
Cells2Vec: Bridging the gap between experiments and
simulations using causal representation learning

Dhruva Abhijit Rajwade1
rajwadedhruva@gmail.com

Atiyeh Ahmadi2
atiyeh.ahmadi@uwaterloo.ca

Brian Ingalls3
∗bingalls@uwaterloo.ca

Abstract

Calibration of computational simulations of biological dynamics against experi-
mental observations is often a challenge. In particular, the selection of features that
can be used to construct a goodness-of-fit function for agent-based models of spa-
tiotemporal behaviour can be difficult (Yip et al. (2022)). In this study, we generate
one-dimensional embeddings of high-dimensional simulation outputs using causal
dilated convolutions for encoding and a triplet loss-based training strategy. We
verify the robustness of the trained encoder using simulations generated by unseen
input parameter sets. Furthermore, we use the generated embeddings to estimate
the parameters of simulations using XGBoost Regression. We demonstrate the
results of parameter estimation for corresponding time-series real-world experi-
mental observations, identifying a causal relationship between simulation-specific
input parameters and real-world experiments. Our regression approach is able to
estimate simulation parameters with an average R2 metric of 0.90 for model runs
with embedding dimensions of 4,8,12 and 16. Model calibration led to simulations
with an average cosine similarity agreement of 0.95 and an average normalized
Euclidean similarity of 0.69 with real-world experiments over multiple model runs.

1 Introduction

We investigate the learning of fixed-size representations from high-dimensional time-series data
collected from bacterial population growth simulations. These simulations, produced by an agent-
based model, generate time series with variable lengths. The representations learned from these
simulations can be used to calibrate model behaviour against corresponding experimental data sets.
In our approach, the agent-based models serve as computational frameworks where individual agents
representing a bacterial cell interact within a defined environment. This modeling is particularly
effective for simulating complex biological systems, such as bacterial colonies, as it captures the
dynamic interactions and behaviours at the cellular level. Our simulations begin with a single-cell
agent. This agent grows and divides over time, leading to the development of a microcolony composed
of a few hundred cells, all within a monolayer. During this growth, cells experience forces due to
their own growth and the shoving from neighbouring growing cells.

‘Calibration’ for our pipeline involves fine-tuning the parameters of our agent-based model to en-
sure that the outputs of our simulations align closely with the behaviours observed in real-world
experimental data on bacterial growth. This includes adjusting growth rates, division times, etc.
Through this calibration process, we aim to enhance the model’s accuracy and predictive power,
thereby ensuring that the learned representations from these simulations are reliably indicative of
actual bacterial population dynamics. Cellular adhesion also plays a crucial role in determining
colony structure. These interactions, along with energy costs of cell-cell overlaps, influence the
overall spatial distribution within the colony.

∗1Department of Biotechnology, Indian Institute of Technology Kharagpur, 2Department of Biology, Univer-
sity of Waterloo, 3Department of Applied Mathematics, University of Waterloo

Accepted to the NeurIPS 2023 Workshop on Causal Representation Learning.



Figure 1: (a) Image taken the last timestep of a sample real-life experiment (b) Image generated after
the last timestep of a sample simulation (c) Cells vs timesteps (for a sample simulation)

We take inspiration from Cess & Finley (2022), which describes the use of deep learning to rep-
resent on-lattice agent-based model simulations that align pixel-by-pixel to experimental imaging
observations.

Simulations are valuable tools for exploring the behaviour of complex systems, which often do not
produce easily reproducible outcomes. We view each experiment and corresponding simulation
as samples from an underlying distribution of biological behaviours. Drawing from these patterns,
we develop a model to capture the ‘true’ essence of cellular actions. This model can then be a
compass for comparing and interpreting real-world experiments. However, challenges arise when we
consider the application of these models. Ensuring they predict accurately in unfamiliar scenarios
and synchronizing the vast data from real-world experiments with the more condensed outputs of our
simulations are hurdles we aim to overcome. To tackle this, we refine our models to deliver outputs
that align with our experimental observations. We also note that our data(simulations and real-world
experiments) grows with time; that is, at every timestep, the number of cells increases due to cell
division (Figure 1(c)), and along with it, the observation size for each consecutive timestep. We
tackle this ’evolving’ time-series data by using causal convolutions, which are, in turn, stacked and
dilated to increase the receptive field of the overall model and capture fixed-size embeddings from
simulations with a wide range of sequence lengths.

