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ABSTRACT

Constructing model-agnostic group equivariant networks, such as equitune (Basu
et al., 2023b) and its generalizations (Kim et al., 2023), can be computationally
expensive for large product groups. We address this by providing efficient model-
agnostic equivariant designs for two related problems: one where the network has
multiple inputs each with potentially different groups acting on them, and another
where there is a single input but the group acting on it is a large product group.
For the first design, we initially consider a linear model and characterize the en-
tire equivariant space that satisfies this constraint. This characterization gives rise
to a novel fusion layer between different channels that satisfies an invariance-
symmetry (IS) constraint, which we call an IS layer. We then extend this design
beyond linear models, similar to equitune, consisting of equivariant and IS layers.
We also show that the IS layer is a universal approximator of invariant-symmetric
functions. Inspired by the first design, we use the notion of the IS property to de-
sign a second efficient model-agnostic equivariant design for large product groups
acting on a single input. For the first design, we provide experiments on multi-
image classification where each view is transformed independently with transfor-
mations such as rotations. We find equivariant models are robust to such transfor-
mations and perform competitively otherwise. For the second design, we consider
three applications: language compositionality on the SCAN dataset to product
groups; fairness in natural language generation from GPT-2 to address intersec-
tionality; and robust zero-shot image classification with CLIP. Overall, our meth-
ods are simple and general, competitive with equitune and its variants, while also
being computationally more efficient.

1 INTRODUCTION

Equivariance to group transformations is crucial for data-efficient and robust training of large neural
networks. Traditional architectures such as convolutional neural networks (CNNs) (LeCun et al.,
1998), Alphafold (Jumper et al., 2021), and graph neural networks (Gilmer et al., 2017) use group
equivariance for efficient design. Several works have generalized the design of equivariant networks
to general discrete (Cohen & Welling, 2016) and continuous groups (Finzi et al., 2021b). Recently,
Puny et al. (2021) introduced frame averaging, which makes a non-equivariant model equivariant by
averaging over an appropriate frame or an equivariant set. One advantage of this method is that it can
be used to finetune pretrained models, leveraging the benefits of pretrained models and equivariance
simultaneously (Basu et al., 2023b;a; Kim et al., 2023).

Methods based on frame-averaging have high computational complexity when the frames are large.
And, in general, it is not trivial to find small frames. Hence, several frame averaging-based methods,
such as equitune (Basu et al., 2023b) and its generalizations (Basu et al., 2023a; Kim et al., 2023),
simply use the entire group as their frames. As such, these methods attain perfect equivariance at
high computational cost for large groups. Similar computational issues arise when a network has
multiple inputs with each input having an independent group acting on it. Here, we design efficient
methods that can work with large groups or multiple inputs with independent groups. Our methods
are applicable for both training from scratch and for equivariant finetuning of pretrained models.

We first characterize the entire space of linear equivariant functions with multiple inputs, where
all inputs are acted upon by independent groups. The resulting design has an interesting invariant-
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(a) (b)

Figure 1: (a) shows a multi input group equivariant network defined in §. 3.3, where groups G1, G2

act on the inputs X1, X2. Here MEq
i,Gi

denotes a layer equivariant to Gi and M IS
ij,Gi,Gj

denote a layer
invariant-symmetric to groups Gi, Gj . (b) denotes a model equivariant to G1 ⋊G2 defined in §. 3.4
but with only a computational complexity of O(|G1| + |G2|). Here XInv

G denotes that the input
features are invariant G and Y Sym

G denotes that the output features are symmetric with respect to G.

symmetric (IS) fusion layer between channels. We find that the obtained design for linear models
can be easily extended to non-linear models. We also show this IS layer has its own universality
properties. The universality result not only shows that we are extracting the most out of the design
but, as we will see, also helps us extend the formulation of the IS layer beyond the linear framework.

Inspired by the IS layer, we propose an efficient method to construct a group-equivariant network for
large discrete groups. For a product group of the form (G1 ⋊ · · · (GN−1 ⋊GN ) · · · ), the computa-
tional complexity of equituning is (|G1|×· · ·×|GN |), whereas our method provides the equivariance
for the same group in (|G1|+ · · ·+ |GN |) compute. The advantage comes at a loss of expressivity
of the constructed network, but we show empirically that our network still leverages the benefits of
equivariance and outperforms non-equivariant models, while gaining computational benefit.

For our first equivariant design with multiple inputs and groups, we apply it on multi-input image
classification task. Then for our second design with single input and a large product group, we apply
it on diverse applications, namely, compositional generalization in language, intersectional fairness
in natural language generation, and robust image classification using CLIP. Our model designs, i.e.,
linear as well as their extension to model-agnostic designs, are given in §3. Details of applications
they are used in are given in §4. Finally, experiments are provided in §5.

2 BACKGROUND AND RELATED WORKS

Basics on groups and group actions are provided in Appendix A.

Group equivariance and invariance-symmetry A function f : X 7→ Y is G-equivariant for a
group G if f(gx) = gf(x) for all g ∈ G, x ∈ X , where the action of g ∈ G on x is written as gx
and that on f(x) is written as gf(x) for all g ∈ G, x ∈ X . We call a function f : X 7→ Y (G1, G2)-
invariant-symmetric in that order of groups, if f(g1x) = f(x) for all x ∈ X and g1 ∈ G1, and
f(x) = g2f(x) for all x ∈ X , g2 ∈ G2.

Model-agnostic group equivariant networks There has been a recent surge of interest in de-
signing model-agnostic group equivariant network designs, such as equitune (Basu et al., 2023b),
probabilistic symmetrization (Kim et al., 2023), λ-equitune (Basu et al., 2023a), and canonicaliza-
tion (Kaba et al., 2023). These designs are based on the frame-averaging method (Puny et al., 2021),
where a (potentially pretrained) non-equivariant model is averaged over an equivariant set, called a
frame. The computational costs of these methods grow proportionally with the size of the frame.
Finding small frames for general groups and tasks is not trivial, hence, several previous works such
as equitune, probabilistic symmetrization, and λ-equitune simply use the entire group as the frame.
These methods become inefficient for large groups. Canonicalization uses a frame of size exactly
one but assumes a small auxiliary equivariant network is given, which might itself require frame-
averaging. Canonicalization also assumes a known map from the outputs of this auxiliary network
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to group elements, which is non-trivial for general groups. Moreover, canonicalization does not
provide good zero-shot performance as do some special cases of λ-equitune. Thus, it is crucial to
design efficient frame-averaging techniques for large groups.

Given a pretrained model M : X 7→ Y and a group G, equitune produces the equivariant model
MG as MG = 1

|G| (
∑

g∈G g−1M(gx)), which makes |G| passes through the model M . Thus,
as the size of the group grows, so does the complexity of several of these frame-averaging-based
methods. In this work, we consider product groups of the form (G1 ⋊ · · · (GN−1 ⋊ GN ) · · · ) and
provide efficient model-agnostic equivariant network designs for two related problems, as described
in §3.1. Our construction has complexity proportional to |G1| + |G2| + · · · + |GN | compared to
|G1| × |G2| × · · · × |GN | for equitune. We empirically confirm our methods are competitive with
equitune and related methods while being computationally inexpensive.

The main contribution of our work is to provide an efficient model agnostic equivariant method that
works with pretrained models. The efficiency arises by dividing large groups into small product
groups and providing a method to symmetrize over the smaller groups that gives equivariance with
respect to the larger group. Since this is an emerging area of research in the equivariance literature,
there are very few works in this area. Compared to Basu et al. (2023b) which uses a simple averaging
over the entire group to obtain symmetrization, we simply perform averaging over subgroups when
the group can be decomposed as products. Kim et al. (2023); Mondal et al. (2023); Basu et al. (2022)
use weighted averaging over group elements to obtain symmetrization, which is complementary to
our work and can be used on top of our work for future work.

Additional related works Several techniques exist to design group-equivariant networks such as
parameter sharing and convolutions (Cohen & Welling, 2016; Ravanbakhsh et al., 2017; Kondor &
Trivedi, 2018), computing the basis of equivariant space (Cohen & Welling, 2017; Weiler & Cesa,
2019; Finzi et al., 2021b; Yang et al., 2023; Fuchs et al., 2020; Thomas et al., 2018; De Haan et al.,
2020; Basu et al., 2022), representation-based methods (Deng et al., 2021; Satorras et al., 2021),
and regularization-based methods (Moskalev et al., 2023; Finzi et al., 2021a; Patel & Dolz, 2022;
Arjovsky et al., 2019; Choraria et al., 2023). These methods typically rely on training from scratch,
whereas our method also works with pretrained models.

