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Abstract

Navigation requires inferring one’s pose (location and heading) in an environment
based on noisy and ambiguous egocentric sensory inputs. While place cells in
the brain are thought to represent an animal’s allocentric location and associated
uncertainty, the mechanisms by which these probabilistic representations are
learned remain unclear. To address this, we developed a model of an agent that
navigates using noisy egocentric visual and self-motion signals. We demonstrate
that, when the agent is trained to predict future visual stimuli, its hidden rep-
resentations closely resemble the posterior belief about pose, as computed by a
Bayesian ideal observer. Moreover, these hidden representations, like the poste-
rior beliefs of the ideal observer, also resembled place cell activity both in familiar
and unfamiliar environments. This resemblance was significantly weaker when
the agent was trained as an autoencoder to reproduce its current visual input.
Our findings suggest that learning to predict noisy sensory inputs can give rise
to probabilistic cognitive maps—probabilistic representations of latent states such
as pose—which are essential for Bayesian inference in the brain.

1 Introduction

Navigation requires localizing oneself in an environment. However, one’s pose (location and
heading direction) is not directly observable (i.e., is a latent state), and must be inferred given noisy
and partial information such as egocentric visual and self-motion signals. Recent findings suggest
that uncertainty about the latent state must be considered for optimal localization[1]. Indeed, this
uncertainty is considered by individuals during navigation, and is represented by place fields in the
brain[1, 2]. However, it remains unclear how this probabilistic representation of the latent state is
acquired in the brain.
Previous studies have demonstrated that predicting sensory observations during navigation con-
tributes to the emergence of stable latent space representations [3, 4, 5, 6, 7, 8]. However, these
studies have not addressed the formation of probabilistic beliefs, which must represent not only a
point estimate of the latent variable but also the associated uncertainty. In this study, we demon-
strate that probabilistic representations naturally arise when a neural network is trained to predict
future sensory inputs.
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Figure 1: A. Generative model of navigation used by the ideal observer. The agent’s state (s, the
combination of its allocentric orientation and location) is updated by egocentric self-motion (u) and
give rise to visual input (v). B. Architecture of the pred-RNN. C. Architecture of the autoencoder.

We developed a variant of an autoencoder that processes noisy egocentric visual stimuli and self-
motion signals from an agent navigating an environment. Our findings show that the hidden state
representation resembles the belief of a handcrafted ideal observer about its location. This repre-
sentation not only reflects the optimal estimate of the location but also the estimate’s uncertainty.
Remarkably, even when the actual environment differed from the one the agent believed it was in,
the hidden state of the model still resembled the ideal observer’s belief. Furthermore, the activity of
hidden state activity exhibited place-cell like activities, displaying characteristics consistent with
known features of place cells. These results suggest that learning to predict upcoming noisy sensory
inputs may be a mechanism for learning probabilistic representation in the brain, even in a natural
task like spatial navigation where the relationship between the sensory input and the latent state is
complex.

2 Results

2.1 Predictive recurrent neural network (pred-RNN) model

To study the probabilistic beliefs of an agent given noisy sensory inputs for localization during
navigation, we first constructed a Bayesian ideal observer, which has been shown to explain animals’
behavior and neural activity[1, 9, 10, 11]. The ideal observer uses Bayesian filtering to update a
posterior distribution (“belief” pideal) over its position and heading direction (“state” s), which is not
directly observable, and hence must be inferred from its noisy egocentric visual and self-motion
inputs (v & u, Fig. 1A). The belief shows varying levels of uncertainty depending on the history of
the visual and self-motion inputs (Fig. 2A, top three rows).
Then, we hypothesized that the brain might learn to represent such probabilistic beliefs by predicting
the upcoming sensory input[12]. To test this hypothesis, we constructed a predictive recurrent
neural network (pred-RNN) model that predicts the next visual input given the history of visual
and self-motion inputs (Fig. 1B). The model compresses the incoming noisy visual input (vt−1) and
feeds it into a recurrent layer along with self-motion signals. This provides the recurrent layer the
information necessary to update the beliefs about the latent state in Bayesian filtering. We call the
activity of this recurrent layer as the network’s state (hpred

