masked elements
in the 7× 7, rank-2 input by the token corresponding to some m ∈ R. For such input, we would like
to see whether the model implements copying and outputs m at the masked positions. In this setup
for model output X̂ , MSE at observed positions is Lobs, and for masked positions the MSE is defined
as

L′
mask =

1

|Ωc|
∑

(i,j)∈Ωc

(X̂ij −m)2.

Lobs and L′
mask for this experiment averaged over 512 samples are compiled in Table 1 (Appendix

A). The small loss values confirm that model output matches the ground truth at observed positions,
while at masked positions it outputs a value nearly equal to m. When the mask token is MASK (i.e.,
no replacement), we set m = 0, indicating that the model outputs 0 at the masked locations.

To generalize this observation to OOD matrices, we sample uniform random 7 × 7 matrices for
input; i.e., all entries in the matrix are i.i.d. uniformly in [−1, 1]. Importantly, these matrices do not
necessarily have a low–rank structure. With these matrices as input to the same pre–shift model as
before, we find that model still copies the input (Table 1). This confirms that the model is indeed not
‘computing’ any entries in the sense of low–rank matrix completion, and simply copies all entries,
masked or observed.

3.1.2 Attention Heads – Mostly Inconsequential

Attention heads at this stage (Fig. 22a) do not appear to attend to tokens in an interpretable manner.
Since the model is copying the input, and does not need to combine different tokens, Attention heads
should not affect the model output at this stage. To confirm that this is indeed the case, we do the
following tests.

Uniform Ablation Uniform ablation entails replacing the softmax probabilities in an n×n attention
head by 1/n2 for all elements i.e. ‘force’ the model to equally attend to all tokens (Sec. 4.6, [22]).
On such an intervention in our case, there is negligible change in MSE at both observed and masked
positions. Averaged over 256 samples, Lobs = 3.4e−4 and Lmask = 0.2236 when using all attention
heads; whereas, on ablating all heads, these values are 3.2e−4 and 0.2236 respectively. The negligible
change in MSE supports the hypothesis that attention does not contribute to the model output at this
stage.

Model Switching In the extreme case, what if we replace the model weights for some component
to check for changes to the output? In model switching, we ‘transplant’ the attention key, query
and value weights in the pre–shift model to those from the post-shift model. Averaged over 256
samples, Lobs is 5e–3, that is similar to the optimal total MSE (L) obtained at the end of training,
while Lmask = 0.2246, similar to the values obtained without such replacement. This shows that
replacing the pre–shift attention weights by the optimal ones does not significantly affect Lobs, Lmask

– highlighting that attention layers have little effect on the model output at this stage.

3.2 After the Algorithmic Shift – Matrix Completion Phase

In this section, we focus on the model properties in the post–shift phase (specifically, at the end
of training at 50000 steps). Since L are near–optimal in this setting, we ask : What algorithm
is the model using for completing missing entries? For example, is it implementing the classical
nuclear-norm minimization algorithm? For the second question, we show below that the BERT
model is not implicitly implementing nuclear norm minimization for completing missing entries in
the input.
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Figure 3: BERT v. Nuclear Norm Minimization.
Comparing our model (trained with pmask = 0.3)
and nuclear norm minimization on the matrix com-
pletion task at various levels of pmask. The differ-
ence in MSE and nuclear norm of solutions ob-
tained using these two approaches indicates that
BERT is not implicitly doing nuclear norm mini-
mization to complete missing entries.

Nuclear Norm Minimization We use
CVXPY [13] to solve low–rank matrix com-
pletion using nuclear–norm minimization at
various levels of pmask, comparing it to the out-
put of a BERT model trained on pmask = 0.3.
We find that BERT performs better than nuclear
norm minimization with respect to MSE; at the
same time, the nuclear norm of BERT solution
is larger (Fig. 3).

To verify if the model implicitly optimizes a dif-
ferent objective for nuclear norm minimization,
we also compare to the regularized version of
the above problem (λ > 0),

min
U

 1

|Ω|
∑

(i,j)∈Ω

(Uij −Xij)
2 + λ∥U∥∗


We find that this is not the case, as for various
values of λ, BERT still outperforms regularized
MSE minimization w.r.t. MSE (Appendix B).
This confirms that the model is not implementing
nuclear norm minimization as its algorithm for computing missing entries.

