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Abstract

The Speech Signal Processing ToolKit (SPTK) is an open-
source suite of speech signal processing tools, which has been
developed and maintained by the SPTK working group and has
widely contributed to the speech signal processing community
since 1998. Although SPTK has reached over a hundred thou-
sand downloads, the concepts as well as the features have not
yet been widely disseminated. This paper gives an overview of
SPTK and demonstrations to provide a better understanding of
the toolkit. We have recently developed its differentiable Py-
Torch version, diffsptk, to adapt to advancements in the deep
learning field. The details of diffsptk are also presented in this
paper. We hope that the toolkit will help developers and re-
searchers working in the field of speech signal processing.
Index Terms: digital signal processing, open-source software,
differentiable DSP

1. Introduction

There are many applications using speech signals such as text-
to-speech synthesis, singing voice synthesis, speech recogni-
tion, speaker recognition, and speech coding. To further the
research and development of speech products, it would be bene-
ficial to develop an open-source, general-purpose speech signal
processing toolkit.

The Speech Signal Processing ToolKit (SPTK) was origi-
nally developed and used in the research group of Satoshi Imai
and Takao Kobayashi at Tokyo Institute of Technology in 1990s.
The tools can be used via a command-line interface (CLI) on a
UNIX environment. Some of the tools were repackaged by Kei-
ichi Tokuda as the organizer in collaboration with Takashi Ma-
suko and Kazuhito Koishida, and then distributed as SPTK ver-
sion 1.0" in 1998. The source code of the distribution including
data processing, graph drawing, sample rate conversion, Fourier
transform, speech analysis, speech synthesis, and vector quanti-
zation was written in the traditional C language. In 2000, SPTK
version 2.0° was released with an additional 30 tools, bringing
the total to about 100 tools. Note that versions 1.0 and 2.0 were
not approved for commercial use. Then SPTK version 3.0° was
distributed in 2002 with the modified BSD license to be more
suitable for product development. The only difference from ver-
sion 2.0 was the license. SPTK version 3.0 was then improved
and maintained for the next several years, and matured into
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version 3.11 in 2017. These versions have been openly main-
tained on the SourceForge platform and have been widely used
in the speech signal processing community [1, 2, 3, 4]. How-
ever, the source code was somewhat unreadable, which made it
difficult to understand the implemented algorithms and modify
the source code. In addition, the implemented features were not
sufficiently portable because the source code was written in C.

To address these issues, we rewrote SPTK version 3.11 in
C++ while retaining its core design, which will be described
in detail in the next section. Although it can be rewritten in
Python, we selected C++ for processing speed and compatibil-
ity with embedded platforms. We only used Python for graph
drawing to generate modern images using sophisticated Python
plotting libraries. The new SPTK was released as version 4.0*
in 2021 with additional tools and continues to be maintained in
the public GitHub repository. With the migration, the license
was changed from the modified BSD license to the Apache Li-
cense 2.0.

The new version of SPTK is readable and highly portable:
however, the implemented features are not compatible with
modern deep learning frameworks. The integration of deep
learning with speech signal processing techniques is a research
area of growing interest, and its effectiveness has begun to show
in various contexts [5, 6, 7, 8, 9, 10]. Thus, we started to ex-
port the SPTK features to be compatible with one of the most
widely used deep learning frameworks, PyTorch [11]. The ex-
ported SPTK library has been publicly distributed as diffsptk’
since 2022. It includes some special signal processing modules
such as mel-cepstral analysis [12] and mel-cepstral synthesis
filtering [13], which are not implemented in other signal pro-
cessing libraries [10, 14]. Further details will be described in
Section 4.

The remaining drawback of SPTK is that the concepts and
features are not well explained, making it difficult for users to
approach. To solve this problem, in this paper, we introduce the
concepts of SPTK as an open-source speech signal processing
library and present the main features of SPTK with demonstra-
tions to help users understand the tools. We also present the
concepts of the differentiable version of SPTK for differentiable
digital signal processing.

1.1. Related work

Table 1 shows a summary of signal processing libraries. Al-
though there is some overlap in the table, SPTK also offers
unique features, particularly for speech analysis and synthesis.
SPTK can be used as a complement to other libraries.

