
Deep Reinforcement Learning with Plasticity Injection

Evgenii Nikishin 1 2 Junhyuk Oh 1 Georg Ostrovski 1 Clare Lyle 1

Razvan Pascanu 1 Will Dabney 1 André Barreto 1

Abstract

A growing body of evidence suggests that neural
networks employed in deep reinforcement learn-
ing (RL) gradually lose their plasticity, the ability
to learn from new data; however, the analysis
and mitigation of this phenomenon is hampered
by the complex relationship between plasticity,
exploration, and performance in RL. This paper
introduces plasticity injection, a minimalistic in-
tervention that increases the network plasticity
without changing the number of trainable parame-
ters or biasing the predictions. The applications of
this intervention are two-fold: first, as a diagnos-
tic tool — if injection increases the performance,
we may conclude that an agent’s network was los-
ing its plasticity. This tool allows us to identify
a subset of Atari environments where the lack of
plasticity causes performance plateaus, motivat-
ing future studies on understanding and combat-
ing plasticity loss. Second, plasticity injection
can be used to improve the computational effi-
ciency of RL training if the agent has to re-learn
from scratch due to exhausted plasticity or by
growing the agent’s network dynamically without
compromising performance. The results on Atari
show that plasticity injection attains stronger per-
formance compared to alternative methods while
being computationally efficient.

1. Introduction
“You cannot teach an old dog new tricks” an old proverb
says. While the common wisdom is not necessarily a source
of ground truth, neuroscientists recognized a long time ago
that biological agents indeed gradually lose adaptability with
age (Livingston, 1966). This phenomenon is referred to as
loss of plasticity in brains (Nelson, 1999; Mateos-Aparicio

1DeepMind 2Work done during the internship; currently at Mila,
Université de Montréal. Correspondence to: Evgenii Nikishin
<evgenii.nikishin@mila.quebec>.

Reincarnating RL Workshop at the ICLR Conference, Kigali,
Rwanda, 2023. Copyright 2023 by the author(s).

& Rodríguez-Moreno, 2019) and happens for multiple rea-
sons, including natural degradation of neurons and their
connections (Mahncke et al., 2006; Kolb & Gibb, 2011).

Since the biological causes for loss of plasticity do not
apply to artificial agents, in principle there is no reason to
expect that this phenomenon also happens in the context
of machine learning. Surprisingly, several recent works
show that reinforcement learning (RL) agents that use neural
networks may gradually lose the ability to learn from new
experiences (Dohare et al., 2021; Lyle et al., 2022; Nikishin
et al., 2022).

The precise mechanisms causing loss of plasticity in RL are
not well understood. The problem is particularly challeng-
ing to study in this context because performance in RL is
influenced by many factors. For example, an agent with-
out plasticity issues may still struggle to learn if it fails to
properly explore the environment (Taïga et al., 2019). Past
literature focused on using and controlling proxy measures
of plasticity such as the number of saturated rectified linear
units (Nair & Hinton, 2010) and feature rank (Kumar et al.,
2021), but it is unclear how well these measures manage to
capture the underlying phenomenon (Gulcehre et al., 2022).

This paper complements past evidence about the existence
of plasticity loss in deep RL and introduces plasticity injec-
tion, an intervention that augments plasticity of the agent’s
neural network. The conceptual idea is simple: at any point
in training, one can freeze the current network and create
a new one that is going to be learning a change to the pre-
dictions, whilst ensuring that the change is initially zero.
Crucially, plasticity injection does not increase the number
of trainable parameters and does not affect the network’s
predictions when it is applied. Because of these properties,
the intervention enables careful analysis of the plasticity
loss phenomenon in RL while keeping other confounding
factors aside.

We suggest two uses of plasticity injection, one as an ana-
lytic tool and another as a practical algorithmic technique.
For analysis, we propose an experimental protocol that uses
plasticity injection for diagnosing the problem of plasticity
loss: for example, if an agent that was struggling to im-
prove its behavior escapes a performance plateau after the
intervention, we can conclude that the agent had been ex-

Deep Reinforcement Learning with Plasticity Injection

periencing problems with its network plasticity. Using this
protocol in the Arcade Learning Environment (Bellemare
et al., 2013), we identify scenarios where loss of plasticity
hinders the learning process. Furthermore, based on the
intervention-enabled analysis, we provide recommendations
for controlling the degree of plasticity loss.

We also propose to use plasticity injection as a way to im-
prove computational efficiency of RL training in the fol-
lowing scenarios. First, when the agent loses its plasticity
because its network turns out to be too small, plasticity
injection can be dynamically used to increase the capac-
ity of the agent without having to re-train the agent with
a larger network from scratch. We empirically show that
our method improves the aggregate score across 57 Atari
games by 20% compared to other methods for dynamically
addressing plasticity loss. Second, plasticity injection can
be used to minimize computation by switching from a small
network to a larger network in the middle of training with-
out compromising the performance compared to using the
larger network from scratch; we also empirically verify it
on Atari games.

To summarize, our contributions include:

1. A minimalistic intervention called plasticity injection
that increases plasticity of the agent while preserving
the number of trainable parameters and not affecting
its predictions;

2. Complementary evidence about the existence of the
loss of plasticity phenomenon in deep RL;

3. An experimental protocol for diagnosing plasticity loss
using the intervention;

4. A way to improve computational efficiency of RL train-
ing by dynamically expanding the network.

2. Related Work
Plasticity in Continual Learning. Discussions about plas-
ticity of neural networks date back (at least) to a semi-
nal paper by McCloskey & Cohen (1989) outlining the
plasticity-stability dilemma, a trade-off between preserv-
ing performance on previous tasks and maintaining adapt-
ability to future ones. The continual learning community
historically put a higher emphasis on the stability aspect,
addressing catastrophic forgetting of past behaviors (French,
1999). Recently, several works raised awareness of diffi-
culties with learning on future tasks too. Ash & Adams
(2020) demonstrated an instance of loss of generalization,
when pre-training a network might unrecoverably damage
generalization even if pre-training was done on a uniform
subsample of the same dataset. Berariu et al. (2021) deep-
ened the study and conjectured that the phenomenon might

happen because of the reduction of gradient noise when
warm-starting the network. Dohare et al. (2021) explic-
itly study the network plasticity in continual learning and
demonstrate the reduced ability to minimize even the train-
ing error as the number of tasks increase. These works build
an understanding of the problem by studying simplified set-
tings that isolate different aspects of learning capabilities in
continual learning, whereas our work aims at tackling the
deep RL setting in its whole.

Loss of Plasticity in Deep RL. Issues with plasticity and
related phenomena have been recently highlighted in deep
RL under a plethora of different names. Lyle et al. (2022)
show loss of capacity for fitting targets in online RL and
Kumar et al. (2021) demonstrate a related implicit under-
parameterization phenomenon caused by bootstrapping with
more emphasis on the offline RL case. Both of these works
use the feature rank as a proxy measure for plasticity but
later Gulcehre et al. (2022) question the reliance on such
measure by demonstrating a weak correlation between the
rank and the agent’s performance, partially motivating our
study that focuses directly on agent’s performance to rea-
son about plasticity. Works of Sokar et al. (2023); Abbas
et al. (2023) focus on saturation of neurons over the course
of training, but Lyle et al. (2023) demonstrate that the sat-
uration alone cannot fully characterize the plasticity loss
phenomenon. Nikishin et al. (2022) discuss the primacy
bias in deep RL, a tendency to excessively train on early
data damaging further learning progress, and propose to
periodically reset a part of the network to address the issue
while relying on the replay buffer as a knowledge transfer
mechanism. Earlier, Igl et al. (2021) had observed that deep
RL agents can lose the ability to generalize due to non-
stationarity and proposed to use distillation as a mitigation
mechanism. Plasticity injection closely relates to these ap-
proaches by leveraging newly initialized weights, but does
not require re-training and directly continues learning.

