
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMULATING, FAST AND SLOW: LEARNING POLICIES
FOR BLACK-BOX OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Simulators are vital in science and engineering, as they faithfully model the in-
fluence of design parameters on real-world observations. A common problem is
leveraging the simulator to optimize the design parameters to minimize a desired
objective function. Since simulators are often non-differentiable blackboxes and
each simulation incurs significant compute time, gradient-based optimization tech-
niques can often be intractable or, in some cases, impossible. Furthermore, in
many experiment design settings, practitioners are required to solve sets of closely
related optimization problems. Thus, starting the optimization from scratch each
time might be inefficient if the forward simulation model is expensive to evaluate.
To address these challenges, this paper introduces a novel method for solving
classes of similar black-box optimization problems by learning an active learning
policy that guides the training of a differentiable surrogate and then uses that surro-
gate’s gradients to optimize the simulation parameters with gradient descent. After
training the policy, the cost for downstream optimization of problems involving
black-box simulators is amortized and we require up to ∼90% fewer expensive
simulator calls compared to baselines such as local surrogate-based approaches,
numerical optimization, and Bayesian methods.

1 INTRODUCTION

Simulation-based techniques model real-world phenomenons (e.g., physics particle movement,
electromagnetic wave propagation) and enable understanding influence of system design parameters
on resulting observations. As such, they provide a cheaper alternative to real-world evaluation of
system parameters and are invaluable to many fields in physical sciences and engineering, covering
domains such as robotics (Todorov et al., 2012), telecommunication (Hoydis et al., 2023) and particle
physics (Jonas, 2019; Stakia, 2021). Generally, a simulator1 fsim models the forward-process
fsim : (ψ,x) → y, which maps simulation parameters ψ and input data x to observations y
(Shirobokov et al., 2020). For instance, in particle physics, simulators such as GEANT4 (Agostinelli
et al., 2003) or FairRoot (Al-Turany et al., 2012), predict the detection of particles y given their
properties x, and multi-stage steel magnet configuration and geometry ψ. Similarly, in wireless
communication, simulators such as Matlab RT (Inc., 2023) or Sionna (Hoydis et al., 2023), predict
the signal strength y given scene information ψ (e.g., CAD model of scene, antenna locations and
orientations).

Although simulators largely focus on highly-accurate forward-models, numerous practical appli-
cations require inverse inferences. Specifically, inferring unknown system design parameters ψ∗
that achieves a certain objective. Continuing the previous examples, in the particle physics scenario,
to design the magnet configuration to reduce the number of detected events from certain types of
particles. Similarly, in the wireless communication, to optimally place a transmit antenna in a scene to
maximize the signal strength across all areas. Tackling inverse problems using simulators-in-the-loop
can be cast as a black-box optimization problem: to iteratively refine an initial design parameter
choice to meet the objective given certain conditions and constraints. Black-box optimization has
rich history, and solutions include gradient-free optimization (Banzhaf et al., 1998; Maheswaranathan
et al., 2019), Bayesian optimization (Daxberger et al., 2020; Oh et al., 2018), numerical differentiation

1In our study, we consider stochastic and non-stochastic simulators. Our method applies to both types of
simulators without requiring any modifications.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Schematic view of our approach. (a) We study black-box optimization problem (over
parametersψ), with an emphasis on using gradient information from a fast differentiable surrogate fϕ
(b) To optimize ψ sample-efficiently, we employ a policy πθ to actively determine whether retraining
the surrogate is necessary before using the gradient information.

(Alarie et al., 2021; Shi et al., 2023) or stochastic gradient estimation methods (Grathwohl et al.,
2018; Williams, 1992). However unlike typical blackbox settings, a major challenge here is that
each simulation (for a fixed choice of ψ) involve significant compute and hence posing a critical
bottleneck for iterative optimization. Consequently, we focus on blackbox optimization techniques
that minimize calls to the simulator.

In this paper, we focus on stochastic gradient estimation techniques for black-box optimization.
Inspired by Shirobokov et al. (2020), our approach involves leveraging gradients from a surrogate
model trained to (locally) mimic the black-box simulator2. Gradient-based methods typically perform
multiple simulator calls to estimate the gradients, thus making these approaches computationally
demanding. To mitigate such a demand, we aim to minimize the number of required simulator calls
by proposing to learn a policy to guide the optimization. The policy determines whether the current
surrogate model (fast, but potentially inaccurate) can be used or instead a simulator call is necessary to
update the surrogate (slow, but accurate), see Figure 1. Furthermore, by drawing inspiration from the
literature on active learning (Bakker et al., 2023; Fang et al., 2017; Hsu and Lin, 2015; Konyushkova
et al., 2017; 2018; Liu et al., 2018; Pang et al., 2018; Ravi and Larochelle, 2018) we also let our
policy learn how to sample new data for training the local surrogate model. This offers additional
control, which the policy may learn to exploit.

Our contribution can be summarized as follows: (i) We introduce a Reinforcement Learning (RL)
framework to learn a policy to reduce the number of computationally expensive calls to a black-box
simulator required to solve an optimization problem; (ii) We propose to learn a policy that determines
when a simulator call is necessary to update the surrogate and when the current surrogate model can
be used instead; (iii) We implement a policy that also learns how to sample new data for training
the surrogate model during the optimization process; (iv) We assess the benefits of our RL-based
approach on low- and high-dimensional global optimization benchmark functions and two real-world
black-box simulators and show that, once trained, our policy reduces the number of simulator calls
up to ∼90%, compared to the baselines.

2 RELATED WORK

Simulation-based Inference Our work lies at the intersection of black-box simulator-based op-
timization and active learning. Black-box optimization problems are ubiquitous in science and
engineering, encompassing scenarios where unknown parameters must be deduced from observa-
tional data. These parameters can entail anatomies in MRI (Zbontar et al., 2018), molecular structures
(Jonas, 2019), particle properties (Agostinelli et al., 2003; Stakia, 2021), and cosmological model
parameters (Cole et al., 2022), among others. The forward process is often a complex physical
process that can be modelled by a simulator but does not provide a likelihood for easy inference.
Simulation-based inference techniques aim to infer posterior distributions over these simulation
parameters in such likelihood-free settings (Brookes et al., 2019; Cole et al., 2022; Cranmer et al.,
2020). Other solutions may involve supervised learning on observation-parameter pairs or imitation
learning (Jonas, 2019; Sriram et al., 2020). Our simulator-based optimization setting is a variation
on these problems. Here, the objective is to find the optimal parameters of the simulator, where
optimality is typically formulated in terms of desired observations. This methodology can be applied
in various fields, such as MRI (Bakker et al., 2022; 2020; Pineda et al., 2020), particle physics (Dorigo

2The simulator can be either stochastic or deterministic.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2023; Fanelli, 2022; Gorordo et al., 2023; Stakia, 2021) and molecular design (Schwalbe-Koda
et al., 2021). When the simulators are differentiable, direct gradient-based optimization can perform
well (de Avila Belbute-Peres et al., 2018; Degrave et al., 2019; Hu et al., 2019). However, a different
approach is necessary in cases where the simulators are non-differentiable. Well-known gradient-free
methods that may be employed in such settings include evolutionary strategies (Banzhaf et al., 1998;
Maheswaranathan et al., 2019) and Bayesian optimization (Daxberger et al., 2020; Eriksson et al.,
2019; Frazier, 2018; Oh et al., 2018). Nevertheless, these methods often require additional assump-
tions to make the optimization scalable in high dimensional parameter spaces (Djolonga et al., 2013;
Zhang et al., 2019).