“https://github.com/sp-nitech/SPTK/releases
Shttps://github.com/sp-nitech/diffsptk



2. Design

We design SPTK on the basis of the following policies:

* Raw data format: The data used in SPTK do not have any
headers or structures. No data compression is used. The
raw data format enables users to read the contents of data
files immediately via a binary file dump. This is very help-
ful for checking the sanity of data in experiments. In addi-
tion, the data generated by SPTK can be used in other soft-
ware through simple binary reading. This policy is opposite
to other well-known libraries such as the Kaldi archive for-
mat (.ark), hierarchical data format (.hdf), and binary data
format in NumPy (.npy). The data type used in SPTK is
little-endian 64-bit double (version 4.0 or higher) or 32-bit
float (version 3.11 or lower) in principle.

« Standard I/O-based: SPTK consists of over 100 commands.
Most of the commands receive input data from the standard
input and send the processed data to the standard output. This
means that users can perform complex data processing by
combining the SPTK commands using the pipe command (|)
in Unix-like computer operating systems. The SPTK com-
mands can chain with basic UNIX commands such as cat,
less, and wc. This policy is unique to SPTK [16, 17] and
makes it intuitive and easy to use. To prevent data contami-
nation, error or warning messages from the SPTK commands
are output to the standard error rather than the standard out-
put.

* Non-interactive: The SPTK commands do not require in-
teractive user inputs. The parameters that control data pro-
cessing, e.g., frame shift in speech analysis, must be set via
command line options beforehand.

¢ Minimum requirements: SPTK intentionally avoids the use
of external libraries such as Eigen [18]. While importing
more external libraries facilitates the development of SPTK,
some users or systems may not be able to install the li-
braries due to their machine environments. Furthermore, us-
ing multiple libraries makes licensing complicated and less
user-friendly. To avoid these problems, we have implemented
signal processing algorithms from scratch, including the fast
Fourier transform (FFT).

* Thread-safe (version 4.0 or higher): SPTK ensures thread
safety for parallel data processing. A general C++ class in
SPTK has a Run function to perform data processing. The
Run function typically requires the reference of input data,
the pointer of output data, and the pointer of buffers as the
arguments. By using different buffers in different threads,
users can perform data processing in parallel without unin-
tended data access.

* No memory leaks (version 4.0 or higher): The older versions
of SPTK have a risk of memory leaks. To avoid this, we
use std::vector in the C++ standard template library instead
of the malloc function for dynamic memory allocation. In

addition, a memory mismanagement detector is used to check
for memory leaks in testing.

3. Features

The section describes the main features in the current version of
SPTK.

3.1. Data type conversion

One of the most frequently used SPTK commands is x2x. The
command converts the input data type to a specific data type. In
the following example, all values in the short-type example file
(data.short) are increased by two times.

$ x2x +sd data.short | sopr -m 2 |
x2x +da | less

The first x2x converts the short type to double type to process
the example data in the other SPTK commands. The last x2x
converts the double type to ASCII to show the processed exam-
ple data on the screen.

3.2. Data rearrangement

The order of data in SPTK is represented by the following vec-
tor:

T T T T
[ 2 - xya ], M
where @, is a D-dimensional vector [Zn.1,%n.2,...,Tn,D]"

and N is the length of data sequence. SPTK can rearrange the
dataon a CLIL, e.g.,
T T T T
[ ®F @l zp | 2
is obtained by bcut where S > 0 and £ < N. In the ex-

ample below, the 2nd and 3rd samples of the example data are
extracted:

$ bcut -1 1 -s 2 -e 3 +s data.short

where —1 1 means D = 1 and +s assumes short-type input
data. Slicing (bcp), concatenation (merge), reversing (reverse),
delaying (delay), transpose (transpose) operations are also pro-
vided. More information can be found in the reference manual:
https://sp—-nitech.github.io/sptk/latest/.

3.3. Graph drawing

To better understand data visually, the SPTK commands make it
possible to draw data (fdrw), waveforms (gwave), discrete sig-
nals (gseries), log-spectrum (glogsp), running log-spectra (gr-
logsp), spectrogram (gspecgram), and pole-zero (gpolezero).
These commands are implemented in Python using the Plotly
graphing library [19]. The examples in this paper use these
commands but some options are omitted due to space limita-
tions.