We now move to an interpretability based analysis of the model behavior, to attempt to extract useful
signal about the implemented algorithm, analysing model behavior for observed and missing entries
separately in the following sections.

3.2.1 Observed Entries

Uniform Ablation As in Sec. 3.1.2, to quantify the effect of attention heads at this stage, we
uniformly ablate all attention heads in the post-shift model. Averaged over 256 samples, this leads
to Lobs = 9.2e−5 without ablation, and 3.7e−3 with ablation (close to the value of L at the end of
training). However, Lmask increases from 0.0128 to 0.2183, approximately the value of Lmask in
the loss plateau before sudden drop. This difference in effect of ablating attention heads confirms that
they are much more important for predicting missing entries than for observed entries.

Model Switching We repeat the model switching experiments from Sec. 3.1.2 in the reverse direction
i.e. ‘transplant’ attention key, query, value weights from pre–shift model to the post–shift model.
Note that this direction of weight switching is stronger, in the sense that the learnt information in
attention layers is removed. We find that on this modification, Lobs = 9.5e−4 averaged over 256
samples; that is, the observed loss is still not too large. This test confirms that the prediction at
observed entries is not substantially affected by the attention layers.

Position Sensitivity Finally, since the attention mechanism crucially depends on token positions,
we intervene on this component of the model by randomly permuting its positional embeddings.
Formally, the embedding originally for position i in the input now represents position π(i) for
some random permutation π : [n2] → [n2]. Averaged over 256 samples, Lobs = 2.4e−4, whereas
Lmask = 0.5687, indicating that the observed positions are negligibly affected compared to masked
positions due to this intervention.

These results support our ‘sub–algorithm’ hypothesis; (a) since positional information is intuitively
not required for the copying sub-algorithm, Lobs remains low; and (b) Lmask increases significantly,
demonstrating that removing positional information is detrimental to accurately computing missing
entries.

3.2.2 Missing Entries

To confirm that attention heads causally affect the model output for missing entries, in addition to
uniform ablations, we perform causal interventions (activation patching) [42] on the hidden states
just after the attention heads. This involves replacing the hidden state after an attention head for input
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Figure 4: Attention heads in post–shift model attend to specific positions. For example, (Layer 2,
Head 1) attends to elements in the same row as the query element, and (Layer 2, Head 2) attends to
elements in the same column as the query element. (These attention matrices are an average over
multiple independent matrix and mask samples.)

A with the hidden state obtained at the same attention head, but for a different input A′. Ideally, if that
head is causally relevant to the output, then such an intervention should steer the model towards the
output for A′, instead of A. We find in our case that for A = X and A′ = −X, such an intervention
on all attention heads clearly steers the model output at missing entries towards −X (more details in
Appendix F).

Structure in Attention Heads Denote attention head H in layer L by the tuple (L,H). We can
group the attention heads depending on the specific regions of the input matrix they attend to,

1. [Row Head] same row as the query element – ‘block–diagonal’ patterns, e.g. (2, 1);

2. [Column Head] same column as query element – ‘off–diagonal’ patterns e.g. (2, 2); and

3. [Identity Head] query element itself – ‘diagonal’ patterns in the last layer, e.g. (4, 3).

There are also some other attention heads that do not neatly fit into either of these 3 categories—for
example, all heads in layer 1 except (1,3), (1,4); (3,3); (4,2), (4,5–7). In this context, we note that
uniformly ablating heads (3,3), (4,2), (4,5–7) gives Lobs = 9.36e−5, Lmask = 0.01575 compared
to Lobs = 9.44e−5, Lmask = 0.01428 without ablation, i.e. these uninterpretable heads do not
significantly affect the output.