Approximate-Gradient Optimization With the rise of deep learning, there has been a surge of
interest in approximate-gradient optimization methods. While some authors consider numerical
differentiation (Alarie et al., 2021; Shi et al., 2023), many others have focused on methods for
efficiently obtaining approximate stochastic gradients (Agrawal et al., 2023; Grathwohl et al., 2018;
Louppe et al., 2019; Mohamed et al., 2020; Ruiz et al., 2019; Williams, 1992). Another strategy
involves training differentiable surrogate models to mimic the simulator and assuming that the
gradients of the surrogate model are similar enough to those of the simulator (Shirobokov et al., 2020).
Surrogate models have been trained for many applications, including wireless propagation modeling
(Levie et al., 2021; Orekondy et al., 2023), space weather prediction (Baydin et al., 2023), material
discovery (Merchant et al., 2023), and fluid dynamics simulation (Agrawal and Koutsourelakis, 2024).
This trend provides an opportunity for surrogate-based optimization of simulators, as surrogate
models are readily available. Additionally, it has been observed by Shirobokov et al. (2020) that
using (local) surrogate gradients is more efficient than many alternatives. Our work generalizes this
setup by introducing a policy that guides the optimization by suggesting when and, optionally, how
the surrogate should be updated during the optimization process.

Active Learning When the policy decides how (with what data) the surrogate should be updated,
it does so using information provided by the surrogate itself. This is an example of active learning
(Settles, 2009), where the current instance of a task model (the surrogate) affects the data it sees in
future training iterations. In particular, our policies are instances of learning active learning, where a
separate model (our policy) is trained to suggest the data that the task model should be trained on
(Bakker et al., 2023; Fang et al., 2017; Hsu and Lin, 2015; Konyushkova et al., 2017; 2018; Liu et al.,
2018; Pang et al., 2018; Ravi and Larochelle, 2018).

3 BACKGROUND

We aim to optimize the simulation parameters of a black-box simulator using stochastic gradient
descent. The black-box simulator, fsim, describes a stochastic process3, p(y|ψ,x), from which we
obtain the observations as y = fsim(ψ,x) ∼ p(y|ψ,x), where x ∼ q(x) is a stochastic input and
ψ is the vector of simulation parameters. Since these simulators are typically not differentiable, we
train a surrogate neural network to locally (in ψ) approximate the simulator (Shirobokov et al., 2020).
Gradients of these local surrogates, obtained through automatic differentiation, may then be used to
perform the optimization over ψ. The goal is now to minimize an expected loss L over the space
of the simulation parameters ψ. As the functional form of the simulator is generally unknown, this
expectation cannot be evaluated exactly and is instead estimated using N Monte Carlo samples:

ψ∗ = argmin
ψ

E [L(y)] = argmin
ψ

∫
L(y) p(y|ψ,x) q(x) dx dy ≈ argmin

ψ

1

N

N∑
i=1

L(fsim(ψ,xi))

(1)

After training a neural network surrogate fϕ : (ψ,x, z) → y on data generated with fsim, the
optimization might be performed following gradients of the surrogate. Here, z is a randomly sampled
latent variable that accounts for the stochasticity of the simulator. Gradients are then estimated as:
∇ψE [L(y)] ≈ 1

N

∑N
i=1 ∇ψ L (fϕ(ψ,xi, zi)) . Since running the forward process fsim, is often an

expensive procedure, our goal is to minimize the number of simulator calls required to solve the
optimization problem at hand.

3A non-stochastic simulator can be considered as a special case where fsim places a delta distribution over
observations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 POLICY-BASED BLACK-BOX OPTIMIZATION

Following Shirobokov et al. (2020), we perform an iterative optimization based on the gradients
obtained in section 3. At each point during the optimization, new values ψj are sampled within
a box of fixed size 2ϵ, centered around the current ψ: Uψϵ = {ψ′; |ψ′ − ψ| ≤ ϵ}. Then, input
samples are obtained from q(x), and the simulator is called to obtain the corresponding y values. The
resulting samples are stored in a history buffer H , from which the surrogate is trained from scratch.
Specifically, the surrogate is trained on samples ψj extracted from H that satisfy the condition
that they lie within Uψϵ . The overall process required to generate new samples from the black-box
simulator is what we refer to as a “simulator call”.

Policy-based Approach We propose further reducing the number of simulator calls required for
an optimization run with an RL-based approach. Our method involves utilizing a learned policy πθ,
with learnable parameters θ to: i) decide whether a simulator call should be performed to retrain the
local surrogate; and ii) define how to sample from the black-box simulator.

Sampling Strategy To investigate the question concerning how to perform a simulator call, we
train policies to additionally output the ϵ for constructing the sampling neighbour Uψϵ , which serves
as our data acquisition function. As ϵ parameterizes this acquisition function, such policies are an
example of active learning (Settles, 2009). In particular, these policies are instances of learning active
learning (Bakker et al., 2023; Fang et al., 2017; Hsu and Lin, 2015; Konyushkova et al., 2017; 2018;
Liu et al., 2018; Pang et al., 2018; Ravi and Larochelle, 2018), as they learn a distribution over ϵ.
See Appendices B.1 and C.1 for a more detailed description concerning the policy implementation
and training.

State Definition We formalize the sequential optimization process as an episodic Markov Decision
Process (MDP). The state st (at timestep t) is given by the tuple (ψt, t, lt, σt), whereψt is the current
parameter value, lt is the number of simulator calls already performed in the episode, and σt is some
measure of uncertainty produced by the surrogate. See Appendix B.3 for a discussion regarding
observability in the MDP.

Action Definition Actions at consist of binary valued variables b ∈ {0, 1}, sampled from a
Bernoulli distribution, where 1 represents the decision to perform a simulator call. Additionally, we
also train policies to determine, as part of the action, the trust region size ϵ for sampling new values
for ψ. The dynamics of the MDP is represented by means of the Adam optimizer (Kingma and Ba,
2014) which updates the current state by performing a single optimization step in the direction of the
gradients of ψ.

Reward Design Episodes come to an end under three conditions: A) when the optimization reaches
a parameter for which E [L(y)] is below the target value τ (we call this termination - see Appendix D.4
for details concerning the choice of τ); B) when the maximum number of timesteps T is reached; or
C) when the policy hits the available budget for simulator calls L. To incentivize reducing the number
of simulator calls, rewards r(st, at, st+1) are 0 if at = 0 and −1 if at = 1. Additionally, a reward
penalty is added when B) or C) occur to promote termination. The penalty is −(L− lt)− 1 when
B) occurs and −1 when C) occurs. This ensures the sum-of-rewards for non-terminating episodes is
−L− 1. We have observed that using reward penalties based on lt rather than t improves training
stability. We refer the reader to Appendix D.3 for further details concerning the reward design.

Local Surrogate The decision to perform a simulator call should rely on the quality of the local
surrogate. A surrogate that is well-fitted to the simulator at the current ψ will presumably provide
useful gradients, so gathering additional data and retraining is unnecessary. Vice-versa, a badly fitted
surrogate will likely not provide useful gradients and may be worth retraining, even if a simulator
call is expensive. We use the uncertainty feature σ to provide this information.

Local Surrogate Ensemble To construct σ, we replace the local surrogate with an ensemble of
local surrogates, all trained on and applied to the same input data. The use of an ensemble empowers
our approach with the ability to estimate uncertainties while avoiding the need to train a Bayesian
posterior network (Fort et al., 2019; Lakshminarayanan et al., 2017; Wilson and Izmailov, 2020).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Loss landscape and learned optimization trajectory for the Probabilistic Three Hump
problem. The yellow region denotes ψ values that lead to termination. The ϵ = 0.5 neighbour
around ψ0 (black cross) is visualized as the red box. Light green and blue arrows represent gradients
from the surrogate or after a simulator call, respectively.

Each surrogate is implemented as a two-layer Multi-Layer Perceptron (MLP) with Rectified Linear
Unit (ReLU) activation function. With such small models, the additional resource requirement for
training an ensemble instead of a single surrogate is negligible. As the input, we use the tuple
(ψ,x, z), where z is sampled from diagonal Normal distribution.

Uncertainty Feature We compute the prediction mean per surrogate on D samples as ȳ =
1
D

∑D
i=1 [fϕ(ψ,xi, zi)], and construct σ as the standard deviation over these mean predictions.

