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Abstract
Multi-instance multi-label learning (MIML), which deals with ob-
jects with complex structures and multiple semantics, plays a cru-
cial role in various fields. In practice, the naturally skewed label
distribution and label dependence contribute to the issue of la-
bel imbalance in MIML, which is crucial but rarely studied. Most
existing MIML methods often produce biased models due to the ig-
norance of inter-class variations in imbalanced data. To address this
issue, we propose a novel imbalanced multi-instance multi-label
learning method named IMIMLC, based on the error-correcting
coding ensemble and an adaptive threshold strategy. Specifically,
we design a feature embedding method to extract the structural
information of each object via Fisher vectors and eliminate inex-
act supervision. Subsequently, to alleviate the disturbance caused
by the imbalanced distribution, a novel ensemble model is con-
structed by concatenating the error-correcting codes of randomly
selected subtasks. Meanwhile, IMIMLC trains binary base classi-
fiers on small-scale data blocks partitioned by our codes to enhance
their diversity and then learns more reliable results to improve
model robustness for the imbalance issue. Furthermore, IMIMLC
adaptively learns thresholds for each individual label by margin
maximization, preventing inaccurate predictions caused by the se-
mantic discrepancy across many labels and their unbalanced ratios.
Finally, extensive experimental results on various datasets validate
the effectiveness of IMIMLC against state-of-the-art approaches.

CCS Concepts
• Computing methodologies → Semi-supervised learning
settings; Ensemble methods.
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1 Introduction
A complicated object inmany practical applications contains several
labels simultaneously and its own intrinsic structure, which may
be thought of as a bag of instances. Multi-instance multi-label
learning (MIML) is a weakly supervised learning paradigm [45] that
can handle such samples. By simulating the interaction between
instances and the label set, it enhances the generalization capacity
of the model by helping it comprehend the multiple meanings
and overall structure of the object. With adaptation to different
practical scenarios by adjusting the combination of instances, MIML
is highly flexible and has been applied to various fields, such as text
analysis [4, 42], audio and video location mining [11, 39, 40], signal
recognition [24], and medical diagnosis [15, 21], etc.

In practice, it is typical for the label distribution to be inherently
skewed, which inevitably raises the problem of label imbalance.
For example, in breast medical imaging diagnosis, a single medical
image viewed as a bag consists of many tissue pixels, as shown in
Fig. 1. Because cancer patients make up a small percentage of the
population overall, there are often one to several orders of magni-
tude fewer pixels of tumor tissue than of normal tissue. As a result,
it has a significant label imbalance issue due to bags and disease-
related cases being minority samples, which is a typical long-tailed
distribution. In addition, label dependence will exacerbate the issue
of imbalance. On the one hand, various bags usually match various
numbers of label classes. As an illustration, Fig. 1 (a) shows three
different kinds of lesions in the breast tissue. Actually, there is only
one label for "normal" in an image of normal tissue, while oth-
ers with more severe and intricate pathological processes include
several breast tissue lesion labels. This leads to an increase in the
difference in the number of samples that each label class possesses.
On the other hand, certain labels have a greater co-occurrence fre-
quency due to label correlation. For example, pathological processes
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(a) Pathological image of breast tissue section

(b)

Figure 1: An example of the label imbalance issue in the
breast medical imaging diagnosis task. (a) different colored
rectangular boxes mark different breast tissue lesion labels.
(b) presents the long-tailed distribution of label classes.

with the same causes often co-occur. Concurrent identification of
related lesions can proceed simultaneously when the image con-
tains specific lesion labels. As the number of samples with certain
labels increases, there are more samples with related labels, making
the problem of imbalance more severe and difficult to solve.

Compared with traditional classification tasks, there are two
main challenges in handling such imbalanced MIML problems. (1)
In MIML tasks, only bag-level labels are available, while labels of
instances recording features are unknown. The inconsistency of
levels at which features and labels are located makes the task very
complicated. (2) In imbalanced distributions, it is more difficult to
handle tasks due to the effect of class overlap, data selection bias,
and insufficient prior being magnified.

To solve these problems, many algorithms have been proposed
in the literature. To address coarse-grained labeling issues, there are
many MIML methods. Degradation methods transform the original
MIML task into either a multi-instance learning (MIL) task or a
multi-label learning (MLL) task to eliminate inexact supervision.
Some work discretizes bag-level labels to label instances to train an
instance-level classifier [48], and some work represents the bag as a
new feature vector using the information provided by instance fea-
tures to learn a bag-level classifier [16, 18, 37, 42, 48]. In recent years,
some work has jointly learned the bag-level classifier and instance-
level classifier to cover both features and labels simultaneously
[35, 41]. To solve label imbalance problems, there are many imbal-
anced learning methods. Resampling methods generate or throw
some samples to balance data distribution [2, 8, 30, 38]. Reweighting
methods assign different weights to samples to balance the impor-
tance of different sizes of the population for the model [5, 17, 22, 44].
Ensemble methods incorporate multiple base models to enhance
recognition abilities for minority classes [3, 19, 26]. Meta-learning-
based methods reweight samples through self-adaptation to tackle
majority classes and minority classes differently [6, 7, 20, 23].

Although these approaches have been successfully applied to
various applications, they still face several obstacles when directly
used in the imbalanced MIML task. (1) Traditional MIML or imbal-
anced learning methods only focus on one aspect of our setting and
are unable to effectively address our problems. (2) Due to the as-
sumption of balanced label distributions, existing MIML algorithms

tend to focus on majority-class samples and ignore the contribution
of minority classes, which results in biased models and decreased
performance. (3) Traditional methods often assign labels to multi-
semantic objects using a fixed threshold, resulting in unreliable
predictions due to ignoring the semantic discrepancy among multi-
ple labels and the imbalanced ratios of different classes.