Table 1: Summary of open-source signal processing libraries

SPTK3 SPTK4 diffsptk SciPy [15] TorchAudio [14]
Language C C++ Python Python Python
UNIX-like commands v v
Deep learning v v
Community SourceForge GitHub GitHub GitHub GitHub
License BSD 3-Clause  Apache 2.0  Apache 2.0 BSD 3-Clause BSD 2-Clause
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Figure 1: Running spectra of the first 100 frames of the example data.
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Figure 2: A pitch contour of the example data.

3.4. Spectral analysis

The example below computes spectra from a speech waveform
using the short-term Fourier transform (STFT) with a 25-ms
Blackman window and 5-ms frame shift:

$ x2x +sd data.short |
frame -p 80 -1 400 |
window -1 400 -L 512 |
spec -1 512 > data.sp

where the FFT length is set to 512. Acoustic features can
then be extracted from the spectra via autocorrelation analy-
sis (acorr, Ipc), adaptive mel-cepstral analysis (amgcep) [20,
21], or mel-generalized cepstral analysis (mgcep) [12, 22, 23].
In the following example, 24-th order mel-cepstral coefficients
are extracted from the obtained spectra.

$ mgcep —-m 24 -1 512 -a 0.42 -g 0 \
< data.sp > data.mc

Figure 1 shows the running spectra computed from the mel-
cepstral coefficients of the first 100 frames of the example data.
The figure is generated by the following command.

$ mgc2sp —m 24 -1 512 -a 0.42 data.mc |
grlogsp -1 512 -t -x 16 —-e 99 \
-H 500 -W 2000 spec.pdf

3.5. Pitch analysis

The extraction of pitch contours of speech is an important
procedure in signal processing. SPTK provides a wrapper of
sophisticated pitch extraction algorithms independently devel-
oped by third parties. The current implemented algorithms are
RAPT [24], SWIPE’ [25], REAPER [26], and DIO [27]. In
the following example, a pitch contour of the example data is
extracted by the RAPT algorithm with a 5-ms frame-shift.

S x2x +sd data.short |
pitch -a 0 -s 16 -p 80 > data.pit
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Figure 3: Pole and zero of a first-order all-pass filter. Small
circle and x-mark represent zero and pole, respectively.

Figure 2 shows the extracted Fy contour obtained by the fol-
lowing command.

$ sopr -—magic 0 —-INV -m 16000 -MAGIC 0 \
< data.pit | fdrw -g £f0.pdf

In the command, sopr converts pitch [sec] to Fy [Hz]. Note that
SPTK outputs an unvoiced symbol as 0 as a magic number. If
log Fp is selected as the output format of pitch, the unvoiced
symbol is represented as —1e 4 10. SPTK also provides a com-
mand used for pitch mark (GCI) extraction (pitch_mark).

3.6. Speech synthesis (linear time-variant filtering)

SPTK can reconstruct waveform from acoustic features given
an excitation signal using a linear synthesis filter. The imple-
mented synthesis filters are an all-zero digital filter using im-
pulse response (zerodf), all-pole digital filter using linear pre-
dictive coding (LPC) coefficients (poledf) [28], all-pole lattice
digital filter using PARCOR coefficients (Itcdf), line spectral
pairs (LSP) digital filter using LSP coefficients (Ispdf) [29],
and mel-log spectrum approximation (MLSA) digital filter us-
ing mel-cepstral coefficients (mglsadf) [20, 30]. In the follow-
ing example, the speech waveform is reconstructed from a sim-
ple excitation signal using the MLSA filter with the extracted
mel-cepstral coefficients.

$ excite -p 80 data.pit |
mglsadf -p 80 -m 24 -a 0.42 -P 7 \
< data.mc | x2x +ds -r > syn.raw
The commands for checking the stability of these synthesis fil-
ters are provided (Ipccheck, Ispcheck, mlsacheck).

3.7. Linear time-invariant filtering

A signal can be processed using a finite/infinite impulse re-
sponse (FIR/IIR) digital filter. The example below shows how
to apply a first-order all-pass filter to the example data:
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Figure 4: Relationship between SPTK commands (green strings) and data representations (yellow circles). This block diagram is
inspired by Mitch Bradley’s design, who kindly provided us the block diagram for previous versions of SPTK.

