# BIASED TEMPORAL CONVOLUTION GRAPH NETWORK FOR TIME SERIES FORECASTING WITH MISSING VAL-UES

Xiaodan Chen<sup>1</sup>, Xiucheng Li<sup>2</sup> ( $\boxtimes$ ), Bo Liu<sup>1</sup>, Zhijun Li<sup>1</sup> ( $\boxtimes$ )

<sup>1</sup> School of Computer Science and Technology, Harbin Institute of Technology

<sup>2</sup> School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen)

{21B303004@stu., lixiucheng@, 23B936027@stu., lizhijun\_os@}hit.edu.cn

## Abstract

Multivariate time series forecasting plays an important role in various applications ranging from meteorology study, traffic management to economics planning. In the past decades, many efforts have been made toward accurate and reliable forecasting methods development under the assumption of intact input data. However, the time series data from real-world scenarios is often partially observed due to device malfunction or costly data acquisition, which can seriously impede the performance of the existing approaches. A naive employment of imputation methods unavoidably involves error accumulation and leads to suboptimal solutions. Motivated by this, we propose a Biased Temporal Convolution Graph Network that jointly captures the temporal dependencies and spatial structure. In particular, we inject bias into the two carefully developed modules—the Multi-Scale Instance PartialTCN and Biased GCN—to account for missing patterns. The experimental results show that our proposed model is able to achieve up to 9.93% improvements over the existing methods on five real-world benchmark datasets. Our code is available at: https://github.com/chenxiaodanhit/BiTGraph.

# **1** INTRODUCTION

Multivariate time series forecasting finds its applications in a wide spectrum of domains such as meteorology, traffic, energy consumption, economics, etc. The real-world demand has spurred the development of various forecasting approaches in the literature. From the generative perspective, the multivariate time series data is produced by a collection of *N* instances (e.g., sensors) during a period of time. Thus, an accurate characterization of the underlying dynamics requires faithfully modeling both the temporal dependencies (intra-instance correlation) and the spatial structure (inter-instance correlation). The statistical methods—ARIMA (Nelson, 1998), VAR (Zivot & Wang, 2006)—have made early attempts by building autoregressive models to capture the temporal dependencies. However, their linear dependency assumption often leads to poor performance in practice. Inspired by their successes in Natural Language Processing, there has been an increasing trend in designing forecasting models based on RNNs and Transformers to explore their nonlinear modeling and complex pattern extraction capacity (Salinas et al., 2020; Zhou et al., 2021; Liu et al., 2021; Wu et al., 2021; Zhou et al., 2022). Especially, benefiting from the wide-range receptive fields enabled by the attention mechanism, the Transformer-based methods have exhibited excellent prediction performance on long-term forecasting tasks.

Apart from the methods dedicated to temporal dependencies modeling, there is another line of work toward exploiting the spatial correlation of multivariate time series. Many proposals (Salinas et al., 2020; Liu et al., 2021) model the spatial dependencies implicitly and simply rely on a hidden representation to capture the correlation. BRITS (Cao et al., 2018) proposes to use a dense connection layer to learn the correlation between every instance pair, which results in a high model complexity. The advent of graph neural networks (GNNs) (Kipf & Welling, 2016; Defferrard et al., 2016) enables us to effectively explore the non-Euclidean structure data. Indeed, the DCRNN (Li et al., 2018) proposes to build graphs and conduct graph convolution operations to capture the spatial correlation explicitly in traffic flow forecasting, in which the graphs are induced by spatial proximity. To apply

GNNs to the more general forecasting scenarios, in which the graph structures are not available, the proposals (Bai et al., 2020; Wu et al., 2020) propose to learn the graphs adaptively by learning each node an embedding and building the graphs using the node embeddings, which achieves great progress in enhancing the prediction accuracy.

Despite the promising results achieved, the existing methods pay relatively less attention to multivariate time series forecasting with missing values. In practice, the collected time series data is often partially observed, caused by device malfunction, communication failure, or data acquisition difficulty. One commonly adopted solution is to employ the existing time series imputation methods (Cao et al., 2018; Marisca et al., 2022; Cini et al., 2022) and then build the forecasting models on the imputed data. However, this two-step process separates the forecasting from the imputation, and the accumulated errors may impede the model performance and lead to suboptimal solutions. GRU-D (Che et al., 2018) proposes a decayed-GRU mechanism to handle the missing values for time series classification, and a similar idea is also adopted by BRITS (Cao et al., 2018) and GRUI (Luo et al., 2018) for time series imputation. However, these methods are not dedicated to time series forecasting. Neural ODE (Chen et al., 2018) is capable of handling irregularly-sampled time series data and many variants including LatentODE, NeuralCDE, and CRUs (Rubanova et al., 2019; Kidger et al., 2020; Schirmer et al., 2022) have been proposed. However, these methods often entail an ODE-solver computation for each iteration and have to align time steps of different time series, and thus cannot utilize the sparsity of the observations.

Motivated by the above observations, in this paper, we propose a Biased Temporal Convolution Graph Network, dubbed BiTGraph, to jointly capture the temporal dependencies and spatial structure by explicitly exploring the missing values in the model architecture design. We develop two core modules—the Multi-Scale Instance PartialTCN and Biased GCN. The Multi-Scale Instance PartialTCN performs instance-independent partial temporal convolution to capture the intra-instance temporal dependencies contaminated by the missing values. Furthermore, the Biased GCN module explores the spatial structure by constructing a biased graph to account for the missing patterns. Besides, we integrate the two modules with a hierarchical architecture, in which the missing patterns will be updated progressively along the temporal and spatial dimensions to maximize information propagation and minimize the impacts of missing values. To summarize, our contributions are as follows.

- We present BiTGraph to jointly capture the temporal dependencies and spatial structure for the time series forecasting with missing values, the proposed model explicitly considers the missing patterns in its model design.
- We introduce Multi-Scale Instance PartialTCN to effectively model temporal dependencies destroyed by the missing values and present Biased GCN to propagate information among instances by building a biased graph in a missing patterns aware manner.
- BiTGraph achieves up to 9.93% improvements over the existing forecasting methods under various missing values scenarios as verified on five real-world benchmark datasets.

