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Holistic-CAM: Ultra-lucid and Sanity Preserving Visual
Interpretation in Holistic Stage of CNNs

Anonymous Authors

ABSTRACT
As the visual interpretations for convolutional neural networks
(CNNs), backpropagation attribution methods have been garner-
ing growing attention. Nevertheless, majority of those methods
merely concentrate on the ultimate convolutional layer, leading to
tiny and concentrated interpretations that fail to adequately clar-
ify the model-central attention. Therefore, we propose a precise
attribution method (i. e., Holistic-CAM) for high-definition visual
interpretation in the holistic stage of CNNs. Specifically, we first
present weighted positive gradients to guarantee the sanity of in-
terpretations in shallow layers and leverage multi-scale fusion to
improve the resolution across the holistic stage. Then, we further
propose fundamental scale denoising to eliminate the faithless at-
tribution originated from fusing larger-scale components. The pro-
posed method is capable of simultaneously rendering fine-grained
and faithful attribution for CNNs from shallow to deep layers. Ex-
tensive experimental results demonstrate that Holistic-CAM out-
performs state-of-the-art methods on common-used benchmarks,
including deletion and insertion, energy-based point game as well
as remove and debias on ImageNet-1k, it also passes the sanity
check easily.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Visual Interpretation, Class Activation Map, Multi-scale Fusion

1 INTRODUCTION
Deep Neural Networks (DNNs) have achieved unprecedented

break through in a variety of single-modal and multi-modal tasks,
such as image classification [1], object detection [2], visual reason-
ing [3], diffusion model [4] and video recognition[5]. To establish
trust in these models, it is crucial to comprehend and articulate the
operational procedures and reasoning behind the decision-making
process of the models in a lucid and understandable manner [6].

Currently, various methods are proposed to interpret media-
related models, especially Class Activation Map (CAM) [7]. As the
visual interpretations for convolutional neural networks (CNNs),
CAM and its derivative methods [8–13] employ weighted linear
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Fig 1. Visualization result of Grad-CAM, Grad-CAM++, Relevance-CAM
and proposed Holistic-CAM. The label of the input is tricycle. Holistic-CAM
generates faithful and fine-gained from deep to shallow layers.

summations of the ultimate layer activation maps to generate faith-
ful and robust interpretations (or attributions). Nevertheless, there
is a significant drawback that those methods tend to generate ex-
tremely narrow interpretations at very low resolution in deeper
layers [14–17]. Meanwhile, these methods also incur messy and
faithless attributions in shallow layers, as shown in "Layer2" and
"Layer3" in Fig. 1. This drawback can be attributed to two primary
factors. One is associated with the gradient loss derived from the
non-linear activation functions such as Rectified Linear Unit (ReLU)
and Sigmoid, as well as the frequently-used channel-wise weights
that fail to assign correct importance onto the forward features in
the shallow layers [14, 15]. The other is linked to the low-resolution
feature space of deep layers, which directly restricts the traditional
CAM methods to provide high-definition interpretations [16].

Previous researchers have endeavored to address these limita-
tions. One group of studies utilize the unaffected positive gradient
[14, 15] or layer-wise relevance [18] to provide robust interpreta-
tions in shallow layers. Nonetheless, their practical impacts remain
inadequate in output layers, which usually provide vague interpre-
tations (e.g. Relevance-CAM in Fig. 1) and fail to plainly elucidate
the model’s focal attention. Others systematically perform multi-
scale accumulation and fusion of the activation maps as well as
backpropagated gradients to enhance resolution in output layers
[16, 17]. However, they frequently encounter unfaithful attributions
stemming from the fusion of larger-scale components. This will
compromise the credibility and robustness of the interpretations
and potentially lead to misunderstandings, which steers the inter-
preting process in a contradictory direction. Thus, it is imperative
to seek potential solutions to attain the pinnacle of enhanced reso-
lution and interpretive precision, ultimately offering a ultra-lucid
and faithful approach to aid humans to comprehend those models.

To address the challenges above, we propose Holistic-CAM, a
novel attribution method to provide high-resolution and sanity-
preserving visual interpretation throughout the holistic stage of

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

CNNs. Specifically, we firstly present a weighted positive gradient-
based weight to maintain the clarity and robustness of interpre-
tations in shallow layers. Then we leverage a multi-scale fusion
scheme to guarantee the high-resolution within the holistic stage.
Ultimately, we extract the fundamental scale map and utilize it to
examine the faithfulness attributions and enhance the comprehen-
sive fidelity of interpretations. As presented in Fig. 1, Holistic-CAM
outperforms other methods of visualizing target objects.

The contributions of this paper are as follows:

• We propose a precise attribution method (i. e., Holistic-CAM)
based on the proposed weighted positive gradients andmulti-
scale fused features. It is capable of providing high-definition
interpretations within the holistic stage of CNNs.

• We present a fundamental scale denoising strategy based
on the proposed low-pass wrap. It eliminates the faithless
attributions and preserves the holistic fidelity of Holistic-
CAM.

• We conduct extensive visual assessments and quantitative
evaluations on Holistic-CAM with other state-of-the-art
methods, experimental results illustrate that Holistic-CAM
exhibits remarkable performance on the evaluations of holis-
tic fidelity and localization abilities.

2 PRELIMINARIES AND MOTIVATION
Problem Statement. Consider a pre-trained convolutional neu-

ral networks as a function 𝑓 : X → R𝐾 of an input image 𝑥 ∈ X ⊆
R𝑤×ℎ with softmax output of𝐾 classes as 𝑓𝑐 (𝑥) ≥ 0 for 𝑐 = 1, ....., 𝐾
and

∑𝐾
𝑐=1 𝑓𝑐 (𝑥) = 1. We aim to attribute the relevance between in-

put image 𝑥 and target class 𝑐 , ultimately producing an attribution
map𝑀 (𝑥) ∈ R𝑤×ℎ .

Notations. In CAM-based attribution methods, we regard 𝑓𝑐 as
a composite function, i. e., 𝑓𝑐 (𝑥) = 𝑔𝑐 ◦ 𝐴(𝑥), where 𝐴(𝑥) is the
activation map of a certain layer w.r.t. the specific input 𝑥 ∈ X, and
𝑔𝑐 is the layers between𝐴(𝑥) and the output. In addition, we denote
𝐴𝑘
𝑖 𝑗
as the (𝑖, 𝑗)-th neuron activation values in the 𝑘-th activation

map𝐴(𝑥), and denote𝐺𝑘𝑐
𝑖 𝑗

as the gradient between prediction score
𝑓𝑐 and input feature 𝐴𝑘

𝑖 𝑗
.