Attention Heads with ‘Structured Masking’ Since the maps in Fig. 4 are averages over multiple
random masks and input matrices, it is difficult to derive more fine–grained insights into the model
computation. To address this, we generate inputs with specific mask structure, see for example Fig. 5.
This implies that while averaging the attention probabilities over different input matrices, the mask
i.e. Ωc remains the same. This step helps us highlight how an attention head attends to input elements
based on the element being masked or observed. From the results in Fig. 5, we find clear evidence
that different attention heads focus on specific parts of the input. For instance,

1. [Masked–Row Head] (2, 1), (3,4) and (4,8) are mainly active only at the masked rows, and
therein attends to the only observed position in those rows.
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Figure 5: Attention heads with specific mask structure in inputs. We can derive fine-grained
insights about the functions of individual heads in this setup by using a specific mask structure for
all input matrices. (Mask appended below each plot, blue denotes missing entries). For example,
multiple attention heads like (Layer 2, Head 2) have negligible attention weight at missing positions
in the input matrix, implying that these heads attend only to observed entries in the column of the
query element. Further, (Layer 2 Head 1) and similar heads have larger attention weights for the rows
with missing entries, and in those rows they attend to the sole observed element.

2. [Observed–Copy Head] (4,3) and (4,4) correspond roughly to an identity map, slightly
deviating in the masked rows. In these cases, again the maximal attention score corresponds
to the only observed position in these rows.

3. [Mask–Ignore Heads] Further, there are multiple ‘parallel off-diagonal’ heads that com-
pletely ignore the masked rows for their computation. These heads include (2,2–4), (2,6);
(3,2), (3,3), (3,5). Additionally, there are also attention heads like (3,1), (3,6) that attend to
only the observed element of each masked row. Collectively these heads act as ‘mask-ignore’
heads, attending to only observed entries, and using this information to compute missing
entries.

4. [Longest–Contiguous–Column Heads] There also exist attention heads that respond
systematically to changes in the mask. For example, consider attention heads (2, 5), (2, 7),
(2, 8) in Fig. 23. For each row, these heads attend to the element in the 6th and 2nd column
respectively for part (a) and (b). On a closer look, the connecting link between these two
mask patterns is that, the longest contiguous unmasked column is exactly the column that
these heads attend to. We hypothesize that this information is somehow used by the model
in its inner computation for masked entries.

5. [Input–Processing Heads] Finally, Heads (1,1–2), (1, 5–8) do not fall in any of the
categories above . These heads are mostly static across different mask / input variations
(for example, comparing Fig 4 and 5), and the patterns suggest that these heads almost
exclusively focus on the middle row of the input matrix and some other elements. A possible
function of these heads is to process positional and token embeddings (input to the first
layer) so that this information can be used appropriately in the subsequent layers.

To quantitatively assess the effect of these attention heads on the model output, we also perform
uniform ablations on each sub–group separately (Appendix L), and find that the groups significantly
affect the output, to varying degrees depending on the specific group.
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Figure 6: Hidden states encode input information. We
probe for the row of each element in the masked matrix input,
replacing missing entries by 0. We find that layers 3 and 4
have a much lower MSE and a much larger cosine similarity
compared to other layers in the model. Hence, these layers
somehow ‘store information’ about the masked input matrix.

Probing We probe for properties of
the input matrix in the hidden states
of the model, to concretely determine
how the model computes the output.
We use our 12–layer model in this
case, to enhance contrast between
probing results in different layers.

Specifically, for every element in
the input, we fit a linear probe [3]
on its hidden state after a given
layer, mapping the hidden state to
the n−dimensional masked row that
this element belongs to (missing en-
tries are replaced by 0). That is, el-
ement at position (i, j) maps to the
7−dimensional vector X̃i. The results
for this experiment in Fig. 6 demon-
strate that the hidden states at layer
3 and 4 in the model correlate quite
strongly with the probe target, compared to other layers. This result suggests that the model tracks
input information in its intermediate layers and possibly uses it for computing missing entries.

We also probe for the true matrix element at missing entries, and find that the hidden states at these
positions get gradually more correlated with depth (through linear probing). Further, we also attempt
to extract information about singular vectors of the ground truth matrix from the hidden states through
linear probing, though are unable to conclusively do so. We discuss these results in Appendix K.