Specifically, z accounts for the stochasticity of fsim. Such an idea allows us to dramatically simplify
the surrogate architecture compared to Shirobokov et al. (2020). Training GANs (Shirobokov et al.,
2020) is notoriously more challenging than training a shallow MLP due to instabilities and mode
collapse. Nonetheless, our “simpler” surrogate has enough capacity to locally approximate highly
complex stochastic, and non-stochastic, simulators. Gradient steps in ψ for simulator optimization
are taken by using the average gradient estimated from the ensemble. See Appendix B.2 for further
details concerning models implementation.

5 EXPERIMENTAL RESULTS

To assess the performance of our method, we test it on two different types of experiments. First, we
consider stochastic versions of benchmark functions available in the optimization literature (Jamil
and Yang, 2013). We consider the Probabilistic Three Hump, the Rosenbrock, and the Nonlinear
Submanifold Hump problems. These benchmark functions are relevant for two reasons: (i) they
allow us to compare our models against baselines on similar settings as in (Shirobokov et al., 2020);
and (ii) they allow to easily gain insights into models performance. Since the Probabilistic Three
Hump problem is two dimensional, i.e. ψ ∈ R2, we are able to especially conveniently visualize
the objective landscape as well as the optimization trajectories. Furthermore, the Rosenbrock
and Nonlinear Submanifold Hump problems allow us to test our approach on high-dimensional,
more complex, problems before moving to real-world black-box simulators. The second type of
experiments concerns real-world black-box simulators. We consider applications from two different
scientific fields, namely the Indoor Antenna Placement problem for wireless communications and the
Muon Background Reduction problem for high energy physics.

Baselines We compare our method against three baselines. We consider Bayesian optimization
using Gaussian processes with cylindrical kernels (Oh et al., 2018), numerical differentiation with
gradient descent, and local surrogate-based methods (L-GSO) (Shirobokov et al., 2020). Furthermore,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Pr
ob

. T
hr

ee
 H

um
p

N
on

lin
ea

r S
ub

m
an

ifo
ld

Ro
se

nb
ro

ck

Figure 3: Benchmark function results. Top row: Probabilistic Three Hump problem. Middle row:
Rosenbrock problem. Bottom row: Nonlinear Submanifold Hump Problem. AMO (the lower the
better) on (a) a fixed and (c) a parameterized x distribution. ANC (the lower the better) on (b) a fixed
and (d) a parameterized x distribution.

to guarantee a fair comparison against our models, we formulated an ensemble version4 (L-GSO-E)
of the local surrogate for L-GSO.

Our Models Policy methods are split into those that only output when to perform a simulator call,
π-E, and those that also output how to sample ψ values (for surrogate training) by providing the
neighbour size ϵ that parameterizes the acquisition function πAL-E. L-GSO, its ensemble version
(L-GSO-E), and π-E use a fixed value for ϵ that depends on the problem at hand (see Appendix D.1).
Finally, πGAL-E is a version of πAL-E where the surrogate ensemble is always warm-started from
the previous training step, such that the surrogate is continuously improved along the observed
trajectories through ψ-space (see Appendix B.1 for more details).

Metrics We report experimental results by using two different metrics: the Average Minimum of
the Objective function (AMO) for a specific budget of simulator calls and the Average Number of
simulator Calls (ANC) required to terminate an episode. The first quantity answers the question: What
is the lowest value for the objective function achievable for a given budget of simulator calls?; that
might be used as an indicator of the efficacy of each simulator call. The second quantity answers the
question: What is the simulator call budget required, on average, to solve a black-box optimization
problem?; that might indicate how good the policy is at leveraging the surrogate and understanding
its reliability. Therefore, those two metrics allow us to benchmark our approach against others by
looking at relevant quantities (see Appendix D.5 for more details). In all experiments, uncertainties
are quantified over evaluation episodes and different random seeds.

4L-GSO-E averages the gradients over the ensemble the same way our method does. The model does not
leverage any uncertainty since it always calls the black-box simulator.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 BENCHMARK FUNCTIONS

We consider a fixed and a parameterized input distribution for each benchmark function. Specifically,
the latter setup corresponds to solving an entire family of related optimization problems each
characterized by a different input distribution, qi(x). During training and evaluation of the policy,
each episode is characterized by a different input distribution. In what follows we report the definition
for each benchmark function only. A more detailed description can be found in Appendix D.1.

Probabilistic Three Hump Problem As mentioned in the introduction to the section, the Proba-
bilistic Three Hump problem concerns the optimization of a 2-dimensional vector ψ. Specifically,
the goal is to find ψ∗ such that: ψ∗ = arg minψE[L(y)] = arg minψ E[σ(y − 10)− σ(y)], where
σ is the sigmoid function and y, the observations vector, is given by: y ∼ N (y; µi, 1), i ∈ {1, 2}.
Being ψ a 2-dimensional vector, its optimization trajectory is amenable to visualization. Figure 2
illustrates that a fully trained policy can exploit the local-surrogate as much as possible and only
perform a simulator call when the model is far from the initial training location (red square in Fig-
ure 2). Intuitively, such behaviour is foreseen. The surrogate model is expected to provide meaningful
gradients in proximity to the ψ region where it was previously trained. However, as we move away
from that region, we expect the quality of the gradients to decline until a simulator call is triggered
and the local-surrogate re-trained. However, moving away from the last training region is not the
sole condition that might trigger a simulator call. For instance, towards the end of the trajectory, the
policy decides to call the simulator twice to gather more data to train the surrogate and then calls the
simulator again before ending the episode, indicating that a rapidly changing loss landscape may also
trigger a simulator call.

Rosenbrock Problem In the Rosenbrock problem, we aim to optimize ψ ∈ R10 such that:
ψ∗ = arg minψ E[L(y)] = arg minψ E[y]; where y is given by: y ∼ N (y; γ + x, 1), where
γ =

∑n−1
i=1

[
(ψi − ψi+1)

2 + (1− ψi)2
]
.

Nonlinear Submanifold Hump Problem This problem share a similar formulation to the Proba-
bilistic Three Hump problem. However, the optimization is realized by considering the embedding
ψ̂ = B tanh(Aψ), whereA ∈ R16×40 andB ∈ R2×16, of the vector ψ ∈ R40. Subsequently, ψ̂ is
used in place of ψ in the Probabilistic Three Hump problem definition.

5.2 REAL-WORLD SIMULATORS

We now focus on real-world optimization problems involving computationally expensive, non-
differentiable black-box simulators. First, we look at the field of wireless communications considering
two settings with a (non-stochastic) wireless ray tracer (Inc., 2023). Then, we move to the world
of subatomic particles and solve a detector optimization problem for which we use the high energy
physics toolkits Geant4 (Agostinelli et al., 2003) (stochastic simulator) and FairRoot (Al-Turany
et al., 2012).

Wireless Communication: Indoor Transmitting Antenna Placement We study the problem of
optimally placing a transmitting antenna in indoor environments to maximize the signal strength at
multiple receiver locations. Determining the signal strength in such a scenario typically requires a
wireless ray tracer (Inc. (2023) in our case), which takes as input the transmit location candidate
ψ ∈ R3, alongside other parameters (e.g., receive locations, 3D mesh of scene). To predict the signal
strength for a particular link (i.e., a transmit-receive antenna pair), the ray tracer exhaustively identifies
multiple propagation paths between the two antennas and calculates various attributes of each path
(e.g., complex gains, time-of-flight). The signal strength is computed from the coherent sum of the
complex-valued gains of each path impinging on the receive antenna and is represented in log-scale
(specifically, dBm). Optimally placing the transmit antenna is typically slow, as it amounts to naively
and slowly sweeping over transmit location choices ψ and observing the simulated signal strengths.
Instead, we employ our approach to “backpropagate” through the the surrogate and perform gradient
descent steps on the location ψ. Specifically, we consider two indoor scenes for this experiment
and investigate how to use our approach to find an optimal transmit location that maximizes signal
strength in the 3d scene (column (a) in Figure 4). The end goal in both cases is to find an optimal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) (b) (c)

C
on

fe
re

nc
e

ro
om

O
ffi

ce

Figure 4: Wireless ray-tracing results. (a) Rendering of the indoor environment, (b) AMO (the
lower the better), and (c) ANC (the lower the better). Top row: Conference room environment.
Bottom row: Office room environment.

transmit antenna location ψ that maximizes the median signal strength calculated over a distribution
of receive locations x ∼ q(x) (see Appendix D.2 for more details concerning simulations).