Background: Gradient-based CAMs. As the CAM-based attri-
bution method, Grad-CAM [8] is undoubtedly most recognized. It
generate interpretation with the channel-wise importance weight
𝑤𝑐
𝑘
based on the spatial average of the gradient of 𝑓𝑐 (𝑥), i. e.,

𝑤𝑘𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 = 𝐺𝐴𝑃

(
𝜕𝑓𝑐 (𝑥)
𝜕𝐴𝑘

)
(1)

𝑀𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 (𝑥) = 𝑅𝑒𝐿𝑈

(∑︁
𝑘

𝑤𝑘𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 · 𝐴𝑘 (𝑥)

)
(2)

Motivated by its limited capability to identify multiple occurrences
and pinpoint entire objects within adversarial samples precisely,
Grad-CAM++ [9] introduced an element-wise weight 𝛼𝑘𝑐

𝑖 𝑗
to en-

hance the localization ability of positive gradients. To be specific,
they revised the approach of seeking channel-wise importance as:

𝑤𝑘𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀++ = 𝐺𝐴𝑃

(
𝛼𝑘𝑐 · 𝑅𝑒𝐿𝑈 ( 𝜕𝑓𝑐 (𝑥)

𝜕𝐴𝑘
)
)

(3)

Channels
0.0

0.2

0.4

0.6

0.8
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nc
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Layer1 Layer2 Layer3 Layer4

Fig 2. Numeral Analysis on the Gradient. In the deep stage (i.e. Layer4),
the average gradient variances of individual channels approach zero. Con-
versely, in the shallow stages (Layer3 to Layer1), the gradient variances are
more pronounced.

For a CNN with a GAP layer, the final classification score 𝑓𝑐 for a
certain predicted result 𝑐 can be written as a linear combination of
the output in average pooled features [8]

𝑓𝑐 (𝑥) =
∑︁
𝑘

𝑤𝑘𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀++ ·

∑︁
𝑖

∑︁
𝑗

𝐴𝑘𝑖 𝑗 (4)

To obtain the positive gradient weight 𝛼𝑘𝑐
𝑖 𝑗
, two partial derivatives

between classification score 𝑓𝑐 and individual neuron activation
𝐴𝑘
𝑖 𝑗
are performed. The gradient weight 𝛼𝑘𝑐

𝑖 𝑗
is obtained after rear-

ranging the form:

𝜕2 𝑓𝑐 (𝑥)
(𝜕𝐴𝑘

𝑖 𝑗
)2

= 2 · 𝛼𝑘𝑐𝑖 𝑗 · 𝜕
2 𝑓𝑐 (𝑥)
(𝜕𝐴𝑘

𝑖 𝑗
)2

+ 𝛼𝑘𝑐𝑖 𝑗 · 𝜕
3 𝑓𝑐 (𝑥)
(𝜕𝐴𝑘

𝑖 𝑗
)3

·
∑︁
𝑎

∑︁
𝑏

𝐴𝑘
𝑎𝑏

(5)

𝛼𝑘𝑐𝑖 𝑗 =

𝜕2 𝑓𝑐 (𝑥 )
(𝜕𝐴𝑘

𝑖 𝑗
)2

2 𝜕
2 𝑓𝑐 (𝑥 )
𝜕 (𝐴𝑘

𝑖 𝑗
)2 + 𝜕3 𝑓𝑐 (𝑥 )

(𝜕𝐴𝑘
𝑖 𝑗
)3

∑
𝑎

∑
𝑏

𝐴𝑘
𝑎𝑏

(6)

here, (𝑖, 𝑗) and (𝑎, 𝑏) are iterators over the same activation map
𝐴𝑘 , which is set to prevent confusion. Finally, the attribution map
of this method is generated by integrating modified channel-wise
weight w.r.t. activation maps:

𝑀𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀++ (𝑥) = 𝑅𝑒𝐿𝑈

(∑︁
𝑘

𝑤𝑘𝑐
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀++ · 𝐴𝑘 (𝑥)

)
(7)

Observation I: Incorrect interpretations of utilizing channel-
wise weights. The utilization of channel-wise importance weights
𝑤𝑘𝑐 in Eq. 1 and Eq. 3 is inspired by the GAP layer in the CAM
method [7], which has since been adopted by other techniques such
as Score-CAM [12] and Relevance CAM [18]. During introducing
gradient-based channel-wise weights [8, 14, 16] or other forms
[12, 18], class activation mapping has expanded interpretative ca-
pabilities beyond the constraints of the last convolutional layer,
and reached any layer. Nonetheless, shallower layers have larger
and less dispersed feature spaces where the channel-wise weights
struggle to accurately capture differentiated positional information
[14]. In this case, the element-wise weighting strategy seems more
reasonable.

Here, we conducted a simple numerical analysis on the gradients
of ResNet-50 across its four stages (Layer 1 to Layer 4) to thoroughly
examine the disparities between channel-wise weights and element-
wise weights. As depicted in Fig. 2, the variances of most activation
maps approach zero in the final stage. In this case, the distinction
between global weights and individual element weights are nearly
identical. However, in earlier stages, the variances of most feature
maps are notably high, posing challenges for global gradient-based
weights to provide effective interpretations in shallower layers. In
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Basic Scale Upsampled Scales Multi-Sacle Fused Mask

Fuse

Unexpected

Noises
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Confidence: 

(a) (b) (c) (d)

Fig 3. Noise in the Multi-scale Fusing Progress. The enlarged scales
are marked in the upper left corner of (a) and (b) and the corresponding
classification confidence is indicated below.

summary, utilizing element-wiseweight is amore efficient approach
for elucidating the holistic stage of CNNs than channel-wise weight.

Question I: Are the channel-wise importance weights al-
ways rational? With this in mind, the impact of the element-wise
weighting coefficient 𝛼𝑘𝑐

𝑖 𝑗
(i. e., Eq. 3), which amplifies the utiliza-

tion of solely positive gradients to replicate the results obtained
through complete gradient utilization, may be ineffective due to
the superstition on channel-wise weighting (i. e., Eq. 7). So, is there
any solution to fully realize its genuine value?