3.3 Role of Embeddings

Token Embeddings The ℓ2 norm of token embeddings corresponding to values from −1.5 to 1.5
is symmetric w.r.t. 0 as seen in Fig. 7a. Further, the PCA of token embeddings in Fig. 7b shows
that the embeddings have a separable structure based on the sign of the real–valued input (y–axis),
and continuous variation w.r.t. magnitude of input (x–axis). Importantly, unlike other metrics, token
embeddings do not seem to abruptly change only at step 15000; rather, the final structure appears
before the sudden drop in loss. Similar to [27], we compute the top–2 principal components of the
token embeddings at the final step (50000), and project the token embeddings at intermediate training
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Figure 7: Embeddings demonstrate relevant structure. In the post–shift model, positional and
token embeddings exhibit properties demonstrating that the model has learnt relevant information
about the matrix completion problem. (a) ℓ2 norm of token embeddings is symmetric around 0. This
aligns with the intuition that the norm of token embeddings should depend only on the magnitude of
the input, and not on its sign. (b) Top–2 principal components of token embeddings correspond to the
magnitude and sign of the real valued input. In our case, the ‘y-axis’ denotes sign of input, and the
‘x-axis’ denotes the magnitude of the input value. (c) Positional embeddings of elements in the same
column cluster together in the t–SNE projection, showing that the model uses positional information
relevant to the matrix completion problem.
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steps on these components. The results (Fig. 9, Appendix C) show that the embeddings align very
closely to the final arrangement before the actual drop. This is as expected, since the model needs to
learn what the tokens actually represent on the real line, before it can use those values for completing
missing entries. This also explains to some extent why the model implements copying before the
sudden drop, since accurately learning token embedding-unembedding is sufficient for that task.

Positional Embeddings In the t-SNE projection of positional embeddings, positions in the same
column tend to cluster together as seen in Fig. 7c. This is non–trivial because we have not used any
marker tokens to mark the end of a row or column. Further, note that in contrast to token embeddings,
positional embeddings do not have a continual evolution in structure – Fig. 10 (Appendix C) shows
that the clustering appears only after the sudden drop (step 20000 and after). This along with the
evolution of attention heads (Sec. 3.1, 3.2) aligns with how the pre–shift model copies observed
entries with little effect from ablating attention heads or positional embeddings (Sec. 3.2.1).

4 Sudden Drop in Loss – Role of Model Components

Is it possible to analyse training dynamics of individual model components to derive insights about
the full model training? This is motivated by the findings in the previous section on embeddings, and
in Section 3.1; the pre–shift model does not use Attention layers for its computation in that stage, and
relies on other components to copy input entries. Hence, in our case, the sudden drop corresponds in
large part to learning the right Attention patterns (see Appendix M.1). To analyse training dynamics
of different model components, we choose (a set of) components – Attention layers, MLP layers,
Positional Embeddings and Token Embeddings, randomly initialize them and freeze the weights of
other components to their values at the final step of training (Fig. 8).

We find that (a) MLPs and Token Embeddings converge without any observable plateau or sudden
drop in loss; (b) for other components, the dynamics resemble those for the full model training (i.e.
plateau and then sudden drop), and (c) Positional embeddings show the longest plateau in loss.
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Figure 8: Individual model components have distinct training dynamics. Training individual
model components, initializing others to their final value (‘All components’ indicates normal training).
There is no loss plateau for token embeddings and MLP layers, in contrast to positional embeddings,
where the sudden drop occurs just before step 40000. In all other cases the sudden drop occurs before
the sudden drop in usual training.

Additional Results To further understand the effect of data and model properties on the sudden
drop in loss, we train

• a 2–layer, 2–head GPT model on the matrix completion task (Appendix G);

• models of different depth (number of layers) and width (hidden state dimension) (App. H);
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• our model on (mixture of) matrices of different sizes keeping the rank fixed at 1 (App. I);
• a 12-layer, 12-head model on 10× 10 matrices of multiple ranks (separately) (App. I);
• our model on input matrix entries (Uij , Vij) i.i.d. ∼ N (0, 1) instead of Unif[−1, 1] (App.