Architectures. The works above mainly discuss algorith-
mic aspects with less focus on the network architecture,
although it is also an important component of the agent’s
design (Mirzadeh et al., 2022). The closest work in this
space is about progressive networks (Rusu et al., 2016) that
considers a setting with multiple environments and adds a
new network with cross-connections to the layers of pre-
vious networks. A network after plasticity injection can
be viewed as a simplified version of the architecture with
a motivation of increasing plasticity within a single task
without affecting agent’s predictions. A line of work on
the mixture of experts (Shazeer et al., 2017) and modular
networks (Andreas et al., 2016) is also related, but typically
focus in these papers is compositionality or handling multi-
modalities. The idea of growing network layers or neurons
has also been investigated (Fahlman & Lebiere, 1989; Chen
et al., 2015); plasticity injection belongs to a family of these

Deep Reinforcement Learning with Plasticity Injection

0 4000 8000 12000 16000 20000
Iterations

10 1

100

Va
lu

e
Pr

ed
ict

io
n

M
SE

Up n Down

Reset Every Task Reset Never

Figure 1. Demonstration of plasticity loss in a sequence of policy
evaluation tasks. The task (a policy to evaluate) changes every
1000 iterations. The reset every task setting shows that newly-
initialized parameters are able to fit each task, whereas the reset
never setting shows the diminishing capability to fit the data when
using the trained parameters from one task as the initialization for
another task.

methods up to the difference that we explicitly control for
maintaining the number of trainable parameters. In the
context of language modeling, Hu et al. (2022) explored a
similar idea of freezing a pre-trained model and fine-tuning
a low-rank addition to the weight matrices on a downstream
task. Lastly, plasticity injection can be conceptually viewed
as an instance of residual learning (He et al., 2016) and
boosting (Schapire, 1990).

3. An Illustration of Plasticity Loss
Plasticity of a neural network is broadly defined as the ability
to learn from new experiences. To provide intuition on how
this ability can decrease over time, we present a didactic
example before investigating the case with deep RL. Fig-
ure 1 shows the mean-squared error (MSE) on a sequence
of supervised policy evaluation problems derived from the
Up n Down Atari environment. We first trained an agent
on this environment for 200M frames and stored the policies
occurring at every 10M frames. Then, for each stored policy,
we sampled states from the corresponding stationary distri-
bution and computed Monte-Carlo estimates of the value
function for each state, resulting a training set composed of
states and the values. We then trained a network to solve the
resulting sequence of prediction problems. This sequence
of related prediction problems differing in the input and
target distribution aims to reproduce the scenario faced by
an online RL agent (Dabney et al., 2021). The curve labeled
“reset never” corresponds to starting each prediction prob-
lem using the final parameters from the previous one, while
“reset every task” corresponds to randomly initializing the
network parameters at every prediction problem.

The conventional wisdom about transfer learning suggests
that, if two tasks are related, pre-training on the first might
accelerate learning on the second (Pan & Yang, 2009). Here
we observe the opposite trend: it takes longer and longer
for the network to decrease training error on the subse-
quent policy evaluation problems if its parameters are not
re-initialized. This example gives a simple demonstration of
how plasticity loss can occur; we refer to the work by Do-
hare et al. (2021) for an in-depth study of the phenomenon
in the continual setting.

After building the intuition about loss of plasticity, we turn
the attention to its analysis in deep RL. The key distinctive
feature of RL is the presence of an exploration confounder:
in contrast to the continual setting with a fixed sequence
of datasets, an RL agent influences the future data it learns
from. Thus, a failure of an RL system can be attributed not
only to loss of plasticity but also to inability to explore. The
next section presents a strategy to increase plasticity of an
agent that addresses the difficulty with the analysis.

4. Plasticity Injection
Before describing the experimental design in detail, we list
the motivating desiderata:

• Unaffected predictions: the agent’s predictions
should stay the same after the intervention to avoid
abrupt changes. This criterion allows isolating con-
founding factors related to exploration;

• Preserving the trainable parameter count: the in-
tervention should not affect the number of trainable
parameters to minimize confounding factors from an
increased representational capacity.

We now present the proposed intervention to increase plas-
ticity of an RL agent. First, let us denote the neural network
approximator employed by the agent (for example, used
for action-value prediction) as hθ(x), where θ indicates the
parameters. At some point in training, where the network
might have started losing plasticity, we are going to freeze
the parameters θ and introduce a new set of parameters θ′

sampled from random initialization. The key idea is to keep
two copies of θ′, which we denote by θ′1 and θ′2; while θ′1
are free parameters used to learn a residual to the old net-
work outputs, θ′2 remains frozen throughout. The agent’s
predictions after plasticity injection will be calculated using
the following expression:

hθ(x)︸ ︷︷ ︸
frozen

+hθ′
1
(x)︸ ︷︷ ︸

trained

−hθ′
2
(x)︸ ︷︷ ︸

frozen

. (1)

Since initially θ′1 = θ′2, immediately after plasticity in-
jection the predictions of the neural network remain un-

Deep Reinforcement Learning with Plasticity Injection

L®yÌÒ¡�¡Òèį(µ«��Ò¡ºµ

Figure 2. An illustration of the architecture before and after plastic-
ity injection. Before the intervention, the network is schematically
separated into an encoder ϕ(·) and a head hθ(·), both parts are
learning. After plasticity injection, we freeze the parameters θ of
the head (we use red to indicate parameters that are not updated
in the illustration) and create two copies of a randomly initialized
parameters θ′; one frozen and one unfrozen. The output of the
agent is obtained by first passing the input x to the encoder ϕ(·),
next passing ϕ(x) to all three heads, and finally combining the
heads’ outputs according to Expression (1).

altered. As learning progresses, θ′1 deviates from θ′2 and
hθ(x)− hθ′

2
(x) serves as a bias term for predictions.

Note that if we apply plasticity injection to all parameters
of the network, the new network will have to re-learn the
representations encoded in hθ(·) from scratch. Thus, we
apply our intervention to only a subset of the parameters and
explain the idea further with a slight abuse of notation. We
schematically split the network into an encoder ϕ(·), that
denotes a mapping induced by first k layers of the network,
and a head hθ(·) where θ now refers to parameters of the
remaining layers of the network. After this relabelling,
we can apply the intervention to hθ(·) as outlined above.
Section 5.4 later presents an ablation of sharing the encoder.

Figure 2 illustrates the strategy to apply plasticity injection.
Note that gradients from the frozen heads affect the encoder
too, i.e. we do not stop the gradient propagation from any
of the components of the output. It is worth noting that the
proposed intervention increases the total number of parame-
ters of the network (but keeps the same number of trainable
parameters), which in turn may result in an increase of train-
ing time. However, we later discuss in Section 5.3 how
plasticity injection can save computational resources.

The idea of learning with newly-initialized last layers has
been explored by Nikishin et al. (2022), who suggested re-
setting the corresponding parameters of the network at fixed
intervals and used the replay buffer (Lin, 1992) to re-learn
after resets. Their experimental evidence supports the hy-
pothesis that resets mitigate plasticity loss. Note though
that resetting parameters of the network abruptly changes its

predictions, which results in a temporary decrease in perfor-
mance and induces an exploration effect. From an analysis
perspective, these abrupt changes make it more difficult to
isolate the effect of additional plasticity on the agent’s per-
formance. From a practical perspective, plasticity injection
does not rely on the buffer; Section 5.3 demonstrates how
this difference can be critical.