Observation II: Unreliable attributions of multi-scale fu-
sionmethods. In the domain of computer vision, multi-scale fusion
and image pyramids are established techniques for augmenting in-
formational capacity [19]. These approaches leverage the flexibility
of processing inputs at various scales, thereby enabling the extrac-
tion of amore comprehensive set of features from a larger data space
[20]. With regard to attribution methods, although multi-layer fu-
sion [21] or multi-scale input integration technology [16, 17] have
been successfully employed to refine the resolution of interpreta-
tion, they are constrained by the low fidelity of high-resolution
input, potentially leading to unreliable attribution maps as the con-
fidence in the data is sub-optimal.

Question II: Is it feasible to guarantee both high resolution
and fidelity? A simple example is depicted in Fig. 3. We upscale
an image by 2-5 times the original dimensions and document the
corresponding attribution maps. Subsequently, integrating those
attribution maps across various scales. The result is depicted in Fig.
3 (b). Higher resolutions yield greater detail but also introduce sig-
nificant noise, which always exists and even be amplified during the
fusion process. In addition, although the clarity of the fundamental-
scale attribution maps are insufficient, they are generated under the
context of high confidence which guarantees enough fidelity. So,
can basic-scale masks be employed to optimize larger-scale masks?

3 PROPOSED METHOD
In this section, we present a detailed illustration of Holistic-

CAM. As depicted in Fig. 5, we utilize a multi-scale fusion scheme
to enhance the resolution of generated attributions. Our method
comprises three key components: 1) positive gradient enhance-
ment; 2) high-resolution attribution generation; 3) fundamental
scale denoising based on low-pass wrap.

3.1 Positive Gradient Enhancement
Modern neural networks tend to set up multiple ReLU functions

to increase the non-linear fitting capability [22]. However, it in-
evitably leads to gradient vanishing problems, such as zero-gradient.

Element-wise

Weighted (PGE)Origin
Acitvation

Summation

Channel-wise

Weighted

tr
ic
y
cl
e

b
u
ll
m
a
st
if
f

(a) (b) (c)

Fig 4. Gradient Weighting Comparison. Based on the element-wise
weighting strategy, PGE is capable of interpreting correct significance in
shallow layers.

Some predecessors [14, 15] prove that using positive gradients helps
to obtain robust and fidelity interpretations in shallow layers. Draw-
ing upon this background and the discussed Observation 1, we
put forward the method to fully realize the inherent and genuine
value of positive gradient within shallow layers, namely Positive
Gradient Enhancement (PGE).

In regard to the gradient 𝐺𝑘𝑐
𝑖 𝑗

from a specific layer 𝑙 , the PGE
operates by allocating the positive gradient weight 𝛼 from equation
6 through element-wise weighting:

𝑃𝐺𝐸 (𝐺𝑘𝑐𝑖 𝑗 ) = 𝛼
𝑘𝑐
𝑖 𝑗 · 𝑅𝑒𝐿𝑈 (𝐺𝑘𝑐𝑖 𝑗 ) (8)

=

𝜕2 𝑓𝑐 (𝑥 )
(𝜕𝐴𝑘

𝑖 𝑗
)2

2 𝜕
2 𝑓𝑐 (𝑥 )
𝜕 (𝐴𝑘

𝑖 𝑗
)2 + 𝜕3 𝑓𝑐 (𝑥 )

(𝜕𝐴𝑘
𝑖 𝑗
)3

∑
𝑎

∑
𝑏 𝐴

𝑘
𝑎𝑏

+ 𝑒𝑝𝑠
· 𝑟𝑒𝑙𝑢 ( 𝜕𝑓𝑐 (𝑥)

𝜕𝐴𝑘
𝑖 𝑗

)

To be noticed, weighting is meaningless where the one-order gradi-
ent is zero. To address this issue, here, a bias term of 𝑒𝑝𝑠 = 10−5 is
incorporated to prevent the occurrence of zero denominators.

To gain a more intuitive comprehension, we sample attribution
maps obtained by different weighting strategies in the intermediate
stage (Layer2) of ResNet-50, i.e. (a) Activation Summation:𝑊 𝑘𝑐

𝑖 𝑗
= 1,

(b) Channel-wise Weighting:𝑊 𝑘𝑐
𝑖 𝑗

= 𝑤𝑘𝑐 =
∑
𝑘 𝛼

𝑘𝑐
𝑖 𝑗

· 𝑅𝑒𝐿𝑈 (𝐺𝑘𝑐
𝑖 𝑗
), (c)

Element-wise Weighting:𝑊 𝑘𝑐
𝑖 𝑗

= 𝑃𝐺𝐸 (𝐺𝑘𝑐
𝑖 𝑗
). In a conceptual sense,

(b) and (c) correspond to the results after applying channel-specific
weights or individual element weights onto the activation summa-
tion, denoted as (a). Moreover, the attribution maps of those meth-
ods are calculated in uniform specifications, as𝑀𝑐

𝑖 𝑗
=

∑
𝑘

𝑊 𝑘𝑐
𝑖 𝑗

· 𝐴𝑘𝑐
𝑖 𝑗
.

Detailed results are depicted in Fig. 4. Due to assigning correct
importance to neurons, PGE contributes to generating robust and
faithful interpretations within shallow layers. On the contrary, the
utilization of channel-wise weights not only fails to generate faith-
ful interpretations but also disrupts the integrity of the original
features in Fig. 4 (a).

3.2 High Resolution Attribution Generation
In this subsection, we introduce the process of generating our

holistic-stage high-resolution attribution based on the aforemen-
tioned Positive Gradient Enhancement. Specifically, we firstly it-
eratively interpolate the original input image 𝐼𝜁0 into 𝑇 scales
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Fig 5. Pipeline of Holistic-CAM. The initial input is transformed into an image pyramid, which is utilized to obtain activation maps and enhanced gradients
at different scales throughout the forward and backward propagation stages. Combining them produces the primary attribution map, which includes both
positive information and unexpected noises originating from various scales. The ultimate attribution map is derived following the implementation of the
denoising process on the fused attribution map.