J.1); we also analyze test–time OOD performance of our model in App. J.2.

5 Related Work

[27, 28, 32, 41, 38] analyse ‘grokking’, the sudden emergence of generalization during model training.
In the context of training dynamics of MLM, [8] analyses ‘breakthroughs’ (sudden drop in loss and
associated improvement in generalization capabilities of the model), specifically for BERT. They
show that the breakthrough marks the transition of the model to a generalizing one. Their work
however is focused on language tasks, distinct from our setting which is mathematical (and hence
more controllable) in nature. We also note that their work is not in the online training setting; our
setup is online in the sense of sampling new data at every step of training.

Mathematical problem solving capabilities of Transformers have been a topic of interest lately
[24, 7, 4]. In fact, [24] show that learning addition from samples is equivalent to low–rank matrix
completion. Further, [7] show that it is possible to train a transformer based model to solve various
linear algebraic tasks e.g. eigendecomposition, matrix inversion, etc.; however, to the best of our
knowledge, interpretability studies for such tasks have not been conducted before. For interpretability
in simpler math tasks, [18] mechanistically analyse GPT-2 small on predicting whether a number is
‘greater-than’ a given number, by formulating the problem as a natural language task. [35, 36, 10]
analyse BERT from an interpretability perspective. More recently, there has been a line of research
works analysing decoder based models to reverse–engineer the mechanisms employed by these
models, termed as ‘mechanistic interpretability’ [14, 31, 32, 39, 11, 33, 25, 26, 23, 34, 20]. We note
that our setting is distinct from the recent work on solving mathematical tasks like linear regression
through ‘in–context’ learning in transformers [4, 1, 9, 15, 17, 2, 30, 37]. Whether our model learns to
implicitly ‘implement’ an optimization procedure as shown in some of these is an open question. We
discuss related work in more detail in Appendix E.

6 Conclusion

We trained a BERT model on matrix completion, and analyzed it before and after the sudden drop in
training loss (algorithmic shift) to interpret the algorithm being learnt by the model, and gain insight
on why such a sharp drop in loss occurs.

It is evident in our analysis that both before and after the shift, the model does not really compute
anything at observed positions, and simply copies these entries. For missing entries, we have shown
that the model learns useful abstractions rapidly through the algorithmic shift. Mathematically
formulating what algorithm the model employs to implement matrix completion for missing entries
is a direction for future work.

Since our work is primarily interpreting model training and mechanism, all experiments are with
small scale matrices (largest being 15× 15), and the current method would likely need modifications
to scale to larger matrices. Finally, we only intended to study Transformers on matrix completion as
a toy task from an interpretability viewpoint, and do not advocate replacing existing efficient solvers
for matrix completion with our approach.

Societal Impact We study Transformer based models on their ability to solve a mathematical
task (matrix completion) and the associated training dynamics. The work focuses on Transformer
interpretability, aiding in improving our understanding of these models and their training and thus we
do not foresee any negative societal impact of our work.
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A Copying in Pre–Shift Model

Step Input Samples Mask = “MASK” Mask = “0.44” Mask = “–0.24”

L′
mask Lobs L′

mask Lobs L′
mask Lobs

1000
Rank−2 matrices 1.4e-3 9.3e-4 7.6e-4 1e-3 6.7e-4 9.6e-4
Random matrices 1.5e-3 8.3e-4 7.8e-4 1e-3 6.8e-4 9.6e-4

4000
Rank−2 matrices 3e-4 3.3e-4 4e-4 2.8e-4 3.7e-4 2.7e-4
Random matrices 2.8e-4 3.5e-4 3.7e-4 3e-4 3.6e-4 2.8e-4

14000
Rank−2 matrices 1.6e-5 3.4e-5 1.8e-5 4.9e-5 5.1e-6 6.7e-5
Random matrices 1.1e-5 3.7e-5 3.0e-5 8.5e-5 4.1e-6 1.1e-4

Table 1: Models at different steps before sudden drop implement copying, predicting the value for
mask token at missing entries.