To solve these problems in this new learning scenario, we pro-
pose an imbalanced multi-instance multi-label learning method
(IMIMLC), based on the error-correcting coding ensemble and an
adaptive threshold strategy, whose main framework is presented
in Fig. 2. Specifically, we conduct feature embedding to extract the
structural information of each object via the fisher vector and elim-
inate the effect of inexact supervision. Subsequently, to alleviate
the disturbance of the imbalanced distribution, a novel ensemble
strategy is constructed based on concatenating the error-correcting
codes of randomly selected subtasks. IMIMLC trains multiple binary
base classifiers on small-scale data blocks and learns the more reli-
able prediction to enhance the diversity of base learners and model
robustness for imbalanced data. To avoid unreliable predictions
caused by traditional fixed thresholds, we transform the threshold
determination problem into learning classifiers with the maximum
margin of soft labels, thereby IMIMLC adaptively learning thresh-
old for each label. Finally, extensive experimental results on various
MIML datasets verify the effectiveness of IMIMLC against state-of-
the-art MIML approaches in terms of imbalance-specific evaluation
metrics. In summary, the main contributions are listed as follows.

• We propose IMIMLC to solve a crucial but rarely studied
problem, the label imbalance of MIML. As far as we know,
this is the first attempt to tackle MIML tasks with the imbal-
anced label distribution.

• IMIMLC establishes a novel ensemble model and trains mul-
tiple base classifiers on randomly partitioned small-scale
data blocks, which enhances the diversity of base learners
and model robustness for the imbalanced distribution issue.

• To solve unreliable predictions caused by the ignorance of
the discrepancy of semantics and class priors when using
traditional manually fixed thresholds, IMIMLC adaptively
learns thresholds for individual labels by maximizing the
classification margin.

• Extensive experimental results on various datasets indicate
that our IMIMLC outperforms other comparison methods in
most cases and demonstrate its superiority and effectiveness.

2 Related Work
2.1 Overview of MIML
In practice, there are many MIML tasks. For example, in image
recognition, a complete image is considered a bag, with its pixels
as instances, and each image has one or several labels. Extracting
information from pixels and predicting the labels of the image is a
typical MIML task. The goal of MIML is to explore the relationship
between an object described by multiple instances and a set of la-
bels. Given {(B1,Y1), (B2,Y2), . . . , (B𝑁 ,Y𝑁 )}, where B𝑖 represents
a bag composed of a group of instances {𝒙1

𝑖
, 𝒙2

𝑖
, . . . , 𝒙𝑛𝑖

𝑖
} and its

label vector Y𝑖 = [𝑦1
𝑖
, 𝑦2

𝑖
, . . . , 𝑦𝐶

𝑖
], where 𝑦𝑙

𝑖
= 1 when the 𝑙-th label

is tagged for B𝑖 , and 0 otherwise. MIML learns 𝑓MIML : 2X → 2Y .
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Figure 2: Task scenario and the framework of IMIMLC. (a) Extract structural information from instances by feature embedding.
(b) Concatenate OVA-based codes of subtasks to obtain the encoding matrix Z, based on which train ensemble model for
imbalance. (c) Adapt thresholds with classifiers in the input space composed of feature vectors with semantics.

Existing MIML methods proposed in the literature can be sum-
marized according to the types of learned classifiers. With the
assumption that each instance in a bag contributes equivalently
and labels are independent, Zhang et al. [48] have proposed MIML-
Boost andMIMLSVMmi algorithms by splitting multi-label sets into
several binary classification label pairs to learn the instance-level
classifier. To learn the bag-level classifier, Zhang and Zhou [48]
have proposed the MIMLSVM algorithm that uses cluster to map for
converting MIML samples into MLL samples. Based on this work,
an increasing number of algorithms have been proposed for more
robust classifiers or more accurate distance measurements, which
achieved better performance [18, 37, 48]. Considering highly cor-
related labels often share information, Li et al. [16] have proposed
the KISAR algorithm, which explores the reasonable relationship
between input patterns and output labels to identify key instances
that trigger labels. Similar to this work, theMIMLwel algorithm [42]
tackles the weak labeling problem in MIML tasks where only a part
of positive labels are tagged. In recent years, some work has con-
sidered learning at both the instance level and the bag level to train
a joint classifier, which enriches the algorithms used for handling
MIML tasks. Based on active learning, the CM2AL algorithm [35]
queries the most probably positive instance-label pairs, labeling the
bag based on these feedbacks. Founded upon attention mechanisms
and manifold learning, the MIML-LLMC algorithm [41] handles
bag structures and learns instance-label relations simultaneously.

2.2 Imbalanced Learning
In realMIML tasks, imbalance is a common characteristic of datasets.
It can be viewed from three perspectives: imbalance within labels,
imbalance between labels, and imbalance among the label sets [36].
The learning task with the label imbalance issue is more challenging.
Specifically, during training, the model tends to concentrate more
on the features and patterns of majority samples while ignoring
important information from minority samples. It results in a weak
ability of the model to recognize minority classes. Due to such
insufficient learning, the model may mistakenly predict minority-
class samples as majority-class samples, resulting in a lower recall

for minority classes. To solve these problems, an increasing number
of methods have been proposed to adjust label distribution and
enhance the ability of the model to recognize minority classes,
thereby improving its performance and robustness.

Resampling: Resampling methods balance data distribution in
the training set by over/undersampling [2, 8, 30, 38], or by filter-
ing out noise through cleaning resampling [9, 13]. Reweighting:
Reweighting methods assign different weights to samples to bal-
ance the importance of different sizes of the population for the
model [5, 17, 22, 44]. Ensemble Methods: Ensemble methods im-
prove recognition abilities for minority samples by combining mul-
tiple specific models [3, 26]. Liu et al. [19] have investigated the
combination of the resampling method and the ensemble learning
framework, which is proven effective.Meta-learning Methods:
Meta-learning, which can also be formulated as a domain-adaptive
strategy [10], has been applied to imbalanced learning [6, 7, 23, 25].
It tackles majority samples and minority samples differently and
learns how to reweight through self-adaptation [33]. Liu et al. [20]
have proposed the MESA algorithm, which learns the model from
the imbalanced distribution based on the meta-sampler boost en-
semble that trains the meta-sampler on task-agnostic meta-data
and directly learns sampling strategies from the data.