𝜁1, 𝜁2, ..., 𝜁𝑇 , i. e., 𝐼𝜁1 , 𝐼𝜁2 , ..., 𝐼𝜁𝑇 . Here, the interpolation function
is represented as 𝜑 (𝐼𝜁0 , 𝜁𝑡 ), which utilizes bi-linear interpolation to
resize the resolution of 𝐼𝜁0 from 𝜁0 to 𝜁𝑡 :

𝐼𝜁𝑡 = 𝜑 (𝐼𝜁0 , 𝜁𝑡 ),

𝜁𝑡 = 𝜁0 +
𝜁𝑇

𝑇
(𝑡 − 1)

(9)

here 𝜁𝑇 represents the maximum resolution threshold, 𝑇 indicates
the total iterations.

Then, we transform the multi-scale images in the form of im-
age pyramid to be the inputs of thenetwork, then record the for-
ward activation 𝐴𝜁0 , 𝐴𝜁1 , ..., 𝐴𝜁𝑇 and the corresponding gradient
𝐺𝜁0 ,𝐺𝜁1 , ...,𝐺𝜁𝑇 from a certain layer 𝑙 . After that, we integrate acti-
vation maps of different scales:

𝐴 =
1
𝑇

𝑇∑︁
𝑡=1

𝐴𝜁𝑡 (10)

In each iteration, we compute the enhanced gradients𝑊 𝜁𝑡 based
on the backward gradients 𝐺𝜁𝑡 and the proposed PGE(). Then the
fusion of these enhanced gradients can be obtained by:

𝑊 𝜁𝑡 = 𝑃𝐺𝐸 (𝐺𝜁𝑡 )�̄� =
1
𝑇

𝑇∑︁
𝑡=1

𝑊 𝜁𝑡 (11)

Formally, the primary high-resolution attribution map 𝑀𝑃𝐻𝑅
𝑐 is

generated after assigning the element-wise weight �̄� onto the
fused activation maps 𝐴 and accumulating along the dimension of
channel:

𝑀𝑃𝐻𝑅
𝑐 =

∑︁
𝑘

�̄� 𝑘 ⊙ 𝐴𝑘 (12)

where 𝑘 represents the iterator of channels and ⊙ denotes element-
wise multiply operation.

3.3 Fundamental Scale Denoising
In response to the aforementionedObservation 2which aims to

identify a solution that retains the original high-resolution details
and eliminates low-fidelity information. Therefore, a Fundamental
Scale Denoising (FSD)method is put forward based on later proposed
low-pass wrap.

As illustrated in the Phase 3 of Fig. 5, the low-resolution salient re-
gions demonstrate stronger localization capabilities than the maps
with higher resolutions, but they tend to lose fine details due to the
limited resolution; Furthermore, the basic-scale attribution maps
typically contain a significant amount of high-frequency details.
Integrating them directly with the fused attribution maps will un-
doubtedly compromise the distinctive details inherent to higher
resolution. To address these issues, we propose a low-pass wrap
(LPW) strategy aimed at eliminating noise beyond the localization
area without compromising the high-definition information of high
resolution.

Specifically, given a multi-scale fused map 𝑀 𝑓 𝑢𝑠𝑒𝑑
𝑐 , we first

separate its fundamental scale component𝑀𝜁0 . To wrap the low-
frequency component, we subsequently filter out the high-frequency
information that exceeds the mean value �̄� :

𝑀
𝑓 𝑖𝑙𝑡𝑒𝑑

𝑖 𝑗
=


�̄�, 𝑖 𝑓 𝑀

𝜁0
𝑖 𝑗

> �̄� ;

𝑀
𝜁0
𝑖 𝑗
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(13)

where �̄� = (𝑚𝑎𝑥 (𝑀𝜁0 ) +𝑚𝑖𝑛(𝑀𝜁0 ))/2.
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Fig 6. Overview of Low-pass Wrap (LPW). LPW is used to maintain
the precision of regional positioning, it contributes FSD to eliminate noise
through the multiplication of the multi-scale fused map and its output.

Although fixed value filtering is capable of determining the posi-
tioning area without discrimination, it fails to preserve the marginal
details of larger-scale maps. Otherwise, the fundamental scale map
contains fewer details and less semantic information compared to
the multi-scale fused map. To address this issue, we employ a me-
dian filter (𝑚𝑒𝑑𝑖𝑎𝑛_𝑏𝑙𝑢𝑟2𝑑) to mitigate high-frequency information
of the edge and reasonably expand the positioning area:

𝑀𝑚𝑒𝑑𝑖𝑎𝑛 =𝑚𝑒𝑑𝑖𝑎𝑛_𝑏𝑙𝑢𝑟2𝑑 (𝑀 𝑓 𝑖𝑙𝑡𝑒𝑑 , 𝑏𝑙𝑢𝑟𝑆𝑖𝑧𝑒) (14)

Finally, a mean filter (𝑚𝑒𝑎𝑛_𝑏𝑙𝑢𝑟2𝑑) is applied to strengthen the
smoothness of the margin zone, that is:

𝑀𝐿𝑃𝑊 =𝑚𝑒𝑎𝑛_𝑏𝑙𝑢𝑟2𝑑 (𝑀𝑚𝑒𝑑𝑖𝑎𝑛, (𝑘𝑠𝑖𝑧𝑒, 𝑘𝑠𝑖𝑧𝑒)) (15)

To avoid confusion, here the superscripts 𝑓 𝑖𝑙𝑡𝑒𝑑 and𝑚𝑒𝑑𝑖𝑎𝑛 denote
the different processing phases of fixed value filtering and median
filtering. Finally, the hazy base-scale mask 𝑀𝐿𝑃𝑊 owns plentiful
low-pass content, which indicates the intact localization informa-
tion of the target object. The integral process of fundamental scale
denoising can be summarized as:

𝐹𝑆𝐷 (𝑀 𝑓 𝑢𝑠𝑒𝑑
𝑐 ) = 𝑀 𝑓 𝑢𝑠𝑒𝑑

𝑐 ⊙ 𝑀𝐿𝑃𝑊 (16)

where ⊙ denotes element-wise multiply operation.

3.4 Holistic-CAM
Our Holistic-CAM involves the joint effort of all the aforemen-

tioned components. With regard to the primary high-resolution
map𝑀𝑃𝐻𝑅

𝑐 obtained in subsection 3.2, FSD is necessary to prevent
the occurrence of unfaithful attributions and guarantee the sanity
of interpretations.