t ). This state is then decompressed to
yield a predicted visual input of the next time step (ṽpredt ) which it did successfully (Fig. 2A, Row 6).
As a control, we also trained another network (“autoencoder”) with the identical structure and
input as the pred-RNN (Fig. 1C). The only difference was that it was trained to reproduce the visual
input at the current time step (ṽautot−1 ), which it also did successfully (Fig. 2A, Row 4). To ensure
successful training for both networks, we tried multiple learning rates and selected the best rate
for each network. To emphasize, while we refer to this network as an autoencoder, distinct from
the pred-RNN described above, the two networks had the same architecture and received the same
input at each time step. The only difference was which visual input they were trained to match: the
current time step’s (autoencoder) or the next time step’s (pred-RNN).
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Figure 2: A. Row 1. Top-down view of an agent navigating an environment. The arrow shows
the current location and head direction. Thin curves indicate the past trajectory. Row 2. Noisy
first-person view of the 3D environment (v). Row 3. Posterior distribution of the location calculated
by the ideal observer. Row 4. Reconstruction of the current visual input by the autoencoder.
Row 5. Posterior distribution decoded from hauto. Row 6. Prediction of the next visual input by
pred-RNN. Row 7. Posterior distribution decoded from hpred. B. DKL between the ideal observer
posterior (pideal) and the posterior decoded from the autoencoder (p̃auto) vs. that from the pred-RNN
(p̃pred). C. Comparisons of the momentary mean/SDs of pideal and those of p̃auto/pred (Row 1/2). D.
2D histograms showing correlation between the representational similarities of the ideal observer’s
posterior (log p̃ideal) and the hidden states of the pred-RNN (h̃pred, Top), and the autoencoder (h̃auto,
Bottom).

2.2 The pred-RNN encodes posterior beliefs

To examine whether the pred-RNN’s state (hpred) and/or that of the autoencoder’s (hauto) represents
the ideal observer’s uncertainty about its location, we decoded each network’s state using a single
fully connected (FC) layer, followed by a softmax function to obtain a probability distribution (p̃pred

or p̃auto). We optimized the FC layer to minimize the Kullback-Leibler Divergence (DKL) of the
ideal observer posterior (pideal) from the decoded distribution, which we call the decoded posterior
(p̃pred/auto). Note that this optimization procedure was identical for the two networks. We then fixed
the FC layer’s weights for each network and decoded p̃pred/auto with a test data set, and compared
their match to pideal.
We found that p̃pred matched pideal significantly better than p̃auto did (∆DKL > 2500; Fig. 2A rows
3, 5, and 7 and Fig. 2B). To determine what aspect of the decoded distributions accounted for
this difference, we further compared the correlations of the mean and standard deviation (SD) of
p̃pred/auto with those of pideal. We found that not only the decoded means but also the decoded SDs
of the pred-RNN showed significant Pearson correlation with those of the ideal observer along
both x & y axes (ρpredµx/µy/σx/σy

=0.94/0.92/0.46/0.59, all p < 10−4), which were significantly higher
than those of the autoencoder (all p ≤ 0.001). Therefore, pred-RNN not only encoded the estimate
(mean) of the location better but also the associated uncertainty (SD) better than the autoencoder.
We corroborated this finding by ruling out potential alternative explanations for the correlation.
We constructed a multiple regression model that explains σideal

x/y with not only σ
pred
x/y but also with

other variables known to correlate with the ideal observer’s uncertainty about its location, such
as the agent’s true x and y location, distance to the closer of the north and south walls, distance
to the closer of the west and east walls, sine and cosine of the heading direction, translation, and
rotation[2, 13]. We compared this model (Mx/y

1 )’s fit with a reduced model without σpred
x/y (Mx/y

2 )
using the Bayesian Information Criterion (BIC). The comparison overwhelmingly supported the
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full model (Mx/y
1 ;∆BIC > 300 for both x and y), supporting that the pred-RNN’s representation of

uncertainty cannot be explained by the representation of the other variables.