3 Method
To tackle MIML tasks with imbalanced label distributions, we pro-
pose a novel imbalancedmulti-instancemulti-label learningmethod
(IMIMLC) based on the error-correcting coding ensemble and an
adaptive threshold strategy. Our IMIMLC mainly consists of fea-
ture embedding, code-based ensemble training, and classification
threshold adapting, which are shown in Fig. 2. Specifically, IMIMLC
first extracts structural information from instances and represents
bags via fisher vectors to train the ensemble model on randomly
partitioned data blocks. The ensemble model updates the bag rep-
resentation with semantic annotation, based on which IMIMLC
self-adapts classification thresholds for imbalanced label distribu-
tion. Besides, its computational complexity analysis is provided.
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3.1 Efficient Bag Embedding Method
In MIML samples, only bag labels are available, while labels of
instances that record features are unknown. To eliminate the effect
of such inexact supervision, we extract the structural information
of each bag by feature embedding.

Assume instances {𝒙1
𝑖
, 𝒙2

𝑖
, · · · , 𝒙𝑛𝑖

𝑖
} in B𝑖 are independently and

identically distributed and generated from the Gaussian mixture
model (GMM) 𝑝 consisting of 𝐺 components with parameter 𝜃 ,

i.e., 𝑝 (𝒙 𝑗
𝑖
|𝜃 ) =

𝐺∑
𝑔=1

𝛼𝑔𝑝𝑔 (𝒙 𝑗
𝑖
|𝜃 ), where 𝛼𝑔 ≥ 0 is the non-negative

weight and satisfy the constraint
𝐺∑
𝑔=1

𝛼𝑔 = 1, and 𝑝𝑔 (𝒙 𝑗
𝑖
|𝜃 ) is the𝑔-th

Gaussian model. To retain distribution characteristics of instances
and remove redundant information, the bag representation �̃�𝑖 can
be described as the fisher vector, which whitens the gradient of the
log-likelihood of the GMM 𝑝 [31], i.e.,

�̃�𝑖 = L𝜃∇𝜃 log𝑝 (B𝑖 |𝜃 ) = L𝜃∇𝜃 log𝑝 (𝒙1𝑖 , 𝒙
2
𝑖 , · · · , 𝒙

𝑛𝑖
𝑖
|𝜃 )

= L𝜃∇𝜃 log
𝑛𝑖∏
𝑗=1

𝑝 (𝒙 𝑗
𝑖
|𝜃 ) = L𝜃

𝑛𝑖∑︁
𝑗=1

∇𝜃 log𝑝 (𝒙
𝑗
𝑖
|𝜃 ),

(1)

where L𝜃 is the Cholesky decomposition for whitening. Besides,
similar to [31], we adopt the same normalization approach for �̃�𝑖
to reduce variance dependence on bag-specific information.

Note that �̃�𝑖 , whose dimension is only related to the dimension
of parameter 𝜃 [31]. In other words, bags with different numbers
of instances can be represented as new feature vectors with a con-
sistent dimension. It is beneficial to algorithm implementation and
popularization. More details can be found in the appendix.

3.2 Coding-based Ensemble for Imbalance
After obtaining �̃�𝑖 , imbalance is mainly reflected in two aspects.
On the one hand, a specific label class may contain a large num-
ber of negative samples and a few positive samples. On the other
hand, the number of samples that different label classes have varies
greatly. In this case, traditional MIML methods pay more atten-
tion to majority classes while ignoring important information from
minority ones. It results in biased models, which may mistakenly
classify minority-class samples as majority-class samples during
prediction. To tackle these problems, our IMIMLC constructs the
coding-based ensemble model by three stages: encoding, training
base classifiers, and decoding. Specifically, to rectify mistakes made
by the interference of the label imbalance issue, IMIMLC trains
multiple base classifiers on randomly partitioned small-scale data
blocks based on error-correcting codes that correspond to subtasks
randomly selected from the decomposed MLL task.

Encoding: Denote 𝑄 as the transformed MLL task with 𝐶 la-
bels, which can be decomposed into several equally sized subtasks,
each of them containing 𝑘 labels, where 𝑘 ≤ 𝐶 . Subtask set 𝑄𝑘 ,
which involved𝑘 labels of interest, consists ofC𝑘

𝐶
subtasks. IMIMLC

randomly selects 𝑑 subtasks {𝑤𝑖 |𝑖 = 1, 2, · · · , 𝑑} from 𝑄𝑘 without
replacement and encodes them. Encoding follows that the one-vs-all
encoding strategy (OVA) [28] is applied to selected 𝑘 labels, and “0”
is assigned to labels that are not selected. Therefore, we obtain the
encoding matrix Z(𝑖 ) ∈ {−1, 0, +1}𝐶×𝑘 , 𝑖 = 1, 2, · · · , 𝑑 of subtasks.
Finally, the whole training encoding matrix Z ∈ {−1, 0, +1}𝐶×𝑘𝑑 is
concatenated by Z(𝑖 ) with linking codewords from the same label.

Training: As shown in Fig. 2 (b), IMIMLC treats each column
of Z as the label code and constructs the binary classifier ℎ 𝑗 (·)
based on each row of Z. It means that values “0”, “1”, and “-1” in
Z not only represent codewords for labels but also indicate which
bags need to be involved in the training of ℎ 𝑗 (·) and play the role
of positive or negative categories in this process. In detail, if the
label is encoded by “+1”, bags related to that label will be treated
as positive samples for ℎ 𝑗 (·). If the label is encoded by “-1”, bags
related to that label and not related to any label encoded by “+1”
will be treated as negative samples for ℎ 𝑗 (·). If the label is encoded
by “0”, bags only related to that label will be excluded from training
the base classifier ℎ 𝑗 (·).