Specifically, Holistic-CAM is obtained by executing Fundamental
Scale Denoising onto the fused attribution map:

𝑀𝐻𝑜𝑙𝑖𝑠𝑡𝑖𝑐−𝐶𝐴𝑀
𝑐 = 𝐹𝑆𝐷 (𝑀𝑃𝐻𝑅

𝑐 ) (17)

4 EXPERIMENTS
In section 5, we evaluate our causal attribution method with

state-of-the-art methods via experiments in diverse forms, includ-
ing qualitative visualization evaluation, quantitative evaluation,
ablation study and saliency check.

4.1 Experimental Setups
Datasets and Backbone. Experiments in this section are con-

ducted on the validation split of ImageNet-1k [23] (containing 50k
images). All the images are resized to 3×224×224, and transformed
to tensors after normalized.We utilize pre-trained torch-visionmod-
els VGG-16 and ResNet-50 as the backbone. For a fair comparison,
attribution maps are up-sampled through bi-linear interpolation to
224×224. All the experiments are carried on one NVIDIA RTX 3090
GPU.

Baselines. We set up comparisons with state-of-the-art CAM-
based attributionmethods, such as Grad-CAM [8], Grad-CAM++[9],
XGrad-CAM[10], Eigen-CAM[11], Layer-CAM[14], CAMERAS[16]
and Relevance-CAM[18].

Evaluation Metrics. We utilize Deletion and Insertion as well
as Remove and Debias metrics to evaluate the holistic fidelity of
different attribution methods. Meanwhile, we also conduct Energy-
based Pointing Game to evaluate the localization abilities.

1) Deletion and Insertion: proposed by [24]. It contained three
pixel-level fidelity metrics, i.e. Deletion, Insertion and Over-all. Dele-
tion (Del) measures the rate of classification confidence decreases
as the elements are deleted in order of importance according to the
attribution map, lower is better. Insertion (Ins) measures the rate of
classification confidence increases as the elements are inserted in
order of importance, higher is better. All the results are expressed
through the Area Under the Curve (AUC) where the horizontal
axis represents the percentage of elements deleted or inserted, and
the vertical axis represents the pre-softmax classification proba-
bility. Over-all score, integrates the deletion and insertion results
as AUC(Insertion)-AUC(Deletion). Comprehensively assessing the
holistic fidelity of each interpretation, higher is better.

2) Remove and Debias (ROAD): proposed by [25], a faith-
ful feature attribution metric. At first, ROAD utilizes two sort-
ing strategies, i.e., Most Relevant First (MoRF) and Least Rele-
vant First (LeRF) to arrange pixels based on the significance de-
termined by the attribution maps. Subsequently, determine a cer-
tain removal ratio [𝑡1, 𝑡2, ..., 𝑡𝑁 ] to calculate the fluctuation of clas-
sification confidence after removing the most or least relevant
features, i.e., 𝐿𝑒𝑅𝐹𝑡𝑖 = (𝑓 𝐿𝑒𝑅𝐹,𝑡𝑖𝑐 (𝑥) − 𝑓𝑐 (𝑥))/𝑓𝑐 (𝑥) and 𝑀𝑜𝑅𝐹𝑡𝑖 =

(𝑓𝑐 (𝑥) − 𝑓𝑀𝑜𝑅𝐹,𝑡𝑖𝑐 (𝑥))/𝑓 𝑐 (𝑥). Finally, the ROAD score is calculated
by integrating LeRF and MoRF scores across different removal ra-

tios, as 𝑅𝑂𝐴𝐷 =
𝑁∑
𝑖=1

(𝐿𝑒𝑅𝐹 𝑡𝑖 −𝑀𝑜𝑅𝐹 𝑡𝑖 )/𝑁 , higher is better.

3) Energy-based Pointing Game (EPG): Localization ability
holds significant importance, particularly in the context of utiliz-
ing attribution maps for localization tasks [14, 18]. EPG is initially
introduced by [26] and later refined by [12]. It focuses on quantify-
ing the amount of energy derived from the attribution map that is
directed towards the designated target area. In particular, the input
image undergoes a binarization process based on the established
bounding box of the target entity: the interior section is designated
a value of 1, while the exterior portion is assigned a value of 0. Then
multiply this binary matrix with the generated attribution map,
and sum over to count how much energy is in the target bounding
box. Generally, this metric can be denoted as:

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =

∑
𝑀𝑐

(𝑖, 𝑗 ) ∈𝑏𝑏𝑜𝑥∑
𝑀𝑐

(𝑖, 𝑗 ) ∈𝑏𝑏𝑜𝑥 + ∑
𝑀𝑐

(𝑖, 𝑗 )∉𝑏𝑏𝑜𝑥
(18)

Implement Details. 1) Metric Setups: In fidelity evaluation,
we randomly sample 3,000 images from ImageNet-1k validation
dataset. For deletion and insertionmetric, 3.6% (224 × 8) pixels of the
original image are removed or inserted in each iteration. In regard
to ROAD, the removal ratio is set as 𝑡𝑖 ∈ [20%, 40%, 60%, 80%].

To gauge the localization capabilities of the proposed attribution
method more accurately, we randomly sampled 5,000 images in the
localization evaluation. Meanwhile, we consider the coordinates
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of the top 100 points within the attribution map instead of solely
focusing on the highest value point as [26] for energy-based point
game.

2) Parameter Setups: The hyper-parameter for low-pass wrap
is determined as blur_size=51, ksize=91 based on the findings of
the following ablation study. Furthermore, we set the maximum
resolution of the multi-scale fusion process as 𝜁𝑇 = (1𝐾, 1𝐾) after
7 iterations of upsampling, referring to [16, 17].

4.2 Qualitative Evaluation
The results of our method are qualitatively assessed against

state-of-the-art CAM-based attribution methods (Grad-CAM, Grad-
CAM++, XGradCAM, EigenCAM, LayerCAM, CAMERAS, Relevance-
CAM) applied to a ResNet-50 model, as shown in Fig. 7. Attributions
of randomly chosen images are displayed to showcase the superior
precision and faithfulness of Holistic-CAM maps.