2.3 The pred-RNN’s representation resembles that of an ideal observer

A potential concern is that our method relies on decoding uncertainty using the ideal observer’s
posterior distribution as the ground truth. This raises questions about whether the internal rep-
resentations learned by our models inherently align with the ideal observer’s representations.
To address this, we conducted analyses similar to Representational Similarity Analysis (RSA) to
explore the relationship between the representations learned by our two models and those of the
ideal observer[5, 14]. We first applied principal component analysis (PCA) to reduce the dimen-
sionality of hpred and hauto to 10 principal components (h̃pred, h̃auto). Similarly, we applied PCA
to log-transformed pideal to obtain 10 PCs (log p̃ideal). We then computed the Pearson correlation
coefficients between pairs of time steps within each of these transformed representations. The
correlations within h̃pred exhibited a much stronger alignment with those within log p̃ideal (Fig. 2D),
as reflected on a higher Pearson correlation (ρ(ρ(log p̃ideal

t , log p̃ideal
t′ ), ρ(h̃pred

t , h̃pred
t′ )=0.32), compared

to the autoencoder (ρ(ρ(log p̃ideal
t , log p̃ideal

t′ ), ρ(h̃auto
t , h̃auto

t′ )=0.12) over 2000 time steps. This result
shows that, evenwithout explicit decoding, the ideal observer’s representational geometry resembles
the pred-RNN’s more closely compared to the autoencoder’s.

2.4 The pred-RNN encodes posterior beliefs even in deformed environments

Thus far, we have demonstrated that the pred-RNN can learn a probabilistic representation resem-
bling that of an ideal observer. A natural next question is whether this representation also resemble
the neural activity observed in the brain.
To address this question, we hypothesized that (1) place cells, traditionally thought to represent the
animal’s allocentric location [15, 16], may actually represent the animal’s beliefs about its location,
and (2) these beliefs are represented by the pred-RNN, making its activity similar to that of place
cells. To rigorously test these hypotheses, we compared the pred-RNN’s activity with place cell
activity not only when the animal’s beliefs were expected to closely match its true allocentric
location, but also when they were expected to diverge. The latter case occurs when the animal is
placed in an environment that appears similar to a familiar one, but is unknowingly stretched or
compressed, as in experiments by O’Keefe and Burgess (1996)[17]
We first confirmed that the pred-RNN’s activity resembles the ideal observer’s beliefs, even when
the environment is unfamiliar. To achieve this, we had the ideal observer interpret the sensory
input from the unfamiliar environment using the map of the familiar environment to form its
beliefs. In parallel, we trained the pred-RNN’s weights to predict the next visual input in the
familiar environment, and froze its weights. We then compared the beliefs decoded from its activity
with the ideal observer’s beliefs in an unfamiliar environment. Specifically, the agent was trained
in a vertical rectangle-shaped environment, and tested in three deformed environments: a small
square, a horizontal rectangle, and a large square. Importantly, the same weights were used for
both the pred-RNN and its decoding in the unfamiliar environments as those trained in the familiar
environment (vertical rectangle). In all three test environments, p̃pred matched pideal significantly
better than p̃auto (Fig. 3B), with the DKL between pideal and p̃pred consistently smaller than that for
p̃auto (Fig. 3C). These results demonstrate that the pred-RNN’s representation closely resembles the
ideal observer’s beliefs, even when the beliefs are based on an incorrect model of the environment.

2.5 The pred-RNN’s activity resembles place cell activity across deformed environments

Having established that the pred-RNN encodes posterior beliefs, we then compared its activity
directly with that of place cells. After applying nonlinear transformation (involving exponentiation,
a shift, and normalization), multiple units in both hpred and hauto displayed place cell-like activity in
their spatial rate maps (see Supplementary materials). Notably, the rate maps from hpred exhibited
more distinct and localized areas of activity, closely resembling place fields (Fig. 3D).
We then quantitatively assessed whether the activities of hpred and hauto match the known properties
of place cells in deformed environments. Specifically, it has been reported that the place fields
stretch or compress along the direction of environmental expansion or compression [17], aligning
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Figure 3: A. Agent tested in an unfamiliar environment after being trained in a familiar environment.
B. Output and (decoded) posterior distributions of each model in the vertical rectangle (familiar
environment) and the horizontal rectangle (unfamiliar environment). C. DKL between the ideal
observer’s posterior (pideal) and the posteriors decoded from the autoencoder (p̃auto) and pred-RNN
(p̃pred) across different test environments. D. (Left) Firing rate map of a place cell when the rat was
familiarized with the vertical rectangle environment and was then recorded in all four environments
[17]. (Middle) Firing rate map of a unit in hpred, showing fields stretched along with the environment,
similar to the empirical data. (Right) Example of a unit in hauto, displaying extraneous peaks. E. The
distribution of place field orientations (the axis of the longest extent of the field) of the units from
the animals, hpred, and hauto. F. DKL of the distribution of orientations between the data from the
animals and the models, averaged across four environments. It is plotted against the mean squared
error (MSE) of the peak areas of the place fields between the animals and the models. While the
model’s place field areas depend on the choice of free parameters for the nonlinear transformation,
the pred-RNN consistently exhibited a DKL smaller than that of the autoencoder. Black markers
correspond to the examples shown above.