Physics: Muon Background Reduction We consider the optimization of the active muon shield
for the SHiP experiment (Baranov et al., 2017b). Typically, optimizing a detector is a crucial step
in designing an experiment for particle physics. For instance, the geometrical shape, the intensity
and orientation of magnetic fields, and the materials used to build the detector play a crucial role in
defining the detector’s “sensitivity” to specific types of particle interactions, i.e. events. Observed
events are usually divided into signal, i.e., interactions physicists are interested in studying, and
“background”, i.e., events that are not of any interest and that might reduce the detector’s sensitivity.
Concerning the SHiP experiment, muons represent a significant source of background; therefore, it is
necessary to shield the detector against those particles. The shield comprises six magnets, left image
in Figure 5, each described by seven parameters. Hence, ψ ∈ R42. To run the simulations, we use the
Geant4 (Agostinelli et al., 2003) and FairRoot (Al-Turany et al., 2012) toolkits. The input distribution
x describes the properties of incoming muons5. Specifically, as in (Shirobokov et al., 2020), we con-
sider the momentum (P), the azimuthal (ϕ) and polar (θ) angles with respect to the incoming z-axis,
the chargeQ, and (x, y, z) coordinates. The goal is to minimize the expected value of the following ob-
jective function: L(y;α) =

∑N
i=1 IQi=1

√
(α1 − (yi + α2))/α1 + IQi=−1

√
(α1 + (yi − α2))/α1

where I is the indicator function, α1 and α2 are known parameters defining the sensitive region of
the detector, and Q and y represent the electric charge and the coordinates of the observed muons,
respectively. Minimizing L(y;α) corresponds to minimize the number of muons hitting the sensitive
region of the detector.

5.3 RESULTS & DISCUSSION

On the problems involving benchmark simulators, policy-based methods achieve the best overall
performance in both the fixed and parameterized x-distribution scenarios, as shown in Figure 3. The
π-E model scores best especially on average number of simulator calls (ANC) required to terminate
an episode (bar plots in the figures) for almost all settings. Notably, using our trained policies, we

5Concerning the muon distribution, we use the same dataset as in Shirobokov et al. (2020). The dataset is
available for research purposes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Target/Magnetized
hadron absorber

Active muon shield

Figure 5: Physics experiments results. (a) Schematic view6of the active muon shield baseline
configuration. The “Target/Magnet hadron absorber” details are not relevant to the current discussion
and are reported for completeness only. See (Baranov et al., 2017a) for more details. (b) AMO (the
lower the better), (c) and ANC (the lower the better).

observe a significant reduction in the number of required simulator calls of up to ∼ 90% with respect
to L-GSO. While the πAL-E and πGAL-E models outperform all the baselines as well, there is no
clear advantage compared to π-E. Note that the trust region size ϵ in π-E and L-GSO is set to the
optimal value reported in Shirobokov et al. (2020) for these benchmark functions, which simplifies
the problem relative to πAL-E and πGAL-E. We note however that the warm-started surrogate of πGAL-E
improves over πAL-E in those cases, potentially by mitigating this difficulty. Similarly, the AMO
evaluations show that our policies outperform previous methods, with the single exception of the
Nonlinear Submanifold Hump problem; here our models are within error ranges of the best observed
AMO. As noted in (Shirobokov et al., 2020), the BOCK baseline struggles in solving the Rosenbrock
problem (Figure 3, middle row), likely due to the high curvature of the objective function under
analysis. On the other hand, numerical differentiation appears to be less affected by this issue, thus
reporting acceptable results for all the problems involving benchmark functions.

Given that the local surrogate baseline (L-GSO) generally outperforms the other baselines (and is
on-par in the worst case), we use both its variants as our baseline method for experiments involving
real-world black-box simulators. In these experiments, we see again that policy-based methods
achieve the best performance in terms of both AMO and ANC. However, in contrast to the results
of Figure 3, here the three different policy methods are very close to performing within error ranges
of each other (Figure 4). In the particle physics experiment, πAL-E and πGAL-E perform better on
average than π-E (Figure 5). This could suggest that the true advantage of learning to adapt the
trust region size, as in done by πAL-E and πGAL-E, is only revealed in more complex optimization
problems, such as the optimization of a detector for high energy physics experiments. We leave
further investigation into assessing the potential advantages of learning the sampling strategy to future
work. We refer to Appendix A for a more comprehensive discussion of limitations and future work.

6 CONCLUSION

We propose a novel method for minimizing the number of simulator calls required to solve optimiza-
tion problems involving black-box simulators using (local) surrogates. The core idea of our approach
is to learn an active learning policy that controls when the black-box simulator is used and how to
sample data to train the local surrogates. We describe three policy model variations and present
experiments showing they outperform previous methods, including local surrogate methods (Shi-
robokov et al., 2020), numerical differentiation, and Bayesian approaches (Oh et al., 2018) in a variety
of setups that include benchmark functions and real-world black-box simulators. In particular, we
observe a significant reduction in the number of simulator calls of up to ∼ 90%. Our results suggest
that local surrogate-based optimization of problems involving black-box forward processes benefits
from the guidance of both simple policies and learned sampling strategies.

6Image from (Baranov et al., 2017a). IOP Publishing, 2017, by Baranov, A., et al. Licensed under CC BY 3.0

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

S. Agostinelli et al. GEANT4 – a simulation toolkit. Nuclear Instruments and Methods in Physics
Research Section A, 2003.

Atul Agrawal and Phaedon-Stelios Koutsourelakis. A probabilistic, data-driven closure model for
rans simulations with aleatoric, model uncertainty, 2024.

Atul Agrawal, Kislaya Ravi, Phaedon-Stelios Koutsourelakis, and Hans-Joachim Bungartz. Multi-
fidelity constrained optimization for stochastic black box simulators, 2023.

M. Al-Turany, D. Bertini, R. Karabowicz, D. Kresan, P. Malzacher, T. Stockmanns, and F. Uhlig. The
fairroot framework. Journal of Physics: Conference Series, 396(2):022001, 2012.

Stéphane Alarie, Charles Audet, Aïmen E. Gheribi, Michael Kokkolaras, and Sébastien Le Di-
gabel. Two decades of blackbox optimization applications. EURO Journal on Computational
Optimization, 2021.

T. Bakker, M. Muckley, A. Romero-Soriano, M. Drozdzal, and L. Pineda. On learning adaptive
acquisition policies for undersampled multi-coil MRI reconstruction. In Proceedings of Machine
Learning Research, 2022.

Tim Bakker, Herke van Hoof, and Max Welling. Experimental design for MRI by greedy policy
search. In Advances in Neural Information Processing Systems, 2020.

Tim Bakker, Herke van Hoof, and Max Welling. Learning objective-specific active learning strategies
with attentive neural processes. Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery, 2023.

Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin. Genetic Programming:
An Introduction: On the Automatic Evolution of Computer Programs and Its Applications. Morgan
Kaufmann Publishers Inc., 1998.

A Baranov, E Burnaev, D Derkach, A Filatov, N Klyuchnikov, O Lantwin, F Ratnikov, A Ustyuzhanin,
and A Zaitsev. Optimising the active muon shield for the ship experiment at cern. In Journal of
Physics: Conference Series, volume 934, page 012050. IOP Publishing, 2017a.

A. Baranov, E. Burnaev, D. Derkach, A. Filatov, N. Klyuchnikov, O. Lantwin, F. Ratnikov,
A. Ustyuzhanin, and A. Zaitsev. Optimising the active muon shield for the SHiP experiment
at CERN. Journal of Physics: Conference Series, 934:012050, 2017b.

Atilim Guneş Baydin, Bala Poduval, and Nathan A. Schwadron. A surrogate model for studying
solar energetic particle transport and the seed population. Space Weather, 2023.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In Proceedings of the International Conference on Machine Learning, 2019.