Atzmon et al. (2022); Duval et al. (2023) use frame-averaging for shape learning and materials
modeling, respectively. These works focus on designing frames for specific tasks, unlike ours which
focuses on a general efficient design. Maile et al. (2023) provide mechanisms to construct approxi-
mate equivariant networks to multiple groups, whereas our work focuses on perfect equivariance.

3 METHOD

3.1 PROBLEM FORMULATION AND PROOF OF EQUIVARIANCE

Multiple inputs Let X1, . . . , XN and Y1, . . . , YN be N inputs and outputs, respectively, to a neural
network. Let Xi ∈ Rdi and Yi ∈ Rki . Let G1, . . . , GN be N groups acting on X1, . . . , XN

respectively. That is, Gi acts on Xi independent of the other group actions. We want to construct a
model M(G1,...,GN ) such that Yi transforms equivariantly when Gi acts on Xi. A naive construction
to attain such an equivariant model would be to construct N separate equivariant models equivariant
to the groups GN , . . . , GN . But such a model would not be very expressive since information does
not flow between the ith and jth input channels. We construct efficient and expressive equivariant
networks for this problem.

Large product groups Now, we consider a single input X and a large product group G that can be
written as G = (G1⋊ · · · (GN−1⋊GN ) · · · ), where ⋊ denotes the semi-direct product. We assume
that G transforms X as g1g2 . . . gNX for gi ∈ Gi, i.e., the subgroups gi act in the same order. Fur-
ther, note that we are assuming left group action of G on X . For constructing G-equivariant models,
we assume the groups act commutatively on the output, whereas for constructing G-invariant models
we do not need commutativity. As we will see in §4, most experiments covered in previous works
such as Basu et al. (2023b;a) are covered by these basic assumptions. Naively using equituning on a
pretrained model M using G can be expensive. Hence, we aim to design efficient group equivariant
models for large product groups.
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3.2 CHARACTERIZATION OF THE LINEAR EQUIVARIANT SPACE

We first start with the problem of group equivariance for multiple inputs X1, . . . , XN being acted
upon by groups G1, . . . , GN , respectively. Given this setup, we first want to characterize the entire
space of linear equivariant layers. This simple linear layer characterization can help build equivariant
deep neural networks by stacking a number of these layers along with pointwise nonlinearities (with
discrete groups) as done by Cohen & Welling (2016). Further, this characterization will give us an
intuition on how to construct model agnostic equivariant layers similar to equituning (Basu et al.,
2023b) for the concerned group action. We take N = 2 for simplicity, but the obtained results can
be easily extended to general N as discussed in Appendix C.1.

Let LEq
G be a G-equivariant linear matrix, i.e. LEq

G (aX) = aLEq
G (X) for all a ∈ G. And let

LIS
G1,G2

(x) be a (G1, G2)-invariant-symmetric linear matrix, i.e., LIS
G1,G2

(ax) = LIS
G1,G2

(x) =

bLIS
G1,G2

(ax) for all a ∈ G1, b ∈ G2. Then, we define multi-group equivariant linear layer as

LG1,G2([X1, X2]) = [LEq
G1

(X1) + LIS
G2,G1

(X2), L
Eq
G2

(X2) + LIS
G1,G2

(X1)], (1)

where [, ] denotes concatenation. In Thm. 1, we prove that LG1,G2
([X1, X2]) is equivariant to

(G1, G2) applied to X1 and X2, respectively. More precisely, for any a ∈ G1, b ∈ G2, we show that

LG1,G2
([aX1, bX2]) = [a(LEq

G1
(X1) + LIS

G2,G1
(bX2)), b(L

Eq
G2

(X2) + LIS
G1,G2

(aX1))] (2)

Theorem 1. The multi-group equivariant layer LG1,G2
([X1, X2]) defined in equation 1 is equivari-

ant to (G1, G2) applied to (X1, X2), respectively.

All proofs are provided in Appendix B. Now we show that LG1,G2
([X1, X2]) characterizes the entire

linear equivariant space under the given equivariant constraint. First, recall from Maron et al. (2020)
that the dimension of linear equivariant space for a discrete group G is given by

E(G) =
1

|G|
∑
g∈G

Tr(P (g))2, (3)

where G is a subgroup of a permutation group and let P (g) is the permutation group element corre-
sponding to g ∈ G and Tr(·) denotes the trace of the P (g) matrix. Here, for simplicity, it is assumed
that the linear space is represented by a matrix of same input and output dimensions. Hence P (g)
has the same dimensions as the matrix. Now we compute the dimension of the linear invariant-
symmetric space for groups G1, G2 in Lem. 1, where G1 acts on the input and G2 acts on the
output. The proof closely follows the method for computing the dimension of the equivariant space
in Maron et al. (2020).

Lemma 1. The dimension of a linear invariant-symmetric space corresponding to groups (G1, G2)
is given by

IS(G1, G2) =
1

|G1||G2|
∑

g1∈G1

∑
g2∈G2

Tr(P (g1))× Tr(P (g2)). (4)

Now, in Thm. 2, we show that LG1,G2([X1, X2]) in equation 1 characterizes the entire space of
linear weight matrices that satisfies the equivariant constraint in equation 2.

Theorem 2. The linear equivariant matrix LG1,G2
([X1, X2]) in equation 1 characterizes the entire

space of linear weight matrices that satisfies the equivariant constraint in equation 2.

Thus, in Thm. 1, we first show that the construction in equation 1 is equivariant to the product group
(G1, G2). Then, in Thm. 2, we show that the equation in equation 1 characterizes the entire linear
space of equivariant networks for the given input and output dimensions. It is easy to construct the
equivariant and invariant-symmetric layers given some weight matrix L. A linear layer, equivariant
to G can be obtained as LEq

G (X) = 1
|G|

∑
g∈G g−1L(gX), the same as equituning (Basu et al.,

2023b). Similarly, a linear invariant-symmetric layer with respect to (G1, G2) can be obtained as
LIS
G1,G2

(X) = 1
|G1||G2|

∑
g2∈G2

g2(
∑

g1∈G1
L(g1X)).
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3.3 BEYOND LINEAR EQUIVARIANT SPACE

Now we show that the linear expression in equation 1 can be easily extended to gen-
eral non-linear models. That is, given models M1,M2,M12,M21, we can construct
MG1,G2([X1, X2]) = [MEq

1,G1
(X1) +M IS

21,G2,G1
(X2),M

Eq
G2

(2, X2) +M IS
12,G1,G2

(X1)], that satis-
fies the equivariant constraint in equation 2.

Suppose the output is [Y1, Y2], then MEq
i,Gi

(Xi) goes from Xi to Yi, whereas
the cross-layer M IS

ij,Gi,Gj
(Xi) goes from Xi to Yj . It is easy to construct as

MEq
i,Gi

(Xi) =
1

|Gi|
∑

gi∈Gi
g−1
i Mi(giXi) since we know from previous works such as equi-

tuning (Basu et al., 2023b) and frame averaging (Puny et al., 2021) that this averaging leads to a
universal approximator of equivariant functions, hence is an expressive equivariant design. The
interesting design is of M IS

ij,Gi,Gj
(Xi). We define the cross-layer M IS

ij,Gi,Gj
(Xi) as

M IS
ij,Gi,Gj

(Xi) =
1

|Gi||Gj |
∑

gj∈Gj

gj(
∑

gi∈Gi

M(giXi)), (5)

where M is the pre-trained model. One can verify M IS
ij,Gi,Gj

(Xi) is invariant-symmetric with re-
spect to (Gi, Gj). The design of the model MG1,G2

([X1, X2]) is illustrated in Fig. 1a.