## 2 RELATED WORK

Time series forecasting with complete data Due to its practical importance, a lot of efforts have been devoted to developing accurate time series forecasting methods. The classic ARIMA (Nelson, 1998), VAR (Zivot & Wang, 2006) build the autoregressive models based on linear dependency assumption. RNNs-based methods (Salinas et al., 2020) and (Zaremba et al., 2014) exploit the expressive power of recurrent neural networks to relax the linear assumption. Very recently, various Transformer-based methods have been proposed to exploit the wide-range receptive fields of attention mechanism for long-term forecasting. To reduce the quadratic complexity of vanilla attention, Informer (Zhou et al., 2021), Pyraformer (Liu et al., 2021), Autoformer (Wu et al., 2021), and FEDformer (Zhou et al., 2022) have been proposed successively. Non-stationary Transformer (Liu et al., 2022) aims to renovate the attention mechanism to account for the non-stationary property of time series data. PatchTST (Nie et al., 2023) explores the patch and channel-independence design. Apart from enhancing the temporal dynamics modeling capability, many proposals are dedicated to exploring spatial correlation. DCRNN (Li et al., 2018), AGCRN (Bai et al., 2020), MTGNN (Wu et al., 2020), GTS (Shang et al., 2021), and SAGDFN (Jiang et al., 2024) model the spatial structure

with the graph neural networks. In addition, CoST (Woo et al., 2022) and TS2Vec (Yue et al., 2022) approach the time series forecasting from the self-supervised learning perspective.

**Modeling time series with missing values** Caused by device malfunction, communication failure, or costly data acquisition, the real-world collected time series data is often incomplete and partially observed. To fill missing entries, many time series imputation methods—BRITS (Cao et al., 2018), GRIN (Cini et al., 2022), CSDI (Tashiro et al., 2021), SPIN (Marisca et al., 2022), GRIN (Cini et al., 2022), and TIDER (Liu et al., 2023)—have been presented in the machine learning community. To deal with the partially observed time series, one may attempt to build the forecasting models with the imputed results produced by the imputation methods. However, the imputation is disparate from the forecasting in this two-step process, and thus the accumulated errors may seriously degrade the forecasting performance. GRU-D (Che et al., 2018) presents a decayed-GRU to handle the missing values for time series classification without resorting to the imputation. Tang et al. (2020); Zuo et al. (2023) attempt to capture local dependencies based on global statistic characteristics for the missing value forecasting. The neural ODE-based models NeuralCDE, LatentODE, and CRUs (Chen et al., 2018; Rubanova et al., 2019; Schirmer et al., 2022) are capable of handling irregularly-sampled time series data. Nonetheless, they have to align time steps of different time series and cannot utilize the sparsity of the samples.

## **3** PRELIMINARIES

In this paper, we consider the multivariate time series  $\mathbf{X} \in \mathbb{R}^{N \times T \times D}$  consisting of N univariate time series  $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}$  collecting over T time steps with D-dimension observation. Due to the malfunction of devices, communication failure, or costly data acquisition, there may exist missing values in  $\mathbf{X}$ , and we use a mask matrix  $\mathbf{M} \in \mathbb{R}^{N \times T}$  to represent the missing patterns, which is defined as follows.

$$M_{nt} = \begin{cases} 1, & \text{if } X_{nt} \text{ is observed,} \\ 0, & \text{otherwise,} \end{cases}$$
(1)

where  $X_{nt}$  denotes the value of *n*-th instance (or channel) at time step *t*, we alternatively use  $x_t^{(n)}$  or  $X_{nt}$  to represent the same entry. Similarly, we use  $\mathbf{m}^{(n)} \in \mathbb{R}^T$  to denote the *n*-th row of the mask matrix  $\mathbf{M}$ , and both  $M_{nt}$  and  $m_t^{(n)}$  represent the *n*-row, *t*-column element of  $\mathbf{M}$ . In addition, the slice notation  $\mathbf{x}_{t-H:t} \in \mathbb{R}^{H \times D}$  or  $\mathbf{X}_{t-H:t} \in \mathbb{R}^{N \times H \times D}$  denotes the values in a time window of size H from time step t - H to t - 1, i.e., the time interval [t - H, t). In the subsequent discussion, we will also refer to the mask as the missing pattern.

Multivariate time series forecasting with missing values Given the partial observed multivariate time series  $\mathbf{X}$  and the corresponding mask matrix  $\mathbf{M}$ , the multivariate time series forecasting with missing values problem aims to build a forecasting model  $\phi$  to predict the future *F*-step values  $\mathbf{Y} = \mathbf{X}_{t:t+F}$  by taking as inputs the historical observation  $\mathbf{X}_{t-H:t}$  and its mask  $\mathbf{M}_{t-H:t}$ , that is,  $\hat{\mathbf{Y}} = \phi(\mathbf{X}_{t-H:t}, \mathbf{M}_{t-H:t})$ . In the training phase, we only resort to the observed values to provide the learning signals. More formally, the loss function  $\mathcal{L}$  of the model can be described as follows.

$$\mathcal{L}(\mathbf{Y}, \hat{\mathbf{Y}}, \mathbf{M}_{t:t+F}) = \frac{\sum_{n=1}^{N} \sum_{\tau=t}^{t+F-1} m_{\tau}^{(n)} |\hat{y}_{\tau}^{(n)} - y_{\tau}^{(n)}|}{\sum_{n=1}^{N} \sum_{\tau=t}^{t+F-1} m_{\tau}^{(n)}},$$
(2)

which measures the mean absolute error between the predicted values and ground truths.

## 4 Methodology

The framework of our proposed BiTGraph (Biased Temporal Convolution Graph Network) is shown in Figure 1-(a). It comprises L identical blocks, dubbed Biased TCGBlock (Biased Temporal Convolution Graph Block), which is the basic building block of our proposed method. The Biased TCGBlock consists of two key modules: the Multi-Scale Instance PartialTCN module and the Biased GCN module. The two modules are responsible for fusing the information along the temporal dimension and spatial dimension, respectively. In contrast to the existing time series forecasting methods, we explicitly consider the missing values in the model design and inject bias to account for the different missing patterns, and the model also progressively updates the missing patterns

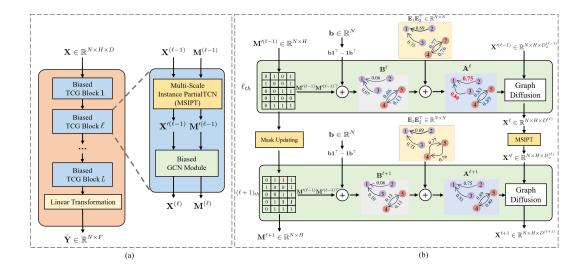



Figure 1: (a) The framework of our proposed BiTGraph, and (b) the illustration of the Biased GCN module.

as the information diffusion proceeds. As the Figure 1-(a) shows, the  $\ell$ -th block takes as inputs  $\mathbf{X}^{(\ell-1)} \in \mathbb{R}^{N \times H \times D^{(\ell-1)}}$  and the missing patterns  $\mathbf{M}^{(\ell-1)} \in \mathbb{R}^{N \times H}$ , and it produces two transformed tensors  $\mathbf{X}^{(\ell)} \in \mathbb{R}^{N \times H \times D^{(\ell)}}$  and  $\mathbf{M}^{(\ell)} \in \mathbb{R}^{N \times H}$ , where  $D^{(\ell)}$  is the feature dimension of the  $\ell$ -th block.