B Nuclear Norm Minimization

We use the regularized version of the nuclear norm minimization problem as detailed in Sec. 3.2, and
obtain the following L,Lobs, Lmask for various values of λ. We average our results over 256 samples
generated in the same way as the training data for BERT (including rounding off to 2 decimal places)
for the sake of comparison.

λ Lobs Lmask L
0.0005 1.015e−5 0.040728 0.012173
0.001 3.686e−5 0.040456 0.01211
0.0015 7.959e−5 0.040505 0.012155
0.002 0.00013769 0.040734 0.012264
0.005 0.00078591 0.043402 0.013516

C Embeddings Progress during Training
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Figure 9: Token embedding structure appears before sudden drop. Projection of token embed-
dings along principal components of embeddings at step 50000. (Labels same as Fig. 7). Embeddings
align with the principal components early on in training before the sudden drop in loss.
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In this case, the positional embeddings show clustering some time after the sudden drop in loss has
occurred at step 15000.
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D Experimental Details

Online Training In online training, the data is sampled afresh from the distribution at every step.
Since data is not partitioned into fixed train and test sets, we only analyze the training loss in all cases.

Tokenizing Matrices For tokenizing real values, we discretize the range [−10, 10] in steps of size
ϵ = 0.01, and assign token IDs starting from 1; the mask token (MASK) is assigned ID 0. Input to
the model is the tokenized masked sequence Xmask = TOK(Vec(X ⊙M)) , where ⊙ denotes the
element-wise product, Vec denotes vectorizing the n × n matrix to a n2-dimensional vector, and
TOK denotes tokenization. Due to this preprocessing, in all cases Xij is rounded to 2 decimals for
computing L.

E Related Work

In the online training setup, [5] study the parity learning problem using a variety of model archi-
tectures, and show that ‘hidden progress measures’ can be used to track abrupt changes in model
performance during training. [29] study abrupt learning in an autoregressive (GPT), language data
setup, connecting learning the grammar to percolation on graphs. [19] discuss abrupt learning
dynamics in the context of transformers and claim that the softmax function in Attention leads to
longer training loss plateaus – however, reducing the length of plateau does not explain why the drop
in loss is sudden and sharp when it occurs. [43] show that initialization of the model affects whether
it learns to infer the compositional structure of the task, or simply memorizes the solution.

[4] show that in an in–context learning framework, a transformer based model can learn to select the
most optimal statistical method for solving the task in the prompt, without explicitly being provided
any information about the optimal method (called ‘in–context algorithm selection’ in their work).
We emphasize that our setup is not in–context learning, and is quite distinct from [4] as far as the
task being solved is concerned. However, whether the framework of layer-wise in-context gradient
descent can also be used in our setup is a plausible and open direction for future work.

In [7], the author shows empirically that an encoder-decoder transformer can be trained to solve
various linear algebraic tasks, such as eigendecomposition, SVD, matrix inverse etc. They support
their findings by showing that the model generalizes to matrix distributions outside the training
distribution to some extent, and that OOD performance can be improved by training on non-Wigner
matrices. While many experiments in [7] also show a sudden jump in accuracy (Fig 1,2), they do not
analyze why such a sudden jump occurs during optimization. In our work, we analyze the sudden
drop and the model before and after it to derive insights into the sudden drop in loss in our setup.

[24] show that even a small transformer model can be trained to perform arithmetic operations
like add, subtract, multiply accurately through appropriate data selection and formatting, and using
Chain-of-Thought prompting. They further show that learning addition is connected to rank-2 matrix
completion, and that the sudden jump in accuracy with increasing number of observed entries of the
matrix is recovered when their model is trained on datasets of different sizes. This is because the
size of the dataset for addition can be seen as the number of observed entries of the rank-2 matrix
representing the addition table. We point out that while the task in this case is related to matrix
completion, ours is a completely different setup, where the sudden drop happens with the number of
training steps with each step consisting of 256 low-rank matrices, each with a fixed fraction (pmask)
of observed entries.