Universality Thm. 3 shows that M IS
ij,Gi,Gj

(Xi) is a universal approximator of invariant-symmetric
functions. Note that there are alternate choices of designs for this layer that are equivariant but
do not provide the same universality guarantees, hence, are not as expressive. One such design
is M̂ IS

ij,Gi,Gj
(Xi) =

1
|Gi||Gj |

∑
gj∈Gj

gjM(
∑

gi∈Gi
giXi), which is equivalent to M IS

ij,Gi,Gj
(Xi) if

M is a linear layer. Hence, going beyond linear layers requires additional design choices. Hence,
Thm. 3 confirms that our choice of the invariant-symmetric layer is expressive.

We use the definition of universality used by Yarotsky (2022) as stated in Def. 1.

Definition 1. A function M : X 7→ Y is a universal approximator of a continuous function f :
X 7→ Y if for any compact set K ∈ X , ϵ > 0, there exists a choice of parameters of M such that
∥f(x)−M(x)∥ < ϵ for all x ∈ K.

Theorem 3. Let f IS
G1,G2

: X 7→ Y be any continuous function that is invariant-symmetric to
(G1, G2). Let M : X 7→ Y be a universal approximator of fIS . Here X ,Y are such that if
x ∈ X , y ∈ Y , then g1x ∈ X , g2y ∈ Y for all g1, g2 ∈ G1, G2, so that the invariant-symmetric
property is well-defined. Then, we claim that MIS

G1,G2
is a universal approximator of f IS

G1,G2
.

Computational complexity Assuming M is a large model, the bottleneck of computation of
MIS

(G1,G2)
is proportional to the number of forwarded passes done through M. Thus, the compu-

tational complexity of MIS
(G1,G2)

is O(|G1| + |G2|). This is in comparison to equituning that has
O(|G1| × |G2|) computational complexity for the same task.

3.4 EQUIVARIANT NETWORK FOR LARGE DISCRETE PRODUCT GROUPS

Given a product group of the form G = G1 ⋊G2, we design the G-equivariant model MEq
G1⋊G2

as

MEq
G1⋊G2

(X) = [(MEq
G2

(XInv
G1

))
Sym

G1
, (MEq

G1
(XInv

G2
))

Sym

G2
], (6)

where [,] represents the concatenation of two elements, MEq
Gi

is any model equivariant to Gi, e.g.
equizero (Basu et al., 2023a) applied to some pretrained model M for zeroshot equivariant perfor-
mance. Note that [,] can be replaced by other operations such as summation that preserves the equiv-
ariance of the individual elements being summed. For the rest of the work, we restrict ourselves to
summation even though the general formulation is more general. The (·)InvGi

and (·)Sym
Gi

operations
are inspired from the invariant-symmetric layers obtained in §3.2. Here, XInv

Gi
denotes Gi-invariant

feature of X , i.e., (g1g2X0)
Inv
G2

= g1X0, and (g1g2X0)
Inv
G1

= g2X0 for all g1 ∈ G1, g2 ∈ G2, where
X0 is the canonical representation of X with respect to G. (Y )Sym

Gi
denotes the symmetrization of
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Y with respect to Gi, i.e. (Y )Sym
Gi

= gi(Y )Sym
Gi

, for all gi ∈ Gi. E.g., (Y )Sym
Gi

= 1
|Gi|

∑
gi∈Gi

giY

is a valid symmetrization of Y .

Intuitively, MEq
G1⋊G2

works as follows: the first term (MEq
G2

(XInv
G1

))
Sym

G1
captures the G1-invariant

and G2-equivariant features of X and the second term captures the G2-invariant and G1-equivariant
features of X . Combining the two features gives an output that is equivariant to both G1 and G2.
Note that combining these two features requires the commutativity assumption in §3.1. Discussion
on generalizing this design to the product of N groups is given in Appendix C.2. We now prove that
MEq

G1⋊G2
is equivariant to G1 ⋊G2.

Theorem 4. MEq
G1⋊G2

(X) defined in equation 6 is equivariant to G1 ⋊ G2. That is,
MEq

G1⋊G2
(g1g2X) = g1g2M

Eq
G1⋊G2

(X).

Computational complexity Note that the computational complexity of equation 6 is O(|G1|+|G2|)
when the bottleneck is the forward pass through M, e.g., when M is a large pretrained model.

4 APPLICATIONS

We first look at multi-image classification in §4.1 as an application of the first design. The rest of the
applications focus on the second design, where the goal is to design equivariant networks for large
product groups on a single input from pretrained models. Please note that the semi-direct product
between the groups is equivalent to direct product for the experiments based on language generation
and compositional generalization because the groups are acting on disjoint sets.

4.1 MULTI-IMAGE CLASSIFICATION

Here we consider the multi-image classification problem, where the input consists of multiple im-
ages and the output is a label, which is invariant to certain transformations, such as rotations, made
to the input images. We perform experiments using two datasets: Caltech101 (Li et al., 2022) and
15Scene (Fei-Fei & Perona, 2005).

We construct our equivariant CNN using the first design in §3.3, which we call multi-GCNN, and
compare its performance to a non-equivariant CNN. Multi-GCNN first passes each image in the in-
put through equivariant convolution followed by densely connected blocks constructed using group
averaging like in equitune. Additionally, features from different blocks are fused via the invariant
symmetric channels while maintaining necessary equivariance properties. Finally, invariant outputs
are taken in the final layer.

4.2 COMPOSITIONAL GENERALIZATION IN LANGUAGES

Compositionality in natural language processing (Dankers et al., 2022) is often thought to aid lin-
guistic generalization (Baroni, 2020). Language models, unlike humans, are poor at compositional
generalization, as demonstrated by several datasets such as SCAN (Lake & Baroni, 2018). SCAN is
a command-to-action translation dataset that tests compositional generalization in language models.
Previous works (Gordon et al., 2020; Basu et al., 2023b;a) have considered two splits Add Jump and
Around Right that can be solved using group equivariance. But each of these splits only required
groups of size two. Hence, we extend the SCAN dataset using the context-free grammar (CFG)
of the dataset. We add production rules for up and down taken as an additional dimension to the
original dataset. We refer to the extended dataset as SCAN-II, which has splits that require slightly
larger groups of sizes up to eight to solve the compositional generalization task. More background
on the original SCAN dataset, extended version SCAN-II, and approaches to solve it are discussed
in Appendix D.1.

4.3 INTERSECTIONAL FAIRNESS IN NATURAL LANGUAGE GENERATION

We consider the problem of inherent bias present in natural language generation (NLG), specifically,
for GPT-2 Radford et al. (2019). We consider the framework of Sheng et al. (2019) to test biases
present in language models. We aim to design one single model that reduces social biases amongst
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each pair of the demographics [“man”, “woman”], [“Black”, “White”], and [“straight”, “gay”] and
their intersections. This is important since even though we reduce bias amongst two pairs of de-
mographics such as [“man”, “woman”] and [“Black”, “White”], it does not guarantee fairness for
demographics at the intersection such as “Black woman”. This is the intersectionality problem of
fairness (Ovalle et al., 2023; Wang et al., 2022) that arises since numerous social dimensions form
identity (Akerlof & Kranton, 2010).

Group-theoretic fairness for the intersections can be guaranteed by extending the framework of
Basu et al. (2023b) using products of groups. This extends the solution to fairness by Basu et al.
(2023b) from using separate groups to attain fairness for each pair of demographics to using one
single product group that addresses the intersectionality problem in addition to providing fairness to
individual pairs of demographics. Using this product group with multi-equitune gives a complexity
proportional to the sum of group sizes rather than their products, making our method very scalable.
For designing our equivariant models, we use the same group actions as Basu et al. (2023b), provided
in Appendix D.2 for completeness.

Similar to Basu et al. (2023b), we evaluate our method using the regard classifier of Sheng et al.
(2019). A regard classifier is similar to a sentiment classifier but designed specifically for fair-
ness studies by finetuning BERT (Kenton & Toutanova, 2019) on a human-curated fairness dataset.
Sheng et al. (2019) provide two different sets of five contexts to generate text, called the respect
task and occupation task. The respect context is concerned with the respect of the demographic in
general, e.g., it has context such as “The X was known for”, where X is replaced by the name of the
demographic. Similarly, the occupation context is concerned with the occupation corresponding to
these demographics.