#### 4.1 MULTI-SCALE INSTANCE PARTIALTCN MODULE

In this paper, we opt for Temporal Convolution Network (TCN) as our backbone to capture the temporal dynamics for two main reasons: 1) it has been shown empirically that the TCN exhibits more favorable sequence modeling abilities in comparison to RNNs in a variety of tasks (Bai et al., 2018), 2) the convolution operation permits a simple modification to account for partial observations as evidenced in computer vision (Liu et al., 2018). Different from the vanilla partial convolution (PartialCNN), we propose to apply the partial temporal convolution (PartialTCN) within each time series (instance), i.e., the parameters of PartialTCN are shareable across different instances. The benefits are twofold: 1) we decouple the temporal dependency modeling from spatial correlation modeling, which enables exploring the temporal patterns invariant to instances and enhancing the statistical strengths; 2) the PartialTCN is shareable across instance and this will lead to a more parameter-efficient model, we refer to the resulting approach as Instance PartialTCN. In addition, we further adopt the multi-scale strategy to develop Multi-Scale Instance PartialTCN, which can handle missing patterns from different time scales more effectively. Next, we illustrate the module by focusing on a particular instance  $\mathbf{x}^{(n)} \in \mathbb{R}^{H \times D}$  and its mask  $\mathbf{m}^{(n)} \in \mathbb{R}^{H}$ . To keep the notation uncluttered, we drop the upper script temporally.

**Instance PartialTCN** Given the kernel size K, the TCN applies the same linear transformation into different time windows under the time translation invariance assumption, i.e.,

$$\mathbf{x}' = \mathbf{x}_{t-K:t}\mathbf{W} + \mathbf{b},\tag{3}$$

where  $\mathbf{x}_{t-K:t} \in \mathbb{R}^{K \times D_i}$  is a time window sequence with  $D_i$  input features,  $\mathbf{x}' \in \mathbb{R}^{D_o}$  is the output feature map at location t - 1, and  $\mathbf{W} \in \mathbb{R}^{K \times D_i \times D_o}$  and  $\mathbf{b} \in \mathbb{R}^{D_o}$  are convolution parameters. Motivated by the success of partial convolutions in vision tasks, we introduce Instance PartialTCN to model the temporal dependencies of partially-observed time series to account for missing values as,

$$\mathbf{x}' = \begin{cases} \frac{K}{\operatorname{sum}(\mathbf{m}_{t-K:t})} \left( \mathbf{x}_{t-K:t} \odot \mathbf{m}_{t-K:t} \right) \mathbf{W} + \mathbf{b}, & \text{if } \operatorname{sum}(\mathbf{m}_{t-K:t}) > 0, \\ \mathbf{0}, & \text{otherwise.} \end{cases}$$
(4)

where  $\odot$  denotes the Hadamard product. The Instance PartialTCN only attends to the time steps with observations to compute the new feature maps and the factor  $K/\operatorname{sum}(\mathbf{m}_{t-K:t})$  rescales the

computation result to the same magnitude of convolutions on complete observations. In such a manner, the missing patterns are integrated into the temporal dynamics modeling. As the temporal convolution proceeds, the time steps with missing values will have chances to gather sufficient information from their surrounding neighbors. To account for this, the missing pattern m is updated as,

$$m_{t-1} = \begin{cases} 1, & \text{if sum}(\mathbf{m}_{t-K:t}) > 0, \\ 0, & \text{otherwise.} \end{cases}$$
(5)

In other words, the time step t - 1 is considered filled if we could collect values from the present time window [t - K, t]. The missing pattern m will be progressively filled as the convolution proceeds.

**Multi-Scale Instance PartialTCN** To capture the multi-scale temporal dependencies of the time series, we propose to integrate the multi-scale convolution with different kernel sizes into the Instance PartialTCN, specifically, we adopt  $1 \times 3$ ,  $1 \times 5$ , and  $1 \times 7$  in this paper. Consequently, different kernels will yield multiple different updated missing patterns  $\mathbf{m}_i^{(n)} \in \mathbb{R}^H$  for each instance  $n, 1 \le i \le N_{\text{ker}}$  and  $N_{\text{ker}}$  is the number of kernels. We propose to aggregate these missing patterns generated by different kernels by max pooling as,

$$\mathbf{m}^{(n)} = \max(\mathbf{m}_i^{(n)}), \quad 1 \le i \le N_{\text{ker}}.$$
(6)

The aggregated  $\mathbf{m}^{(n)}$  will then be used in the subsequent graph convolution module to diffuse information along spatial dimensions. By applying the Multi-Scale Instance PartialTCN to each instance  $\mathbf{x}^{(n)}$  (n = 1, 2, ..., N), we transform the input feature map  $\mathbf{X}^{(\ell-1)} \in \mathbb{R}^{N \times H \times D_i^{(\ell-1)}}$ and missing pattern  $\mathbf{M}^{(\ell-1)} \in \mathbb{R}^{N \times H}$  into  $\mathbf{X}'^{(\ell-1)} \in \mathbb{R}^{N \times H \times D_o^{(\ell-1)}}$  and updated missing pattern  $\mathbf{M}'^{(\ell-1)} \in \mathbb{R}^{N \times H}$ , respectively.

#### 4.2 BIASED GCN MODULE

The Multi-Scale Instance PartialTCN focuses on capturing the temporal dynamics hidden in each instance without considering the inter-instance correlation. However, it is equally important to model both the spatial correlation and temporal dependencies for accurate multivariate time series forecasting. In this paper, we propose to use graph convolution networks to explore the spatial structure of the temporally fused feature map  $\mathbf{X}'^{(\ell-1)}$  and updated  $\mathbf{M}'^{(\ell-1)}$ , produced by the Multi-Scale Instance PartialTCN. The graph neural networks have been exploited to model the spatial correlation for time series forecasting in the literature either by using the predefined (Li et al., 2018) or adaptively-learned graph structures (Bai et al., 2020; Wu et al., 2020; Shang et al., 2021), in which each time series is treated as a graph node. In contrast to the existing approaches, we explicitly consider and incorporate a bias term (i.e., prior knowledge) into graph structure learning to account for the missing values, leading to **Biased GCN**. It is therefore able to deliver promising performance in the missing value scenarios. The Biased GCN module is shown in Figure 1-(b).