2 Related Work

The topic of calibrating computer-generated simulations, including agent-based models, with real-
world experiments has been well-studied. Traditional methods for parameter calibration include
sensitivity testing (Gutenkunst et al. (2007)) and Bayesian calibration (Kennedy & O'Hagan (2001),
McCulloch et al. (2022)). Machine learning has been employed to build surrogate models to achieve
efficient exploration of high-dimensional parameter spaces (Lamperti et al. (2017)).

In the context of Representation Learning and Biological data, Soelistyo et al. (2022) use variational
autoencoders with a temporal component (τ -VAE) to learn representations of cells across time
from time-lapse microscopy images and consequently predict whether a cell is subject to mitosis,
apoptosis or other cell fates. Szubert et al. (2019) use Siamese networks for dimensionality reduction
of single-cell expression data for interpretation and visualization. Cess & Finley (2022) use three
disparate computational models to learn representations in a contrastive fashion. They use these
representations to compare different model outputs. One of the model types they use for their analyses
is an agent-based model of tumour-immune interactions. They treat this data as images, leveraging
the fact that the simulation dimensions resemble the dimensions of a multi-channel image, using the
approach introduced by Chen et al. (2020) to learn representations in a contrastive fashion. Yip et al.
(2022) provide a comprehensive review of traditional methods for agent-based model calibration.

Our goal is to learn representations from one dimensional multivariate time series data extracted from
time series microscopy simulations and real-world experiments of growing E.coli microcolonies.
Further, unlike Cess & Finley (2022), we do not have a clear method to augment our data for training
using the SimCLR (Chen et al. (2020)) approach. Hence, we focus on introducing similarity through
stochasticity, which is inherent in our agent-based model simulations.

2



(a) (b)

Figure 2: (a) Illustration of three stacked dilated causal convolutions, figure adapted from van den
Oord et al. (2016) (b) Composition of the ith layer of the Encoder, figure adapted from Franceschi
et al. (2019), each layer consists of two stacked Conv-Weight Norm-Leaky ReLU blocks

3 Methods

3.1 Data

3.1.1 Simulations

For this study, we use the Cellmodeller (Rudge et al. (2012)) agent-based modelling package to
generate simulations of microcolony formation from a single cell. Cell morphology parameters are
set to means of observed values. The model parameters to be inferred are gamma, which quantifies
cell rigidity, and Reg_param, which characterizes the energy cost of cell-cell overlap (with higher
values resulting in more stringent resolution of overlaps). We highlight again the dynamic nature of
our data over consecutive timesteps (with each timestep, our cells divide and increase in number).

We selected 100 parameter pairs (gamma, Reg_param) from a uniform distribution (sampling details
in the Supplement). We then produced 10 simulations for each parameter pair, resulting in a dataset
with a total of 1000 simulations. Note that the simulations are stochastic in nature, meaning iterations
of the same parameter set are not identical but exhibit similar behaviour. Each simulation began
with the same initial condition: a single cell of fixed length. Figures 1(b) and 1(c) show a sample
simulation snapshot at the last time point and the distribution of cells with time, respectively.