F Causal Intervention on Attention heads

In the uniform ablation setup, it is possible that setting the softmax probabilities to a given value
might change the distribution of resultant hidden states, and consequently degrade model performance.
A more principled technique to analyze the effect of a specific component is to replace the hidden
state just after that component by hidden states on a different input, and analyze how this affects the
final output [42]. In our case, we intervene on attention heads by replacing the hidden state after an
attention head for input matrix X by the hidden state for input (−X). Importantly, this change does
not affect properties like rank of the input, and hence the hidden states obtained are from the same
distribution as those for input X.
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Step 1 Extract the hidden states for all attention layers from the model on some input matrix X;
call these h+. Concretely, these hidden states are obtained just after the matrix product of
the softmax attention probabilties and the value matrix and hence before the output matrix
product.

Step 2 Change the input to the model to −X, however, also replace the hidden states just after the
attention layers with h+ obtained in Step 1. Call the output of the model in this setup as
fp(−X,X).

We observe that, the MSE between fp(−X,X) and X , averaged over 256 samples at masked
positions is approximately 0.014 (this is comparable to optimal Lmask), compared to the MSE
between fp(−X,X) and −X being 0.8066. This demonstrates that the attention heads are causally
relevant to the model output for missing entries.

G Autoregressive Setup
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Figure 11: GPT also shows abrupt learning for matrix completion. Training a 2–layer, 2–head
GPT model on 7 × 7, rank−2 matrices in the autoregressive training setup. Here, the model is
trained using cross–entropy loss in a next–token prediction setup over full input sequences of the
form X̃11, X̃12, . . . , X̃77, [SEP], X11, X12, . . . , X77 where X̃,X are partially observed and fully
observed matrices, flattened and tokenized as in the BERT experiments. We find that the sudden drop
corresponds to the model learning to copy the observed entries in the input matrix. While we could
not achieve performance comparable to BERT for missing entries, we believe it should be possible
with some modifications to the training setup.
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Figure 12: Attention heads demonstrate sudden change in matrix completion using GPT. We
find that even in the GPT case, the attention heads change from trivial (Layer 2, attending to the [SEP]
token for all positions in the output) to those in Layer 1 attending to the corresponding positions
in the input (∼identity maps). This corroborates with our finding about the model learning to copy
observed entries after the sudden drop, in Fig. 11.
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H Effect of Model Size

0 10 20 30 40 50

Step (x1000)

0.00

0.02

0.04

0.06

0.08

0.10

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

M
SE

)

Training on Models of Increasing Width

d=64
d=128
d=256
d=768
d=1024

Figure 13: Effect of model width. Training with different model widths (hidden state dimensionality)
on 7 × 7 rank−2 inputs. The plot demonstrate that d = 64 is too small to obtain accurate matrix
completion, and that the performance is sub–optimal for d = 128. We scale the hidden layer width of
the 2−layer MLPs as 4d, as is done in practice.
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Figure 14: Effect of model depth. Training with different model depths (number of layers) on 7× 7
rank−2 inputs. The plot demonstrate that as depth increases from 4 to 6, the sudden drop occurs
earlier, but increasing depth beyond this (8, 12) has little effect. The final MSE obtained also follows
the intuitive ordering (largest for L = 4 decreasing with L upto L = 12; though the variation is not
significant.
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Figure 15: Using 1 attention head per layer. We find that training a 12−layer, 1−head BERT model
on matrix completion leads to similar loss (4e−3) and attention heads as the 4−layer, 8−head model.
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I Effect of Matrix Size and Rank on Training
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Figure 16: Learning order when trained on mixture of matrices. Training on uniform mixture of
5× 5, 7× 7 and 9× 9 rank−1 matrices i.e., at each step, 256 samples of size n× n, with n chosen
randomly from {5, 7, 9}. The plots show the test set MSE on separate 256 samples of the 3 different
matrix sizes.
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Figure 17: Effect of problem complexity. Training a 12−layer, 12−head model on 10×10 matrices
of rank r = 1, 2, 3. There is a clear progression in terms of the training step where sudden drop
occurs, and the final loss values scale roughly as L ∼ c · 10r, c ≈ 2× 10−6. This also predicts that
L ∼ 0.02 for r = 4, i.e. the model does not solve matrix completion to low MSE, which is what we
also observe in practice.
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J Effect of Input Distribution

J.1 Training
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Figure 18: Sudden drop is not limited to uniform distribution. Training on i.i.d. N (0, 1) entries.
We find that the sudden drop also occurs in this case, and the final loss value ∼ 5.6× 10−3, similar
to the value obtained for i.i.d. Uniform[−1, 1] entries.