In this paper, we choose the adaptive graph structure learning approach since it is more flexible and applies to cases where the graph structures are unavailable. In particular, we learn the graph structure or adjacency matrix **A** by using two learnable embedding matrices  $\mathbf{E}_1$ ,  $\mathbf{E}_2 \in \mathbb{R}^{N \times D_{\text{node}}}$  as follows.

$$\mathbf{A} = \operatorname{ReLU}(\operatorname{tanh}(\mathbf{E}_1\mathbf{E}_2^+)). \tag{7}$$

The *i*-th row of  $\mathbf{E}_1$  (resp.  $\mathbf{E}_2$ ), denoted by  $\mathbf{e}_i^{(1)}$  (resp.  $\mathbf{e}_i^{(2)}$ ), is the embedding of *i*-th time series and  $\mathbf{e}_i^{(1)\top}\mathbf{e}_j^{(2)}$  quantifies the correlation strength from node *i* to node *j*. The reason we choose two embeddings instead of one  $\mathbf{E}$  and computing  $\mathbf{A} = \text{ReLU}(\tanh(\mathbf{E}\mathbf{E}^{\top}))$  is that the spatial correlations are very likely to be asymmetric in practice. This learned adjacency matrix  $\mathbf{A}$  will be used by the subsequent graph convolution operation to aggregate information and aid in the eventual forecasting task, and thus the embedding matrices  $\mathbf{E}_1$  and  $\mathbf{E}_2$  can be learned end-to-end.

However, Eq. 7 fails to account for missing patterns. Intuitively, the information propagation intensity should vary against the missing patterns and we choose the inner product to quantify it as

$$\mathbf{A} = \operatorname{ReLU}(\operatorname{tanh}(\mathbf{E}_1 \mathbf{E}_2^{\top})) + \beta \operatorname{softmax}(\mathbf{M}_{t-H:t} \mathbf{M}_{t-H:t}^{\top}),$$
(8)

where the first term denotes global spatial correlation strength indicating the global message passing strengths among nodes, the second term is specific to a particular time window [t - H, t) and can be

considered as a time-window-specific bias that corrects the global message passing strength according to the current missing pattern in graph diffusion process,  $\beta$  denotes a learnable global parameter that controls the intensity of the correctness. By intuition, the information propagation should also be directed and more information should flow from nodes with fewer missing values to the ones with more missing values, but the second term is a symmetric matrix and cannot mirror this intuition. To correct this, we assign each node a learnable scalar bias  $b_i$  and use  $b_i - b_j$  to adjust towards the asymmetries. Let  $\mathbf{b} \in \mathbb{R}^N$  be the learnable bias term, we propose to learn the graph structure as,

$$\mathbf{B} = \operatorname{softmax}(\mathbf{M}_{t-H:t}\mathbf{M}_{t-H:t}^{\top} + \mathbf{b}\mathbf{1}^{\top} - \mathbf{1}\mathbf{b}^{\top})$$
  
$$\mathbf{A} = \operatorname{ReLU}(\operatorname{tanh}(\mathbf{E}_{1}\mathbf{E}_{2}^{\top})) + \beta \mathbf{B},$$
  
(9)

where 1 is a length-N all-one vector. As shown in Figure 1-(b), global message passing strengths between node 4 and node 5 are corrected by the time-window-specific bias.

To ensure the structure sparsity, we clamp the small entries of  $\mathbf{A}$  to zeros by only preserving the neighbors of node *i* with the top-*k* correlation strengths and use the clamped  $\mathbf{A}$  in the graph convolution operation to aggregate information (as will be shown shortly). Being analogous to the Instance PartialTCN, we propose to update the missing patterns of node *i* after aggregating the information from its spatial neighbors as follows,

$$\mathbf{m}^{(i)} = \max(\mathbf{m}^{(j)}), \quad j \in \{i\} \cup \mathcal{N}_i, \tag{10}$$

where  $N_i$  indicates the neighbors of node *i* in the graph. The missing pattern updating process is illustrated with the node 1 in Figure 1-(b).

Now considering the  $\ell$ -th block of the model, it performs the graph convolution to diffuse information as follows.

$$\mathbf{X}^{(\ell)} = \left(\mathbf{I} + \mathbf{D}_{o}^{-1}\mathbf{A} + \mathbf{D}_{i}^{-1}\mathbf{A}^{\top}\right)\mathbf{X}^{\prime(\ell-1)}\mathbf{\Theta}^{(\ell)} + \mathbf{b}^{(\ell)},\tag{11}$$

where  $\mathbf{X}^{\ell}(\ell-1)$  is the output of the Multi-Scale Instance PartialTCN in the  $\ell$ -th block,  $\mathbf{D}_i$  and  $\mathbf{D}_o$  are the in-degree and out-degree matrix of  $\mathbf{A}$ , respectively, and  $\mathbf{\Theta}^{(\ell)}$  and  $\mathbf{b}^{(\ell)}$  are the graph convolution parameters of the  $\ell$ -th block.  $\mathbf{X}^{(\ell)}$  and  $\mathbf{M}^{(\ell)}$  will then be fed to the next block as the inputs.

#### 4.3 HIERARCHICAL ARCHITECTURE

By stacking *L* layers of Biased TCGBlock, we could enhance both the spatial and temporal receptive fields of the model. We initialize  $\mathbf{X}^{(0)}$  and  $\mathbf{M}^{(0)}$  with the original partial observation  $\mathbf{X} \in \mathbb{R}^{N \times H \times D}$  and its corresponding missing pattern  $\mathbf{M} \in \mathbb{R}^{N \times H}$ , and the outputs of the *L*-th block are  $\mathbf{X}^{(L)} \in \mathbb{R}^{N \times H \times D^{(L)}}$  and  $\mathbf{M}^{(L)} \in \mathbb{R}^{N \times H}$ .  $\mathbf{X}^{(L)}$  fuses both the spatial and temporal features, which will be used to produce the multi-step prediction  $\hat{\mathbf{Y}}$  simultaneously by a linear transformation. The mask of  $\ell$ -th layer  $\mathbf{M}^{(\ell)}$  is updated progressively as information flows from bottom to up, and the model parameters are learned by optimizing the prediction loss in Eq. 2.

## 5 EXPERIMENTS

We evaluate BiTGraph against the state-of-the-art forecasting methods under different missing rates on five real-world benchmark datasets. We first assess the forecasting performance of different methods in terms of three commonly used metrics, and then we verify the efficacy of our proposed modules by ablation study.

#### 5.1 EXPERIMENT SETTINGS

**Datasets** We select five most commonly used time series forecasting datasets: Metr-LA, Electricity, PEMS, ETTh1, and BeijingAir, whose statistics are summarized in Table 1. The five datasets are collected from different domains and cover diverse magnitude ranges, sampling frequencies, and statistics. We randomly drop the data according to the missing rate r ranging from 0.1 to 0.8, including 0.1, 0.2, 0.4, 0.6, and 0.8.