3.1.2 Real-World Experiments

Overnight cultures of E. coli MG1655 were diluted in LB Miller medium and incubated until an
OD600 of 0.4-0.6 was reached. Following protocols from Young et al. (2012), samples were diluted,
and 2.25 uL was placed on LB pads with 1.5% agarose. After 5 minutes, the pads were sealed
in a 50 mm coverslip dish. They were then imaged at 37°C in a GeneFrame chamber on a Zeiss
Axio Observer microscope. Using a 63x oil objective, images were taken every 3 minutes at various
locations, with intensity and exposure set at 50% and 150 ms, respectively. We then processed
the images using Ilastik (Berg et al. (2019)), followed by CellProfiler (McQuin et al. (2018)), and
a custom-written package (CellProfilerAnalysis v1.0.0). The outputs from these tools provide a
representation that mirrors the ABM, capturing a low-dimensional portrayal of each cell, which
includes details such as frame number, ID, centroid, orientation, length, and parent ID. Figure 1(a)
shows a sample experiment snapshot taken at the last time-point of the experiment.

3.1.3 Data Sampling

Our goal was to learn meaningful representations from simulations in a supervised fashion. We
employed a Triplet Loss (Hoffer & Ailon (2014)) based training strategy for our encoder. We refer to

3

 https://github.com/Ati-74/CellProfilerAnalysis/releases/tag/v1.0.0


Figure 3: Flowchart of our Pipeline

Algorithm 1 Algorithm to sample triplets Xpos, Xanc, and Xneg from a dataset

Require: Dataset D, Number of triplets N
n← 0
while n < N do

Randomly select a class indices i and l from D such that i ̸= l
Randomly select an anchor example index j from D[i]
Randomly select a positive example index k such that k ̸= j from D[i]
Randomly select a negative sample index m from D[l]
Xpos[n]← D[i][j] , Xanc[n]← D[i][k] ,Xneg[n]← D[l][m]
n← n+ 1

end while
return Xpos, Xanc, Xneg

each unique parametrization of the simulation model as a ‘class’. We start with a training dataset
containing 1000 simulations. We remove all simulations for 5 randomly selected classes from the
training dataset and use these to evaluate our trained encoder to check how robust our encoder is at
generalizing unseen classes. We call this the testing dataset. From the training dataset, we also remove
3 simulations from each class (out of 10 simulations per class) and use them to form a validation
dataset to be used to prevent our model from overfitting. We construct triplets by selecting two
simulations Xanc and X+ from a class , and a simulation X− from a different class. We randomly
sampled 10000 triplets from our training dataset and 2500 from our validation dataset. For each
training epoch, we pass the 10000 triplets to our encoder, backpropagate and compute loss for the
validation dataset of 2500 triplets to check for overfitting. The pseudo-code for the process of triplet
generation can be found in Algorithm 1.

3.2 Encoder Architecture

For the base architecture for our encoder, we used deep neural networks with exponentially dilated
causal convolution, as proposed by Franceschi et al. (2019). The model is based on stacks of dilated
causal convolutions, which map a given sequence to a sequence of the same length, such that the
ith element of the output sequence is determined using only values up until the ith element of the
input sequence. Each layer of our network combines causal convolutions, weight normalizations
(Salimans & Kingma (2016)), leaky ReLUs and residual connections. Each of these layers is given an
exponentially increasing dilation parameter. The output of this stacked network is transformed into a
fixed-size vector using a Global Max Pooling layer, which aggregates all of the temporal information.
This vector is further used for a linear transformation to produce the final embedding of our network.
We create a triplet network (Hoffer & Ailon (2014)) using the base encoder described in Figures 2(a)
and 2(b). Our simulations are growing with time, i.e. different time steps contain different numbers

4



Table 1: R2 Score and RMSE for Different Embeddings

Embedding Size R2 Score RMSE

Original New Original New

4 0.9831 0.9565 17.3402 35.1357
8 0.9877 0.9638 7.8902 21.0414

12 0.9786 0.9570 8.69 19.27
16 0.9889 0.9517 9.0044 13.2809

Table 2: ARI and AMI averaged over 10 runs

Embedding Size ARI AMI

4 0.882 0.926
8 0.950 0.934
12 0.857 0.902
16 0.898 0.930

Table 3: Experiment vs Simulation Similarity

Embedding Size Similarity Scores

Cosine Euclidean

4 0.948 0.661
8 0.984 0.743

12 0.963 0.618
16 0.992 0.732

of cells. This provided more motivation to use a sequence length invariant model consisting of 1D
convolutions rather than traditional LSTMs or RNNs.