4.4 ROBUST IMAGE CLASSIFICATION USING CLIP

Here we perform robust image classification using pretrained CLIP (Radford et al., 2021) models for
90◦ rotations and flips. Previous work of Basu et al. (2023a) design separate robust models for these
transformations. Here, we provide a single model that is robust to both using our multi-group design
from §3.4 applied to both equitune and equizero. We consider the Imagenet-V2 (Recht et al., 2019)
and CIFAR100 (Krizhevsky et al.) image classification datasets. The application of our method
from §3.4 to CLIP is pretty straightforward and is described in Appendix D.3.

5 EXPERIMENTS AND RESULTS

5.1 MULTI-IMAGE CLASSIFICATION

Experimental setting We use the Caltech-101 and 15-Scene datasets. For a multi-input network
with N inputs, we partition the train and test datasets for each label in tuples of N . We add random
90◦ rotations to the test images, and for training, we report results both with and without the trans-
formations. This tests the efficiency gained from equivariance and the robustness of models, similar
to Basu et al. (2023b). For each dataset, we report results on multi-input image classification with
N inputs, where N = {2, 3, 4}. We call the multi-input equivariant CNN based on the design from
§3.3 as multi-GCNNs. Further details on the model design are given in Appendix E.1. We train each
model for 100 epochs with a learning rate of 0.01, a batch size of 64.

Results and observations Tab. 1 and 6 show the test accuracies and Caltech-101 and 15Scene
datasets, respectively. Clearly, multi-GCNN outperforms CNN across both datasets as well as the
number of inputs used. Moreover, we find that the models using the invariant symmetric layer
described in §3.3 generally outperform the ones without. This illustrates the benefits of early fusion
using the invariant symmetric layers.

5.2 COMPOSITIONAL GENERALIZATION IN LANGUAGE

Experimental setting We work on the SCAN-II dataset where we have one train dataset and three
different test dataset splits. The train dataset is such that each of the test splits requires equivariance
to different product groups. The product groups are made of three smaller each of size two, and
the largest product group considered is of size eight. Hence, performance on these splits shows
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Table 1: Test accuracies for multi-image classification on the Caltech-101 dataset. N denotes the
number of images present as input. Train augmentations corresponding to each of the N inputs are
shown as an ordered sequence. Here R means random 90◦ rotations and I means no transformation.
Fusion denotes the use of invariant-symmetric layers.

Model CNN Multi-GCNN
Fusion × ✓ × ✓
Dataset N Train Aug.

Caltech101

2 II 0.417 0.447 0.656 0.688
RR 0.527 0.56 0.649 0.695

3 III 0.465 0.489 0.705 0.736
RRR 0.593 0.632 0.72 0.743

4 IIII 0.502 0.522 0.72 0.74
RRRR 0.63 0.672 0.698 0.741

(a) (b) (c)

Figure 2: Multi-Equituning for SCAN for (a) LSTM (b) GRU (c) RNN Models. Models were fine-
tuned for 10K iterations with relevant groups for each task. Comparisons are done with pretrained
and equi-tuned models. Results are over three random seeds.

benefits from equivariance to different product groups. Details of the dataset construction are given
in Appendix D.1. We consider the same architectures as Basu et al. (2023b;a), i.e., LSTMs, GRUs,
and RNNs, each with a single layer with 64 hidden units. Each model was pretrained on the train
set for 200k iterations using Adam optimizer (Kingma & Ba, 2015) with a learning rate of 10−4

and teacher-forcing ration 0.5 (Williams & Zipser, 1989). We test the non-equivariant pretrained
models, along with equituned and multi-equituned models, where equitune and multi-equitune use
further 10k iterations of training on the train set. For both equitune and multi-equitune, we use the
largest product group of size eight for construction.

Results and observations Fig. 2 shows the results of pretrained models, and finetuning results of
equitune and multi-equitune on the various test splits. We find that pretrained models fail miser-
ably on the test sets even with excellent performance on the train set, confirming that compositional
generalization is not trivial to achieve for these models. We note that multi-equitune performs com-
petitively to equitune and clearly outperforms non-equivariant models.

5.3 INTERSECTIONAL FAIRNESS IN NLG

Experimental setting We closely follow the experimental setup of Basu et al. (2023b) and Sheng
et al. (2019). There are two tasks provided by Sheng et al. (2019): respect task and occupation
task. Each task consists of five contexts shown in Tab. 5. For each context and each model, such as
GPT-2, and GPT-2 with equitune (EquiGPT2) or multi-equitune (MultiEquiGPT2), we generate 100
sentences. We use both equitune and multi-equitune with the product group corresponding to the
product of the demographics [“man”, “woman”], [“Black”, “White”], and [“straight”, “gay”]. Here,
we focus on debiasing for all the demographic pairs with one single model each for equitune and
multi-equitune. Quite directly, it also addresses the problem of intersectionality. These sentences
are classified as positive, negative, neutral, or other by the regard classifier of Sheng et al. (2019).

8
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(a) (b) (c)

Figure 3: The plots (a), (b), and (c) show the distribution of regard scores for the respect task for the
set of demographic groups gender, race, and an intersection of gender, race, and sexual orientation
respectively. For GPT2 we observe clear disparity in regard scores amongst different demographic
groups. Each bar in the plots correspond to 500 generated samples. Equitune and Multi-Equitune
reduces the disparity in the regard scores.

Table 2: Perplexity Scores for GPT2, EquiGPT2, and MultiEquiGPT2. Equi- and MultiEqui-GPT2
show negligible performance drops on Wikitext-2 and Wikitext-103 test sets compared to GPT2

Dataset GPT2 EquiGPT2 MultiEquiGPT2

Wikitext-103 28.23 29.29 29.56
Wikitext-2 23.86 24.64 24.88

Results and observations Fig. 3 and 5 show some results corresponding to the respect task and
occupation task, respectively, for various demographics and their intersections. The rest of the
plots are provided in Fig. 6, 7, and 8. We find that EquiGPT2 and MultiEquiGPT2 both reduce
the bias present across the various demographics and their demographics with one single product
group of all the demographic pairs. In Tab. 7, we show the benefits in memory obtained from using
MultiEquiGPt2 compared to EquiGPT2, which is close to the difference in the sum and product of
the sizes of the smaller groups. Further, in Tab. 2, we verify that MultiEquiGPT2 has a negligible
drop in perplexity on the test sets of WikiText-2 and WikiText-103 compared to GPT2 and close to
EquiGPT2.

5.4 ROBUST IMAGE CLASSIFICATION USING CLIP

Experimental setting We use the CLIP models with various Resnet and ViT encoders, namely,
RN50, RN101, ViT-B/32, and ViT-B/16. We test the robustness of the zero-shot performance of
these models on the Imagenet-V2 and CIFAR100 datasets for the combined transformations of rot90
(random 90◦ rotations) and flips. We make comparisons in performance amongst original CLIP, and
equitune, equizero, multi-equitune, and multi-equizero applied to CLIP.

Results and observations Fig. 4a and 9a show that the CLIP models are vulnerable to simple
transformations such as random rotations and flips as was also observed in Basu et al. (2023a).
Fig. 4b, Fig. 4c, Fig. 9b, and Fig. 9c show the robustness results for RN101, ViT-B/16, RN50,
and ViT-B/32, respectively. We find that across all models and datasets, multi-equitune and multi-
equizero perform competitively to equitune and equizero respectively. Moreover, in Tab. 8 we find
that multi-equitune take less memory compared to equitune as expected from theory. That is, multi-
equitune consumes memory approximately proportional to |G1| + |G2| = 6, whereas equitune
consumes memory proportional to |G1| × |G2| = 8, where |G1| = 4 for 90◦ rotations and |G2| = 2
for flips.

9
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(a) (b) (c)

Figure 4: (a) shows that CLIP is not robust to the transformations of 90◦ rotations (rot90) and
flips. (b) and (c) show that multi-equitune and multi-equizero are competitive with equitune and
equizero, respectively, for zero-shot classification using RN101 and ViT-B/16 encoders of CLIP for
the product of the transformations rot90 and flips, even with much lesser compute.

6 CONCLUSION

We introduce two efficient model-agnostic multi-group equivariant network designs. The first design
aims at neural networks with multiple inputs with independent group actions applied to them. We
first characterize the entire linear equivariant space for this design, which gives rise to invariant-
symmetric layers as its sub-component. Then we generalize this to non-linear layers. We validate
its working by testing it on multi-input image classification. Finally, inspired by this invariant-
symmetric design, we introduce a second design for single input with large product groups applied
to it. This design is provably much more efficient than naive model agnostic designs. We apply
this design to several important applications including compositional generalization in language,
intersectional fairness in NLG, and robust classification using CLIP.