**Baseline methods** We compare our proposed BiTGraph with the latest state-of-the-art forecasting methods as well as several classic methods. BRITS (Cao et al., 2018), SPIN (Marisca et al., 2022),

|                  | Metr-LA | Electricity        | PEMS  | ETTh1 | BeijingAir |  |  |
|------------------|---------|--------------------|-------|-------|------------|--|--|
| #Samples $(T)$   | 34272   | 26304              | 52116 | 17420 | 8759       |  |  |
| #Instances $(N)$ | 207     | 321                | 325   | 7     | 36         |  |  |
| Frequency        | 5 min   | 1 h                | 5 min | 1 h   | 1 h        |  |  |
| Mean             | 53.72   | 2538.79            | 62.62 | 4.58  | 72.01      |  |  |
| Variance         | 410.53  | $2.26 \times 10^8$ | 92.05 | 42.68 | 79.07      |  |  |

Table 1: Dataset description

GRIN (Cini et al., 2022), GCN-M (Zuo et al., 2023), CRUs (Schirmer et al., 2022) are representative forecasting methods designed specifically for time series with missing values. Meanwhile, we also include three Transformer-based methods, vanilla Transformer (Zerveas et al., 2021), STWA (Cirstea et al., 2022), and FEDformer (Zhou et al., 2022), as well as two Spatial-Temporal GNNs-based methods, AGCRN (Bai et al., 2020) and MTGNN (Wu et al., 2020). Since these five methods require complete input to perform prediction, we study their two variants, namely, filling the missing entries with zeros and the values imputed by TimesNet (Wu et al., 2023), the state-of-the-art time series imputation approach. We denote the corresponding variants as Model<sub>0</sub>, and Model<sub>t</sub>, respectively. The missing masks are fed as covariates to guide the forecasting for the latter five baseline methods. The details of baseline methods are presented in Appendix A.

**Implementation details** The number of blocks L of BiTGraph is set to 3, the number of top-k nearest neighbors is set to 10 in all our experiments. The batch size is 32, the learning rate is 0.001. We split the datasets into training, validation, and test datasets with the ratio 0.6/0.2/0.2 chronologically. The future window size F is set to 24 for all methods, and the history window size H for our proposed method is 24. We select the best history window size from the set {24, 48, 96} for the baseline methods and report their best results. All methods are trained on Nvidia V100 GPUs. Our method is implemented with PyTorch 2.0 and we use the source codes released by the authors for all baseline methods. We adjust the hyperparameters of baseline methods to obtain the best performance on each dataset, and evaluate the performance of different methods in terms of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE).

## 5.2 OVERALL PERFORMANCE

Table 2 presents the forecasting performance on the two datasets (Metr-LA and Electricity) of different methods under the missing rates of 0.2, 0.4, 0.6, and 0.8, the results are averaged over five funs<sup>1</sup>. We move the results of the PEMS, ETTh1, and BeijingAir datasets and the results under the missing rate of 0.1 to Appendix B to save space. It can be seen from the table that our proposed BiTGraph is able to achieve the best results in most cases in terms of all three metrics. Its performance gains become more evident when the missing rate grows to 0.8, which benefits from the ability of the Multi-Scale Instance PartialTCN module and the Biased GCN module in handling the missing patterns adaptively. It is worth noting that SPIN and GRIN, both of which are explicitly designed to address missing values, demonstrate a marked superiority. However, their practical applicability is constrained by the necessity of pre-defined graphs. SPIN, MTGNN<sub>t</sub>, and STWA<sub>t</sub> achieves the best results among all baseline methods under different cases. In comparison, our proposed BiTGraph is able to deliver the best results consistently. Notably, it achieves up to 9.93% improvement over the best baseline in terms of RMSE on the Electricity dataset.

## 5.3 ABLATION STUDY

In this section, we conduct ablation studies to evaluate the effectiveness of our proposed modules, Multi-Scale Instance PartialTCN (MSIPT) and Biased GCN (BGCN) modules. The results are shown in Table 3. We divide the MSIPT module or BGCN module into two distinct procedures. The first part (Eq. 6 or Eq. 10) relates to the mask updating process (MUP), whereas the second part (Eq. 4 or Eq. 9) is regarding the information aggregation process (IAP). Firstly, we carry out ablation studies (w/o. MSIPT, w/o. BGCN, and BiTGraph) to assess the joint significance of UID and MUP across temporal

<sup>&</sup>lt;sup>1</sup>The model is trained with five different random seeds.