J.2 Inference
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Figure 19: Model performs similar to nuclear norm minimization on OOD samples. OOD
performance at inference for various values of rank, number of rows and columns of the input matrix.
Except (c), the OOD performance of the model is close to the nuclear norm minimization solution for
the same inputs. For (c), since we observed that positional embeddings depend on the column of the
element, changing the number of columns adversely affects performance.

Matrix Distribution We also change the input distribution of the matrix entries to Gaussian and
Laplace, and measure average MSE over 1024 samples of size 7 × 7 and rank−2, to evaluate the
OOD performance of the trained model. We find that

• for entries i.i.d. ∼ N (0, 0.25), L ≈ 4× 10−3, and
• for entries i.i.d. ∼ Laplace(0, 0.25), (parameterized by mean and scale), L ≈ 2× 10−3.

That is, the OOD performance on these distributions is similar to the MSE obtained for the in–training
distribution (Uniform[−1, 1]).
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K Probing: Additional Results
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Figure 20: Hidden states encode the true value at missing entries. Probing for the corresponding
element in the fully observed matrix X . (Left) comparing the train and test MSE of the linear probe,
to confirm that the probe does not overfit. (Right) Test MSE evaluated on the masked elements,
that shows an interesting variation: the MSE goes down at a nonlinear rate, hinting that implicit
layer–wise optimization could be taking place.
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Figure 21: Model does not encode singular vectors in hidden states. Probing for the first left
singular vector at all positions; that is, for fully observed input matrix X ∈ Rn×n with SVD
X = UΣV ⊤, we probe for u = [U11, U21, . . . , Un1]

⊤ ∈ Rn. (Left) Train and Test MSE across
different layers of the model; (Right) Average Absolute Cosine similarity of the predicted u with the
actual u. Both evaluations are inconclusive, since the MSE is too large, and the cosine similarity
is not much larger than the average absolute cosine similarity (≈ 0.3) between 2 i.i.d. vectors
∼ N (0, I7×7) ∈ R7

L Ablating Groups of Structured Attention Heads

Group of Attention Heads Ablated L Lobs Lmask Ratio of L (w/ to w/o)w/ ablation w/o ablation w/ ablation w/o ablation w/ ablation w/o ablation
(2,1), (3,4), (4,8) 0.0073 0.0035 0.0001 9e−5 0.0245 0.0117 2.09
(4,3), (4,4) 0.0079 0.0045 3e−4 8.8e−5 0.026 0.015 1.76
(2,2–4), (2,6), (3,2), (3,3), (3,5), (3,1), (3,6) 0.057 0.0043 2.1e−4 9e−5 0.1885 0.0142 13.26
(2,5), (2,7), (2,8) 0.0112 0.0049 8.5e−5 9.2e−5 0.037 0.016 2.29
(1,1–2), (1,5–8) 0.0314 0.0048 1.7e−4 8.8e−5 0.1038 0.0157 6.54
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M Attention Heads

M.1 Variation along training
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Figure 22: Attention heads across various training steps.
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M.2 Effect of changing mask structure
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Figure 23: Attention heads and corresponding masks; blue denotes masked position in the input
matrix.
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N Attention Heads for larger inputs
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Figure 24: Attention heads in 12 layers, 12–heads model on 7× 7 rank–2 input
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Figure 25: Attention heads in 12 layers, 12–heads model on 12× 12 rank–3 input
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Figure 26: Attention heads in 12 layers, 12–heads model on 15× 15 rank–4 input
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have accurately listed our main claims in line with the actual contribution
of this work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There are no theoretical results in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our training experiment details in Section 2.2, and other experi-
ment details are provided wherever relevant. Link to the code is available in Sec. 2.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Link to the code is available in Sec. 2.2, and a README file is included to
help run experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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