$ x2x +sd data.short |

dfs -a 1 -0.42 -b -0.42 1 > data.out
where the transfer function is
—0.42 + 2z~
H(z)= ———. 3
A S 3)

The poles and zeros of a digital filter can be computed and plot-
ted in the z-plane. Figure 3 plots the pole and zero of the first-
order all-pass filter H(z). The figure is generated as follows.

$ echo 1 -0.42 |
root_pol —-m 1
S echo -0.42 1 | x2x +ad |
root_pol -m 1 -g 0 > data.z
$ gpolezero -p data.p -z data.z pz.pdf

X2X
-q

+ad |
0 > data.p

3.8. Mel-filter bank analysis

For speech recognition or speaker recognition, SPTK supports
mel-filter bank analysis (fbank, mfcc) based on HTK [31]. In
the following example, 12-order mel-frequency cepstrum coef-
ficients (MFCCs) and the energy with their first derivatives are
extracted. A time-invariant pre-emphasis filter is applied to the
example data before the extraction.

S x2x +sd data.short |
frame -1 400 -p 160 -n 1 |

dfs -b 1 -0.97 |
window -1 400 -L 512 -w 1 -n 0 |
mfcc -1 512 -n 40 -c 22 -m 12 \

-L 64 -H 4000 -s 16 -qg 4 -o 1 |
delta -m 12 -d -0.5 0 0.5 > data.mfc

3.9. Parameter transformation

The relationship between the SPTK commands and data repre-
sentation is illustrated in Fig. 4. As the figure shows, spectral
parameters can be reversibly transformed into other represen-
tations including impulse response, autocorrelation, LPC coef-
ficients, PARCOR coefficients, LSP coefficients [32], log area
ratio (LAR), composite sinusoidal modeling (CSM) [33], cep-
stral coefficients, mel-cepstral coefficients, negative derivative
of phase spectrum (NDPS) [34], and more.

3.10. Vector quantization

For speech coding, a codebook for vector quantization can
be generated using the Linde-Buzo-Gray algorithm [35]. The
codebook is obtained by gradually increasing the codebook
size. Vector quantization can then be performed with the gener-
ated codebook. The example below computes a codebook of the
extracted mel-cepstral coefficients and reconstructs them from
the encoded vector indices.



$ 1lbg —m 24 -e 32 data.mc > mc.cb
$ msvg -m 24 -s mc.cb < data.mc |
imsvg —-m 24 -s mc.cb > data.mc.dec

Multi-stage (redidual) vector quantization can be performed by
stacking —s option.

3.11. Subband decomposition

Subband analysis and synthesis using pseudo-quadrature mir-
ror filters (PQMFs) [36, 37] is supported in SPTK. The filter
coefficients will be designed to have the desired stopband at-
tenuation. The example below decomposes the example data
to two-channel signals and reconstructs them from the decom-
posed signals.

$ x2x +sd data.short |
pamf -k 2 -m 20 |
decimate -1 2 -p 2 |
interpolate -1 2 -p 2 |
sopr —m 2 |
ipgmf -k 2 -m 20 |
X2x tds —-r > syn.raw

3.12. Voice conversion

SPTK also provides the commands for Gaussian mixture
model (GMM)-based voice conversion [38, 39]. The align-
ment between the feature vector sequence of a source speaker
and a target speaker can be obtained by dynamic time warp-
ing (dtw). The joint feature vector consisting of the feature vec-
tors of the source and target speakers can then be modeled by
GMMs (gmm). Finally, a feature vector sequence of the tar-
get speaker can be predicted from the trained GMMs and a
given feature vector sequence of the source speaker (vc¢). Dy-
namic features can be easily appended to the feature vector se-
quences (delta) so that the smoothed feature vector sequence of
a target speaker can be obtained.

3.13. Distance calculation

It is important to evaluate experimental results in terms of ob-
jective metrics. SPTK can compute signal-to-noise ratio (SNR),
root-mean-square error (RMSE), and cepstral distance [40] for
the metrics. These commands accept two inputs as follows.

S cdist -m 24 -o 0 data.mc data.mc.dec |
x2x +da

This is an example of mel-cepstral distance computed in deci-
bels between the original and reconstructed data and shown on
the screen.

3.14. Statistics calculation

SPTK can be used to easily compute statistics of data by using
a single command, e.g, average (average), summation (vsum),
mean, covariance (vstats), median (median), minimum, and
maximum (minmax). The example below shows the mean vec-
tor of the extracted mel-cepstral coefficients on the screen.