5. Experiments
This section presents results for two main applications of
plasticity injection: as a tool for diagnosing plasticity loss
and as a way to dynamically grow the network to efficiently
use computations. Afterwards, we demonstrate detailed ab-
lations on the design choices when using plasticity injection.

5.1. Experimental Setup

The baseline agent is Double DQN (Van Hasselt et al.,
2016) learning for 200M interactions on a standard set of
57 Atari games from the Arcade Learning Environment
benchmark (Bellemare et al., 2013). The choice of Double
DQN is motivated by the relative robustness and stronger
performance of the agent with double Q-learning (Van Has-
selt, 2010) compared to the vanilla DQN agent (Mnih et al.,
2015) as well as simplicity compared to later DQN-based
agents such as Rainbow (Hessel et al., 2018).

The majority of the experiments use a single plasticity injec-
tion after 50M frames; otherwise, we explicitly specify the
number and timesteps of injections. A convolutional neural
network employed by the Double DQN agent consists of 5
layers. The encoder corresponds to the first three of them
(hence k = 3), while the head refers to the last two. Since
DQN-based agents employ a target copy of the network
parameters, we perform the same interventions on them.

For reliable evaluation of the aggregate performance across
environments, we adopt the protocol of Agarwal et al. (2021)
with a focus on the interquartile mean (IQM). All experi-
ments use 3 random seeds.

5.2. Plasticity Injection as a Diagnostic Tool

Consider the task of improving a deep RL system when
an agent performs suboptimally. Practitioners know how
non-trivial is the process of pinpointing exact reasons why
an agent might be struggling to improve the behavior. One
of the reasons, as we discussed, can be loss of network
plasticity throughout training.

We view the proposed intervention as a tool that can provide
insight when analyzing deep RL systems. The procedure
for using it is as follows: when an agent has a performance
plateau or slower learning progress, take a saved copy of
the agent, perform plasticity injection, and compare the

Deep Reinforcement Learning with Plasticity Injection

0

1000

2000

3000

4000

5000

Ep
iso

de
 re

tu
rn

Space invaders

0

10000

20000

Phoenix

0 50 100 150 200
Environment frames (millions)

0

1000

2000

3000

Ep
iso

de
 re

tu
rn

Assault

0 50 100 150 200
Environment frames (millions)

0

20

40

60

Robotank

Baseline
Injection @ 25
Injection @ 50
Injection @ 100

Figure 3. A demonstration of diverse effects from plasticity injec-
tion applied to Double DQN after 25M, 50M, and 100M steps on
a selection of Atari games comprising two examples where the
intervention improves the performance and two examples where
it does not. The baseline in Space invaders and Phoenix
demonstrates the diminishing performance improvements and the
performance plateau respectively, whilst the agent after the in-
jection is capable of achieving higher returns. The stalled per-
formance in Assault is due to exploration challenges (see Ap-
pendix F for details): adding plasticity could not alleviate them. If
the agent does not show signs of the diminished ability to learn,
like in Robotank, the injection would not lead to improved per-
formance. Varying the injection timestep allows identifying the
moment plasticity loss occurs. Results for all 57 environments are
available in Figure 9.

training curves with and without the intervention. This way
we answer a counterfactual question: what could have been
the agent’s performance if the network had more plasticity?

Figure 3 gives a set of example behaviors after following
the procedure: in Space invaders, the baseline agent
keeps learning but the post-injection agent improves at a
faster rate towards the end of learning; we might interpret
the observation as an indication of decreasing network plas-
ticity over the course of training. In Phoenix, we see
a completely stalled performance and the intervention al-
lows doubling the final returns; such an observation point at
possible catastrophic loss of plasticity, where additional in-
teractions do not translate to better behavior. In Assault,
on the other hand, the agent has plateaued but the injection
does not make a difference. Further inspection revealed that
around a score of 2800, the environment transitions to a new
regime where an agent needs to start using an action that
was not relevant before (see Appendix F for a visualization).
This observation suggests that performance stagnation is
related to exploration. In Robotank, the learning progress
shows no signs of pathologies, giving evidence that the
agent does not experience problems with its plasticity.

As
sa

ul
t

Do
ub

le
 d

un
k

Ro
bo

ta
nk

De
m

on
 a

tta
ck

Pr
iv

at
e

ey
e

He
ro

M
on

te
zu

m
a

re
ve

ng
e

Fr
ee

wa
y

Po
ng

Pi
tfa

ll
So

la
ris

Te
nn

is
Ve

nt
ur

e
Ba

ttl
e

zo
ne

St
ar

 g
un

ne
r

Ka
ng

ar
oo

Ce
nt

ip
ed

e
Ice

 h
oc

ke
y

Bo
wl

in
g

Na
m

e
th

is
ga

m
e

Qb
er

t
Be

am
 ri

de
r

Cr
az

y
cli

m
be

r
Za

xx
on

Ku
ng

 fu
 m

as
te

r
At

la
nt

is
Ti

m
e

pi
lo

t
M

s p
ac

m
an

Bo
xi

ng
Ja

m
es

bo
nd

Ro
ad

 ru
nn

er
As

te
rix

Gr
av

ita
r

Tu
ta

nk
ha

m
Kr

ul
l

Am
id

ar
Sk

iin
g

Fi
sh

in
g

de
rb

y
Vi

de
o

pi
nb

al
l

Fr
os

tb
ite

De
fe

nd
er

Ba
nk

 h
ei

st
Ch

op
pe

r c
om

m
an

d
Sp

ac
e

in
va

de
rs

Ri
ve

rra
id

W
iza

rd
 o

f w
or

Up
 n

 d
ow

n
Br

ea
ko

ut
Be

rz
er

k
Go

ph
er

As
te

ro
id

s
En

du
ro

Al
ie

n
Se

aq
ue

st
Su

rro
un

d
Ya

rs
 re

ve
ng

e
Ph

oe
ni

x

10

0

10

20

30

40

50

Figure 4. Percentage improvement of the average performance af-
ter adding plasticity injection across all 57 Atari games. We take
the maximum score among the agents with plasticity injection after
25M, 50M, and 100M steps to roughly estimate the improvement
as if plasticity injection was applied at a proper timestep and to
demonstrate what the performance could have been if plasticity
loss was mitigated. Learning curves corresponding to each envi-
ronment are available in Appendix A.

Plasticity injection can also demonstrate when loss of
plasticity occurs. The post-intervention performance in
Space invaders does not differ for varying injection
timestep, suggesting that the agent might not start expe-
riencing consequences of the lost plasticity until around
100M frames. On the other hand, in Phoenix, plasticity
injection improves the performance earlier, implying that
the agent lost its plasticity around 25M frames. Varying
the moment of injection in Assault and Robotank does
not change the performance significantly, supporting our
previous conclusion about these games.

Figure 4 summarizes when and to which extent the Dou-
ble DQN agent benefits from plasticity injection across 57
Atari games. The observations about improvements from
injection complement evidence of the existence of plastic-
ity loss in deep RL (Kumar et al., 2021; Lyle et al., 2022;
Nikishin et al., 2022). We note that the argument here is
nuanced: since the notion of plasticity is defined broadly
and is challenging to measure, it is our best interpretation
that the post-intervention agent can learn further because it
addressed plasticity issues. But because of an experimental
design that strived to be careful, we believe that it is the
most likely explanation.

What should we do after using the tool and observing loss
of plasticity? Dohare et al. (2021); Nikishin et al. (2022);
Gogianu et al. (2021) provide evidence that the learning rate
(LR), the replay ratio (RR)1, the network size, and normal-
izations (such as spectral norm (SN) (Miyato et al., 2018))
strongly affect plasticity loss. We measure the sensitivity
of the aggregate improvements of the final score from plas-
ticity injection at 50M with respect to these choices of the

1The replay ratio denotes the number of gradient steps per an
environment step.