3.3 Supervised Training

We aim to train an encoder-only architecture without the use of a decoder. We choose a vanilla
Triplet Loss, first introduced by Schroff et al. (2015) for training our Encoder. As introduced by
Hoffer & Ailon (2014), we use a Triplet Network consisting of three Encoder units with shared
weights. Let Xanc represent an anchor sample, Xpos represent a positive sample (same class as
the anchor), and Xneg represent a negative sample (different class from the anchor). Triplet loss
is based on the intuition that if two samples are similar (positive and anchor), their embeddings
will be close in the embeddings space, but if they are not (negative and anchor), their embeddings
will be far from one another. Let f(., θ) denote an encoder that maps samples to a feature space.
The objective to be minimized using Euclidean distance to quantify the magnitude of similarity,
L(Xanc, Xpos, Xneg), where the embedding is represented by f(x) ∈ Rd and f(., θ) encodes a
simulation X into a d-dimensional Euclidean space:

max
(
0, ∥f(Xanc, θ)− f(Xpos, θ)∥2 − ∥f(Xanc, θ)− f(Xneg, θ)∥2 + α

)
(1)

Where α is the margin parameter that enforces a minimum separation between classes.

Note, we did not use padding to normalize sequence lengths; the encoder is trained using the original
uneven sequence lengths. To counter overfitting, we trained the model until convergence using a
held-out validation set described in section 3.1.3. We fix a single hyperparameter set (except the final
latent dimension)for all our training pipeline experiments. We carried out no hyperparameter tuning,
as in Franceschi et al. (2019).

4 Results

Here, we present the results of assessments of the utility of the learned representations. We used
Python 3 for the implementation with PyTorch. 1.13.0 (Paszke et al. (2019)) for neural networks
and scikit-learn (Pedregosa et al. (2011)) for K-Means, TSNE and PCA analyses. 2 We also used
XGBoost (Chen & Guestrin (2016)) for regression to estimate parameters. Each encoder was trained
using the Adam optimizer (Kingma & Ba (2017)) on a single Nvidia T4 GPU with CUDA 11.0 unless

2The code for this work is available at https://github.com/ingallslab/Cells2Vec

5

https://github.com/ingallslab/Cells2Vec


(a) (b)

Figure 4: (a) PCA+KMeans plot With cluster centres marked for embedding size 8, for unseen
parameter set(s) simulations. (b) t-SNE scatter plot with perplexity 10 for embedding size 8 and
unseen parameter set(s) simulations

stated otherwise. Opting for appropriate hyperparameters in supervised methods is challenging due
to the prevalent nature of supervised downstream tasks. Hence, as proposed by Wu et al. (2018) and
used by Franceschi et al. (2019), we select a single set of hyperparameters for all our analysis. Our
complete pipeline can be understood through Figure 3.

4.1 Evaluating Quality Of Learned Representations

We trained our models until convergence or until an early-stopping condition was triggered (validation
loss increasing in more than 5 epochs continuously). We evaluated our encoder using simulations
from our evaluation dataset, the classes unseen by the model while training. We obtained embeddings
for these simulations, clustered them using K-Means clustering, and computed Adjusted Mutual
Information(AMI) and Adjusted Rand Index scores(ARI).

We further validated the results using a Principal Component Analysis in conjugation with a K-Means
clustering analysis (Figure 3(a)) and a t-SNE dimensionality reduction (Figure 3(b)). For every
embedding size, we trained and assessed 10 models, in each case randomly sampling 5 classes to
be used for evaluation as described above. We present the 10-fold averaged metrics in Table 2. We
find that the model with embedding size 8 is best able to cluster the dataset and that our model is
able to generalize on parameter sets unseen while training. Overall, our ARI and AMI results show
that our encoder is able to generalize between unseen classes and hence is able to learn meaningful
representations from our simulations.