It is noteworthy that training bags of ℎ 𝑗 (·) are selected by OVA-
based coding and relationships among labels. As the number of
subtasks increases, label correlation ismore fully utilized, andmodel
performance will be improved. Besides, the imbalance problem in
small-scale data blocks may not be so serious. Different binary base
classifiers are trained on different data blocks, which enhances the
diversity of classifiers and recognition abilities for minority classes.

Decoding: Conducting all base classifiers on �̃�𝑖 , we can get
a code 𝒛𝑖 composed of corresponding codewords 𝑐1

𝑖
, 𝑐2
𝑖
, · · · , 𝑐𝑘𝑑

𝑖
,

which are binary classification results. The matching of �̃�𝑖 and the
label set relies on the hamming distance between 𝒛𝑖 and all label
codes. However, elements of the 𝑙-th label code 𝒛𝑙 may contain “0”,
as the 𝑙-th label is irrelevant to the training of the corresponding
base classifier, and that pair of codewords will certainly be different,
resulting in a larger hamming distance. Such meaningless codeword
pairs should be excluded to obtain more accurate and reliable values.
Therefore, the valid hamming distance between two codewords can
be defined as

𝐷𝑉 (𝒛𝑙 , 𝒛𝑖 ) = 𝐷 (𝒛𝑙 , 𝒛𝑖 ) −
𝑘𝑑∑︁
𝑠=1

1𝑐𝑠
𝑙
, (2)

where 1𝑐𝑠
𝑙
= 1 when 𝑐𝑠

𝑙
= 0, otherwise 1𝑐𝑠

𝑙
= 0.

Typically, if 𝐷𝑉 between 𝒛𝑖 and 𝒛𝑙 is less than the threshold
𝜂𝐷 , B𝑖 can be matched with the 𝑙-th label. As we have analyzed,
the matching result is determined by multiple binary classification
results. When the imbalanced distribution interferes the learning
of the binary classifier, the ensemble model can correct this error
and output more reliable results. However, because different labels
participate in the training of different numbers of base classifiers,
their meaningful codeword lengths are different, as the quantity
of meaningful codeword pairs is determined by the number of
base classifiers that label participates in. It is unfair to use a fixed
threshold 𝜂𝐷 to cover all label judgments. Hence, we match the bag
and label semantics by 𝑡𝑖

𝑙
,

𝑡𝑖
𝑙
=

𝐷𝑉 (𝒛𝑙 , 𝒛𝑖 )

𝑘𝑑 −
𝑘𝑑∑
𝑠=1

𝐼𝑐𝑠
𝑙

, (3)

which is related to the number of base classifiers whose training
the 𝑙-th label participates in. 1− 𝑡𝑖

𝑙
can be regarded as the matching

degree between the 𝑖-th bag and the 𝑙-th label semantics. Finally,
𝒑𝒛𝑖 = 1𝐶 − 𝒕𝑖 can be viewed as a new feature representation that
contains semantic information, or the soft label set of B𝑖 .
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3.3 Adaptive Threshold Method with Classifiers
In multi-label scenarios, it is not easy to obtain the precise tags of
the object based on soft labels. In imbalanced MIML tasks, it is more
challenging. The multiple semantics of the bag make it correspond
to different numbers of labels.With the increasing dimensionality of
the label space, differences among soft labels are tiny. Small changes
can lead to misjudgments. Besides, in label imbalance cases, the
fixed threshold adopted by traditional methods may incorrectly
label the bag as majority classes with high prior probabilities. To
obtain more reliable predictions, we adaptively learn classification
thresholds for multiple label classes.

Concretely, we decompose this labeling task into multiple clas-
sification tasks, establishing a binary classifier for each label. The
process of adapting the threshold is equivalent to maximizing the
margin between two half spaces, the “larger than” one and the “less
than” one. Since the input X𝑝 = [𝒑𝒛1 ,𝒑𝒛2 , · · · ,𝒑𝒛𝑀 ] of classifiers
contains semantics and label correlation has been considered in the
training of the ensemble model, it is acceptable to perform decom-
position here. Decomposition is beneficial for adapting thresholds
for different labels more pertinently without being affected by ma-
jority class priors or label dependence. Hence, its objective can be
formulated as the following constraint optimization problem

min𝝎𝑙 ,𝑏𝑙 ,𝜉𝑖

1
2
𝝎𝑇
𝑙
𝝎𝑙 + 𝜆

𝑀∑︁
𝑖=1

𝜉𝑖

s.t. 𝑦𝑙𝑖 (𝝎
𝑇
𝑙
𝜙 (𝒑𝒛𝑖 ) + 𝑏𝑙 ) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0,

(4)

where 1 ≤ 𝑖 ≤ 𝑀 , 𝜙 (·) maps 𝒑𝒛𝑖 into a higher-dimensional space,
and 𝜆 is the non-negative regularization hyper-parameter. The prob-
lem in Eq. (4) is a classical convex quadratic problemwith inequality
constraints. Motivated by [29], it can be equally transformed into
the following unconstrained optimization problem by imposing the
Lagrangian multipliers 𝜶 , 𝜷

𝐿(𝝎𝑙 , 𝑏𝑙 , 𝜉𝑖 , 𝛼𝑖 , 𝛽𝑖 ) =
1
2
𝝎𝑇
𝑙
𝝎𝑙 + 𝜆

𝑀∑︁
𝑖=1

𝜉𝑖

−
𝑀∑︁
𝑖=1

𝛼𝑖 (𝑦𝑙𝑖 (𝝎
𝑇
𝑙
𝜙 (𝒑𝒛𝑖 ) + 𝑏𝑙 ) − 1 + 𝜉𝑖 ) −

𝑀∑︁
𝑖=1

𝛽𝑖𝜉𝑖 ,

(5)

i.e., min
𝝎𝑙 ,𝑏𝑙 ,𝜉𝑖

max
𝛼𝑖 ,𝛽𝑖

𝐿, which is further equivalent to max
𝛼𝑖 ,𝛽𝑖

min
𝝎𝑙 ,𝑏𝑙 ,𝜉𝑖

𝐿 based

on Karush-Kuhn-Tucker (KKT) [12, 14]. Obeying the KKT condi-
tions, the dual problem of Eq. (4) can be equally formulated as

min
𝜶

1
2

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝛼𝑖𝛼 𝑗𝑦
𝑙
𝑖𝑦

𝑙
𝑗

(
𝜙 (𝒑𝒛𝑖 )𝑇𝜙 (𝒑𝒛 𝑗 )

)
−

𝑀∑︁
𝑖=1

𝛼𝑖

s.t.
𝑀∑︁
𝑖=1

𝛼𝑖𝑦
𝑙
𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝑈 , 𝑖, 𝑗 = 1, 2, · · · , 𝑀.