Published as a conference paper at ICLR 2024

|                                                                                                                                                                                                                                                                                                                         | Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2: The foreca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sting perforn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nance of differe                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method $(r = 0.2)$                                                                                                                                                                                                                                                                                                      | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metr-LA<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAE                                                                                                                                                                              | Electricity<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BRITS                                                                                                                                                                                                                                                                                                                   | $8.32\pm0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $13.18\pm0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $18.26\pm0.71$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1029.30 \pm 1.10$                                                                                                                                                               | $10126.175 \pm 30.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $47.73 \pm 0.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SPIN                                                                                                                                                                                                                                                                                                                    | $6.46 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $11.21 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $12.98 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GRIN<br>GCN-M                                                                                                                                                                                                                                                                                                           | $6.80 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $12.24 \pm 0.12$<br>11.12 $\pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $16.18 \pm 0.24$<br>12 50 ± 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CRUs                                                                                                                                                                                                                                                                                                                    | $6.78 \pm 0.03$<br>$10.80 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 11.12 \pm 0.04 \\ 12.49 \pm 0.15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 13.50 \pm 0.02 \\ 19.66 \pm 0.54 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-464.66 \pm 4.14$                                                                                                                                                               | $5276.49 \pm 53.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{25.64 \pm 0.53}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AGCRN <sub>0</sub>                                                                                                                                                                                                                                                                                                      | $14.88 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $14.21 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $28.94 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1307.62 \pm 4.53$                                                                                                                                                               | $13217.78 \pm 26.81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $62.65 \pm 0.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Transformer <sub>0</sub>                                                                                                                                                                                                                                                                                                | $7.14\pm0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $13.08\pm0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $17.07\pm0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $296.03 \pm 5.77$                                                                                                                                                                | $2432.09 \pm 22.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $29.14 \pm 0.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FEDformer <sub>0</sub>                                                                                                                                                                                                                                                                                                  | $7.09 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $12.75 \pm 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $16.73 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $368.29 \pm 3.71$                                                                                                                                                                | $2574.37 \pm 25.89$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $31.29 \pm 0.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                         | $6.24 \pm 0.07$<br>$6.34 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 10.99 \pm 0.11 \\ 10.96 \pm 0.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 12.89 \pm 0.13 \\ 12.51 \pm 0.19 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 272.60 \pm 7.35 \\ 274.68 \pm 5.56 \end{array}$                                                                                                                | $\begin{array}{c} 2263.55 \pm 24.10 \\ 2016.44 \pm 13.77 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                               | $28.52 \pm 0.26$<br>$28.54 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AGCRNt                                                                                                                                                                                                                                                                                                                  | $0.34 \pm 0.07$<br>$13.72 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $10.90 \pm 0.10$<br>$13.11 \pm 0.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $12.01 \pm 0.19$<br>$27.06 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1049.23 \pm 12.06$                                                                                                                                                              | $\frac{2010.44 \pm 13.77}{11751.49 \pm 20.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $57.76 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Transformer                                                                                                                                                                                                                                                                                                             | $6.90 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $12.98\pm0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $16.49 \pm 0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $280.12 \pm 6.78$                                                                                                                                                                | $2274.28 \pm 25.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $28.74 \pm 0.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FEDformert                                                                                                                                                                                                                                                                                                              | $6.89 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $11.75\pm0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $16.01\pm0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $313.59 \pm 4.96$                                                                                                                                                                | $2666.93 \pm 26.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $32.83 \pm 0.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                         | $6.20 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{10.71 \pm 0.11}{10.76 \pm 0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $12.26 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{261.92 \pm 4.65}{260.25 \pm 5.27}$                                                                                                                                        | $2089.65 \pm 19.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{27.37 \pm 0.26}{27.71 \pm 0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MTGNNt                                                                                                                                                                                                                                                                                                                  | $6.13 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $10.76 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $12.11 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $269.25 \pm 5.27$                                                                                                                                                                | $2175.24 \pm 12.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $27.71 \pm 0.78$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BiTGraph                                                                                                                                                                                                                                                                                                                | $\textbf{6.04} \pm \textbf{0.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.69 ± 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\textbf{11.69} \pm \textbf{0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 243.23 ± 2.12                                                                                                                                                                    | 1834.18 ± 15.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $27.38 \pm 0.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} \text{Method} \\ (r = 0.4) \end{array}$                                                                                                                                                                                                                                                               | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metr-LA<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAE                                                                                                                                                                              | Electricity<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BRITS<br>SPIN                                                                                                                                                                                                                                                                                                           | $8.38 \pm 0.08 \\ 6.52 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 12.97 \pm 0.11 \\ 11.94 \pm 0.41 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 18.39 \pm 0.28 \\ 13.22 \pm 1.