Noteworthy is the observation that, in contrast to other meth-
ods, Holistic-CAM not only effectively eliminates extraneous noise
from other target objects (e.g., "Kuvasz" and "Bull mastiff") but
also demonstrates the capability to maintain high resolution within
shallow and deep layers simultaneously. In the case of multiple
occurrences of the same class (e.g., "Warplane"), the attribution
maps generated by Holistic-CAM effectively highlight the signif-
icant features of each object, while others make different objects
forfeit their independence. Generally, these excellent performances
can be attributed to two aspects. One is related to the effort of en-
hanced positive gradients, which can mitigate the issue of gradient
incomplete in shallow layers thereby enhancing the robustness
in shallow layers. The other involves the integration of the multi-
scale fusion technique as well as the proposed denoising module,
which effectively enhances the resolutions of interpretations and
simultaneously prevents the occurrence of unfaithful attributions.

In contrast, alternative approaches aimed at improving inter-
pretation accuracy have faced notable difficulties with fidelity. Es-
pecially in Relevance-CAM, it functions as an edge detector for
recognizing "Bull mastiff" and "Warplane". Even completely in-
effective in identifying "Kuvasz". Consequently, Holistic-CAM is
proficient in delivering precise and reliable visual interpretations
for the complete operation of contemporary deep visual classifiers
(e.g., "Tench").

4.3 Quantitative Evaluation
Quantitative assessments are carried out to evaluate the faith-

fulness and localization ability of the interpretations produced by
Holistic-CAM across various layers of CNNs. The results of Ins,
Del, and ROAD, presented in Tab. 1, demonstrate that the proposed
Holistic-CAM method outperforms other methods on holistic fi-
delity across the entire stage of VGG-16 and ResNet-50 models. This
is mainly attributed to the effort of fusing the multi-scale features
that ensure the clarity of interpretations across the holistic stages.
Meanwhile, the application of PGE makes an effort to guarantee
robust performance in the shallow layers.

Furthermore, our method exhibits superior localization ability,
as evidenced by the EPG score in Tab. 1. This is primarily attributed
to the introduction of FSD, which not only integrates the benefits

of the fusion of different multi-scale features to preserve the high-
resolution of interpretations but also suppresses the occurrence of
unfaithful attribution beyond the intended positioning zone.

4.4 Ablation Study
We conduct ablation studies on the primary module fundamental

scale denoising (F) and positive gradient enhancement (P) through
visual evaluation and quantitative analysis. In addition, we also
conduct parameter study and module analysis on fundamental scale
denoising, which is presented in the appendix.

Visualization Evaluation. Visualization result is presented in
Fig. 8 . On the one hand, PGE significantly contributes to enhancing
the thoroughness and resilience of the interpretation processes at
the shallow layers. On the other hand, FSD efficiently eliminates
extraneous noise beyond the designated target region across all
stages. It is capable of enhancing the accuracy and reliability of the
interpretations.

Quantitative Evaluation.We report the quantitative ablation
study results on the shallow layer (Layer2) as well as the deep
layer (Layer4) of ResNet-50. Concretely, we randomly selected 2,000
images from ImageNet-1k-val-dataset and employedDel and Ins and
EPGmetrics to evaluate the contributions of eachmodule on holistic
fidelity and localization ability. Detailed result can be indicated in
Tab. 2.

In deep layers, the implementation of FSD leads to a notable
enhancement in the Ins, Over-all and EPG scores, indicating a sig-
nificant improvement on robustness and precision of attribution
maps by effectively eliminating the faithless attribution. In addition,
we found nearly consistent performance after removing/retaining
positive gradient enhancement. This mainly attributed to the ab-
sence of significant gradient loss in the deep layer where the effect
of positive gradient enhancement is slightly smaller. In shallow
layers, although FSD has the potential to enhance feature loyalty,
its ability to improve localization accuracy remains limited. On the
other hand, there has been a notable enhancement in localization
precision following the implementation of PGE. However, its effort
on feature loyalty remains restricted. In addition, it is observed that
both the feature expression capability and localization accuracy
have reached peak levels after integrating FSD and PGE. Therefore,
these components in our proposed pipeline ensure each other and
that the generated attribution map is not only faithful enough but
also maintains robust localization ability.

4.5 Saliency Check
As indicated by [27], interpretation methods have the risk of

functioning as edge detectors when they solely rely on visual as-
sessment. Therefore, we conduct a saliency check and evaluate our
methods with cascading randomization and independent random-
ization [27]. Fig. 9 (a) is Holistic-CAM result for the VGG-16 model
obtained by progressively randomizing the model parameters from
logit to Conv19. And Fig. 9 (b) indicates the result obtained by in-
dividually randomizing the parameters of each layer. It’s obvious
that the attribution maps are destroyed along the parameter ran-
domization procedure. Thus, Holistic-CAM is sensitive to model
parameters.
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Fig 7. Comparisons of Various Attribution Methods. The columns are divided by the interpretation methods. The rows are divided along layer depth.
Layer2 represents the intermediate layer and Layer4 represents the last convolutional layer. Holistic-CAM is capable of locating the target object accurately.

Table 1: Quantitative Comparisons Result on ResNet-50 and VGG-16. Layer4 and Layer2 represent the last convolutional layer and the intermediate layer
in ResNet, respectively. Layer43 denotes the 5th and last max-pooling layer of VGG-16, and Layer23 denotes the 3th max-pooling layer. The best results for
each metric are shown in underline bold as well as dyed in red, and the second one is shown with underline and colored in blue.

ResNet50 VGG-16
Method Ins ↑ Del ↓ Over-all ↑ ROAD ↑ EPG ↑ Method Ins ↑ Del ↓ Over-all ↑ Road ↑ EPG ↑

Layer4

Grad-CAM 54.887 11.622 43.265 28.095 53.673

Layer43

Grad-CAM 48.390 10.894 37.496 25.851 49.730
Grad-CAM++ 51.165 14.172 36.993 22.470 51.424 Grad-CAM++ 45.044 12.528 32.516 22.331 52.428
XGrad-CAM 54.887 11.622 43.265 28.099 53.673 xGrad-CAM 49.029 10.761 38.268 26.223 49.288
Eigen-CAM 53.249 12.705 40.544 25.595 53.167 Eigen-CAM 48.925 10.547 38.378 25.765 52.305
Layer-CAM 54.018 11.882 42.136 26.799 52.963 Layer-CAM 48.125 10.444 37.681 26.002 51.433
CAMERAS 54.439 8.698 45.741 28.606 52.931 CAMERAS 44.548 9.091 35.457 26.153 50.008