(6)

Many algorithms related to quadratic programming can be used
to deal with the problem in Eq. (6). We adopt the sequential minimal
optimization (SMO) algorithm, which is faster and more efficient
[27], to get the optimal solution 𝜶 ∗. According to the primal-dual
relationship and KKT, optimal 𝝎∗

𝑙
satisfies

𝝎∗
𝑙
=

𝑀∑︁
𝑖=1

𝛼∗𝑖 𝑦
𝑙
𝑖𝜙 (𝒑𝒛𝑖 ) . (7)

Finally, the adaptive threshold for the 𝑙-th label 𝜂𝑙
𝐴
can be obtained

by SMO [27] or calculated as

𝜂𝑙𝐴 =
1
𝑀

𝑀∑︁
𝑖=1

𝑦𝑙𝑖 − 𝝎∗𝑇
𝑙

𝜙 (𝒑𝒛𝑖 ). (8)

3.4 Testing and Predicting
For a new testing bag B̂, its structure information from instances
{�̂�1, �̂�2, . . . , �̂��̂�} is embedded in ˜̂𝒙 by Eq. (1). Then ˜̂𝒙 will be updated
as a new vector 𝒑�̂� with semantic annotation via the coding-based
ensemble model proposed in Subsection 3.2. According to trained
classifiers {𝝎∗

𝑙
|𝑙 = 1, 2, · · · ,𝐶} on 𝒑𝒛𝑖 by Eq. (7) and Eq. (8), we can

compute the prediction score 𝝎∗𝑇
𝑙

𝜙 (𝒑�̂�) and 𝜂𝑙𝐴 . The comparison
of𝝎∗𝑇

𝑙
𝜙 (𝒑�̂�) and 𝜂𝑙𝐴 determines the positive/negative output under

the classifier for the 𝑙-th label. According to T-criterion [1], if 𝒑�̂�
is judged as positive by the binary classifier, B̂ is marked by the
corresponding label; if all classifiers judge 𝒑�̂� as negative, B̂ will be
marked by the label that has the fewest negative marks. In other
words, the hard label set of testing bag B̂ is

Ŷ = {𝑙 |𝝎∗𝑇
𝑙

𝜙 (𝒑�̂�) ≥ −𝜂𝑙𝐴, 𝑙 ∈ Y}∪
{
argmin
𝑙∈Y

𝑀∑︁
𝑖=1

1−𝜂𝑙
𝐴

(
𝝎∗𝑇
𝑙

𝜙 (𝒑𝒛𝑖 )
)}

,

where 1𝑎 (𝑥) is the indicator function, whose value is 1 when 𝑥 < 𝑎.

3.5 Computational Complexity
The computational complexity of IMIMLC can be analyzed in two
parts: (1) bag vector representation based on instances, and (2)
imbalanced learning based on the coding ensemble and adaptive
thresholds. We estimate the complexity as O(𝑁𝐼𝐺𝑑2 (𝑇1 + 1) +
𝑘𝑑 (𝑇2𝑁 3

𝑠 +𝑁𝑠𝑑1 + 3𝑀𝐶) +𝐶𝑁 3
𝑠 ). More analyses are in the appendix.

4 Experiments
4.1 Datasets
We conducted experiments on six public MIML datasets, including
MIML-image, MIML-text, HJA Bird Song, MSRC v2, Letter Car-
roll, and Isoform Gene Data. Their brief information is reported in
Table 1. Specific information about datasets is in the appendix.

Table 1: A brief description of datasets.

Name #Labels #Instances Dim #Bags AIR

IMG 5 18000 15 2000 0.3309
TEX 7 7119 243 2000 0.2270
HBS 13 10232 38 548 0.2127
MSRC 23 1758 48 591 0.1368
LC 26 717 16 166 0.2066
IGD 94 59297 254 11946 0.0080

Note that different datasets have different extents of label im-
balance issues. To measure the level of label imbalance in different
datasets, inspired by [19], we adopt the average imbalance ratio
(AIR), which is formulated as

AIR =
1
𝐶

𝐶∑︁
𝑖=1

|𝑁𝑖+ |
|𝑁𝑖− |

, (9)
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Table 2: Performance comparisons of our IMIMLC on various datasets. The bold red font indicates the best performance, and
the blue font indicates the second-best performance. •/ ⊙ /◦ means that IMIMLC is better/tied/worse than other methods.
(pairwise single-tailed t-test at 95% confidence level). “N/A” indicates that the result is not available within 100 hours.