Deep Reinforcement Learning with Plasticity Injection

0.5 1 2
RR Multiplier

20

40

%
 Im

pr
ov

em
en

t

0.5 1 2
LR Multiplier

20

40

%
 Im

pr
ov

em
en

t
0.5 1 2
Size Multiplier

10

20

30

%
 Im

pr
ov

em
en

t

No SN SN
0

10

20

%
 Im

pr
ov

em
en

t

Figure 5. Percentage improvements of the IQM scores from plastic-
ity injection in varying regimes controlling the degree of plasticity
loss. The intervention effect size monotonically increases with
the replay ratio (RR) and the learning rate (LR), monotonically
decreases with the size of the neural network, and is smaller yet
positive for an agent employing spectral normalization (SN). These
observations can be seen as recommendations about how to address
loss of plasticity.

agent specification2. Results in Figure 5 are consistent with
observations from previous works and suggest a recipe for
controlling the degree of plasticity loss by decreasing the
learning rate or the replay ratio, increasing the network size,
or employing normalizations3.

In addition to gaining scientific insight, we now discuss how
the intervention can be useful in large-scale RL.

5.3. Plasticity Injection for Computational Efficiency

Over the recent years, RL agents have been trained at in-
creasingly larger scales. For example, mastering particu-
larly challenging environments required an equivalent of
hundreds of years of human gameplay (Vinyals et al., 2019),
or obtaining a diverse set of skills required a 1B+ parameter
networks (Reed et al., 2022). Given the trend, computational
considerations become increasingly relevant.

Plasticity injection can be used to improve the computational
efficiency of RL in the following ways.

Reincarnating with Plasticity Injection. Recently, Agar-
wal et al. (2022) proposed a workflow called “Reincarnating
RL” which reuses computations from previously trained
agents during the iterative process of agent design. For ex-
ample, if we trained an agent for several days or weeks and
then decided to change its design (such as the network size),
the workflow suggests to leverage the spent computations in-
stead of training again from scratch. Plasticity injection can
be useful from this perspective when the agent is unable to
improve due to loss of plasticity and re-training from scratch
is expensive. To see the effectiveness of plasticity injection

2To make a network two times larger, we multiply the width of
all hidden layers by

√
2.

3We follow the recommendation of Gogianu et al. (2021) and
apply SN to the penultimate layer; since we apply injection to
the last two layers, issues with their plasticity might be partially
alleviated by SN. Given that Gogianu et al. (2021) notice that the
spectral norm of other layers starts growing more and D’Oro et al.
(2023) observe that the first layers benefit from partial resets, we
conjecture that first layers’ plasticity is still declining with SN.

1.04 1.12 1.20
Baseline
Injection

Resets
SnP

Width Scale
IQM

Human Normalized Score
1.04 1.12 1.20

Baseline
Injection @ 50

Wider Net
Unfrozen Injection @ 0

IQM

Human Normalized Score

Figure 6. Left: Comparison of plasticity injection to other methods
that can be applied to dynamically address loss of plasticity. The
difference in performance between all methods and the baseline is
insignificant except for injection; an agent with injection is capa-
ble of improving without having to re-train from scratch. Right:
Comparison of the agent with plasticity injection to agents that use
larger networks from the beginning. Injection @ 50 switches from
a small network to a larger network through plasticity injection at
50M frames. Unfrozen Injection @ 0 uses the same network as the
agent with plasticity injection, but from the beginning of training,
and updates both θ and θ′1 parameters. Wider Net uses a network
with an increased width layers. Injection @ 50 achieves higher or
similar performance while saving computational resources during
the first 50M frames.

in such setting, we compared plasticity injection with sev-
eral alternatives that address loss of plasticity dynamically
during training, including Shrink-and-Perturb (SnP) (Ash
& Adams, 2020), resets (Nikishin et al., 2022), and naive
width scaling (we describe the methods in detail in Ap-
pendix D). Figure 6 (left) shows that plasticity injection
achieves a higher aggregate score across 57 Atari games
compared to the alternatives. The results suggest that plas-
ticity injection can be used to “reincarnate” agents more
efficiently compared to the alternatives, without re-training
from scratch.

Minimizing Computations via Dynamic Growth. Al-
though larger networks tend to maintain plasticity longer,
they require more computations to train or can be more
challenging to train (Team et al., 2023). We hypothesize
that the full capacity of a large network may not always be
necessary early in training, even if it is useful to maintain
plasticity later. If this hypothesis is true, we can save com-
putations by starting from a smaller network and injecting
plasticity during training, without compromising the final
performance compared to using the large network from the
beginning. To verify this hypothesis, we implemented two
additional baselines with higher-capacity networks. The
first uses a network with larger width layers, roughly match-
ing the total number of parameters in ϕ(·), hθ(·), and hθ1(·)
combined. The second uses the same network as an agent
after plasticity injection but performs the intervention from
the start and keeps hθ(·) unfrozen. In other words, the latter
baseline uses a large network from the beginning of training,
while the agent with standard plasticity injection starts from
a smaller network and switches to the large network during
training. The results in Figure 6 (right) show that an agent
with plasticity injection during training performs compa-
rably to the alternatives that use larger networks from the

Deep Reinforcement Learning with Plasticity Injection

1.0 1.1 1.2 1.3
Injection

Injection, Whole Net
Injection, Whole Net, Copy Enc

Unfrozen Injection
Unfrozen Injection, Whole Net

Unfrozen Injection, Whole Net, Copy Enc
IQM

Human Normalized Score
0.25 0.5 1

Size Multiplier

0

10

%
 Im

pr
ov

em
en

t

Figure 7. Left: Comparison between variations of plasticity injec-
tion. Whole Net denotes injection of both the encoder ϕ(·) and the
head hθ(x); Copy Enc denotes copying the ϕ(·) at the moment
of injection without further sharing; Unfrozen denotes keeping
parameters θ of the first term, hθ(x), unfrozen. Relying on a new
encoder leads to a lower performance; the rest of the alternatives
have comparable scores. Right: Percentage improvements of the
IQM score from multiple injections over a single injection for vary-
ing network sizes. Multiple injections are beneficial for smaller
networks. Note that previous plots in Figure 5 show improvements
when comparing one injection over no injections while this plot
compares multiple injections over one.

start. At the same time, it saves computations since it uses a
smaller network up to 50M frames and has fewer parameters
that are updated even after plasticity injection. Appendix E
provides a calculation of the amount of resources plasticity
injection has saved during these experiments. These results
confirm the hypothesis and suggest that plasticity injection
can be used as a tool for minimizing computations when
training RL systems at a large scale.

5.4. Ablations

This section presents an ablation analysis of the various
design choices made during the study of plasticity injection.
The purpose of such ablations is to build intuition on the
behavior of plasticity injection under different conditions so
that an RL practitioner can use it in their application.

Injection Variants. The proposed modification of the net-
work architecture is not the only one possible. In Section 4,
we initially described a version of plasticity injection with-
out encoder sharing, that is, when the intervention is applied
to the entire network (referred to as Injection, Whole Net
in Figure 7). Another alternative is to create a whole new
set of parameters and copy the encoder parameters of the
old network without sharing it (denoted as Injection, Whole
Net, Copy Enc). Lastly, for all three versions, there is the
possibility of not freezing the old set of parameters (weights
corresponding to the third, output correction term hθ′

2
(x),

are always going to be frozen).