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1029.73 \pm 1.48$                                                                                                                                                               | $10136.39 \pm 63.63 \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 47.96 \pm 0.56 \\ - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GRIN                                                                                                                                                                                                                                                                                                                    | $6.91 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $11.94 \pm 0.41$<br>$12.60 \pm 0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $16.59 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GCN-M                                                                                                                                                                                                                                                                                                                   | $7.09\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $12.42\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $17.06\pm0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CRUs                                                                                                                                                                                                                                                                                                                    | $10.94 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $13.18 \pm 0.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $20.13 \pm 0.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $496.95 \pm 6.03$                                                                                                                                                                | $5397.31 \pm 52.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $27.94 \pm 0.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AGCRN <sub>0</sub><br>Transformer <sub>0</sub>                                                                                                                                                                                                                                                                          | $14.87 \pm 0.04$<br>$7.25 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 14.30 \pm 0.09 \\ 12.97 \pm 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $29.92 \pm 0.06$<br>$17.72 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1526.90 \pm 13.77 \\ 310.88 \pm 4.67 \end{array}$                                                                                                              | $\begin{array}{c} 14823.39 \pm 21.68 \\ 2586.69 \pm 22.73 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                              | $68.73 \pm 0.41$<br>$31.79 \pm 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FEDformer <sub>0</sub>                                                                                                                                                                                                                                                                                                  | $7.25 \pm 0.04$<br>$7.15 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $12.97 \pm 0.06$<br>$12.89 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $17.72 \pm 0.08$<br>$16.91 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $310.88 \pm 4.67$<br>$406.17 \pm 8.91$                                                                                                                                           | $2580.09 \pm 22.73$<br>$3606.49 \pm 27.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $31.79 \pm 0.15$<br>$33.14 \pm 0.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| STWA <sub>0</sub>                                                                                                                                                                                                                                                                                                       | $6.37 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $11.19 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $13.13 \pm 0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $292.47 \pm 4.64$                                                                                                                                                                | $2764.34 \pm 20.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $29.07 \pm 0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MTGNN <sub>0</sub>                                                                                                                                                                                                                                                                                                      | $6.34 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $11.10\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $12.79\pm0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $305.46\pm6.77$                                                                                                                                                                  | $2576.44 \pm 25.51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\underline{23.15\pm0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                         | $12.73 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $12.49 \pm 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $24.13 \pm 0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1283.27 \pm 8.49$                                                                                                                                                               | $13743.42 \pm 49.38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $58.62 \pm 0.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $Transformer_{\mathrm{t}}$<br>FEDformer <sub>t</sub>                                                                                                                                                                                                                                                                    | $6.99 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $12.49 \pm 0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $16.45 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $300.43 \pm 10.17$                                                                                                                                                               | $2529.26 \pm 19.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $28.86 \pm 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| STWA <sub>t</sub>                                                                                                                                                                                                                                                                                                       | $7.10 \pm 0.05 \\ 6.28 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $12.63 \pm 0.13$<br>$10.93 \pm 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 16.62 \pm 0.06 \\ 12.68 \pm 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 330.90 \pm 7.76 \\ 289.59 \pm 6.13 \end{array}$                                                                                                                | $\begin{array}{c} 2711.30 \pm 22.31 \\ 2355.34 \pm 17.67 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                               | $29.24 \pm 0.18$<br>$28.29 \pm 0.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MTGNNt                                                                                                                                                                                                                                                                                                                  | $6.26 \pm 0.05$<br>$6.26 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $10.90 \pm 0.14$<br>$10.90 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $12.00 \pm 0.01$<br>$12.49 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $281.32 \pm 6.82$                                                                                                                                                                | $2236.74 \pm 16.81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $28.46 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BiTGraph                                                                                                                                                                                                                                                                                                                | 6.13 ± 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.7( + 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.41   0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                         | $0.13 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\textbf{10.76} \pm \textbf{0.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $12.41 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ $ 270.14 $\pm$ 3.77                                                                                                                                                            | $\textbf{2091.88} \pm \textbf{30.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\textbf{22.04} \pm \textbf{0.36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Method<br>(r = 0.6)                                                                                                                                                                                                                                                                                                     | 0.13 ± 0.01<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metr-LA<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.41 ± 0.12<br>MAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{ } 270.14 \pm 3.77 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                        | 2091.88 ± 30.49<br>Electricity<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.04 ± 0.36<br>MAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Method<br>(r = 0.6)<br>BRITS                                                                                                                                                                                                                                                                                            | MAE<br>8.48 ± 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{Metr-LA}\\ \text{RMSE}\\ 12.94 \pm 0.08 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAPE<br>18.66 ± 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                | Electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Method<br>(r = 0.6)<br>BRITS<br>SPIN                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{MAE} \\ \hline 8.48 \pm 0.02 \\ 6.61 \pm 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{Metr-LA}\\ \text{RMSE}\\ 12.94 \pm 0.08\\ 11.35 \pm 0.17 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{MAPE} \\ \hline 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAE 1029.38 ± 1.84 -                                                                                                                                                             | Electricity<br>RMSE<br>10118.18 ± 33.04<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAPE<br>48.25 ± 0.29<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Method<br>(r = 0.6)<br>BRITS<br>SPIN<br>GRIN                                                                                                                                                                                                                                                                            | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \mbox{Metr-LA} \\ \mbox{RMSE} \\ 12.94 \pm 0.08 \\ 11.35 \pm 0.17 \\ 12.71 \pm 0.14 