Relevance-CAM 54.663 11.622 43.041 27.981 52.989 Relevance-CAM 49.296 10.043 39.253 25.98 50.894
Holistic-CAM 55.056 8.947 46.109 29.047 57.635 Holistic-CAM 49.569 8.792 40.777 26.345 55.090

Layer2

Grad-CAM 18.876 15.207 3.669 4.673 45.171

Layer23

Grad-CAM 11.226 14.503 -3.277 -3.696 37.526
Grad-CAM++ 19.779 14.901 4.879 7.165 44.16 GradCAM++ 20.927 10.394 10.533 12.468 45.072
XGrad-CAM 19.804 13.162 6.642 7.649 46.257 XGrad-CAM 18.142 9.216 8.926 12.036 53.162
Eigen-CAM 47.725 8.716 39.009 26.380 54.459 Eigen-CAM 42.230 7.276 34.954 25.417 40.761
Layer-CAM 45.826 7.660 38.166 26.864 52.579 Layer-CAM 39.160 5.882 33.278 25.656 51.396
CAMERAS 47.048 7.314 38.332 27.236 51.852 CAMERAS 39.994 6.972 33.022 26.008 51.398

Relevance-CAM 48.854 8.949 39.909 26.734 47.163 Relevance-CAM 32.180 8.487 23.693 19.995 46.068
Holistic-CAM 53.825 10.912 42.913 27.650 55.745 Holistic-CAM 45.001 6.969 38.032 26.252 58.155

Table 2: Ablation Study on Primary Modules. Layer4 and Layer2 represent the last convolutional layer and the intermediate layer in ResNet, respectively;
“P” represents positive gradient enhancement and “R” represents fundamental scale denoising. ✗ and ✓ denote module is removed or retrained separately. The
best results are shown in bold and the second one is underlined.

Layer4

P F Ins ↑ Del ↓ Over-all ↑ EPG ↑

Layer2

P F Ins ↑ Del ↑ Over-all ↑ EPG ↑
✗ ✗ 54.418 8.878 45.540 52.845 ✗ ✗ 47.124 7.926 39.828 51.734
✓ ✗ 53.339 8.807 45.532 53.765 ✓ ✗ 50.066 8.414 41.652 55.213
✗ ✓ 55.164 9.101 46.064 56.803 ✗ ✓ 53.001 11.021 41.980 52.922
✓ ✓ 55.099 9.067 46.032 57.102 ✓ ✓ 53.878 10.904 42.925 55.577
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Fig 8. Visualization of Ablation Study. "P" represents positive gradient
enhancement and "F" represents fundamental scale denoising.

(a) Cascading randomization from top to bottom layers

(b) Independent randomizing different layers
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Fig 9. Sanity Checking of Cascading randomization and Independent ran-
domization

5 RELATEDWORK
Generally, attribution methods can be classified into two main

categories: perturbation-basedmethods and backpropagation-based
methods.

Perturbation-based AttributionMethods: These methods are
intended to generate attribution maps by making pixel-level delib-
erate modifications to the input images and then associating them
with the varying output results. Examples of perturbation-based
methods include EMP [28], I-GOS [29], RISE [24], and Score-CAM
[12]. The EMP [28] recommends using modified images to iden-
tify the precise area of interest for the predictor, while I-GOS [29]
enhances EMP to achieve more effective convergence. RISE [24]
produces attribution maps through the allocation of weights to
random perturbation masks that align with the alterations in the
output score. Score-CAM [12] employs the feature maps in a certain
layer as the initial mask andassesses the saliency by examining the
fluctuations in predicted output before and after masking. Nonethe-
less, these approaches often require extensive experimentation to

identify effective perturbation combinations, leading to significant
computational inefficiency.

Backpropagation-based Attribution Methods: These tech-
niques have shown enhanced efficacy by necessitating only a lim-
ited number of forward and backward propagation iterations. Gen-
erally, they can be classified as gradient-basedmethods and activation-
based methods. Gradient-based methods [30] utilize pixel-level at-
tribution to offer detailed and high-resolution interpretations for
each layer. However, due to gradient noise, they often produce at-
tribution maps of lower quality [18]. Activation mapping methods
[8, 9], on the other hand, use back-flowed gradient information in
conjunction with activation maps to generate faithful yet highly
narrow interpretations at the final layer of CNNs. Other approaches
such as Layer-CAM [14], NormGrad [15], and Relevance-CAM [18]
aim to provide fine-grained interpretations within the broader fea-
ture spaces of shallow layers. Nevertheless, they face challenges in
producing clear attribution maps near the output layer. CAMERAS
[16] and MSG-CAM [17] employ multi-scale fusion techniques to
enhance the resolution of interpretations within the output layer.
However, their effectiveness in improving resolution in shallow
layers remains limited, and they also encounter issues related to un-
expected noise resulting from the integration of higher-resolution
information.

6 CONCLUSION
In this paper, we introduce a novel attribution method called

Holistic-CAM for fine-grained and sanity-preserving visual inter-
pretation in the holistic stage of CNNs. The proposed attribution
method is robust to the issues that other attribution methods face,
such as the limited resolution in deep layers as well as unclear and
faithless attributions in shallow layers. Our Holistic-CAM is capa-
ble of elucidating the model-central attention due to its full-stage
high-resolution interpretation. Massive experiments demonstrate
that Holistic-CAM outperforms the prevalent visual interpretation
methods on common-used benchmarks. In the future, we will delve
into the interpretation of multi-modal deep learning models.

REFERENCES
[1] Haihan Wang, Shangfei Wang, and Lin Fang. Two-stage Multi-scale Resolution-

adaptive Network for Low-Resolution Face Recognition. In Proceedings of the
ACM International Conference on Multimedia, pages 4053–4062, 2022.

[2] Bimsara Pathiraja, Malitha Gunawardhana, and Muhammad Haris Khan. Multi-
class Confidence and Localization Calibration for Object Detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
19734–19743, 2023.

[3] Dingyi Zhang, Yingming Li, and Zhongfei Zhang. Multi-Scale Similarity Aggre-
gation for Dynamic Metric Learning. In Proceedings of the ACM International
Conference on Multimedia, pages 125–134, 2023.

[4] Shanshan Zhong, Zhongzhan Huang, Wushao Wen, Jinghui Qin, and Liang
Lin. Sur-adapter: Enhancing text-to-image pre-trained diffusion models with
large language models. In Proceedings of the ACM International Conference on
Multimedia, pages 567–578, 2023.