Alex Cole, Benjamin K. Miller, Samuel J. Witte, Maxwell X. Cai, Meiert W. Grootes, Francesco
Nattino, and Christoph Weniger. Fast and credible likelihood-free cosmology with truncated
marginal neural ratio estimation. Journal of Cosmology and Astroparticle Physics, 2022.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 2020.

Erik Daxberger, Anastasia Makarova, Matteo Turchetta, and Andreas Krause. Mixed-variable
bayesian optimization. In Proceedings of the International Joint Conference on Artificial Intelli-
gence, 2020.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico Kolter.
End-to-end differentiable physics for learning and control. In Advances in Neural Information
Processing Systems, 2018.

Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. A differentiable physics engine
for deep learning in robotics. Frontiers in Neurorobotics, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional gaussian process bandits. In
Advances in Neural Information Processing Systems, 2013.

Tommaso Dorigo, Andrea Giammanco, Pietro Vischia, Max Aehle, Mateusz Bawaj, Alexey Boldyrev,
Pablo de Castro Manzano, Denis Derkach, Julien Donini, Auralee Edelen, Federica Fanzago,
Nicolas R. Gauger, Christian Glaser, Atılım G. Baydin, Lukas Heinrich, Ralf Keidel, Jan Kieseler,
Claudius Krause, Maxime Lagrange, Max Lamparth, Lukas Layer, Gernot Maier, Federico Nardi,
Helge E.S. Pettersen, Alberto Ramos, Fedor Ratnikov, Dieter Röhrich, Roberto Ruiz de Austri,
Pablo Martínez Ruiz del Árbol, Oleg Savchenko, Nathan Simpson, Giles C. Strong, Angela Talier-
cio, Mia Tosi, Andrey Ustyuzhanin, and Haitham Zaraket. Toward the end-to-end optimization of
particle physics instruments with differentiable programming. Reviews in Physics, 2023.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. In Advances in Neural Information Processing
Systems, 2019.

C. Fanelli. Design of detectors at the electron ion collider with artificial intelligence. Journal of
Instrumentation, 2022.

Meng Fang, Yuan Li, and Trevor Cohn. Learning how to active learn: A deep reinforcement learning
approach. Empirical Methods in Natural Language Processing, 2017.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspec-
tive. arXiv preprint arXiv:1912.02757, 2019.

Peter I. Frazier. A tutorial on bayesian optimization, 2018.

Thomas Gorordo, Simon Knapen, Benjamin Nachman, Dean J. Robinson, and Adi Suresh. Geometry
optimization for long-lived particle detectors. Journal of Instrumentation, 2023.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. In Proceedings of
the International Conference on Learning Representations, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Learning Representations, Workshop, 2018.

Jakob Hoydis, Fayçal Aït Aoudia, Sebastian Cammerer, Merlin Nimier-David, Nikolaus Binder,
Guillermo Marcus, and Alexander Keller. Sionna rt: Differentiable ray tracing for radio propagation
modeling. arXiv preprint arXiv:2303.11103, 2023.

Wei-Ning Hsu and Hsuan-Tien Lin. Active learning by learning. Association for the Advancement of
Artificial Intelligence, 2015.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman, Jiajun
Wu, Daniela Rus, and Wojciech Matusik. Chainqueen: A real-time differentiable physical simulator
for soft robotics. In International Conference on Robotics and Automation, 2019.

The MathWorks Inc. Matlab version: 9.13.0 (r2023b), 2023. URL https://www.mathworks.
com.

Momin Jamil and Xin-She Yang. A literature survey of benchmark functions for global optimisation
problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2):
150–194, 2013.

Eric Jonas. Deep imitation learning for molecular inverse problems. In Advances in Neural Informa-
tion Processing Systems, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint,
2014. doi: 10.48550/arXiv.1412.6980.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning Active Learning from Data.
Advances in Neural Information Processing Systems, 2017.

11

https://www.mathworks.com
https://www.mathworks.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Discovering General-Purpose Active
Learning Strategies. arXiv preprint, 2018. doi: 10.48550/arXiv.1810.04114.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Ron Levie, Çağkan Yapar, Gitta Kutyniok, and Giuseppe Caire. Radiounet: Fast radio map estimation
with convolutional neural networks. IEEE Transactions on Wireless Communications, 20(6):
4001–4015, 2021.

Ming Liu, Wray Buntine, and Gholamreza Haffari. Learning how to actively learn: A deep imitation
learning approach. Association for Computational Linguistics, 2018.

Gilles Louppe, Joeri Hermans, and Kyle Cranmer. Adversarial variational optimization of non-
differentiable simulators. In Proceedings of the Twenty-Second International Conference on
Artificial Intelligence and Statistics, 2019.

Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, and Jascha Sohl-Dickstein. Guided
evolutionary strategies: augmenting random search with surrogate gradients. In Proceedings of the
International Conference on Machine Learning, 2019.

Amil Merchant, Simon Batzner, S.S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and E.D. Cubuk.
Scaling deep learning for materials discovery. Nature, 2023.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. Journal of Machine Learning Research, 2020.

Samuel Neumann, Sungsu Lim, Ajin George Joseph, Yangchen Pan, Adam White, and Martha
White. Greedy actor-critic: A new conditional cross-entropy method for policy improvement. In
Proceedings of the International Conference on Learning Representations, 2023.

ChangYong Oh, Efstratios Gavves, and Max Welling. BOCK : Bayesian optimization with cylindrical
kernels. In Proceedings of the International Conference on Machine Learning, 2018.

Tribhuvanesh Orekondy, Pratik Kumar, Shreya Kadambi, Hao Ye, Joseph Soriaga, and Arash
Behboodi. WineRT: Towards neural ray tracing for wireless channel modelling and differentiable
simulations. In Proceedings of the International Conference on Learning Representations, 2023.

Kunkun Pang, Mingzhi Dong, Yang Wu, and Timothy Hospedales. Meta-Learning Transferable
Active Learning Policies by Deep Reinforcement Learning. arXiv preprint, 2018. doi: 10.48550/
arXiv.1806.04798.

Luis Pineda, Sumana Basu, Adriana Romero, Roberto Calandra, and Michal Drozdzal. Active MR
k-space sampling with reinforcement learning. In Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Intervention, 2020.

Sachin Ravi and Hugo Larochelle. Meta-learning for batch mode active learning. Proceedings of the
International Conference on Learning Representations, 2018.

Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker. Learning to simulate. In Proceedings
of the International Conference on Learning Representations, 2019.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, 2017. doi: 10.48550/arXiv.1707.06347.

Daniel Schwalbe-Koda, Aik Rui Tan, and Rafael Gómez-Bombarelli. Differentiable sampling of
molecular geometries with uncertainty-based adversarial attacks. In Nature Communications,
2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin–Madison,
2009.

Hao-Jun Michael Shi, Melody Qiming Xuan, Figen Oztoprak, and Jorge Nocedal. On the numerical
performance of finite-difference-based methods for derivative-free optimization. Optimization
Methods and Software, 2023.

Sergey Shirobokov, Vladislav Belavin, Michael Kagan, Andrei Ustyuzhanin, and Atilim Gunes Bay-
din. Black-box optimization with local generative surrogates. In Advances in Neural Information
Processing Systems, 2020.

Anuroop Sriram, Jure Zbontar, Tullie Murrell, Aaron Defazio, C. Zitnick, Nafissa Yakubova, Florian
Knoll, and Patricia Johnson. End-to-end variational networks for accelerated MRI reconstruction.
In Proceedings of the International Conference on Medical Image Computing and Computer
Assisted Intervention, 2020.

Anna Stakia. Advanced multivariate analysis methods for use by the experiments at the large hadron
collider. Physica Scripta, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033.
IEEE, 2012.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 1992.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. In Advances in Neural Information Processing Systems, 2020.

Jure Zbontar, Florian Knoll, Anuroop Sriram, M.J. Muckley, Mary Bruno, Aaron Defazio, Marc
Parente, K.J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana
Romero-Soriano, Michael Rabbat, Pascal Vincent, James Pinkerton, Duo Wang, Nafissa Yakubova,
Erich Owens, C.L. Zitnick, M.P. Recht, D.K. Sodickson, and Y.W. Lui. fastMRI: An open dataset
and benchmarks for accelerated MRI. Clinical Orthopaedics and Related Research, 2018.