Dataset Metrics IMIMLC MIMLSVM MIMLSVMmi MIMLNN KISAR MIMLwel CM2AL MK-EnMIMLNN MIML-LLMC

AUC (↑) .837±.004 .801±.006• .738±.002• .794±.008• .834±.007⊙ .750±.007• .836±.007⊙ .809±.009• .832±.006•
F1 (↑) .639±.011 .583±.008• .393±.009• .491±.009• .510±.008• .529±.010• .615±.016• .447±.012• .584±.015•
ACC (↑) .827±.006 .807±.004• .807±.002• .807±.004• .834±.002◦ .654±.008• .828±0.01⊙ .807±.005• .835±.003◦
HL (↓) .173±.006 .193±.004• .193±.002• .193±.004• .166±.002◦ .346±.008• .172±0.01⊙ .193±.005• .165±.003◦
0-1 (↓) .306±.015 .040±.127◦ .433±.015• .080±.103◦ .040±.084◦ .380±.199⊙ .315±0.02⊙ .160±.158◦ .285±.012◦

IMG
𝑘 = 3
𝑑 = 10

RL (↓) .189±.005 .200±.006• .262±.002• .206±.008• .166±.007◦ .250±.007• .164±0.01◦ .191±.000⊙ .162±.014◦
AUC (↑) .980±.001 .944±.005• .979±.002⊙ .598±.131• .977±.002• .920±.003• .983±.005⊙ .970±.003• .972±.001•
F1 (↑) .894±.006 .821±.015• .812±.005• .743±.006• .808±.005• .746±.008• .844±.021• .729±.010• .882±.004•
ACC (↑) .976±.001 .943±.004• .945±.001• .950±.001• .958±.001• .870±.007• .965±.003• .943±.001• .973±.001•
HL (↓) .024±.001 .057±.004• .055±.001• .050±.001• .042±.001• .130±.007• .035±.003• .057±.001• .027±.001•
0-1 (↓) .058±.005 .157±.045• .074±.006• .686±.259• .000±.000◦ .100±.096⊙ .073±.010• .014±.045◦ .048±.002◦

TEX
𝑘 = 4
𝑑 = 21

RL (↓) .020±.001 .056±.005• .022±.002• .031±.002• .023±.002• .080±.003• .017±.005⊙ .031±.003• .016±.001◦
AUC (↑) .974±.001 .964±.005• .820±.016• .966±.005• .788±.085• .888±.004• .901±.025• .966±.004• .523±.010•
F1 (↑) .842±.012 .828±.007• .631±.010• .788±.034• .569±.177• .572±.013• .010±.007• .818±.007• .092±.022•
ACC (↑) .975±.001 .939±.003• .916±.003• .941±.006• .600±.018• .803±.009• .848±.003• .940±.003• .836±.001•
HL (↓) .025±.001 .061±.003• .084±.003• .059±.006• .400±.018• .197±.009• .152±.003• .060±.003• .164±.001•
0-1 (↓) .022±.004 .054±.063⊙ .095±.012• .146±.044• .500±.155• .454±.092• .641±.036• .131±.052• .688±.030•

HBS
𝑘 = 4
𝑑 = 52

RL (↓) .009±.001 .036±.005• .233±.018• .034±.005• .227±.085• .112±.004• .092±.019• .034±.004• .530±.035•
AUC (↑) .926±.003 .914±.006• .802±.016• .891±.005• .629±.012• .891±.009• .887±.009• .925±.005⊙ .872±.005•
F1 (↑) .705±.007 .550±.023• .422±.015• .394±.019• .374±.019• .507±.021• .407±.028• .538±.021• .384±.013•
ACC (↑) .958±.001 .928±.003• .918±.002• .923±.002• .263±.003• .867±.003• .938±.005• .932±.002• .930±.001•
HL (↓) .042±.001 .072±.003• .082±.002• .077±.002• .737±.003• .133±.003• .062±.005• .068±.002• .070±.001•
0-1 (↓) .131±.005 .252±.061• .301±.016• .313±.061• .674±.023• .552±.080• .327±.183• .187±.062• .208±.006•

MSRC
𝑘 = 4
𝑑 = 69

RL (↓) .050±.001 .086±.006• .179±.008• .110±.005• .530±.012• .109±.009• .097±.025• .075±.005• .090±.003•
AUC (↑) .919±.005 .717±.011• .579±.022• .824±.013• .629±.015• .841±.007• .538±.027• .845±.008• .647±.014•
F1 (↑) .777±.022 .262±.028• .373±.023• .276±.027• .208±.027• .538±.020• .139±.008• .270±.024• .146±.023•
ACC (↑) .956±.003 .857±.005• .883±.008• .861±.003• .172±.010• .803±.009• .852±.008• .865±.004• .871±.004•
HL (↓) .044±.003 .143±.005• .117±.008• .139±.003• .828±.010• .197±.009• .148±.008• .135±.004• .129±.004•
0-1 (↓) .071±.012 .727±.105• .106±.026• .581±.097• .827±.027• .485±.098• .994±.012• .608±.035• .273±.030•

LC
𝑘 = 3
𝑑 = 104

RL (↓) .048±.003 .283±.011• .343±.032• .176±.013• .684±.018• .159±.007• .364±.029• .155±.008• .196±.009•
AUC (↑) .574±.004 .254±.000• .562±.006• .219±.002• .208±.002• .215±.003• N/A .257±.001• .434±.004•
F1 (↑) .008±.001 .012±.000◦ .007±.001⊙ .005±.001• .020±.000◦ .001±.000• N/A .000±.000• .002±.000•
ACC (↑) .981±.000 .982±.000◦ .992±.000◦ .991±.000◦ .007±.000• .991±.000◦ N/A .992±.000◦ .992±.000◦
HL (↓) .019±.000 .018±.000◦ .008±.000◦ .009±.000◦ .993±.000• .009±.000◦ N/A .008±.000◦ .008±.000◦
0-1 (↓) .960±.002 .992±.005• .966±.003• .962±.016⊙ 1.00±.000• .959±.015⊙ N/A .977±.015• .976±.001•

IGD
𝑘 = 4
𝑑 = 376

RL (↓) .119±.001 .326±.001• .438±.006• .422±.006• .468±.004• .386±.008• N/A .317±.002• .156±.002•
win/tie/loss — — 42/1/5 43/2/3 43/1/4 38/1/9 42/4/2 31/7/2 41/3/4 39/1/8

where |𝑁𝑖+ | and |𝑁𝑖− | represent the quantity of minority and ma-
jority class samples under the 𝑖-th label, respectively. AIR ranges
from 0 to 1, and the more balanced the label distribution, the closer
this value is to 1, otherwise, to 0. AIRs of datasets are presented in
the last column of Table 1.