[5] Zeng Tao, Yan Wang, Zhaoyu Chen, Boyang Wang, Shaoqi Yan, Kaixun Jiang,
Shuyong Gao, andWenqiang Zhang. Freq-HD: An Interpretable Frequency-based
High-Dynamics Affective Clip SelectionMethod for in-the-Wild Facial Expression
Recognition in Videos. In Proceedings of the ACM International Conference on
Multimedia, pages 843–852, 2023.

[6] Qian Yang, Yunxin Li, Baotian Hu, Lin Ma, Yuxin Ding, and Min Zhang. Chunk-
aware alignment and lexical constraint for visual entailment with natural lan-
guage explanations. In Proceedings of the ACM International Conference on Multi-
media, pages 3587–3597, 2022.

[7] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In Proceedings of the



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Holistic-CAM: Ultra-lucid and Sanity Preserving Visual Interpretation in Holistic Stage of CNNs ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2921–
2929, 2016.

[8] Abhishek Das Ramakrishna Vedantam Devi Parish Ramprasaath R. Selvaraju,
Michael Cogswell and Dhruv Batra. Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, page 618–626, 2017.

[9] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Bala-
subramanian. Grad-CAM++: Generalized Gradient-based Visual Explanations
for Deep Convolutional Networks. In Proceedings of IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 839–847, 2018.

[10] Ruigang Fu, Qingyong Hu, Xiaohu Dong, Guo Yulan, Yinghui Gao, and Biao Li.
Axiom-based grad-cam: Towards accurate visualization and explanation of cnns.
pages 1–18, 2020.

[11] Mohammed Bany Muhammad and Yeasin Mohammed. Eigen-cam: Class activa-
tion map using principal components. In Proceedings of IEEE International Joint
Conference on Neural Networks, pages 1–7, 2020.

[12] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding,
Piotr Mardziel, and Xia Hu. Score-CAM: Score-weighted Visual Explanations for
Convolutional Neural Networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshop, pages 24–25, 2020.

[13] Harish Guruprasad Ramaswamy et al. Ablation-cam: Visual Explanations for
Deep Convolutional Network Via Gradient-Free Localization. In Proceedings of
the IEEE Winter Conference on Applications of Computer Vision, pages 983–991,
2020.

[14] Pengtao Jiang, Changbin Zhang, Qibin Hou, Mingming Cheng, and Yunchao Wei.
LayerCAM: Exploring Hierarchical Class Activation Maps for Localization. IEEE
Transactions on Image Processing, 30:5875–5888, 2021.

[15] Sylvestre Alvise Rebuffi, Ruth Fong, Xu Ji, and Andrea Vedaldi. There and
Back Again: Revisiting Backpropagation Saliency Methods. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8836–
8845, 2020.

[16] Mohammad A. A. K. Jalwana, Naveed Akhtar, Mohammed Bennamoun, and
Ajmal Mian. CAMERAS: Enhanced Resolution and Sanity Preserving Class
Activation Mapping for Image Saliency. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16322–16331, 2021.

[17] Xiaohong Xiang, Fuyuan Zhang, Xin Deng, and Ke Hu. Multi-scale inputs
make a better visual interpretation of cnn networks. In Proceedings of the IEEE
International Conference on Multimedia and Expo, pages 312–317, 2023.

[18] Jeong Ryong Lee, Sewon Kim, Inyong Park, Taejoon Eo, and Dosik Hwang.
Relevance-CAM: Your Model Already Knows Where to Look. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14939–14948, 2021.

[19] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2881–2890, 2017.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. IEEE transactions
on pattern analysis and machine intelligence, 37(9):1904–1916, 2015.

[21] Alexandre Englebert, Olivier Cornu, and Christophe de Vleeschouwer. Backward
recursive class acitvation map refinement for high resolution saliency map. In
Proceedings of International Conference on Pattern Recognition, pages 2444–2450,
2022.

[22] Qinglong Zhang, Lu Rao, and Yubin Yang. A Novel Visual Interpretability for
Deep Neural Networks by Optimizing Activation Maps with Perturbation. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 3377–3384,
2021.

[23] Russakovsky Olga, Deng Jia, Su Hao, Krause Jonathan, Satheesh Sanjeev, Ma Sean,
Huang Zhiheng, KarpathyAndrej, Khosla Aditya, BernsteinMichael, BergAlexan-
der C., and Feifei Li. ImageNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision, 115(3):211–252, 2015.

[24] Vitali Petsiuk, Abir Das, and Saenko Kate. RISE: Randomized Input Sampling
for Explanation of Black-models. In Proceedings of the British Machine Vision
Conference, pages 151–165, 2018.

[25] Rong Yao, Leemann Tobias, Borisov Vadim, Kasneci Gjergji, and Kasneci Enkele-
jda. A Consistent and Efficient Evaluation Strategy for Attribution Methods. In
Proceedings of the International Conference on Machine Learning, pages 18770–
18795, 2022.

[26] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and
Stan Sclaroff. Top-down neural attention by excitation backprop. International
Journal of Computer Vision, 126(10):1084–1102, 2018.

[27] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellowand, Moritz Hardt,
and Been Kim. Sanity Checks for Saliency Maps. In Proceedings of Advances in
Neural Information Processing Systems, pages 9525–9536, 2018.

[28] Ruth C Fong and Andrea Vedaldi. Interpretable Explanations of Black Boxes by
Meaningful Perturbation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3429–3437, 2017.

[29] Zhongang Qi, Saeed Khorram, and Fuxin Li. Visualizing Deep Networks by
Optimizing with Integrated Gradients. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshop, volume 2, pages 1–4, 2019.
[30] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep

Networks. In International Conference on Machine Learning, pages 3319–3328.
PMLR, 2017.


	Abstract
	1 Introduction
	2 Preliminaries and Motivation
	3 Proposed Method
	3.1 Positive Gradient Enhancement
	3.2 High Resolution Attribution Generation
	3.3 Fundamental Scale Denoising
	3.4 Holistic-CAM

	4 Experiments
	4.1 Experimental Setups
	4.2 Qualitative Evaluation
	4.3 Quantitative Evaluation
	4.4 Ablation Study
	4.5 Saliency Check

	5 Related Work
	6 Conclusion
	References