Figure 7 (left) summarizes the findings:

1. Creating a completely new encoder-head pair is the
alternative with the lowest IQM scores;

2. Variants with encoder sharing or copying have compa-
rable performance; the Injection, Whole Net, Copy Enc

version has a slightly lower performance than the rest.
We conjecture that it might be due to the larger number
of frozen parameters;

3. Unfrozen variants generally perform not worse than
their frozen counterparts. The unfrozen variants intro-
duce more trainable parameters compared to the base-
line, which require more computations during learning
and increase the network expressivity. Since we were
interested in a careful diagnosis of plasticity loss and
extra expressivity may be a confounding factor, we
decided to stick to the frozen version by default.

Multiple Injections. Given the improved performance from
plasticity injection in the previous experiments, a natural
question is whether applying plasticity injection multiple
times would improve performance even further. To investi-
gate this question, we applied plasticity injection at 100M
and 150M frames, in addition to 50M frames, and plotted
the IQM improvements with respect to a single injection
at 50M frames. As shown in Figure 7 (right), additional
injections do not improve the performance over a single in-
jection in a setup with a standard network. We hypothesize
that in our particular experimental setting, loss of plasticity
can be largely mitigated with a single plasticity injection.
To verify this hypothesis, we applied multiple injections
while varying the network size4. Figure 7 (right) confirms
that the level of improvement grows monotonically as the
agent uses smaller networks. Since the results in Figure 5
suggests that the degree of plasticity loss increases with
smaller networks, this result indicates that multiple rounds
of plasticity injection can be beneficial in situations where
the agent network is too small to maintain plasticity.

No Output Correction. In the majority of the games, sub-
tracting the initial copy of the newly introduced head hθ2(·)
resulted in mostly similar learning curves as without the sub-
traction, although not always. In particular, the impact of
the injection on Yars Revenge is smaller without com-
pensating for the bias. Also, we observed a significant
difference in high variance games (such as Berzerk and
Hero). Note that minimizing effects on the predictions
from introducing the new head would be possible by mod-
ifying the initialization scheme (Brohan et al., 2022). We
highlight that the goal was to have an as clean and simple
experimental design as possible: the correction offered by
the hθ′

2
(·) term guarantees no effect on predictions; without

it, effects can be initialization or domain specific.

Injection Timestep. Earlier in Section 5.2, we presented
the results for a selection of environments for varying injec-
tion timestep. Figure 8 (left) suggests that across all games,
increasing or decreasing the timestep by a factor of two

4Similarly to Section 5.2, to make the network 2x smaller, we
divide the width of the hidden layers by

√
2.

Deep Reinforcement Learning with Plasticity Injection

1.04 1.12 1.20 1.28
Baseline

Injection @ 25
Injection @ 50

Injection @ 100
IQM

Human Normalized Score
1.04 1.12 1.20

Baseline
Injection

Injection + Copy Opt
Reset Opt

IQM

Human Normalized Score

Figure 8. Left: Aggregate performance for agents with varying
injection timesteps. Whilst Figures 9 and 10 suggest that loss of
plasticity might be happening at different paces across environ-
ments, the final IQM score is relatively robust with respect to the
injection moment. Right: Comparison of an agent with injection,
an agent with injection but copied optimizer state for the newly
initialized head (Injection + Copy Opt), and an agent that resets the
optimizer statistics of the last two layers (Reset Opt). The results
suggest that effects from interventions on the optimizer state are
marginal compared to having new weights.

yields comparable aggregate performance. Note though that
we measure the IQM score after 200M frames, so the tran-
sient performance would differ depending on the timestep.
Appendix B also discusses later an adaptive criterion for
choosing the injection timestep.

Optimizer. One might hypothesize that benefits from injec-
tion can be attributed to manipulations with the optimizer
state. To test whether this hypothesis, we perform two
ablations: the first resets statistics of the RMSProp opti-
mizer (Tieleman et al., 2012) used by Double DQN after
50M steps, the second copies the optimizer state of the orig-
inal head to the newly initialized head after the injection.
Figure 8 (right) demonstrates that most of the effects from
injection come from having additional weights rather than
from interventions on the optimizer.

6. Limitations
The first and foremost limitation of plasticity injection is an
increase in memory and training time. When using plasticity
injection as a diagnostic tool, we believe the overhead is
largely justified since preserving the network output makes it
easier to isolate confounding factors like exploration. From
the deployment viewpoint, the increase in compute and time
may or may not be justified depending on how much plastic-
ity injection improves performance. In our experiments, the
effect of the intervention varied considerably across Atari
games: while in some cases it did not help much, in other
cases it had a significant positive effect.

Preserving the network outputs and keeping weights can
be undesirable in case of a parameter divergence that often
occurs in deep RL experimentation (Van Hasselt et al., 2018).
Such a scenario also qualifies as loss of plasticity; in this
case, addressing it without drastic tools can be challenging.
Lastly, while we propose a diagnostic and mitigation tool,
we do not identify causal factors driving plasticity loss in
deep RL. More research is needed here: understanding these
causes could lead to avoiding plasticity loss in the first place.

7. Discussion and Conclusion
Results in this paper can serve as a clear study of the plas-
ticity loss phenomenon in deep RL and evidence that the
RL optimization still leaves room for improvement. The
version of plasticity injection we propose may yet not be
optimal: we strived for simplicity rather than performance
and view the intervention as a blueprint for future methods.

The experiments in this paper adopted the convolutional
architecture from Van Hasselt et al. (2016) but modern deep
RL practice not rarely involves ResNets (He et al., 2016; Es-
peholt et al., 2018) and Transformers (Vaswani et al., 2017;
Chen et al., 2021; Reed et al., 2022); we did not investigate
settings with these advanced architectures. However, the
idea of plasticity injection is agnostic to the choice of the
architecture. For example, it can be applied for residual
blocks in ResNets or decoder blocks in Transformers.

An exciting avenue for future research is understanding
trade-offs between architectural design decisions: RL agents
typically employ networks that were originally proposed
for stationary problems, but perhaps dynamically growing
networks would suit the non-stationary nature of RL better.

Applications of plasticity injection focus on diagnosing RL
systems and their efficiency. We compliment a recent opin-
ion paper from Mannor & Tamar (2023) by arguing that if
deep RL is to become a technology that a non-expert can
use, more research is needed on the process of iterating on
the agent design and computational efficiency.

Although this paper attempted to understand and address
loss of plasticity in RL, there are still remaining open ques-
tions. Can we solve the problem of plasticity loss com-
pletely? Which properties of newly initialized networks
enable high plasticity? Answering these questions is a key
challenge for training truly intelligent agents.

Acknowledgements
EN thanks Tom Schaul, Greg Farquhar, John Quan, Dan
Horgan, Mihaela Rosca, Angelos Filos, Diana Borsa, Luisa
Zintgraf, Yash Chandak, Robert Lange, Chris Lu, David
Parkes, Blanca Huergo, Rich Sutton, David Silver, Hado van
Hasselt, Alexander Novikov, Julia Novikova, and especially
Iurii Kemaev for their help and valuable discussions. EN
also thanks many other interns and the broader DeepMind
team for the great internship experience.

We acknowledge the Python community (Van Rossum &
Drake Jr, 1995; Oliphant, 2007) for developing the core set
of tools that enabled this work, including JAX (Bradbury
et al., 2018; Babuschkin et al., 2020), Jupyter (Kluyver et al.,
2016), NumPy (Oliphant, 2006; Van Der Walt et al., 2011),
SciPy (Jones et al., 2014), Matplotlib (Hunter, 2007), and
pandas (McKinney, 2012).