Miao Zhang, Huiqi Li, and Steven Su. High dimensional bayesian optimization via supervised
dimension reduction. In Proceedings of the International Joint Conference on Artificial Intelligence,
2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A BROADER IMPACT, LIMITATIONS AND FUTURE WORKDS

Broader Impact This paper proposes a novel policy-based approach to guide local surrogate-based
problem optimization with black-box simulators. We believe the potential societal consequences of
our work are chiefly positive, as it has the potential to promote the use of policy-based approaches
in various scientific domains, particularly concerning optimization procedures involving black-box,
non-differentiable, forward processes. However, it is crucial to exercise caution and thoroughly
comprehend the behaviour of the models to obtain tangible benefits.

Limitations and Future Works Gradient-based optimization may get stuck in local optima of
the loss surface Ep(y|ψ,x) [L(y)]. Investigating whether introducing a policy into the optimization
can help avoid such local minima is an interesting direction of future research. The Probabilistic
Three Hump problem has no local minima but does contain a few flat regions, where gradient-based
optimization is more challenging. Exploratory experiments have provided weak evidence that the
policy may learn to avoid such regions.

Hyperparameter tuning has mostly involved reducing training variance through tuning the number
of episodes used for a PPO iteration, as well as setting learning rates and the KL-threshold. Little
effort has been spent optimizing the policy or surrogate architectures; we expect doing so to further
improve performance. Similarly, while PPO with a value function critic is a widely used algorithm,
more recent algorithms may offer additional advantages, such as improved planning and off-policy
learning for more data-efficient training (Haarnoja et al., 2018; Neumann et al., 2023).

B IMPLEMENTATION DETAILS

B.1 POLICY

Parameter value:

Timestep:

Sim. calls:
MLP Actions:

Actor

Uncertainty:

(a) Actor.

Parameter value:

Timestep:

Sim. calls:
MLP Values:

Critic

Uncertainty:

(b) Critic.

Figure 6: Schematic for the policy architecture. The policy consists of a separate Actor and Critic,
which are both MLPs. They take (ψ, t, l, σ) as input and output the actions and value function
estimates. Actions always contain the decision b to perform a simulator call or not and may optionally
also contain a value ϵ used for surrogate training data sampling.

The policy πθ is composed of two separate neural networks: an Actor and a Critic. Both networks are
ReLU MLPs with a single hidden layer of 256 neurons, schematically depicted in Figure 6. The input
to both networks is the tuple: (ψt, t, lt, σt), where ψt is the current parameter value (at timestep t),
lt is the number of simulator calls already performed this episode, and σt is the standard deviation
over the average surrogate predictions in the ensemble.

The Actor outputs either one or three values. The first value is passed through a sigmoid activation
and treated as a Bernoulli random variable, from which we sample b, representing the decision to
perform a simulator call or not. If the policy outputs three values, the second and third values are
treated as the mean and standard deviation of a lognormal distribution from which we sample ϵ, the
trust region size, for the current timestep. The standard deviation value is passed through a softplus
activation function to ensure it is positive.

The Critic outputs a value-function estimate Vθ(s), where θ are policy parameters. We use this
estimate to compute advantage estimates in PPO, as explained in detail in section C.1. Since rewards
have unity order of magnitude, we expect return values to be anywhere in [−T, 0]. To prevent scaling
issues, we multiply the Critic output values by T before using them for advantage estimation.

The πGAL method When training a policy for downstream optimization of many related black-box
optimization problems, it may be helpful to train a global surrogate simultaneously for such a problem

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

setting. Such a global surrogate might provide better gradients for problem optimization, especially
if it has been jointly optimized with the policy. We have implemented the πGAL method to test this.
Here, the policy outputs both the decision to perform a simulator call and the trust-region size, ϵ,
just as in πAL. However, the surrogate ensemble is “warm-started” from the previous training step
every time a retraining decision is made. This results in a continuously optimized surrogate ensemble
for the training trajectories. To prevent the surrogate from forgetting old experiences too quickly,
we employ a replay buffer that undersamples data from earlier iterations geometrically. Specifically,
when training the surrogate with trust-region Uψϵ , we include all data inside Uψϵ for the current
episode, half of the data inside Uψϵ from the previous episode, a quarter of the data seen two episodes
ago, and so on.

B.2 SURROGATE

Parameter value:

Input value:

Noise value:

MLP Output value:

Surrogate

Figure 7: Schematic for the surrogate architecture. The surrogate is an MLP trained to mimic the
simulator. It takes (ψ,x, z) as input and outputs y.

Each surrogate model consists of a ReLU MLP with two hidden layers of 256 neurons that takes as
input (ψ,x, z) and outputs y. z is sampled from a 100-dimensional diagonal unit Normal distribution.
The surrogate architecture is schematically depicted in Figure 7.

Surrogates are trained on data generated from fsim. Following the approach outlined in Shirobokov
et al. (2020), we sample M values ψj inside the box Uψϵ around the current parameter value using an
adapted Latin Hypercube sampling algorithm. For each of those ψj , we then sample N = 3 · 103
x-values. We use M = 5 for the Probabilistic Three Hump problem, M = 16 for the Rosenbrock
problem, and M = 40 for the Nonlinear Submanifold Hump problem. As in Shirobokov et al. (2020),
this means a single “simulator call” consists of 1.5 · 104 function evaluations for Probabilistic Three
Hump, 4.8 · 104 for Rosenbrock, and 6.0 · 104 for the Nonlinear Submanifold Hump.

To train the surrogates, we use the Adam optimizer for two epochs with a learning rate of 10−3 and a
batch size of 512. Each surrogate ensemble comprises three surrogates, each trained on identical data
but a different random seed. The uncertainty feature σ is computed using mean predictions of each
individual surrogate in the ensemble. Specifically, we compute the prediction mean per surrogate
on D samples as ȳ = 1

D

∑D
i=1 [fϕ(ψ,xi, zi)], and construct σ as the standard deviation over these

mean predictions. We use D = 100 in all our experiments.

B.3 FULL OBSERVABILITY OF THE MDP

Because the state of our reinforcement learning framework consists of the fully observed variables
(ψt, t, lt, σt), we have formulated it as an MDP rather than as a POMDP (Partially Observable MDP).
Concretely, our method can be applied if the parameter setting ψ of a simulator is known at all
times, since t and lt increment based on policy decisions and σt is generated using separate surrogate
models. Training these surrogate models requires (ψ,x, z), where x and x are user-generated and
y is observed simulator output. If ψ is not observed, then backpropagation through the surrogate
w.r.t. ψ is not possible, and our method is not applicable. However, note that – even in black-box
optimisation settings – the simulator parameter settings ψ are generally input values specified by the
user, and thus observed.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C TRAINING DETAILS

C.1 TRAINING

We train our policy in an episodic manner by accumulating sequential optimization episodes and up-
dating the policy using Proximal Policy Optimization (PPO) (Schulman et al., 2017) with Generalised
Advantage Estimation (GAE) advantages (Schulman et al., 2016) (discount factor γ = 1.0, GAE
λ = 0.95). Episodes terminate once any of the following conditions is met: A) the target value for the
loss, τ , has been reached, B) the number of timesteps T = 1000 has been reached, or C) the number
of simulation calls L = 50 has been reached. For every training iteration, before doing PPO updates,
we accumulate: 10 episodes for the Nonlinear Sub. Hump and 16 episodes for the Rosenbrock and
Prob. Three Hump problems, 10 episodes concerning the wireless simulations and 5 for the high
energy physics experiments. The different choices in the number of episodes to accumulate are
mainly dictated by the time required to complete one episode.

We use the PPO-clip objective (with clip value 0.2) on full trajectories with no entropy regularization
to perform Actor updates. We perform multiple Actor updates with the same experience until
either the empirical KL-divergence between the old and new policy reaches a threshold (3 · 10−3
for simulator-call decision actions, 10−2 for trust-region size ϵ actions), or 20 updates have been
performed. In practice, we rarely perform the full 20 updates. Updates use the Adam optimizer with
learning rate 3 · 10−4.