4.2 Parameter Estimation from Embeddings

We used XGBoost regression (Chen & Guestrin (2016)) to predict values of the two parameters
(gamma and Reg_param). We use the embeddings generated from our trained encoder as inputs
for the regression model and absolute parameter values as labels, with the task being estimating
parameter values from low dimensional embeddings.

We present results for two Regression models, the first being passed the original set used to train
the encoder, and the second being passed a new set of 300 simulations with randomly sampled input
parameter values. We use a train: test split of [0.5:0.5] for both models. We present regression metrics
(R2 scores) for both models in Table 1.

4.3 Evaluating On Real-World Experiments

We obtain embeddings for data processed from 13 real-world experiments performed in-house. Using
a standard pipeline, we obtain data in a format similar to simulations (number of cells, number of
features). We use these embeddings to estimate 13 parameter sets, one for each experiment. Using

6



these parameter sets, we generate simulations, which we expect to be analogous and similar to our
experiments. This leads us to an interesting caveat: Our real-world experiments have, on average,
3500 timesteps, while our simulations have, on average, 1300 timesteps. To verify this, we pass our
experiment-analogous simulations through our encoder to obtain embeddings for the simulations
and compare these embeddings with the experiment embeddings to compute two similarity scores.
We decided to use cosine similarity as our first similarity metric, which is magnitude invariant. We
also normalize the embeddings and use them to compute Euclidean similarity scores. The cosine
and Euclidean similarity values for different embedding sizes are presented in Table 2. We note
that an encoder with tightly clustered outputs would also result in high cosine similarity. Hence, we
also test another metric for a thorough validation. Our results (Table 3) indicate that our pipeline is
successfully able to generate simulations analogous to experiments, as shown by the Euclidean and
Cosine similarity values.

5 Discussion and Conclusion

Here, we present a pipeline to learn embeddings from simulations of cellular population dynamics.
We used a trained encoder to infer simulation-specific parameters. This approach uses causal
dilated convolutions to infer a single-dimensional embedding from high-dimensional multivariate
simulations. The nature of these simulations, intricately woven with complex biological dynamics
like cell orientation changes, shoving, and cellular adhesion, provides a detailed vision into the world
of cell colonies.

To illustrate some applications of our encoder, we formulated a regression task and a simulation-
experiment inference task. While prior works, e.g. Cess & Finley (2022), build towards using
Representation Learning to compare complex model outputs, they involve leveraging simulation data
as 2D images and augmenting these images to train an Encoder in a Siamese fashion. In contrast, our
method uses only simulations to train an encoder to extract meaningful representations and uses this
encoder directly on data from experiments to estimate simulation-specific parameters via regression.
We evaluate our learned representations using methods such as K-Means clustering and principal
component Analysis, using ARI and AMI as metrics, and visual validation through t-SNE analysis.

We estimated simulation-specific parameters from experiment embeddings using an XGBoost model
trained using simulation embeddings and corresponding parameters as labels. Our parameter estima-
tion methodology emerged successful at generating simulations aligned with experiments, as inferred
through cosine similarity and normalized Euclidean similarity metrics. These results show that our
pipeline was successful in capturing the causal relationship between parameters and simulations, as
well as experiments, to a good extent. The results indicate that our formulation is a viable way to
estimate simulation-specific parameters from experiments (through similarity scores, Table 3) and
generate good-quality embeddings from temporal time series (through ARI and AMI scores, Table 2)
for interpretation.

In the future, we will aim to extend our pipeline using a much larger dataset, which would cover a rich
sampling of real-world parameterizations. We are facing some out-of-distribution errors, where our
encoder fails to capture good quality representations from simulations with parameter values different
than that of the training parameter distributions, and we hope to fix this by including all biologically
plausible parameter sets in our training data. We also plan to implement different triplet-mining
strategies to learn better quality embeddings. Additionally, the idea of regenerating the original length
sequences from fixed-size embeddings is one we are actively pursuing, using a transformer-based or
RNN-based sequence generation model.