Deep Reinforcement Learning with Plasticity Injection

References
Abbas, Z., Zhao, R., Modayil, J., White, A., and Machado,

M. C. Loss of plasticity in continual deep reinforcement
learning. arXiv preprint arXiv:2303.07507, 2023.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,
and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A.,
and Bellemare, M. G. Reincarnating reinforcement learn-
ing: Reusing prior computation to accelerate progress.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=t3X5yMI_4G2.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural
module networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 39–48,
2016.

Ash, J. and Adams, R. P. On warm-starting neural network
training. Advances in Neural Information Processing
Systems, 33:3884–3894, 2020.

Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce,
J., Buchlovsky, P., Budden, D., Cai, T., Clark, A., Dani-
helka, I., Fantacci, C., Godwin, J., Jones, C., Hennigan,
T., Hessel, M., Kapturowski, S., Keck, T., Kemaev, I.,
King, M., Martens, L., Mikulik, V., Norman, T., Quan,
J., Papamakarios, G., Ring, R., Ruiz, F., Sanchez, A.,
Schneider, R., Sezener, E., Spencer, S., Srinivasan, S.,
Stokowiec, W., and Viola, F. The DeepMind JAX Ecosys-
tem, 2020. URL http://github.com/deepmind.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Inter-
national conference on machine learning, pp. 449–458.
PMLR, 2017.

Berariu, T., Czarnecki, W., De, S., Bornschein, J., Smith, S.,
Pascanu, R., and Clopath, C. A study on the plasticity of
neural networks. arXiv preprint arXiv:2106.00042, 2021.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J.,
Finn, C., Gopalakrishnan, K., Hausman, K., Herzog, A.,
Hsu, J., et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chen, T., Goodfellow, I., and Shlens, J. Net2net: Accel-
erating learning via knowledge transfer. arXiv preprint
arXiv:1511.05641, 2015.

Dabney, W., Barreto, A., Rowland, M., Dadashi, R.,
Quan, J., Bellemare, M. G., and Silver, D. The value-
improvement path: Towards better representations for
reinforcement learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 7160–
7168, 2021.

Dohare, S., Sutton, R. S., and Mahmood, A. R. Continual
backprop: Stochastic gradient descent with persistent
randomness. arXiv preprint arXiv:2108.06325, 2021.

Dong, K., Luo, Y., Yu, T., Finn, C., and Ma, T. On
the expressivity of neural networks for deep reinforce-
ment learning. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 2627–2637. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/dong20d.html.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. C. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier. In
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=OpC-9aBBVJe.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional conference on machine learning, pp. 1407–1416.
PMLR, 2018.

Fahlman, S. and Lebiere, C. The cascade-correlation learn-
ing architecture. Advances in neural information process-
ing systems, 2, 1989.

Farahmand, A., Ghavamzadeh, M., Mannor, S., and
Szepesvári, C. Regularized policy iteration. Advances in
Neural Information Processing Systems, 21, 2008.

https://openreview.net/forum?id=t3X5yMI_4G2
https://openreview.net/forum?id=t3X5yMI_4G2
http://github.com/deepmind
http://github.com/google/jax
https://proceedings.mlr.press/v119/dong20d.html
https://proceedings.mlr.press/v119/dong20d.html
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe

Deep Reinforcement Learning with Plasticity Injection

French, R. M. Catastrophic forgetting in connectionist net-
works. Trends in cognitive sciences, 3(4):128–135, 1999.

Gogianu, F., Berariu, T., Rosca, M. C., Clopath, C., Busoniu,
L., and Pascanu, R. Spectral normalisation for deep
reinforcement learning: an optimisation perspective. In
International Conference on Machine Learning, pp. 3734–
3744. PMLR, 2021.

Gulcehre, C., Srinivasan, S., Sygnowski, J., Ostrovski, G.,
Farajtabar, M., Hoffman, M., Pascanu, R., and Doucet,
A. An empirical study of implicit regularization in deep
offline rl. arXiv preprint arXiv:2207.02099, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep re-
inforcement learning. In Thirty-second AAAI conference
on artificial intelligence, 2018.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=nZeVKeeFYf9.

Hunter, J. D. Matplotlib: A 2d graphics environment. IEEE
Annals of the History of Computing, 9(03):90–95, 2007.

Igl, M., Farquhar, G., Luketina, J., Boehmer, W., and White-
son, S. Transient non-stationarity and generalisation in
deep reinforcement learning. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Qun8fv4qSby.

Jones, E., Oliphant, T., and Peterson, P. SciPy: Open source
scientific tools for Python. 2014.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374,
2019.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E.,
Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J. B.,
Grout, J., Corlay, S., et al. Jupyter Notebooks-a publish-
ing format for reproducible computational workflows.,
volume 2016. 2016.

Kolb, B. and Gibb, R. Brain plasticity and behaviour in the
developing brain. Journal of the Canadian Academy of
Child and Adolescent Psychiatry, 20(4):265, 2011.

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Im-
plicit under-parameterization inhibits data-efficient deep
reinforcement learning. In International Conference on
Learning Representations, 2021.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8(3):293–321, 1992.

Livingston, R. B. Brain mechanisms in conditioning and
learning. Technical report, 1966.

Lyle, C., Rowland, M., and Dabney, W. Understanding and
preventing capacity loss in reinforcement learning. In
International Conference on Learning Representations,
2022.

Lyle, C., Zheng, Z., Nikishin, E., Pires, B. A., Pascanu,
R., and Dabney, W. Understanding plasticity in neural
networks. arXiv preprint arXiv:2303.01486, 2023.

Mahncke, H. W., Bronstone, A., and Merzenich, M. M.
Brain plasticity and functional losses in the aged: sci-
entific bases for a novel intervention. Progress in brain
research, 157:81–109, 2006.

Mannor, S. and Tamar, A. Towards deployable rl–what’s
broken with rl research and a potential fix. arXiv preprint
arXiv:2301.01320, 2023.

Mateos-Aparicio, P. and Rodríguez-Moreno, A. The im-
pact of studying brain plasticity. Frontiers in cellular
neuroscience, 13:66, 2019.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109–165. Elsevier, 1989.

McKinney, W. Python for data analysis: Data wrangling
with Pandas, NumPy, and IPython. " O’Reilly Media,
Inc.", 2012.

Mirzadeh, S. I., Chaudhry, A., Yin, D., Nguyen, T., Pascanu,
R., Gorur, D., and Farajtabar, M. Architecture matters
in continual learning. arXiv preprint arXiv:2202.00275,
2022.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=B1QRgziT-.

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=Qun8fv4qSby
https://openreview.net/forum?id=Qun8fv4qSby
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-

Deep Reinforcement Learning with Plasticity Injection

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937. PMLR, 2016.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Icml, 2010.

Nelson, C. A. Neural plasticity and human development.
Current directions in psychological science, 8(2):42–45,
1999.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 16828–16847. PMLR, 2022.

Oliphant, T. E. A guide to NumPy, volume 1. Trelgol
Publishing USA, 2006.

Oliphant, T. E. Python for scientific computing. Computing
in Science & Engineering, 9(3):10–20, 2007.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):
1345–1359, 2009.

Quan, J. and Ostrovski, G. DQN Zoo: Reference imple-
mentations of DQN-based agents, 2020. URL http:
//github.com/deepmind/dqn_zoo.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Schapire, R. E. The strength of weak learnability. Machine
learning, 5(2):197–227, 1990.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 2021.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=B1ckMDqlg.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
arXiv preprint arXiv:2302.12902, 2023.

Taïga, A. A., Fedus, W., Machado, M. C., Courville, A.,
and Bellemare, M. G. Benchmarking bonus-based ex-
ploration methods on the arcade learning environment.
arXiv preprint arXiv:1908.02388, 2019.