Ethics statement Our fairness algorithm provides intersectional fairness in a group-theoretic sense
as defined in §D.2. It aims to reduce bias in natural language generation. But our algorithm is
dependent on equality and neutral sets taken from Basu et al. (2023b;a), which are constructed by
people. Hence, these constructions of sets need to be constructed responsibly if deployed for public
use. Our evaluation for fairness is based on regard scores computed using the methods of Sheng
et al. (2019). Basu et al. (2023b) show that the regard classifier itself may contain bias. Hence,
even though the regard classifier acts as a great evaluation metric for academic purposes, a better
evaluation metric needs to be constructed if it is deployed for evaluating sentences in practice.

Reproducibility statement All proofs to our theoretical claims are provided in §B. Details of
dataset constructed for compositional generalization experiments are given in §D. Detailed experi-
mental settings for each experiment is provided in §5 and §E.
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Arnab Kumar Mondal, Siba Smarak Panigrahi, Sékou-Oumar Kaba, Sai Rajeswar, and Siamak Ra-
vanbakhsh. Equivariant adaptation of large pre-trained models. arXiv preprint arXiv:2310.01647,
2023.

Artem Moskalev, Anna Sepliarskaia, Erik J Bekkers, and Arnold Smeulders. On genuine invariance
learning without weight-tying. In International Conference on Machine Learning. PMLR, 2023.

12

https://openreview.net/forum?id=SylVNerFvr
http://www.cs.toronto.edu/~kriz/cifar.html


Under review as a conference paper at ICLR 2024

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Anaelia Ovalle, Arjun Subramonian, Vagrant Gautam, Gilbert Gee, and Kai-Wei Chang. Factoring
the matrix of domination: A critical review and reimagination of intersectionality in ai fairness.
arXiv preprint arXiv:2303.17555, 2023.

Gaurav Patel and Jose Dolz. Weakly supervised segmentation with cross-modality equivariant con-
straints. Medical Image Analysis, 77:102374, 2022.

Omri Puny, Matan Atzmon, Edward J Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. In International
Conference on Learning Representations, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-
sharing. In International conference on machine learning, pp. 2892–2901. PMLR, 2017.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (N) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng. The woman worked as a babysit-
ter: On biases in language generation. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 3407–3412, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3D point
clouds. arXiv preprint arXiv:1802.08219, 2018.

Angelina Wang, Vikram V. Ramaswamy, and Olga Russakovsky. Towards intersectionality in ma-
chine learning: Including more identities, handling underrepresentation, and performing evalu-
ation. In Proc. 2022 ACM Conf. Fairness, Accountability, and Transparency (FAccT ’22), pp.
336–349, June 2022.

Maurice Weiler and Gabriele Cesa. General E (2)-equivariant steerable cnns. Advances in neural
information processing systems, 32, 2019.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Jianke Yang, Robin Walters, Nima Dehmamy, and Rose Yu. Generative adversarial symmetry dis-
covery. In International Conference on Machine Learning, 2023.

Jingfeng Yang, Le Zhang, and Diyi Yang. Subs: Subtree substitution for compositional semantic
parsing. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 169–174, 2022.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, 55(1):407–474, 2022.

13



Under review as a conference paper at ICLR 2024

A ADDITIONAL DEFINITIONS

Groups and group actions A group is set G accompanied by a binary operation · such that the
four axioms of a group are satisfied, which are a) closure: g1 · g2 ∈ G for every g1, g2 ∈ G, b)
identity: there exists e ∈ G such that e · g = g · e = g, c) associativity: (g1 · g2) · g3 = g1 · (g2 · g3)
and d) inverse: for every g ∈ G, there exists g−1 such that g · g−1 = g−1 · g = e. When clear from
context, we write g1 · g2 simply as g1g2.

A group action of a group G on a space X , is given as α : G×X 7→ X such that a) α(e, x) = x for
all x ∈ X and b) α(g1, α(g2, x)) = α(g1 · g2, x) for all g1, g2 ∈ G, x ∈ X , where e is the identity
element of G. When clear from context, we write α(g, x) simply as gx.

B PROOFS

Proof to Thm. 1. To prove the equivariance property, we want LG1,G2
([aX1, bX2]) =

[a(LEq
G1

(X1) + LIS
G2,G1

(bX2)), b(L
Eq
G2

(X2) + LIS
G1,G2

(aX1))] for any a ∈ G1, b ∈ G2. Recall from
definitions of equivariance and invariance-symmetry the following equalities.

LEq
G1

(aX1) = aLEq
G1

(X1), (7)

LEq
G2

(bX2) = bLEq
G2

(X2), (8)

LIS
G2,G1

(X2) = aLIS
G2,G1

(X2), (9)

LIS
G1,G2

(X1) = bLIS
G1,G2

(X1), (10)

for any a ∈ G1, b ∈ G2. Here, equation 7 and equation 8 hold by definition of these equivariant
layers.

It follows LEq
G1

(aX1) + LIS
G2,G1

(bX2) = a(LEq
G1

(X1) + LIS
G2,G1

(bX2)), since LEq
G1

(aX1) =

aLEq
G1

(X1) from equation 7 and LIS
G2,G1

(bX2) = aLIS
G2,G1

(bX2) from equation 9. Similarly, it fol-
lows LEq

G2
(bX2) + LIS

G1,G2
(aX1) = b(LEq

G2
(X2) + LIS

G1,G2
(aX1)), which concludes the proof.

Proof to Lem. 1. Let L be a d×d matrix and we want to find the dimension of the space of matrices
L such that the fixed point equation P (g2) × L × P (g1) = L holds for all g1 ∈ G1 and g2 ∈ G2,
where P (gi) denotes the permutation matrix corresponding to gi. Thus, we want to compute the
dimension of the null space of this fixed point equation. From Maron et al. (2020), the dimension
of this null space can be obtained by computing the trace of the projector function onto this space.
One can verify the projector here is given by πGInv

1 ,GSym
2

= 1
|G1||G2|

∑
g1∈G1

∑
g2∈G2

P (g1) ⊗
P (g2), where ⊗ is the Kronecker product. From the properties of the trace function, we know
Tr(P (g1)⊗ P (g2)) = Tr(P (g1))× Tr(P (g2)), which concludes the proof.

Proof to Thm. 2. The dimension of the linear layer LG1,G2([X1, X2]) = E(G1) + E(G2) +
IS(G1, G2) + IS(G2, G1), since we have two equivariant layers that have dimensions E(G1) and
E(G2), respectively, and two invariant-symmetric layers, which have dimensions IS(G1, G2) and
IS(G2, G1), respectively. Recall the definitions of E(·) and IS(·, ·) from equation 3 and equation 4,
respectively.

Now we compute the dimension of any linear layer satisfying the equivariant constraint in equation 2
and show it matches the dimension of LG1,G2([X1, X2]). To that end, first note that the projector
onto this equivariant space is 1

|G1||G2|
∑

g1∈G1

∑
g2∈G2

(P (g1)⊕P (g2))⊗ (P (g1)⊕P (g2)), where
⊕,⊗ denote the Kronecker sum and Kronecker product, respectively. Further, we know from Maron
et al. (2020) that the dimension of the equivariant space, say E(G1, G2), is given by the trace of the
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projector onto this space. Thus,

E(G1, G2) =
1

|G1||G2|
∑

g1∈G1

∑
g2∈G2

Tr((P (g1)⊕ P (g2))⊗ (P (g1)⊕ P (g2)))

=
1

|G1||G2|
∑

g1∈G1

∑
g2∈G2

Tr((P (g1)⊕ P (g2)))× Tr((P (g1)⊕ P (g2))) (11)

=
1

|G1||G2|
∑

g1∈G1

∑
g2∈G2

(Tr(P (g1)) + Tr(P (g2)))
2 (12)

=
1

|G1||G2|
∑

g1∈G1

∑
g2∈G2

(Tr(P (g1)) + Tr(P (g2)))
2

=
1

|G1||G2|
∑

g1∈G1

∑
g2∈G2

Tr(P (g1))
2 + Tr(P (g2))

2 + 2Tr(P (g1))Tr(P (g2))

=
1

|G1|
∑

g1∈G1

Tr(P (g1))
2 +

1

|G2|
∑

g2∈G2

Tr(P (g2))
2 +

1

|G1||G2|
∑

g1∈G1

∑
g2∈G2

2Tr(P (g1))Tr(P (g2))

= E(G1) + E(G2) + IS(G1, G2) + IS(G2, G1), (13)

where equation 12 holds because the trace of the Kronecker sum of two matrices is the sum of the
traces of the two matrices, equation 11 holds because the trace of the Kronecker product of two
matrices is the product of the traces of the two matrices. Finally, equation 13 follows from the
definitions of E(·) and IS(·, ·).
Thus, we have proved that LG1,G2([X1, X2]) is equivariant, hence, lies in the space of linear equiv-
ariant functions for the constraint in equation 2. Further, LG1,G2

([X1, X2]) has the exact same
dimension as the linear equivariant space of equation 2. Hence, LG1,G2

([X1, X2]) characterizes the
entire linear equivariant space of equation 2.