$ vstat -m 24 -o 0 data.mc | x2x +da

4. PyTorch version

Incorporating digital signal processing techniques with deep
learning is an area of growing interest. Although signal pro-
cessing libraries for deep learning such as TorchAudio [14]
have already been distributed, they have not implemented the

core features of SPTK. Thus, we have re-implemented most of
the SPTK features on the basis of a deep learning framework
and provided them as a supplemental differentiable digital sig-
nal processing library. The library is named diffsptk as it is a
differentiable version of SPTK. We selected PyTorch [11] as a
deep learning framework because it is widely used by the deep
learning community and easy to use. The license of diffsptk is
the Apache License 2.0, which is the same as that of SPTK.
We design diffsptk on the basis of the following policies:

* Non-recursive: SPTK originally written in C/C++ involves
recursive algorithms in the implementation within frequency
warping [41], parameter transformations [23, 42], digital fil-
tering [30], etc. This is suitable for non-parallel computation
but not for deep learning using GPU parallel computing. To
avoid slow training/inference, we have replaced the recursive
implementation with a non-recursive one using mathematical
techniques such as matrix multiplication and the FFT.

* Dimension-last: A neural network module in PyTorch ac-
cepts tensors as input and output. In diffsptk, the shape of
the tensors is basically assumed as (B, N, D) rather than
(B, D, N), where B is the mini-batch size, N is the data
length, and D is the data dimensions. This is more intuitive
because the shape (B, N, D) is compatible with the C ver-
sion of SPTK described in Eq. (1).

¢ Precomputed: The parameters corresponding to the com-
mand line options in the SPTK commands must be set via
the constructor of a PyTorch module, not the forward func-
tion used at runtime. This is consistent with the C++ class
in SPTK. The policy enables us to reduce computation time
at runtime by performing calculations in advance that depend
only on the parameters and not input data.

4.1. Spectral analysis

The following Python code emulates the example which ex-
tracts the mel-cepstral coefficients from the example data as de-
scribed in Subsection 3.4.

import diffsptk

# Read the example data.

x, sr = diffsptk.read(
"data.short",
format="RAW",
samplerate=16000,
channels=1,
subtype="PCM_16"

# Prepare PyTorch modules.
frame = Frame (400, 80)
window = Window (400, 512)
spec = Spectrum(512)

# Compute power spectrum.
sp = spec (window (frame (x)))

# Prepare a mel-cepstral analyzer.

mgcep = diffsptk.MelCepstralAnalysis(
24, 512, 0.42, n_iter=30

)

# Extract mel-cepstal coefficients.
mc = mgcep (sp)



Using diffsptk is intuitive and compatible with the SPTK com-
mands, as shown by the above code.

4.2. Pitch analysis

As with SPTK, pitch extraction relies on third-party libraries.
The current implemented algorithm based on neural networks
is CREPE [43]. In the following example, a pitch contour of
the example data is extracted as in Subsection 3.5.

# Read data as in the previous example.
pit = diffsptk.Pitch(

frame_period=80,

sample_rate=sr,

algorithm="crepe"

f_min=80,

f_max=180,

out_format="pitch",
) (X)

The pitch embedding can be obtained instead of pitch by chang-
ing the out_format option.

4.3. Speech synthesis

We have re-implemented the synthesis filters on the basis of the
FIR filter by approximating the IIR filter [13] to make the filters
GPU-friendly. The example corresponding to Subsection 3.6 is
as follows.

# Generate an excitation signal.
excite = diffsptk.ExcitationGeneration (
frame_period=80

)
e = excite(pit)

# Synthesize waveform.

mlsa = diffsptk.MLSA (
24,
frame_period=80,
alpha=0.24,
taylor_order=30

)
y = mlsa(e, mc)

# Write reconstructed waveform.
diffsptk.write(
"syn.raw",
Y
sr,
format="RAW",
subtype="PCM_16"
)

For more details, please see the reference manual: https://
sp-nitech.github.io/diffsptk/latest/.

5. Conclusions

We have presented an overview of the core design, features,
history, and current progress of SPTK. SPTK provides useful
UNIX-like signal processing commands and a library to support
product developments and research experiments. The differen-
tial version of SPTK has begun to be distributed to adapt to the
deep learning paradigm.
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