the longest axis of the fields (“place field orientation”) with the longest axis of the environment.
We found that the activity of the pred-RNN exhibited this property significantly more strongly
than that of the autoencoder. Across all combinations of free parameters tried for the nonlinear
transformation, the average DKL between the empirical place field orientation distribution and
that of the pred-RNN was smaller than that of the autoencoder (Fig. 3E). This demonstrates that
the pred-RNN’s hidden unit activity closely resembles not only the ideal observer’s beliefs about
location but also place cell activities in both familiar and unfamiliar environments. Since in the latter
(unfamiliar) environments the beliefs cannot match a “true” location, this supports our hypothesis
that the activity of both place cells and the pred-RNN encodes the animal or agent’s beliefs about
its location, rather than the true allocentric location per se.

3 Conclusion

In this study, we investigated whether probabilistic representations of a latent state can be learned
without supervision (i.e., without providing the network with the correct latent state). We found that
when a neural network is trained to predict upcoming egocentric visual inputs during navigation,
its hidden states encode the ideal observer’s beliefs about pose, a latent state. This probabilistic
representation not only aligned with the ideal observer’s beliefs but also with the place cell activity.
Furthermore, this match occurred not only in a familiar environment but also in an unfamiliar
one, where the beliefs were expected not to match the true latent state. These findings support our
hypotheses that (1) the place fields do not necessarily represent the animal’s true allocentric location
(which is not directly available to the animal but must be inferred from sensory observations), but

5



its beliefs about the location, and (2) such probabilistic representations of beliefs can be learned
purely by predicting upcoming sensory inputs.
We plan to extend this work in several key directions. First, we aim to develop an analytical
explanation for the empirical findings in this study. This will clarify the conditions under which
such probabilistic representations can arise. Second, we will train the agent to learn to act toward a
reward based on the predictive representation, to test its behavioral significance.
Studies on Marr’s computational level often leave unclear how the brain learns to perform such
computations. Our study bridges the computational and algorithmic levels, by providing a concrete,
realistic mechanism by which a computationally optimal probabilistic representation—resembling
that of an ideal observer’s beliefs—can emerge without supervision.

References

[1] Yul HR Kang, Daniel M Wolpert, and Máté Lengyel. Spatial uncertainty and environmental
geometry in navigation. bioRxiv, 2023.

[2] S. Tanni, W. de Cothi, and C. Barry. State transitions in the statistically stable place cell
population correspond to rate of perceptual change. Current Biology, 2022.

[3] Stefano Recanatesi, Matthew Farrell, Janik Born, Gabriel K. Ocker, and Maile Byron. Predictive
learning as a network mechanism for extracting low-dimensional latent space representations.
Nature Communications, 12(1):21696, 2021.

[4] Benigno Uria, Borja Ibarz, Andrea Banino, Vinicius Zambaldi, Dharshan Kumaran, Demis Has-
sabis, Caswell Barry, and Charles Blundell. A model of egocentric to allocentric understanding
in mammalian brains. bioRxiv, 2020.

[5] J. Gornet and M. Thomson. Automated construction of cognitive maps with visual predictive
coding. Nature Machine Intelligence, 6:820–833, 2024.

[6] M.C. von Ebers and X.X. Wei. Cognitive maps from predictive vision. Nature Machine
Intelligence, 6:850–851, 2024.