4.2 Experiment Settings
To showcase the performance of our IMIMLC, several repre-
sentatives of MIML algorithms were selected for comparison.
MIMLSVMmi [48] degenerates the original MIML task into an MIL
task to learn the instance-level classifier. MIMLSVM [43], MIMLNN
[48], MK-EnMIMLNN [18], KISAR [16], and MIMLwel [42] convert
original MIML tasks into MLL tasks to learn bag-level classifiers.
CM2AL [35] and MIML-LLMC [41] investigate the underlying re-
lationships among instances, bags, and labels to learn joint classi-
fiers. Among them, CM2AL, MK-EnMIMLNN, and MIML-LLMC
are state-of-the-art algorithms. To comprehensively quantify the
performance of all algorithms, we adopt six evaluation metrics,
which are commonly used and listed as follows:

• Accuracy (ACC, ↑): The proportion of correctly predicted
labels for the testing data.

• Area Under the Curve (AUC, ↑): The average area under
the Receiver Operating Characteristics (ROC) curve.

• F1 score (F1, ↑): The harmonic average of precision and
recall for classification.

• Hamming Loss (HL, ↓): The proportion of mislabeled pre-
dictions, which is the dual metric of accuracy.

• One-Error (0-1, ↓): The proportion of samples where the
most likely label is not the true label.

• Ranking Loss (RL, ↓): The proportion of cases where the
false soft labels are ranked higher than the true soft labels.

4.3 Results and Analysis
To ensure a fair comparison of classification performance, exper-
iments were conducted with the optimal parameters of all algo-
rithms. For each dataset, 60% of its samples were selected as the
training set, 20% as the validation set, and the remaining 20% as the
testing set. To eliminate the effect of random factors, experiments
were independently repeated 20 times. The average and standard
deviation of AUC, F1-score, accuracy, hamming loss, one-error, and
ranking loss on all datasets are recorded in Table 2. As seen from
the results in Table 2, we have several observations.

(1) IMIMLC outperforms other algorithms in most cases. For
example, on the LC dataset, IMIMLC performed approxi-
mately 7% better than the second-best MK-EnMIMLNN in
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Figure 3: Comparisons of IMIMLC with eight algorithms by the Nemenyi test in the non-parametric statistical sense.

evaluation based on AUC. In terms of F1, IMIMLC even out-
performed second-best MIMLSVMwel by approximately 24%,
which was a significant improvement. The reason may be
that IMIMLC has mitigated the imbalance issue with the
coding-based ensemble and an adaptive threshold strategy.

(2) Six evaluation metrics, AUC, F1, ACC, 0-1, RL, and HL, are
adopted to evaluate the performance of all MIML methods
from different aspects. In different tasks and scenarios, the
ranks of their classification performance based on different
metrics are different. For example, on the TEX dataset, the
AUC of our IMIMLC was slightly inferior to that of CM2AL,
while its F1 score was significantly better than others. Thus,
with imbalanced data, we should adopt multiple evaluation
metrics to verify the effectiveness of algorithms.

(3) Comparison methods KISAR and MIML-LLMC sometimes
performed more competitively than IMIMLC on the IMG
dataset. However, these algorithms have only considered one
aspect of our scenario setting without taking into account
the issue of label distribution imbalance, which makes them
less effective than IMIMLC in more experiments.

To deeply evaluate the performance of all comparison meth-
ods, we conducted statistical comparisons based on parametric and
non-parametric tests. For the parametric test, t-tests evaluate the
statistical differences between two specific algorithms on individual
metrics in each dataset. For the non-parametric test, the Nemenyi
tests compare performance based on the average ranks of algo-
rithms in all datasets. Their results are presented in Table 2 and
Fig. 3, from which we have the following observations.

(1) The t-test results in the last row of Table 2 demonstrate that
the performance of IMIMLC is still better than others in most
cases. In paired competitions with the t-test, the win rate of
IMIMLCwas at least 77.50%, sometimes even 89.58%. Besides,
different datasets have different extents of label imbalance
issues. Even in datasets with heavy imbalances, IMIMLC can
still play to its strengths and win in t-tests.

(2) Fig. 3 shows critical difference diagrams of Nemenyi tests
based on all metrics. In each subfigure, the average ranks of
algorithms are marked along the axis, with lower ranks to
the left. IMIMLC achieved the lowest average rank against

other comparison approaches in terms of all metrics. It has
been proven that IMIMLC is better than others. Besides, there
are some specials in these subfigures. In Fig. 3c, although
IMIMLC is at the top of the ranking, its rank exceeds “2” and
approaches “3”. It reminds us that in imbalanced datasets,
evaluations based on accuracy are unstable. It is necessary
to construct a comprehensive evaluation system.

4.4 Ablation Study
To better verify the effectiveness of our IMIMLC, we conducted abla-
tion studies to investigate the effect of each component. Firstly, we
validate the effectiveness of feature embedding based on the fisher
vector and fusion coding-based ensemble. Specifically, in stage 1,
we replaced our method with a classical method, which extracts
features by calculating the average of instance feature values, to val-
idate the effectiveness of the feature embedding approach adopted
by IMIMLC. In stage 2, we replaced our strategy with MESA, which
adopts decision trees (DTs) and SVMs as base classifiers, to validate
the effectiveness of the special ensemble model adopted by IMIMLC
for addressing the issue of imbalanced label distribution. Thereby,
six variants in the ablation experiment were formed.

Results on the IMG and MSRC datasets are presented in Table 3.
In stage 1, feature embedding improves model classification ability
to some extent. However, only conducting this in stage 1 does not
significantly improve model performance. In stage 2, the adoption
of the fusion coding-based ensemble effectively alleviates the imbal-
ance problem and results in excellent performance in most metrics.
However, only using our strategy in stage 2, it competed withMESA
in terms of F1 score. When both stages used strategies proposed in
IMIMLC, classification performance had an overall improvement of
approximately 5%-10%, even some metrics increased by 20% on the
MSRC dataset, which means that the ability of the model to tackle
imbalanced MIML tasks is dramatically enhanced.