Similarly, we perform multiple Critic updates using the Mean-Squared Error (MSE) between the
estimated values Vθ(st) and the observed return (sum of rewards, as γ = 1.0) Rt at every timestep.
We keep updating until either MSE ≤ 30.0 or ten updates have been done. This approach helps the
critic learn quickly initially and after seeing surprising episodes but prevents it from over-updating on
similar experiences (as MSE will be low for those iterations). Updates use Adam with learning rate
10−4. See Algorithm 1 for the training pseudo-code and Algorithm 2 for the evaluation procedure
pseudo-code.

Figure 8: Top: Average number of simulator calls (purple curve) and average sum of rewards (blue
curve) after each PPO iteration. Values are averaged across evaluation episodes. The upper and lower
bound for the shadowed areas represent the max. and min. for each of the two mentioned metrics,
respectively. Bottom: Average value of the probability of calling the black-box simulator (orange
curve) and average critic loss (green curve). Values are averages across evaluation episodes for each
PPO iteration.

To assess the performance of our models, we run 32 evaluation episodes for the benchmark functions
and 20 and 5 evaluation episodes for the wireless and physics experiments, respectively. Moreover,
we consider three random seeds for L-GSO and policy models, while we used ten random seeds for
the BOCK and Num. Diff. baselines.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1: Training the (active learning) policy.
Data: Simulator fsim(ψ,x); surrogate fϕ(ψ,x); objective function L; policy πθ ; numberN ofψ to sample when training the

surrogate; numberM of of x to sample for eachψ; distributionsQ(q) over distributions q(x) to sample x from; initial valueψ0;
target function value τ ; number T of timesteps to run each simulation for (episode-length); maximum number of simulator calls L;
ψ optimiser OPTIMψ with learning rate λ; number of policy training iterationsK; number of episodes to accumulate for a PPO
stepG; policy optimiser OPTIMπ ; reward functionR; experience bufferB; discount factor γ.

for k ∈ (1, ..., K) do
Empty experience bufferB.
for _ ∈ (1, ..., G) do

Initialise number of simulator calls done: lt ← 0.
Set return: R← 0.
Sample x-distribution q ∼ Q.
for t ∈ (1, ..., T) do

Sample x ∼ q(x).
Obtain uncertainty σt from the ensemble surrogate fϕ(ψt,x).
Construct state: s← (ψt, t, lt, σt).
Obtain action: a = (do_retrain, trust_region_size)← πθ(s).
if do_retrain then

ObtainN samplesψn from trust region with size trust_region_size.
ObtainM samples xm ∼ q(x) for each of theseψn.
Combine into dataset {ψ, {x}M}N and optionally filter or include data from previous timesteps.
Retrain surrogate: fϕ on this dataset.
Increment number of simulator calls: lt ← lt + 1.

end
Obtain surrogate gradients: gt ← ∇ψL(fϕ(ψ,x))|ψt .
Do optimisation step: ψt+1 ← OPTIMψ(ψt, gt, λ).
terminated← E [L(fsim(ψt,x))] ≤ τ
Obtain reward: r ← R(s, a,ψt+1).
Store (s, a, r) and any other relevant information in bufferB.
if terminated then

break
end
if l equals L then

break
end

end
end
Update policy πθ ← OPTIM(πθ, B, γ).

end

Figure 8 shows that the policy is actually able to learn when to call the simulator. Initially, during the
first stages of the training, the policy generates completely random actions, resulting in an average
probability of calling the simulator close to 0.5 (bottom plot in Figure 8). However, as the training
progresses, such a probability gradually decreases, leading to a reduction in the number of simulator
calls (top plot in Figure 8).

C.2 OBJECTIVE LANDSCAPE AND OPTIMIZATION TRAJECTORY

Experiments with low-dimensional functions, such as the Probabilistic Three Hump problem (ψ ∈
R2), allow us to easily visualize optimization trajectories to gain insights into the models behaviour.

As mentioned in the main corpus of the paper, practitioners in many scientific fields may need to
solve a set of related balck-box optimization problems that can become costly if each optimization
process has to begin ab initio. Therefore, we investigated the robustness of the policy trained on a
given setup, i.e. input x-distributions, and then tested on different ones. To mimic such a scenario,
we consider a parameterized input x-distribution. In real-world experiments, such a variation could
correspond to different properties of the input data used to run the simulations. We already report
the results concerning such tests in Section 5. In Figure 9, we show the optimization landscape
for different x-distributions for the Prob. Three Hump problem. It is worth noticing that, although
the minima generally correspond to similar neighbours of the ψ values, the landscape dramatically
changes from one distribution to another.

C.3 EXPERIMENTS COMPUTE RESOURCES

Performing a single optimization for the benchmark functions and the wireless experiments does not
require a significant amount of computational resources and can be conducted using any commercially
available NVIDIA GPU. A single optimization can be easily fitted on a single GPU. On the other
hand, physics experiments require extensive computing resources for running simulations. While it is
still feasible to run the entire optimization on a single machine, it might take a consistent amount of

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2: Inference with the (active learning) policy.
Data: Simulator fs(ψ,x); surrogate fϕ(ψ,x); objective function L; trained policy πθ; number

N of ψ to sample when training the surrogate; number M of of x to sample for each ψ;
distributions q(x) to sample x from; initial value ψ0; target objective value τ ; number T
of timesteps to run each simulation for (episode-length); maximum number of simulator
calls L; ψ optimizer OPTIMψ with learning rate λ.

for t ∈ (1, ..., T) do
Initialise number of simulator calls done: lt ← 0.
Sample x ∼ q(x).
Obtain uncertainty σt from the ensemble surrogate fϕ(ψt,x).
Construct state: s← (ψt, t, lt, σt).
Obtain action: a = (do_retrain, ϵ = trust_region_size)← πθ(s).
if do_retrain then

Obtain N samples ψn from trust region with size ϵ.
Obtain M samples xm for each of these ψn.
Combine into dataset {ψ, {x}M}N /* filter or include data from

previous timesteps. */
Retrain surrogate: fϕ on this dataset.
Increment number of simulator calls: lt ← lt + 1.

end
Obtain surrogate gradients: gt ← ∇ψL(fϕ(ψ,x))|ψt .
Do optimization step: ψt+1 ← OPTIMψ(ψt, gt, λ).
terminated← E [L(fs(ψt,x))] ≤ τ
if terminated then

break
end
if l equals L then

break
end

end

time when simulating thousands of particles. The primary bottleneck for such experiments stems
from the Geant4 (Agostinelli et al., 2003) simulator, which is highly CPU-demanding. Since the
simulations of individual particles are independent of each other, they can be run in parallel without
communication between processes. In our experiments, we split up each simulation into chunks
of 2000 particles which resulted in run times of 5-15 minutes per simulation on single CPU core,
depending on the exact hardware.

D EXPERIMENTAL DETAILS

D.1 BENCHMARK FUNCTIONS

Our tests with benchmark functions employ a probabilistic version of three benchmark functions
from the optimization literature: Probabilistic Three Hump, Rosenbrock, and Nonlinear Submanifold
Hump. The first one is a two-dimensional problem that lends itself well to visualization. Instead, the
N -dimensional Rosenbrock (with N = 10) and the Nonlinear Submanifold Hump problems are used
to test our method on higher-dimensional settings.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: Loss landscape for the Probabilistic Three Hump Problem for different bounds on the
x-distribution. Shown is 1

n

∑n−1
i=0 L(fs(ψ,xi)) for a grid of ψ values (n = 100). The yellow region

denotes ψ values that lead to termination.

Probabilistic Three Hump Problem The goal is to find the 2-dimensional ψ that optimizes:7

ψ∗ = argmin
ψ

E [L(y)] = argmin
ψ

E [σ(y − 10)− σ(y)] , s.t.

y ∼ N (y|µi, 1), i ∈ {1, 2}, µi ∼ N (xih(ψ), 1), x1 ∼ U [−2, 2], x2 ∼ U [0, 5], (2)

P (i = 1) =
ψ1

||ψ||2
= 1− P (i = 2), h(ψ) = 2ψ2

1 − 1.05ψ4
1 + ψ6

1/6 + ψ1ψ2 + ψ2
2 .