Team, A. A., Bauer, J., Baumli, K., Baveja, S., Behba-
hani, F., Bhoopchand, A., Bradley-Schmieg, N., Chang,
M., Clay, N., Collister, A., et al. Human-timescale
adaptation in an open-ended task space. arXiv preprint
arXiv:2301.07608, 2023.

Tieleman, T., Hinton, G., et al. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. The
numpy array: a structure for efficient numerical computa-
tion. Computing in science & engineering, 13(2):22–30,
2011.

Van Hasselt, H. Double q-learning. Advances in neural
information processing systems, 23, 2010.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Van Rossum, G. and Drake Jr, F. L. Python tutorial, volume
620. Centrum voor Wiskunde en Informatica Amsterdam,
1995.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

http://github.com/deepmind/dqn_zoo
http://github.com/deepmind/dqn_zoo
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

Deep Reinforcement Learning with Plasticity Injection

0

1000

2000

3000

4000

5000

6000

Ep
iso

de
 re

tu
rn

Alien

0

500

1000

1500

Amidar

0

1000

2000

3000

Assault

0

5000

10000

15000

Asterix

250

500

750

1000

1250

1500
Asteroids

0.0

0.2

0.4

0.6

0.8

1.0
1e6 Atlantis

0

200

400

600

800

1000

1200

Ep
iso

de
 re

tu
rn

Bank heist

0

10000

20000

30000

Battle zone

0

5000

10000

15000

Beam rider

500

1000

1500

2000

Berzerk

0

20

40

60

Bowling

50

0

50

100
Boxing

0

100

200

300

400

Ep
iso

de
 re

tu
rn

Breakout

0

1000

2000

3000

4000

Centipede

0

1000

2000

3000

4000

5000
Chopper command

0

25000

50000

75000

100000

125000
Crazy climber

0

5000

10000

15000

20000

25000

30000
Defender

0

20000

40000

60000

Demon attack

25

20

15

10

5

0

Ep
iso

de
 re

tu
rn

Double dunk

0

250

500

750

1000

1250

Enduro

100

75

50

25

0

25
Fishing derby

0

10

20

30

Freeway

0

500

1000

1500

2000
Frostbite

0

5000

10000

15000

Gopher

0

100

200

300

400

Ep
iso

de
 re

tu
rn

Gravitar

0

5000

10000

15000

20000

Hero

25

20

15

10

5

0

Ice hockey

0

500

1000

1500

Jamesbond

0

2500

5000

7500

10000

12500

15000
Kangaroo

0

2000

4000

6000

8000

Krull

0

10000

20000

30000

Ep
iso

de
 re

tu
rn

Kung fu master

0.06

0.04

0.02

0.00

0.02

0.04

0.06
Montezuma revenge

0

1000

2000

3000

Ms pacman

0

2000

4000

6000

8000

10000

12000
Name this game

0

5000

10000

15000

20000

25000

Phoenix

1500

1250

1000

750

500

250

0

Pitfall

20

10

0

10

20

Ep
iso

de
 re

tu
rn

Pong

750

500

250

0

250

500

750
Private eye

0

5000

10000

15000
Qbert

0

5000

10000

15000

Riverraid

0

10000

20000

30000

40000

50000
Road runner

0

20

40

60

Robotank

0

5000

10000

15000

20000

25000

Ep
iso

de
 re

tu
rn

Seaquest

30000

25000

20000

15000

10000
Skiing

0

500

1000

1500

Solaris

0

1000

2000

3000

4000

5000
Space invaders

0

20000

40000

60000

Star gunner

10

8

6

4

2

0
Surround

0 50 100 150 200
Environment frames (millions)

25

20

15

10

5

0

Ep
iso

de
 re

tu
rn

Tennis

0 50 100 150 200
Environment frames (millions)

0

2000

4000

6000

8000

Time pilot

0 50 100 150 200
Environment frames (millions)

0

50

100

150

200
Tutankham

0 50 100 150 200
Environment frames (millions)

0

5000

10000

15000

Up n down

0 50 100 150 200
Environment frames (millions)

0

25

50

75

100

125

150
Venture

0 50 100 150 200
Environment frames (millions)

0

100000

200000

300000

400000
Video pinball

0 50 100 150 200
Environment frames (millions)

0

2500

5000

7500

10000

Ep
iso

de
 re

tu
rn

Wizard of wor

0 50 100 150 200
Environment frames (millions)

0

10000

20000

Yars revenge

0 50 100 150 200
Environment frames (millions)

0

5000

10000

15000
Zaxxon

Baseline
Injection @ 25
Injection @ 50
Injection @ 100

Figure 9. Performance of the Double DQN with and without plasticity injection after 25M, 50M, and 100M frames on the full Atari 57
benchmark. The potential discontinuities in the plots such as in Road runner are caused by the evaluation each 1M frames, i.e. the
first moment the agent with injection contributes to the plot is after learning for 1M frames.

Deep Reinforcement Learning with Plasticity Injection

Injection
Effect

Environments

Consistent
Improvement

Alien, Asteroids, Breakout,
Chopper command, Enduro,
Frostbite, Gopher, Phoenix,
Space invaders, Surround,
Wizard of wor, Yars revenge
(12 total)

Minor
Improvement

Amidar, Asterix, Atlantis,
Bank heist, Beam rider,
Berzerk, Boxing, Defender,
Fishing derby, Jamesbond,
Krull, Ms pacman, Road runner,
Seaquest, Time pilot, Up n down,
Video pinball, Zaxxon (18 total)

Negligible Battle zone, Bowling,
Centipede, Crazy climber,
Double dunk, Freeway,
Gravitar, Hero, Ice hockey,
Kangaroo, Kung fu master,
Montezuma revenge,
Name this game, Pitfall, Pong,
Private eye, Qbert, Riverraid,
Skiing, Solaris, Star gunner,
Tennis, Tutankham, Venture (24
total)

Negative Assault, Demon attack, Robotank
(3 total)

Table 1. Summary of effects from applying plasticity injection to
Double DQN agent on all 57 Atari games.

A. Complete Learning Curves
Figure 9 presents the return plots over the course of Double
DQN training for 200M frames on the whole set of 57 Atari
games. We informally categorized environments into four
buckets upon visual inspection of effects from plasticity
injection in Table 1. The most notable negative example
is Demon attack, while on Assault and Robotank
the effect is negative but minor. In the rest of the 54 games,
plasticity injection either improves performance or has a neg-
ligible effect, possibly depending on the injection timestep.

B. Adaptive Criterion for Injection
As a step towards getting rid of the need to specify the in-
jection timestep, we also explored the option of having a
criterion for triggering the intervention. If the agent has
the initial weight magnitude ∥w0∥ (w denotes here both en-
coder and head weights), we inject plasticity after the weight
norm surpasses the 3∥w0∥ threshold. The IQM scores of
the agent with injection after 50M steps and with this sim-
ple heuristic coincide, although the frame when the agent
reaches the threshold differs per game significantly: for
some environments, it can be as small as 20M (such as
Enduro), for other environments, it can be beyond 200M