Besides, to further validate the effectiveness of the adaptive
threshold method with classifiers in IMIMLC, we conducted ex-
periments based on fixed thresholds of 0.5, 0.6, 0.7, 0.8, and 0.9
and adaptive thresholds. Experimental results based on three met-
rics, which are mainly influenced by threshold-based hard labels,
on the TEX dataset are recorded in Table 4, and more results on
other datasets can be found in the appendix. It is obvious that our



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Xinyue Zhang and Tingjin Luo, et al.

Table 3: Comparisons of different feature embedding algorithms and imbalanced learning algorithms on IMG and MSRC
datasets. “✓” indicates our strategy, and “✗” indicates others.

Stage 1 Stage 2 ACC (↑) AUC (↑) F1 (↑) HL (↓) 0-1 (↓) RL (↓)
✗ ✗-DT .761±.005 .775±.006 .551±.007 .239±.005 .410±.009 .268±.008
✗ ✗-SVM .771±.026 .834±.004 .614±.014 .229±.026 .414±.051 .201±.017
✗ ✓ .812±.005 .821±.003 .591±.010 .188±.005 .327±.009 .199±.005

IMG ✓ ✗-DT .762±.004 .775±.005 .560±.009 .238±.004 .406±.017 .263±.006
✓ ✗-SVM .781±.011 .835±.004 .614±.008 .219±.011 .388±.027 .191±.005
✓ ✓ .827±.006 .837±.004 .639±.011 .173±.006 .306±.015 .189±.005
✗ ✗-DT .856±.012 .886±.011 .521±.012 .144±.012 .250±.023 .122±.010
✗ ✗-SVM .797±.012 .875±.006 .461±.011 .203±.012 .407±.030 .119±.008
✗ ✓ .926±.003 .887±.009 .403±.025 .074±.003 .285±.017 .095±.005

MSRC ✓ ✗-DT .883±.004 .898±.006 .558±.009 .117±.004 .203±.013 .113±.004
✓ ✗-SVM .875±.008 .923±.006 .605±.011 .126±.008 .181±.020 .069±.002
✓ ✓ .958±.001 .926±.003 .705±.007 .042±.001 .131±.005 .050±.001

adaptive threshold strategy is more beneficial for improving model
classification performance than the fixed threshold method.

Table 4: Comparisons of classification performance with dif-
ferent thresholds on the TEX datasets.

𝜂
Metrics HL (↓) ACC (↑) F1 (↑)

𝜂𝑝 = 0.5 .775±.002 .225±.002 .284±.001
𝜂𝑝 = 0.6 .291±.005 .709±.005 .500±.006
𝜂𝑝 = 0.7 .119±.001 .881±.001 .758±.005
𝜂𝑝 = 0.8 .074±.002 .926±.002 .826±.008
𝜂𝑝 = 0.9 .051±.001 .949±.001 .702±.005

𝜂𝐴 .024±.001 .976±.001 .894±.006

4.5 Hyper-parameter Sensitivity Analysis
IMIMLC involves two hyper-parameters: subset size 𝑘 and selected
subtask number 𝑑 . To enhance sample diversity and alleviate label
imbalance issues, the number of subtasks in 𝑄𝑘 , C𝑘

𝐶
, should be

maximized. Similar to [32], 𝑘 would not be too large, and it was
controlled to be within {2, 3, 4, 5, 6}. Besides, 𝑑 shouldn’t be too
small because small-scale subtasks could not cover sufficient labels.
Therefore, 𝑑 was controlled to be within {𝐶, 2𝐶, 3𝐶, 4𝐶}. To better
declare the effect of these hyper-parameters on the performance
of IMIMLC, we report AUCs based on different parameter combi-
nations in two datasets with high label space dimensions in Fig. 4.
Results based on other datasets are in the appendix.
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Figure 4: Sensitivity analysis with different 𝑘 and 𝑑 .

As presented in Fig. 4, when 𝑘 = 3 or 𝑘 = 4, IMIMLC demon-
strates better performance, and as 𝑑 increases, the capability of
the algorithm improves. Obviously, the optimal hyper-parameter
combination is relatively easy to obtain.

4.6 Computational Efficiency Analysis
To further compare the computational efficiency of algorithms, we
have recorded the running times of all algorithms on six datasets
in Fig. 5. As shown in Fig. 5, on the IMG dataset, IMIMLC is indeed
more efficient and faster. Compared to KISAR, which has the second-
shortest running time, our method had a speed improvement of
approximately 22.3%. Additionally, the number of labels, instances,
and dimensions also affect the efficiency of the algorithm. On other
datasets, IMIMLC did not perform at the fastest computing speed,
but it remained at a relatively high level.
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Figure 5: Comparisons of the relative logarithmic running
times of nine algorithms on six datasets. The Y-axis is scaled
by log to mitigate the gap between algorithms. A missing bar
indicates that the result is not available within 100 hours.

5 Conclusion
We discuss the MIML task in the context of imbalanced label distri-
bution and propose IMIMLC based on the error-correcting coding
ensemble and an adaptive threshold strategy to alleviate the effect
of imbalance. IMIMLC trains the ensemble model on randomly se-
lected data blocks to enhance the diversity of base classifiers and
adaptively learns its thresholds for each semantic class label to
obtain more reliable predictions than the manually pre-specified
schemes. Finally, extensive experimental results show the effective-
ness of IMIMLC against state-of-the-art MIML methods in imbal-
anced label distribution scenarios. In the future, we will extend
IMIMLC to solve problems in different cases, such as noisy labels,
novel classes, etc [34, 46, 47]. Besides, there are many more com-
plex nonlinear features in real-word applications. To handle such
tasks, we will study the model that ensembles various types of base
nonlinear classifiers, such as decision trees, neural networks, etc.
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