[7] James C.R. Whittington, Timothy H. Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil
Burgess, and Timothy E.J. Behrens. The tolman-eichenbaum machine: Unifying space and
relational memory through generalization in the hippocampal formation. Cell, 183(5):1249–
1263.e23, 2020.

[8] Christopher J. Cueva and Xue-Xin Wei. Emergence of grid-like representations by training
recurrent neural networks to perform spatial localization, 2018.

[9] Florian Kessler, Jan Frankenstein, and Constantin A. Rothkopf. Human navigation strategies
and their errors result from dynamic interactions of spatial uncertainties. Nature Communica-
tions, 15:5677, 2024.

[10] A Castegnaro, Z Ji, K Rudzka, D Chan, and N Burgess. Overestimation in angular path
integration precedes alzheimer’s dementia. Curr Biol., 33(21):4650–4661.e7, 2023.

[11] K.J. Lakshminarasimhan, E. Avila, X. Pitkow, et al. Dynamical latent state computation in the
male macaque posterior parietal cortex. Nature Communications, 14:1832, 2023.

[12] James Aitchison. Goodness of prediction fit. Biometrika, 62(3):547–554, 1975.

[13] Christian F. Doeller and Neil Burgess. Distinct error-correcting and incidental learning of
location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences,
105(15):5909–5914, 2008.

[14] Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Representational similarity
analysis–connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience,
2:4, 2008.

6



[15] J O’Keefe and J Dostrovsky. The hippocampus as a spatial map. preliminary evidence from
unit activity in the freely-moving rat. Brain Res., 34(1):171–175, 1971.

[16] John O’Keefe. Place units in the hippocampus of the freely moving rat. Experimental Neurology,
51:78–109, 1976.

[17] J O’Keefe and N Burgess. Geometric determinants of the place fields of hippocampal neurons.
Nature, 381(6581):425–428, 1996.

[18] T Hartley, N Burgess, C Lever, F Cacucci, and J O’Keefe. Modeling place fields in terms of the
cortical inputs to the hippocampus. Hippocampus, 10(4):369–379, 2000.

7



Supplementary materials

A. Ideal observer

The ideal observer was constructed as described in [1]. Briefly speaking, the agent receives noisy
egocentric visual and self-motion inputs and recurrently its beliefs about its pose (location and
heading direction) using Bayesian filtering. See [1] for details.

B. Pred-RNN architecture and training

The architecture of the pred-RNN model mirrors the steps of Bayesian filtering (Fig. 4). The pred-
RNN compresses the incoming noisy visual input (vt−1) using three convolutional layers and two
fully connected (FC) layers. This compressed representation is then fed into a recurrent FC layer,
referred to as the network’s state (ht−1), analogous to the measurement step of Bayesian filtering.
In this step, ht−1 can be updated based on the new observation, similar to how the ideal observer’s
posterior distribution (Pt−1) is updated using the incoming sensory input (vt−1).
Once the state ht−1 is updated, it is decoded using three convolutional layers and two FC layers to
generate the predicted visual input (ṽt−1). In parallel with the prediction step in Bayesian filtering,
where the posterior distribution is projected forward using a control signal (ut ), a control signal
containing information about the agent’s intended movement is fed into an FC layer to produce
hpred
t . This predicted hidden state (hpred

t ) is used to generate the predicted visual input for the next
time step (ṽt ), analogous to the predicted posterior (Ppred

t ) in Bayesian filtering.
Networks are optimized by minimizing the sum of the measurement loss (MSE between decoded
output of h̃t−1 and vt−1) and the prediction loss (MSE between decoded output of hpred

t and vt ).
Note that the same decoder network is used for decoding the hidden state into visual input at each
time step.
Note that, while we highlighted parallels between the pred-RNN architecture and Bayesian filter-
ing to aid understanding, we did not train the pred-RNN to explicitly mimic Bayesian filtering
computations. Instead, it was trained solely to predict the current and upcoming sensory input.

C. Autoencoder architecture and training

The architecture and input of the autoencoder are identical to those of the pred-RNN. The key
distinction lies in the training objective: the autoencoder is trained to reconstruct the visual input at
the current time step, vt−1. Consequently, the autoencoder’s networks are optimized by minimizing
the sum of the MSE between decoded output of ht−1 and vt−1, and the MSE between hauto

t and vt−1.