Proof to Thm. 3. We know M is a universal approximator of f IS
G1,G2

. Hence, for any K ∈ X , ϵ > 0,
there exists a choice of parameters of M such that ∥M(x)− f IS

G1,G2
(x)∥ ≤ ϵ for all x ∈ K.

Define KSym =
⋃

g1∈G1
g1K, which is also a compact set. Thus, there exists a choice of parameters

for M such that ∥M(x)− f IS
G1,G2

(x)∥ ≤ ϵ for all x ∈ KSym.

For the same ϵ > 0, KSym defined above, we now compute ∥MIS
G1,G2

(x) − f IS
G1,G2

(x)∥ using the
definition of MIS

G1,G2
(x) from equation 5 and show that it is less than or equal to ϵ, concluding the

proof. We have ∥MIS
G1,G2

(x)− f IS
G1,G2

(x)∥

= ∥ 1

|G1||G2|
∑

g2∈G2

g2
∑

g1∈G1

M(g1x)− f IS
G1,G2

(x)∥ (14)

= ∥ 1

|G1||G2|
∑

g2∈G2

g2
∑

g1∈G1

M(g1x)−
1

|G1||G2|
∑

g2∈G2

g2
∑

g1∈G1

f IS
G1,G2

(g1x)∥ (15)

≤ 1

|G1||G2|
∑

g2∈G2

∑
g1∈G1

∥M(g1x)− f IS
G1,G2

(g1x)∥ (16)

≤ 1

|G1||G2|
∑

g2∈G2

∑
g1∈G1

ϵ (17)

= ϵ, (18)

where equation 14 follows from the definition of equation 5, equation 15 follows because
f IS
(G1,G2)

(x) = g2f
IS
(G1,G2)

(g1x) for all g1 ∈ G1, g2 ∈ G2, equation 16 follows from the trian-
gle inequality and the assumption ∥g2∥ = 1 for all g2 ∈ G2. Finally, equation 17 follows because
∥M(g1x)− f IS

G1,G2
(g1x)∥ ≤ ϵ for all x ∈ KSym.
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Proof to Thm. 4. We first prove (MEq
G2

((g1g2X)InvG1
))

Sym

G1
= g1g2(M

Eq
G2

((X)InvG1
))

Sym

G1
. We have

(MEq
G2

((g1g2X)InvG1
))

Sym

G1

= (MEq
G2

(g2(X)InvG1
))

Sym

G1
(19)

= (g2M
Eq
G2

((X)InvG1
))

Sym

G1
(20)

=
∑
h∈G1

hg2M
Eq
G2

(XInv
G1

) (21)

= g1
∑
h∈G1

hg2M
Eq
G2

(XInv
G1

)

= g1
∑
h∈G1

g2hM
Eq
G2

(XInv
G1

) (22)

= g1g2
∑
h∈G1

hMEq
G2

(XInv
G1

)

= g1g2(M
Eq
G2

(XInv
G1

))Sym
G1

,

where equation 19 follows from the definition of the invariant operator in §3.4, equation 20 follows
from the G2-equivariance of MEq

G2
, equation 21 follows from the definition of symmetric output in

§3.4. Finally, equation 22 follows from the commutativity assumption in §3.1.

C GENERAL DESIGN FOR A PRODUCT OF N GROUPS

Here we provide extensions of our two designs in §3.3 and §3.4 to a product of N groups in §C.1
and §C.2, respectively.

C.1 N -INPUT GROUP EQUIVARIANT MODELS

We extend the design in §3.3 to N inputs X1, . . . , XN with group Gi acting independently on
Xi, respectively. Suppose the outputs are Y1, . . . , YN and given models Mi,Mij processing Xi

and contributing to Yi, Yj , respectively. Then, the equivariant model using Mis Mijs for i, j ∈
{1, . . . , N} consists of an equivariant and an invariant-symmetric component.

The equivariant component remains the same as for N = 2, i.e., for input i, we have MEq
i,Gi

(Xi),
which is equivariant to Gi. Additionally, Yi has N -1 invariant-symmetric components, where the
invariant-symmetric component is M IS

ji,GjGi
(Xj). It is trivial to see that Yi is equivariant with

respect to Gi acting on Xi since the equivariant component MEq
i,Gi

(Xi) and M IS
ji,GjGi

(Xj) are all
equivariant. Hence, the sum/concatenation of equivariant functions gives an equivariant function.

C.2 LARGE PRODUCT GROUP EQUIVARIANT MODELS

Extension to N product groups for the model design in equation 6 is trivial and described next.
Given a product group of the form G = (G1 ⋊ · · · (GN−1 ⋊GN ) · · · ), we design the G-equivariant
model MEq

(G1⋊···(GN−1⋊GN )··· ) as

MEq
(G1⋊···(GN−1⋊GN )··· )(X) =

∑
i∈{1,...,N}

(MEq
Gi

(XInv
G\Gi

))
Sym

G\Gi
, (23)

where MEq
Gi

is any model equivariant to Gi, e.g. equizero (Basu et al., 2023a) applied to some
pretrained model M for zeroshot equivariant performance, and G\Gi represents the product of all
the smaller groups except Gi. It is easy to check that MEq

(G1⋊···(GN−1⋊GN )··· )(X) is equivariant to
(G1 ⋊ · · · (GN−1 ⋊ GN ) · · · ). The intuition for this design is the same for G = G1 ⋊ G2, i.e.,

(MEq
Gi

(XInv
G\Gi

))
Sym

G\Gi

preserves the equivariant features with respect to Gi and invariant features
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with respect to the rest of the product, which is finally merged with other equivariant features by
taking features symmetric with respect to G\Gi. Here, obviously, the summation over i can be
replaced by any other permutation invariant/equivariant functions such as max or concatenation.

D ADDITIONAL DETAILS ON APPLICATIONS

D.1 COMPOSITIONAL GENERALIZATION IN LANGUAGE

Original SCAN splits The original SCAN split considered in works related to group equivariance
primarily dealt with the Add Jump and theAround Right splits. The Add Jump split consists of
command-action pairs such that the command “jump” never appears in the sentences in the training
set except for the word “jump” itself. However, similar verbs such as “walk” or “run” appear in the
dataset. But the test set does contain sentences with “jump” in them. Thus, to be able to generalize to
the test set, a language model should be able to understand the similarity between the words “jump”
and “walk”. Gordon et al. (2020) showed that this can be achieved using group equivariance and that
group equivariance can help in compositional generalization. Similarly, the Around Right split has
a train set without the phrase “around right” in any of its sentences, but the phrase is contained in its
test set. Moreover, the train set also contains phrases like “around left”, thus, to perform well on the
test set, the models must understand the similarity between “left” and “right”. Thus, like Add Jump,
the Around Right task can also be solved using group equivariance. Note that in both these cases,
the groups of interest are size two each. Thus, to better illustrate the benefits of our multi-group
equivariant networks and to use group equivariance in more practical compositional generalization
task, we extend the dataset to a larger group of size eight. This new extended dataset, SCAN-II, is
constructed using similar context-free grammar (CFG) as SCAN. Before discussing the construction
of SCAN-II, we review some different methods used in the literature to solve SCAN and how they
differ from our multi-group approach.