Acknowledgments

We would like to acknowledge Aryan Satpathy for valuable comments, suggestions and discussions.
We would also like to thank Aaron Yip for his suggestions and for providing Figure 1(a). We thank as
well our anonymous reviewers for their constructive suggestions. We acknowledge financial support
from the MITACS Globalink Program and from the Canadian Natural Sciences and Engineering
Research Council (NSERC, RGPIN-2018-03826).

7



References
Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, J.,

Beier, T., Rudy, M., et al. Ilastik: interactive machine learning for (bio) image analysis. Nature
methods, 16(12):1226–1232, 2019.

Cess, C. G. and Finley, S. D. Representation learning for a generalized, quantitative comparison of
complex model outputs, 2022.

Chen, T. and Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, aug 2016. doi: 10.1145/2939672.
2939785. URL https://doi.org/10.1145%2F2939672.2939785.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning of
visual representations, 2020.

Franceschi, J.-Y., Dieuleveut, A., and Jaggi, M. Unsupervised scalable representation learning for
multivariate time series. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf.

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., and Sethna, J. P.
Universally sloppy parameter sensitivities in systems biology models. PLoS Computational
Biology, 3(10):e189, October 2007. doi: 10.1371/journal.pcbi.0030189. URL https://doi.
org/10.1371/journal.pcbi.0030189.

Hoffer, E. and Ailon, N. Deep metric learning using triplet network, 2014.

Kennedy, M. C. and O'Hagan, A. Bayesian calibration of computer models. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 63(3):425–464, September 2001. doi: 10.
1111/1467-9868.00294. URL https://doi.org/10.1111/1467-9868.00294.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization, 2017.

Lamperti, F., Roventini, A., and Sani, A. Agent-based model calibration using machine learning
surrogates, 2017.

McCulloch, J., Ge, J., Ward, J. A., Heppenstall, A., Polhill, J. G., and Malleson, N. Calibrating
agent-based models using uncertainty quantification methods. Journal of Artificial Societies and
Social Simulation, 25(2), 2022. doi: 10.18564/jasss.4791. URL https://doi.org/10.18564/
jasss.4791.

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., Karhohs, K. W., Doan, M.,
Ding, L., Rafelski, S. M., Thirstrup, D., et al. Cellprofiler 3.0: Next-generation image processing
for biology. PLoS biology, 16(7):e2005970, 2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style, high-performance
deep learning library, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Rudge, T. J., Steiner, P. J., Phillips, A., and Haseloff, J. Computational modeling of synthetic
microbial biofilms. ACS Synthetic Biology, 1(8):345–352, August 2012. doi: 10.1021/sb300031n.
URL https://doi.org/10.1021/sb300031n.

Salimans, T. and Kingma, D. P. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks, 2016.

8

https://doi.org/10.1145%2F2939672.2939785
https://proceedings.neurips.cc/paper_files/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf
https://doi.org/10.1371/journal.pcbi.0030189
https://doi.org/10.1371/journal.pcbi.0030189
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.18564/jasss.4791
https://doi.org/10.18564/jasss.4791
https://doi.org/10.1021/sb300031n


Schroff, F., Kalenichenko, D., and Philbin, J. FaceNet: A unified embedding for face recognition and
clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
jun 2015. doi: 10.1109/cvpr.2015.7298682. URL https://doi.org/10.1109%2Fcvpr.2015.
7298682.

Soelistyo, C. J., Vallardi, G., Charras, G., and Lowe, A. R. Learning biophysical determinants of
cell fate with deep neural networks. Nature Machine Intelligence, 4(7):636–644, June 2022. doi:
10.1038/s42256-022-00503-6. URL https://doi.org/10.1038/s42256-022-00503-6.

Szubert, B., Cole, J. E., Monaco, C., and Drozdov, I. Structure-preserving visualisation of high dimen-
sional single-cell datasets. Scientific Reports, 9(1), June 2019. doi: 10.1038/s41598-019-45301-0.
URL https://doi.org/10.1038/s41598-019-45301-0.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N.,
Senior, A., and Kavukcuoglu, K. Wavenet: A generative model for raw audio, 2016.