D. Decoding posterior distribution

Regardless of whether the believed environment Ẽ is the same as or different from the true environ-
ment E∗, the ideal observer posterior p∗

t at time step t is of length |Ẽ |. The decoded posterior belief
p̃t has the same length, and is always decoded from the hidden state ht withWpost

Ẽ with dimensions
|Ẽ | × |h|:

p̃t = softmax
(
Wpost

Ẽ ht

)
(1)

Note that the belief of being at a particular state s̃ is just the k(s̃)-th element of this vector (where
k(·) is the index of a state), denoted simply as p̃t (s̃).

E. Ideal observer posterior and decoded distributions over time

Fig. 5 illustrates p̃pred (red) and p̃auto (blue), alongside pideal (grey), across 10 consecutive time
steps. p̃pred consistently shows a closer alignment with pideal compared to p̃auto. This is particularly
evident in situations where the agent has access to limited visual information, such as when only
a single wall is visible. Under these conditions, the autoencoder often produces an excessively
broad posterior, indicating an overestimation of uncertainty and a failure to accurately represent
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Figure 4: Diagram of pred-RNN’s architecture, and its alignment with Bayesian filtering steps,
showing validity of regressing hpred

t to Ppred
t .

v

pt
ideal

෤vauto

෤pauto

෤vpred

෤ppred

Figure 5: Decoded posterior distribution of pred-RNN and autoencoder across 10 time steps

the agent’s location. This discrepancy underscores the pred-RNN’s capability to form more precise
and reliable representations by considering the history of the visual input.

F. Spatial rate maps and method for analysis

In the spatial rate maps shown in Fig. 6, clear distinctions emerge between the representations
learned by the pred-RNN and the autoencoder. Prior to applying a nonlinear transformation, both
models exhibit spatial tuning, but the activity is not as localized compared to the reported mean
peak areas in empirical data (Top). To address this discrepancy, we applied nonlinear transformation
(Bottom), and used the transformed activity for analysis. We applied the following nonlinear
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pred-RNN Autoencoder

Before transformation

After transformation

Figure 6: Firing rate maps of units in hpred and hauto before and after nonlinear transformation, in
small square environment.

transformation to each unit in hpred and hauto:

rtrans =
(

r
rmax

)α

− β (2)

where α represents a free exponent, and β represents a free bias. We performed the analyses across
all combinations of α and β, with α ranging from 2 to 5 and β ranging from 0 to 0.3 in increments
of 0.05. We selected a pair of free parameters from the set where DKL remained relatively constant
across different combinations of α and β.
The autoencoder’s rate maps (right) exhibit less distinct place fields, with several units demonstrating
activity strictly along the walls of the environment. This suggests a more constrained and potentially
less flexible encoding of space, which likely contributes to the disproportionately high place field
orientation ratios near 90 degrees. Additionally, the autoencoder’s rate maps reveal sparse activation
patterns, with many units displaying little to no activity.
In contrast, the pred-RNN’s rate maps (left) exhibit more distinct and localized place fields, with
sharper and more uniformly distributed activity fields across the environment. These observations
suggest that the pred-RNN is better suited for encoding spatial information.
To quantitatively compare the activity patterns of the models with those of place cells, we replicated
the analysis procedure used in [17, 18]. Specifically, place cell-like units were identified as those
with a region enclosed by a contour at half-maximum firing rate covering more than 1/30 of the bins
in the state space. For the analysis of population statistics, we matched the size and composition of
the animal data, where 28 units were analyzed—21 units pre-trained in a vertical rectangle and 7
in a horizontal rectangle. We matched them by randomly selecting 21 units from place cell-like
units, and 7 additional units after a 90° rotation. (In our setup, all units were trained in a vertical
rectangle, so rotating a subset of the data allowed us to match the composition of the units from the
animal experiment.) We repeated the analysis with 20 populations selected this way using different
random seeds. To obtain the distribution of place field orientation, the axis of greatest extent was
measured to the nearest 7.5°, and plotted in 15° bins.
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