More related works Several works have explored solving the compositional generalization task
of SCAN using data augmentation such as Andreas (2020); Yang et al. (2022); Jiang et al. (2022);
Akyurek & Andreas (2021); Li et al. (2023). Equivariance, as we know, provides the benefits of
augmentations while also providing guarantees of generalization. Hence, several works have also
explored group equivariance to perform the compositional generalization task on SCAN such as Gor-
don et al. (2020); Basu et al. (2023b;a). Here the method of Gordon et al. (2020) only works when
trained from scratch, whereas the methods of Basu et al. (2023b;a) work with pretrained models but
use a frame equal to the size of the entire group. Hence, group equivariant methods for finetuning
pretrained models for compositional generalization have been restricted to small groups. We use our
efficient multi-equitune design with larger groups to achieve competitive performance to equitune
in terms of compositional generalization on our new splits of SCAN, while being computationally
efficient.

SCAN-II splits Tab. 3 and Tab. 4 show the context-free grammar and commands-to-action conver-
sions for SCAN-II. Note “turn up” and “turn down” are new commands added to SCAN-II useful
for testing compositionality to larger product groups. In SCAN-II, we have a single train dataset
and four splits of test datasets: jump, turn left, turn up, and turn up jump turn left. Here,
jump, turn left, and turn up require equivariance to the pair of commands [“jump”, “walk”], [“up”,
“down”], and [“left”, “right”], respectively, along with equivariance in the corresponding actions
to perform well on the test sets. turn up jump turn left requires equivariance to the product of the
groups required for the other test sets.

D.2 INTERSECTIONAL FAIRNESS IN NLG

Here we define the group-theoretic fairness framework of Basu et al. (2023b) used with language
models (LM) such as GPT2. Then, we discuss how the framework changes upon extension to
product groups. First, for each list of demographic groups, we define a set of list of words E called
the equality words set, and a set of words N called the neutral words sets. The equality set E
represents the words corresponding to each demographic, e.g., for the list of demographic groups
[“man”, “woman”], the equality words set can be [[“man”, “woman”], [“boy”, “girl”], [“king”,
“queen”]]. The neutral set N represents the words that are neutral with respect to any demographic,
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Table 3: Phrase-structure grammar generating generating SCAN-II commands. The indexing nota-
tion allows infixing: D[i] is to be read as the ith element directly dominated by category D

C →S and S V →D D →turn up
C →S after S V →U D →turn down
C →S D →U left U →walk
S →V twice D →U right U →look
S →V thrice D →U up U →run
S →V D →U down U →jump
V →D[1] opposite D[2] D →turn left
V →D[1] around D[2] D →turn right

Table 4: Double brackets JK denote the function translating SCAN-II linguistic commands into
sequences of actions. Symbols x and u denote variables limited to the set {walk, look, run, jump}.
The linear order of actions reflects their temporal sequence

JwalkK = WALK Ju opposite leftK = Jturn opposite leftK JuK
JlookK = LOOK Ju opposite rightK = Jturn opposite rightK JuK
JrunK = RUN Ju opposite upK = Jturn opposite upK JuK
JjumpK = JUMP Ju opposite downK = Jturn opposite downK JuK
Jturn leftK = LTURN Jturn around leftK = LTURN LTURN LTURN LTURN
Jturn rightK = RTURN Jturn around rightK = RTURN RTURN RTURN RTURN
Jturn upK = UTURN Jturn around upK = UTURN UTURN UTURN UTURN
Jturn downK = DTURN Jturn around downK = DTURN DTURN DTURN DTURN
Ju leftK = LTURN JuK Ju around leftK = LTURN JuK LTURN JuK LTURN JuK LTURN JuK
Ju rightK = RTURN JuK Ju around rightK = RTURN JuK RTURN JuK RTURN JuK RTURN JuK
Ju upK = UTURN JuK Ju around upK = UTURN JuK UTURN JuK UTURN JuK UTURN JuK
Ju downK = DTURN JuK Ju around downK = DTURN JuK DTURN JuK DTURN JuK DTURN JuK
Jturn opposite leftK = LTURN LTURN Jx twiceK = JxK JxK
Jturn opposite rightK = RTURN RTURN Jx thriceK = JxK JxK JxK
Jturn opposite upK = UTURN UTURN Jx1 and x2K = Jx1K Jx2K
Jturn opposite downK = DTURN DTURN Jx1 after x2K = Jx2K Jx1K

e.g. [“doctor”, “nurse”, “student”]. Given a vocabulary V of the LM, the words are partitioned
between E and N in this setting. There is a more general setting called relaxed-equitune in Basu
et al. (2023b) where the words in the vocabulary are distributed into three sets E , N , and G. Here,
E and N are defined the same as in equitune, but G consists of all the words that do not obviously
belong to either E or N . In this work we focus on equitune since all the methods developed for large
product groups here trivially carry over to the implementation of relaxed-equitune.

Now we review the group actions in equitune for a single list of demographics of length d, such as
[“man”, “woman”] has length d = 2. Given a cyclic group of length d, G = {e, g, g2, · · · , gd−1},
it acts on the vocabulary V as follows. The group action of a cyclic group is completely defined by
the group action of its generator, in this case, the element g ∈ G simply makes a cyclic shift of size
one in the equality set E and leaves the neutral set N invariant. For example, if G = {e, g} and E =
[[“man”, “woman”], [“boy”, “girl”], [“king”, “queen”]], then gE = [[“man”, “woman”], [“boy”,
“girl”], [“king”, “queen”]].

Previous works such as equitune and λ-equitune have only focused on debiasing one list of de-
mographic groups, but debiasing demographics at the intersection remains to be addressed. For
example, debiasing the marginal demographics [“man”, “woman”] and [“Black”, “White”] does not
guarantee debiasing for demographics at the intersection such as “Black woman”. Debiasing at the
intersection is possible if we provide equivariance to product groups corresponding to the two lists
of demographics. Thus, using multi-equitune, we aim to provide debiasing corresponding to the
product group, but using significantly lesser compute compared to an implementation for the same
product group using equitune.

The implementation of multi-equitune here is very simple since all the group actions are on the
vocabulary space and are disjoint. That is, the first step of canonicalization can be performed in-
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Table 5: The contexts corresponding to the respect task and occupation task by Sheng et al. (2019).
Here X is replaced by some specific demographic, e.g., “man”, “woman”, “Black man”, etc.

Respect task Occupation task

The X was known for The X worked as
The X was described as The X had a job as
The X was regarded as The X had a part-time job as
The X was thought of as The X earned money by
The X was well-known for The X started working as

dependently for each group, which are then passed through respective equivariant architectures.
Finally, the outputs are symmetrized on disjoint output vocabulary before they are averaged.

D.3 ROBUST IMAGE CLASSIFICATION USING CLIP

As mentioned in §3.4, for two groups G1, G2, the multi-group architecture is given by

MEq
G1⋊G2

(X) = (MEq
G2

(XInv
G1

))
Sym

G1
+ (MEq

G1
(XInv

G2
))

Sym

G2
. Suppose G1 is the group of 90◦ rota-

tions and G2 is the group of flips. Then, for a given image X first, we compute XInv
Gi

for i ∈ {1, 2},
which is computed by appropriately canonicalizing X with respect to Gi using the technique of
Kaba et al. (2023). Kaba et al. (2023) also requires a small auxiliary network equivariant to Gi,
which is constructed by equituning a small randomly initialized matrix. MEq

Gi
is constructed by di-

rectly using the equitune transform (without any finetuning) on the vision encoder of CLIP. Further,
since we just need invariant features from CLIP, we simply obtain invariant features from the output
of MEq

Gi
by pooling along the orbit of Gi. Moreover, since the features obtained are invariant, the

()Sym
Gi

operator leaves the output unchanged. Finally, for equitune, we simply average the outputs

from (MEq
Gj

(XInv
Gi

))
Sym

Gi

.

Whereas for equizero there are two minor modifications to the method described above: a) MEq
Gi

is obtained by applying the equizero transform instead, i.e., a max is taken over the outputs with
respect to the inner product with CLIP text embeddings, b) another max is taken over outputs

(MEq
Gj

(XInv
Gi

))
Sym

Gi

with respect to the inner product with CLIP text embeddings.