Wu, L., Yen, I. E.-H., Yi, J., Xu, F., Lei, Q., and Witbrock, M. Random warping series: A random
features method for time-series embedding, 2018.

Yip, A., Smith-Roberge, J., Khorasani, S. H., Aucoin, M. G., and Ingalls, B. P. Calibrating spa-
tiotemporal models of microbial communities to microscopy data: A review. PLOS Compu-
tational Biology, 18(10):e1010533, October 2022. doi: 10.1371/journal.pcbi.1010533. URL
https://doi.org/10.1371/journal.pcbi.1010533.

Young, J. W., Locke, J. C., Altinok, A., Rosenfeld, N., Bacarian, T., Swain, P. S., Mjolsness, E., and
Elowitz, M. B. Measuring single-cell gene expression dynamics in bacteria using fluorescence
time-lapse microscopy. Nature protocols, 7(1):80–88, 2012.

9

https://doi.org/10.1109%2Fcvpr.2015.7298682
https://doi.org/10.1109%2Fcvpr.2015.7298682
https://doi.org/10.1038/s42256-022-00503-6
https://doi.org/10.1038/s41598-019-45301-0
https://doi.org/10.1371/journal.pcbi.1010533


A Supplementary Material

A.1 Multi-Variate One dimensional Time-Series

Our simulations were multi-variate and one-dimensional (time). From Cellmodeller simulations,
multiple features can be inferred at every timestep. Here, we only selected the features that were
dynamic with time. A list of our features with short descriptions is presented in Table A1.

Table A1: Features and Descriptions
Feature Description

ID Unique identifier to keep track of a cell through time
Parent Parent identifier to track lineage

CellAge Age of the cell
Start_vol Length of the bacterium when it was first formed.

pos Position of the cell at current timestep
length Length of cell at current timestep

dir Orientation of cell along X-Z axis
ends0 Termini 1 of the cell
ends1 Termini 2 of the cell

strainRate_rolling The average change in bacterial length over its lifespan

A.2 Data Processing

We preprocess both our simulations and experiments so that the set of time series values for each
dataset has zero mean and unit variance. For each simulation and experiment, each dimension of the
time series was preprocessed independently from the other dimensions by normalizing in the same
way its mean and variance.

A.3 Sampling of parameters

We conducted 1000 simulation sets, where key parameters were varied to study their impact on the
discriminant analysis. The parameter values gamma and Reg_param were sampled from Gaussian
distributions (generalized equation given below) with values given in Table A2(rounded off).

N (x;µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2

Table A2: Parameter Sampling from Gaussian Distribution
Parameter Mean (µ) Standard Deviation (σ) Sampled Value
gamma 507.478 267.824 ∼ N (507.478, 267.824)
reg_param 0.635 0.303 ∼ N (0.635, 0.303)

A.4 Triplet Network Architecture

We used a Triplet architecture consisting of three encoders, as described in Section 3.2. We depict the
architecture of our Triplet network in Figure A1.

A.5 Network training

We used an early stopping condition on the Validation loss to halt training and prevent overfitting.
Specifically, we set a patience parameter value of 5, meaning if validation loss increased for more
than 5 epochs continuously, we would halt training. We present training and validation loss curves
for all embedding sizes used in the study in Figure A2.

10



Figure A1: (a): Triplet Network, Image adapted from Hoffer & Ailon (2014), dotted lines indicate
weight sharing between the encoder instances

Figure A2: (a): Top Left, Embedding Size 4. (b): Top Right, Embedding Size 8. (c): Bottom Left,
Embedding Size 12. (d): Bottom Right, Embedding Size 16.

A.6 Encoder Hyperparameters

We choose a single set of parameters for our Encoder, presented in Table A3. We chose a depth of 5
for our Encoder to make training faster yet retaining sufficient depth to capture features efficiently.