We consider an episode terminated when E [L(y)] = 1
N

∑N
i=1 L(fsim(ψ,xi)) ≤ τ = −0.8, which

we evaluate after every optimization step using N = 104 samples. Following (Shirobokov et al.,
2020), we use ϵ = 0.5 as the trust-region size. The optimization is initialized at ψ0 = [2.0, 0.0]; this
is a symmetry point in the Three Hump function such that optimization with stochastic gradients can
fall into either of the two wells around the two minima of the function. Such a procedure requires
our methods to learn good paths to both optima, making the task more interesting. In principle,
optimization could be initialized at any ψ0.

Rosenbrock Problem The goal for this problem is to find the 10-dimensional ψ that optimizes:

ψ∗ = argmin
ψ

E [L(y)] = argmin
ψ

E [y] (3)

y ∼ N

(
y;

n−1∑
i=1

[
(ψi+1 − ψ2

i)
2 + (ψi − 1)2

]
+ x, 1

)
, x ∼ N (x;µ, 1); µ ∼ U [−10, 10] (4)

We consider an episode terminated when E [L(y)] = 1
N

∑N
i=1 L(fsim(ψ,xi)) ≤ τ = 3.0, which we

evaluate after every optimization step using N = 104 samples. Following (Shirobokov et al., 2020),
we use ϵ = 0.2 as the trust-region size and ψ0 = [

−→
2.0] ∈ R10 to initialize the optimization.

7Here the upper bound of x1 and lower bound of x2 are switched compared to the notation in Equation (3) of
(Shirobokov et al., 2020). These bounds match the official implementation of L-GSO as of August 2023.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Nonlinear Submanifold Hump Problem In this problem, we seek to find the optimal parameters
vector ψ in R40 by utilizing a non-linear submanifold embedding represented by ψ̂ = Btanh(Aψ),
whereA ∈ R16×40 andB ∈ R2×16. To achieve this, we use ψ̂ in place ofψ in the Probabilistic Three
Hump problem definition. Also, for the current setup, we follow similar settings as in (Shirobokov
et al., 2020): the orthogonal matricesA andB are generated via a QR-decomposition of a random
matrix sampled from the normal distribution; we use ϵ = 0.5 as the trust-region size and initialize the
optimization at ψ0 = [2.0,

−→
0.0] ∈ R40.

Parameterized Input Distribution In order to evaluate the generalization capabilities of our
method, we further parameterize each target function by placing distributions on the bounds of the
Uniform distributions from which x1 and x2 are sampled. We randomly sample new bounds in
every episode to ensure that the policy is exposed to multiple related but distinct simulators during
training and evaluation. Concerning the Hump problems, we sample the lower and upper bounds of
x1 from N (−2, 0.5) and N (2, 0.5), respectively. For x2, we instead use N (0, 1) and N (5, 1). For
the Rosenbrock problem, we sample the lower and upper bounds of x from N (0, 2) and N (10, 2),
respectively. Occasionally, an episode may not terminate as the specified termination value τ is below
the minimum loss value for some samplings.

D.2 REAL-WORLD SIMULATORS

Wireless Communication: Indoor Transmitting Antenna Placement The goal in this scenario
is to find an optimal transmit antenna location ψ that maximises the signal strength over multiple
receiving antenna locations x ∼ q(x). Now, we detail aspects on the experimental setup for the
experiments. We run wireless simulations using Matlab’s Antenna Toolbox Inc. (2023), by evaluating
the received signal strength (sigstrength function). The simulations are run in two 3d scenes
(‘conferenceroom’ and ‘office’), both of which are available by default and we additionally
let Matlab automatically determine the surface materials. We use the ‘raytracing‘ propagation model
with a maximum of two reflections and by disabling diffraction. The end-objective is to find a
transmit antenna location ψ maximize the received signal strength over locations x ∼ q(x). We
constrain the locations in a 3d volume spanning the entire XY area of the two scenes: 3×3m in
conferenceroom and 8×5m in office. The transmit elevations ψ are constrained between
2.2-2.5m and 3.0-3.2m per scene, and the receive locations between 1.3-1.5m (identical for both
scenes). The end-objective is to identify a transmit location ψ such that the median receive signal
strength is maximized over a uniform distribution of receive antenna locations q(x).

D.3 REWARD DESIGN

The reward function is chosen to incentivize the policy to reduce the number of simulator calls. This
is achieved by giving a reward of -1 every time the policy opts to call the simulator, contrasting with a
reward of 0 when it does not. However, with this reward function the policy could achieve maximum
return (of zero) by never calling the simulator even if this leads to non-terminating episodes. An extra
term is required to make any non-terminating episodes worse than any terminating one. Since the
minimum return is −L, corresponding to the maximum number of simulator calls for an episode, that
is achieved by setting a reward penalty of −(L− lt)− 1 whenever the episode ends for reasons other
than reaching the target value τ : if the simulator call budget has been exhausted, then lt = L and
the penalty is −1; if the timestep budget has been exhausted, then we have accumulated −lt return
already. In both cases, adding this penalty leads to a total return of −L− 1 < −L.

D.4 TERMINATION VALUE

Termination values τ for the Probabilistic Three Hump and Rosenbrock problems are chosen to
trade-off episode length and optimisation precision. Selecting values very close to the exact minimum
value of the objective function L leads to extremely long episodes, due to the stochastic nature of
the optimisation process. Moreover, parameterizing the distribution of the x variables changes the
(expected) objective value minimum, such that choosing a too low value for τ leads to episodes
that cannot terminate even in theory. Computing the minimum of L on the fly for the various
parameterizations of x is not trivial, and so we opted for choosing a τ that generally suffices for good

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

performance across parameterizations of a given problem. These values are chosen by manually
inspecting L-GSO runs.

D.5 METRICS

As we mentioned in Section 5, we use two metrics to compare our models against the baselines: the
Average Minimum of the Objective function (AMO) for a specific budget of simulator calls and the
Average Number of simulator Calls (ANC) required to terminate an episode. We now delve deeper
into both of them. The meaning of the latter is quite straightforward. We consider the average number
of simulator calls to solve the problem. We compute the average across evaluation episodes and
random seeds. In contrast, the AMO is slightly less intuitive to interpret. One might question whether
the value of the ANC should align with the maximum value on the x-axes for the AMO. In other
words, assuming that for a given model, the ANC is equal to, e.g. 10, should one expect that at a
value x = 10, the AMO will be equal to the termination value? Generally speaking, the answer is no.
To explain why that is the case, we can report the following example. Let us assume that, for a given
model, we have the following three episodes, each characterized by a specific length and value of the
objective function at each simulator call:

• Episode 1: [20, 12, 7, 5, 3, 1]
• Episode 2: [18, 6, 1]
• Episode 3: [15, 5, 1]

We assumed the target value, τ , to be 1. For simplicity, we used integers for the objective value. As
we can see from the example, we have ANC = 4. Now, if we examine the AMO for x = 4, we find
that it is equal to 5 since only the first episode contributes to it, which is greater than τ . Therefore, one
cannot directly map the x-axis from the AMO to the y-axis of the ANC. Such a one-to-one mapping
would exist only when all episodes always require the same number of simulator calls, which is not
the case. We hope that our explanation has clarified the interpretation of the results we reported in the
main corpus of the paper.

21

	Introduction
	Related work
	Background
	Policy-based Black-Box Optimization
	Experimental Results
	Benchmark Functions
	Real-world Simulators
	Results & Discussion

	Conclusion
	Broader Impact, Limitations and Future Workds
	Implementation details
	Policy
	Surrogate
	Full observability of the MDP

	Training Details
	Training
	Objective Landscape and Optimization Trajectory
	Experiments Compute Resources

	Experimental Details
	Benchmark Functions
	Real-world Simulators
	Reward Design
	Termination Value
	Metrics