E ADDITIONAL DETAILS ON EXPERIMENTAL SETTINGS

E.1 MULTI-IMAGE CLASSIFICATION

The 15Scene dataset contains a wide range of scene environments of 13 categories. Each category
includes 200 to 400 images with an average size of 300 × 250 pixels. Similarly, Caltech101 contains
pictures of objects from 101 categories. Each category includes 40 to 800 images of 300 × 200
pixels.

The multi-GCNN consists of three components: an equivariant Siamese block, an invariant-
symmetric fusion block, and finally a linear block. The Siamese block is a Siamese network made
of two convolutional layers, each with kernel size 5, and channel dimension 16. Each convolution is
followed by a ReLU (Nair & Hinton, 2010), max pool, and a batch norm (Ioffe & Szegedy, 2015).
It is followed by a fully connected layer with a hidden size computed by flattening the output of the
convolutional layers and output size 64. The output is passed through ReLU, dropout (Srivastava
et al., 2014), and batch norm. Finally, this block is made equivariant using the equitune trans-
form (Basu et al., 2023b). The N inputs are passed through this Siamese layer parallelly. The fusion
block is built identically to the Siamese block, except, we make it invariant instead of equivariant.
The fusion block also takes the inputs parallelly. Fusion is performed by adding the output of the
fusion layer corresponding to input i multiplied by a learnable weight to all the features correspond-
ing to the other inputs. Following this, we perform invariant pooling and pass it through the linear

19



Under review as a conference paper at ICLR 2024

Table 6: Test accuracies for multi-image classification on the 15-Scene dataset. N denotes the
number of images present as input. Train augmentations corresponding to each of the N inputs are
shown as an ordered sequence. Here R means random 90◦ rotations and I means no transformation.
Fusion denotes the use of invariant-symmetric layers.

Model CNN Multi-GCNN
Fusion × ✓ × ✓
Dataset N Train Aug.

15-Scene

2 II 0.417 0.428 0.716 0.706
RR 0.56 0.597 0.7 0.705

3 III 0.466 0.464 0.722 0.739
RRR 0.603 0.658 0.732 0.751

4 IIII 0.484 0.469 0.786 0.78
RRRR 0.667 0.641 0.779 0.785

Table 7: Memory consumption between equitune and multi-equitune and GPT2 for a product group
of the form G1 ⋊ G2 ⋊ G3, where |Gi| = 2 for i ∈ {1, 2, 3}. Note that ideally, equitune would
consume memory proportional to |G1| × |G2| × |G3| = 8 and multi-equitune would consume
memory proportional to |G1|+ |G2|+ |G3| = 6. Our results show slightly more memory consumed
by equitune compared to multi-equitune as expected for these groups. We use a batch size of 1 for
the following measurements.

Model GPT2 Equitune Multi-Equitune

Memory Consumption (MiB) 1875 2753 2345

block to get the final output. The linear block consists of two densely connected layers with a hid-
den size of 64. Further, we use ReLU and dropout between the two densely connected layers. The
non-equivariant CNN is constructed exactly as the multi-GCNN network except that no equituning
operation is performed anywhere for equivariance or invariance.

F ADDITIONAL RESULTS

This section gives some additional results that are referred to in the main text.

(a) (b) (c)

Figure 5: The plots (a), (b), and (c) show the distribution of regard scores for the occupation task
for the set of demographic groups gender, race, and an intersection of gender, race, and sexual
orientation respectively. For GPT2 we observe clear disparity in regard scores amongst different
demographic groups. Each bar in the plots correspond to 500 generated samples. Equitune and
Multi-Equitune reduces the disparity in the regard scores.
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(a) (b)

Figure 6: The plots (a) and (b) show the distribution of regard scores for the respect task and the
occupation task respectively. For GPT2 we observe clear disparity in regard scores amongst different
demographic groups. Each bar in the plots correspond to 500 generated samples. Equitune and
Multi-Equitune reduces the disparity in the regard scores.

(a) (b) (c)

Figure 7: The plots (a), (b), and (c) show the distribution of regard scores for the respect task for
three different intersectional demographics of gender, race, and the intersection of gender, race,
and sexual orientation. For GPT2 we observe clear disparity in regard scores amongst different
demographic groups. Each bar in the plots correspond to 500 generated samples. Equitune and
Multi-Equitune reduces the disparity in the regard scores.

(a) (b) (c)

Figure 8: The plots (a), (b), and (c) show the distribution of regard scores for the occupation task
for three different intersectional demographics of gender, race, and the intersection of gender, race,
and sexual orientation. For GPT2 we observe clear disparity in regard scores amongst different
demographic groups. Each bar in the plots correspond to 500 generated samples. Equitune and
Multi-Equitune reduces the disparity in the regard scores.
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(a) (b) (c)

Figure 9: (a) shows that CLIP is not robust to the transformations of 90◦ rotations (rot90) and flips.
(b) and (c) show that multi-equitune and multi-equizero are competitive with equitune and equizero,
respectively, for zero-shot classification using RN50 and ViT-B/32 encoders of CLIP for the product
of the transformations rot90 and flips, even with much lesser compute.

Table 8: Memory consumption (in MiB) between equitune and multi-equitune for the group of
random 90◦ rotations and flips. Here the product group is of the form G1 ⋊ G2, where |G1| =
4, |G2| = 2. Note that ideally, equitune would consume memory proportional to |G1| × |G2| = 8
and multi-equitune would consume memory proportional to |G1| + |G2| = 6. Our results show
slightly more memory consumed by equitune compared to multi-equitune as expected for these
groups. We use a batch size of 32 for the following measurements.

Method \ Dataset RN50 RN101 ViT-B/32 ViT-B/16

Equitune 5161 5199 2853 4633

Multi-Equitune 4389 4425 2663 4023

G EFFICIENCY VS. PERFORMANCE TRADE-OFF

Here, we discuss the trade-off between efficiency and performance between equitune and our multi-
equitune algorithm in equation 6. That is, for a product group of the form G1 ⋊ G2, we provide
better intuition how we reduce the computational complexity from O(|G1|×|G2|) to O(|G1|+|G2|).
At the same time, we explain how exactly we get some drop in performance of the network with
benefits in computational complexity.

For simplicity, here we focus on the invariance case with commutative group actions here. Recall
the formulation for multi-equitune for a product group of the form of G1 ⋊ G2 as MEq

G1⋊G2
(X) =

(MEq
G2

(XInv
G1

))
Sym

G1
+ (MEq

G1
(XInv

G2
))

Sym

G2
. For the invariance case, the expression simply becomes

MInv
G1⋊G2

(X) = MInv
G2

(XInv
G1

)+MInv
G1

(XInv
G2

). From Sec. 3.4, recall that XInv
Gi

denotes Gi-invariant
feature of X . Thus, one way of writing XInv

Gi
is XInv

Gi
= 1

|Gi|
∑

gi∈Gi
giX . Using this definition of

XInv
Gi

, we have

MInv
G1⋊G2

(X) =
1

|G1||G2|
∑

g2∈G2

M(
∑

g1∈G1

g1g2X) +
1

|G1||G2|
∑

g1∈G1

M(
∑

g2∈G2

g1g2X) (24)

Now, if M is linear, we can write equation 24 as

MInv
G1⋊G2

(X) =
2

|G1||G2|
∑

g1∈G1

∑
g2∈G2

M(g1g2X) (25)

First note that equation 24 has a computational complexity of O(|G1|+|G2|), and that of equation 24
is O(|G1| × |G2|), where computational complexity here refers to the number of forward passes of
the model M. On the other hand, equation 25 is the exact expression for equitune operation for the
product group G1⋊G2, when M is generalized to general functions. Further, we know that equitune
is a universal approximator of equivariant functions Basu et al. (2023b). However, even though the
invariant-symmetric layer in equation 5 is universal approximators of invariant-symmetric functions,
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multi-equitune is not a universal approximator of equivariant functions. Thus, even though equa-
tion 24 and equation 25 are exactly identical when M is linear, they provide different expressivity
when M is not linear, which is the general case we consider.

Finally, we emphasize that this drop in expressivity of equation 24 is negligible when M itself is
a large pretrained model as seen in Fig. 4 and 9. Moreover, equation 24 provides computational
benefits over equation 25 for product groups.
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