11



Table A3: Encoder Hyperparameter Choices
Hyperparameter Description Value
num_samples Number of triplets sampled 10000
num_val Number of validation classes 5
num_epochs Number of training epochs 30
learning_rate Learning rate, for Adam Optimizer 0.001
in_channels Input channels for the network 10
channels Number of channels for convolution operation 10
depth Depth of the network (number of stacked encoder blocks) 5
reduced_size Simulation reduced to this size, input to GlobalAvgPooling layer 200
out_channels Embedding size, output of GlobalAvgPooling layer 8

A.7 Evaluation Metrics

A.7.1 Adjusted Rand Index (ARI)

The ARI quantifies the similarity between two data clusterings, considering the possibility of random
agreement. It adjusts the Rand Index for chance, providing a more robust metric.

Given a set of n elements S = {o1, . . . , on} and two partitions X = {X1, . . . , Xr} and Y =
{Y1, . . . , Ys} of S, define the following:

a, the number of pairs of elements in S that are in the same subset in X and in the same subset in Y .

b, the number of pairs of elements in S that are in different subsets in X and in different subsets in Y .

c, the number of pairs of elements in S that are in the same subset in X and in different subsets in Y .

d, the number of pairs of elements in S that are in different subsets in X and in the same subset in Y .

The Rand index (R) is given by:

R =
a+ b

a+ b+ c+ d
=

a+ b(
n
2

)
Where

(
n
2

)
represents the number of possible pairs of elements from a set of size n.

A.7.2 Adjusted Mutual Information (AMI)

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account
for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger
number of clusters, regardless of whether there is actually more information shared.

For two clusterings U and V , the AMI is given as:

AMI(U, V ) =
MI(U, V )− E(MI(U, V ))

avg(H(U), H(V ))− E(MI(U, V ))

Where:

MI(U, V ) is the Mutual Information between clusterings U and V .

E(MI(U, V )) is the expected Mutual Information under random labeling.

H(U) and H(V ) are the entropies of clusterings U and V .

avg(H(U), H(V )) is the average of the entropies of U and V .

A.7.3 Cosine Similarity

Cosine Similarity is a metric used to measure the similarity between two non-zero vectors in an inner
product space, typically a high-dimensional space represented as vectors. It quantifies the cosine of

12



the angle between the vectors, which is a measure of their orientation or direction relative to each
other.

The Cosine Similarity (cos(θ)) between two vectors A and B is calculated as:

cos(θ) =
A ·B

∥A∥∥B∥

Where:

A ·B is the dot product of vectors A and B.
∥A∥ and ∥B∥ are the magnitudes (Euclidean norms) of vectors A and B.

A.7.4 Euclidean Similarity

Euclidean Similarity is a similarity measure that quantifies how close two data points are in Euclidean
space.

The Euclidean Similarity between two data points X and Y is calculated as:

Euclidean Similarity =
1

1 + Euclidean Distance

Where: Euclidean Distance is the Euclidean distance between data points X and Y , computed as:

Euclidean Distance =

√√√√ n∑
i=1

(Xi − Yi)2

This similarity measure returns values between 0 and 1, where 0 indicates maximum dissimilarity
(infinite Euclidean distance), and 1 indicates maximum similarity (Euclidean distance of 0, meaning
the points are identical).

13


	Introduction
	Related Work
	Methods
	Data
	Simulations
	Real-World Experiments
	Data Sampling

	Encoder Architecture
	Supervised Training

	Results
	Evaluating Quality Of Learned Representations
	Parameter Estimation from Embeddings
	Evaluating On Real-World Experiments

	Discussion and Conclusion
	Supplementary Material
	Multi-Variate One dimensional Time-Series
	Data Processing
	Sampling of parameters
	Triplet Network Architecture
	Network training
	Encoder Hyperparameters
	Evaluation Metrics
	Adjusted Rand Index (ARI)
	Adjusted Mutual Information (AMI)
	Cosine Similarity
	Euclidean Similarity