M
on

te
zu

m
a

re
ve

ng
e

Ve
nt

ur
e

Fr
ee

wa
y

So
la

ris
Te

nn
is

Gr
av

ita
r

Bo
wl

in
g

Pr
iv

at
e

ey
e

Po
ng

Ro
bo

ta
nk

Ja
m

es
bo

nd
Ba

ttl
e

zo
ne

Ice
 h

oc
ke

y
Ka

ng
ar

oo
Pi

tfa
ll

Do
ub

le
 d

un
k

Be
am

 ri
de

r
Be

rz
er

k
Za

xx
on

Ti
m

e
pi

lo
t

W
iza

rd
 o

f w
or

At
la

nt
is

Su
rro

un
d

Ku
ng

 fu
 m

as
te

r
Am

id
ar

Ph
oe

ni
x

He
ro

Ch
op

pe
r c

om
m

an
d

Fr
os

tb
ite

As
sa

ul
t

St
ar

 g
un

ne
r

Up
 n

 d
ow

n
Sp

ac
e

in
va

de
rs

De
m

on
 a

tta
ck

Ya
rs

 re
ve

ng
e

Se
aq

ue
st

As
te

rix
Ri

ve
rra

id
Br

ea
ko

ut
As

te
ro

id
s

Vi
de

o
pi

nb
al

l
Al

ie
n

En
du

ro
Ba

nk
 h

ei
st

Cr
az

y
cli

m
be

r
Fi

sh
in

g
de

rb
y

De
fe

nd
er

M
s p

ac
m

an
Sk

iin
g

Bo
xi

ng
Na

m
e

th
is

ga
m

e
Tu

ta
nk

ha
m

Ro
ad

 ru
nn

er
Go

ph
er

Qb
er

t
Ce

nt
ip

ed
e

Kr
ul

l0

2

4

6

8

10

12

14

Figure 10. Per-game ratios of weight magnitude after learning for
200M frames and before experiencing any data. The ratios can
vary up to 10 times between games.

(such as Robotank) implying that the agent will learn
without injection. Figure 10 gives an overview of how much
the weight norm grows over the course of training. We view
devising an even more powerful criterion as a promising
avenue for future work.

C. On L2 Regularization.
The observations about the norm increase made us try
adding L2 regularization to the Double DQN agent. A grid
search over [10−7, 3 · 10−7, 10−6, 3 · 10−6, 10−5, 3 · 10−5]
coefficients resulted in the best coefficient of 3 · 10−6 but
leaving the aggregate score mostly the same; higher val-
ues resulted in significant performance deterioration. The
result gives evidence that controlling the weight norm it-
self does not address plasticity loss but allows multiple
interpretations. We speculate that L2 might be prematurely
encouraging weights to have zero magnitude before obtain-
ing high rewards (the effect would be especially profound
in sparse reward settings) or that L2 might have undesir-
able side effects of smoothing approximate value functions
while the true value functions might be non-smooth (Dong
et al., 2020). We are puzzled about the inefficacy of L2 in
our experiments and mixed results from applying it in RL
in past works: the majority of deep RL algorithms do not
use it (Mnih et al., 2015; Schulman et al., 2015; Lillicrap
et al., 2015; Mnih et al., 2016; Bellemare et al., 2017), al-
though not without exceptions (Schrittwieser et al., 2021).
Some works have explicitly reported negative effects from
applying L2 in deep RL (Nikishin et al., 2022), while others
highlighted its theoretical benefits (Farahmand et al., 2008);
more research in needed to understand its effect in RL.

D. Details about the Baselines
In Section 5.3, we considered three alternative ways of dy-
namically during training: resets, Shrink-and-Perturb (SnP),
and naive width scaling. Resets re-initialize parameters of
the last layers (using our notation, it corresponds to replac-
ing hθ(·) with hθ′

1
(·))) for given timesteps and rely on a

replay buffer to transfer knowledge before and after the

Deep Reinforcement Learning with Plasticity Injection

intervention. Resets require the number of last layers speci-
fication and the application timestep. We ran a sweep over
[1, 2] layers and two choices of timesteps: either once at
50M frames or trice at 50M, 100M, and 150M. Afterwards,
we reported the results that attain the highest IQM score.

Shrink-and-Perturb modify all network weights w as w ←
λw + σϵ at the given application timesteps, where ϵ is a
random vector with the same dimensionality as w sampled
from the standard Gaussian distribution. SnP has three
hyperparameters: the shrink coefficient λ, the noise scale σ,
and the application timesteps. We performed a grid search
over λ in [0.1, 0.3, 1], σ in [0.01, 0.1, 1], and the same
choices of timesteps as for resets.

The best hyperparameters ended up being the ones that
somewhat minimized the effect of both resets (1 layer, 1
application time) and SnP (λ = 1, σ = 0.01, 3 applica-
tion times); other hyperparameters resulted in even worse
performance. The paper on resets (Nikishin et al., 2022)
demonstrates results on the Atari 100k benchmark (Kaiser
et al., 2019) that focuses on a data-efficient regime with
105 frames and contains a subset of 26 / 57 games. In this
setting, the replay buffer has all experiences encountered
during the agent’s lifetime; this data can be sufficient for
recovering the performance after a reset. In the Atari 200M
setting though, the replay buffer has only 4M frames which
might not be enough to recover fast after a reset. We spec-
ulate that similar reasoning applies to SnP since it can be
seen as a soft version of resets (D’Oro et al., 2023).

For the width scaling method, we modify the last two layers
by doubling their width. Suppose the weight matrices are
W1 ∈ RN×K and W2 ∈ RK×|A|, where |A| is the action
space dimensionality. We create two new matrices W ′

1 ∈
RN×2K and W ′

2 ∈ R2K×|A| and fill the first K columns
of W ′

1 with values of W1 and the first K rows of W ′
2 with

values of W2. The remaining entries are randomly set using
the standard initializer. We perform a modification to the
bias term b′2 ∈ R2K by copying values from b2 ∈ RK and
setting the rest to zero. The width is scaled once at 50M.

Such a naive approach increases plasticity but its inabil-
ity to improve over the standard Double DQN might be
attributed to adverse effects on the agent’s predictions after
the intervention without output correction.

E. Computational Efficiency in Atari 200M
This appendix provides an example of how much computa-
tions can be saved with the dynamic growth of the network.
The Double DQN agent from our codebase based on the
open-source codebase (Quan & Ostrovski, 2020) takes about
6 days to learn in an Atari game for 200M frames using an
A100 GPU. Figure 6 (right) demonstrates that an agent with
plasticity injection after 50M frames does not compromise

Figure 11. A demonstration of the Assault game evolution when
a high-performing agent found on the Internet reaches a score
of around 2800: before, the agent had to shoot only upwards;
afterwards, it has to shoot up, left, and right. We interpret that the
failure to improve upon the 2800 score is explained by exploration.

the aggregate performance compared to an agent with extra
plasticity from the start. Hence the savings are occurring
during the first 1.5 GPU-days. In our experiments, an agent
with plasticity injection has about 15% lower training and
evaluation speed, leading to savings of about 5.5 hours dur-
ing the first 50M frames. Seemingly small in comparison
to 6 days, training an agent in 57 games with 3 seeds takes
171 jobs, in total yielding savings of about 38 GPU-days.
Such a difference can be non-trivial when computational
resources are limited.

We emphasize that calculations here are an example; the
GPU utilization in our experiments was around 10–20%, so
it was not the biggest bottleneck. The amount of savings
would depend on the implementation, hardware, an architec-
ture, and the injection timestep, possibly resulting in larger
computational efficiency in other domains.

F. The Assault Game Analysis
We searched for a high-scoring behavior demonstration in
the Assault environment on YouTube5. The screenshots
in Figure 11 demonstrate the change of the environment
around the score of 2800: before, the enemies were appear-
ing only above the controlled starship, while afterwards,
they start to appear from the left and from the right. Before
the transition, the algorithm learned that actions “shoot left”
and “shoot right” were irrelevant, while afterwards, it has
to start using these actions, suggesting that the performance
plateau can be attributed to exploration challenges.

We highlight that it was the suggested protocol for diagnosis
that led to the insight: after seeing that the post-injection
agent has the same performance plateau as the baseline, we
decided to investigate the behavior in the game and realized
that previously irrelevant actions became critical.

5https://youtu.be/HwWJrb2PQQ0

https://youtu.be/HwWJrb2PQQ0