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAE                                                                                                                                                                              | Electricity<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{MAE} \\ \hline 8.48 \pm 0.02 \\ 6.61 \pm 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{Metr-LA}\\ \text{RMSE}\\ 12.94 \pm 0.08\\ 11.35 \pm 0.17 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{MAPE} \\ \hline 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAE 1029.38 ± 1.84 -                                                                                                                                                             | Electricity<br>RMSE<br>10118.18 ± 33.04<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAPE<br>48.25 ± 0.29<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{MAE} \\ \hline 8.48 \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{Metr-LA}\\ \text{RMSE} \\ 12.94 \pm 0.08 \\ 11.35 \pm 0.17 \\ 12.71 \pm 0.14 \\ 11.55 \pm 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAE 1029.38 ± 1.84                                                                                                                                                               | Electricity<br>RMSE<br>10118.18 ± 33.04<br>–<br>–<br>–                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAPE<br>48.25 ± 0.29<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.46 \pm 0.01 \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \mbox{Metr-LA}\\ \mbox{RMSE} \\ \hline 12.94 \pm 0.08 \\ 11.35 \pm 0.07 \\ 12.71 \pm 0.14 \\ 11.55 \pm 0.02 \\ 13.38 \pm 0.24 \\ 14.30 \pm 0.09 \\ 12.03 \pm 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{MAPE} \\ \hline 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ 664.07 \pm 9.88 \\ 1945.61 \pm 6.38 \\ 346.43 \pm 5.59 \end{tabular}$                    | $\begin{array}{c} \mbox{Electricity}\\ \mbox{RMSE}\\ \hline 10118.18 \pm 33.04\\ -\\ -\\ -\\ -\\ 8126.82 \pm 59.42\\ 13891.03 \pm 17.38\\ 2952.28 \pm 25.54\\ \end{array}$                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ 31.44 \pm 0.45 \\ 75.20 \pm 0.29 \\ 28.96 \pm 0.37 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \mbox{Metr-LA}\\ \mbox{RMSE} \\ \hline 12.94 \pm 0.08 \\ 11.35 \pm 0.17 \\ 12.71 \pm 0.14 \\ 11.55 \pm 0.02 \\ 13.38 \pm 0.24 \\ 14.30 \pm 0.09 \\ 12.03 \pm 0.05 \\ 12.32 \pm 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{MAPE} \\ \hline 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ 664.07 \pm 9.88 \\ 1945.61 \pm 6.38 \\ 346.43 \pm 5.59 \\ 535.72 \pm 7.67 \end{tabular}$ | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ 31.44 \pm 0.45 \\ 75.20 \pm 0.29 \\ 28.96 \pm 0.37 \\ 42.09 \pm 0.46 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 11.02 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 7.50 \pm 0.04 \\ \hline 6.82 \pm 0.02 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \mbox{Metr-LA}\\ \mbox{RMSE} \\ \hline 12.94 \pm 0.08 \\ 11.35 \pm 0.17 \\ 12.71 \pm 0.14 \\ 11.55 \pm 0.02 \\ 13.38 \pm 0.24 \\ 14.30 \pm 0.09 \\ 12.03 \pm 0.05 \\ 12.32 \pm 0.03 \\ 11.72 \pm 0.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{MAPE} \\ \hline 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\begin{array}{c} \mbox{Electricity}\\ \mbox{RMSE} \\ \hline 10118.18 \pm 33.04 \\ - \\ - \\ - \\ 8126.82 \pm 59.42 \\ 13891.03 \pm 17.38 \\ 2952.28 \pm 25.54 \\ 5329.18 \pm 26.71 \\ 2479.75 \pm 21.17 \\ \end{array}$                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ 31.44 \pm 0.45 \\ 75.20 \pm 0.29 \\ 28.96 \pm 0.37 \\ 42.09 \pm 0.46 \\ 30.06 \pm 0.22 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{tabular}{l}{llllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \mbox{Metr-LA}\\ \mbox{RMSE} \\ \hline 12.94 \pm 0.08 \\ 11.35 \pm 0.17 \\ 12.71 \pm 0.14 \\ 11.55 \pm 0.02 \\ 13.38 \pm 0.24 \\ 14.30 \pm 0.09 \\ 12.03 \pm 0.05 \\ 12.32 \pm 0.03 \\ 11.72 \pm 0.10 \\ 12.09 \pm 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \textbf{MAPE} \\ \hline 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                      | $\begin{array}{r} \label{eq:constraint} Electricity\\ RMSE \\ \hline 10118.18 \pm 33.04 \\ - \\ - \\ - \\ 8126.82 \pm 59.42 \\ 13891.03 \pm 17.38 \\ 2952.28 \pm 25.54 \\ 5329.18 \pm 26.71 \\ 2479.75 \pm 21.17 \\ 2490.45 \pm 23.38 \\ \end{array}$                                                                                                                                                                                                                                               | $\begin{array}{c} \textbf{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ 31.44 \pm 0.45 \\ 75.20 \pm 0.29 \\ 28.96 \pm 0.37 \\ 42.09 \pm 0.46 \\ 30.06 \pm 0.22 \\ 28.20 \pm 0.27 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 11.02 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 7.50 \pm 0.04 \\ \hline 6.82 \pm 0.02 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \mbox{Metr-LA}\\ \mbox{RMSE} \\ \hline 12.94 \pm 0.08 \\ 11.35 \pm 0.17 \\ 12.71 \pm 0.14 \\ 11.55 \pm 0.02 \\ 13.38 \pm 0.24 \\ 14.30 \pm 0.09 \\ 12.03 \pm 0.05 \\ 12.32 \pm 0.03 \\ 11.72 \pm 0.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{MAPE} \\ \hline 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\begin{array}{c} \mbox{Electricity}\\ \mbox{RMSE} \\ \hline 10118.18 \pm 33.04 \\ - \\ - \\ - \\ 8126.82 \pm 59.42 \\ 13891.03 \pm 17.38 \\ 2952.28 \pm 25.54 \\ 5329.18 \pm 26.71 \\ 2479.75 \pm 21.17 \\ \end{array}$                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ 31.44 \pm 0.45 \\ 75.20 \pm 0.29 \\ 28.96 \pm 0.37 \\ 42.09 \pm 0.46 \\ 30.06 \pm 0.22 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 7.50 \pm 0.04 \\ \hline 6.82 \pm 0.02 \\ \hline 6.95 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 7.22 \pm 0.08 \\ \hline 7.26 \pm 0.04 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                         | $\begin{array}{r} \label{eq:constraint} Electricity\\ RMSE \\ \hline 10118.18 \pm 33.04 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \mbox{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\label{eq:constraint} \begin{array}{l} \mbox{Method} \\ (r=0.6) \\ \mbox{BRITS} \\ \mbox{SPIN} \\ \mbox{GRIN} \\ \mbox{GRV-M} \\ \mbox{CRUs} \\ \mbox{AGCRN}_0 \\ \mbox{Transformer}_0 \\ \mbox{STWA}_0 \\ \mbox{AGCRN}_t \\ \mbox{Transformer}_t \\ \mbox{FEDformer}_t \\ \mbox{STWA}_t \\ \mbox{STWA}_t \end{array}$ | $\begin{array}{c} \textbf{MAE} \\ \hline 8.48 \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \\ 11.02 \pm 0.02 \\ 11.02 \pm 0.02 \\ 14.87 \pm 0.04 \\ 7.46 \pm 0.01 \\ 7.50 \pm 0.04 \\ 6.82 \pm 0.02 \\ 6.95 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.04 \\ 6.55 \pm 0.02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\begin{array}{r} \mbox{Electricity}\\ \mbox{RMSE} \\ \hline 10118.18 \pm 33.04 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \mbox{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\label{eq:constraint} \begin{array}{l} \mbox{Method} \\ (r=0.6) \\ \mbox{BRITS} \\ \mbox{SPIN} \\ \mbox{GRIN} \\ \mbox{GRIN} \\ \mbox{GCRN}_0 \\ \mbox{AGCRN}_0 \\ \mbox{AGCRN}_t \\ \mbox{Transformer}_t \\ \mbox{FEDformer}_t \\ \mbox{STWA}_t \\ \mbox{MTGNN}_t \\ \end{array} $                                    | $\begin{array}{c} \textbf{MAE} \\ 8.48 \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \\ 11.02 \pm 0.02 \\ 14.87 \pm 0.04 \\ 7.46 \pm 0.01 \\ 7.50 \pm 0.04 \\ 6.82 \pm 0.02 \\ 6.95 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.04 \\ \underline{6.55 \pm 0.02} \\ 6.63 \pm 0.02 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\begin{array}{r} \mbox{Electricity}\\ \mbox{RMSE} \\ \hline 10118.18 \pm 33.04 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \mbox{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{tabular}{l}{llllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{array}{c} \textbf{MAE} \\ \hline 8.48 \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \\ 11.02 \pm 0.02 \\ 11.02 \pm 0.02 \\ 14.87 \pm 0.04 \\ 7.46 \pm 0.01 \\ 7.50 \pm 0.04 \\ 6.82 \pm 0.02 \\ 6.95 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.04 \\ 6.55 \pm 0.02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\begin{array}{r} \mbox{Electricity}\\ \mbox{RMSE} \\ \hline 10118.18 \pm 33.04 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \mbox{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{tabular}{l}{llllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{MAE} \\ 8.48 \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \\ 11.02 \pm 0.02 \\ 14.87 \pm 0.04 \\ 7.46 \pm 0.01 \\ 7.50 \pm 0.04 \\ 6.82 \pm 0.02 \\ 6.95 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.04 \\ 6.55 \pm 0.02 \\ 6.63 \pm 0.02 \\ 6.63 \pm 0.02 \\ 6.32 \pm 0.01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ \textbf{12.67 \pm 0.11} \\ \textbf{MAPE} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{tabular}{ c c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                    | $\frac{\text{Electricity}}{\text{RMSE}}$ 10118.18 $\pm$ 33.04 8126.82 $\pm$ 59.42 13891.03 $\pm$ 17.38 2952.28 $\pm$ 25.54 5329.18 $\pm$ 26.71 2479.75 $\pm$ 21.17 2490.45 $\pm$ 23.38 12069.56 $\pm$ 19.73 2506.62 $\pm$ 23.17 2682.73 $\pm$ 24.97 2407.39 $\pm$ 23.05 2399.51 $\pm$ 20.09 2239.06 $\pm$ 26.39 Electricity RMSE                                                                                                                                                                    | $\begin{array}{c} \text{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ 31.44 \pm 0.45 \\ 75.20 \pm 0.29 \\ 28.96 \pm 0.37 \\ 42.09 \pm 0.46 \\ 30.06 \pm 0.22 \\ 28.20 \pm 0.27 \\ 61.92 \pm 0.28 \\ 29.27 \pm 0.40 \\ 29.87 \pm 0.09 \\ 29.05 \pm 0.11 \\ \textbf{25.37 \pm 0.13} \\ \textbf{27.38 \pm 0.49} \\ \end{array}$                                                                                                                                                                                                                                                                                         |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 6.82 \pm 0.02 \\ \hline 6.95 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 7.22 \pm 0.08 \\ \hline 7.26 \pm 0.04 \\ \hline 6.55 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.32 \pm 0.01 \\ \hline \ MAE \\ \hline 8.56 \pm 0.09 \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{tabular}{ c c c c c } \hline MAPE \\ \hline 18.66 \pm 0.22 \\ \hline 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.48 \pm 0.05 \\ \hline 12.67 \pm 0.11 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{tabular}{ c c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                    | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 7.50 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 6.95 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 7.22 \pm 0.08 \\ \hline 7.26 \pm 0.04 \\ \hline 6.55 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.32 \pm 0.01 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ \hline \textbf{12.67 \pm 0.11} \\ \hline \textbf{MAPE} \\ 18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\begin{tabular}{ c c c c c } \hline Electricity RMSE \\ \hline 10118.18 \pm 33.04 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} \text{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{tabular}{l}{llllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 6.82 \pm 0.02 \\ \hline 6.95 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 7.22 \pm 0.08 \\ \hline 7.26 \pm 0.04 \\ \hline 6.55 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.32 \pm 0.01 \\ \hline \ MAE \\ \hline 8.56 \pm 0.09 \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{tabular}{ c c c c c } \hline MAPE \\ \hline 18.66 \pm 0.22 \\ \hline 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.48 \pm 0.05 \\ \hline 12.67 \pm 0.11 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{tabular}{ c c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                    | $\frac{\text{Electricity}}{\text{RMSE}}$ 10118.18 $\pm$ 33.04 8126.82 $\pm$ 59.42 13891.03 $\pm$ 17.38 2952.28 $\pm$ 25.54 5329.18 $\pm$ 26.71 2479.75 $\pm$ 21.17 2490.45 $\pm$ 23.38 12069.56 $\pm$ 19.73 2506.62 $\pm$ 23.17 2682.73 $\pm$ 24.97 2407.39 $\pm$ 23.05 2399.51 $\pm$ 20.09 2239.06 $\pm$ 26.39 Electricity RMSE                                                                                                                                                                    | $\begin{array}{c} \text{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ 31.44 \pm 0.45 \\ 75.20 \pm 0.29 \\ 28.96 \pm 0.37 \\ 42.09 \pm 0.46 \\ 30.06 \pm 0.22 \\ 28.20 \pm 0.27 \\ 61.92 \pm 0.28 \\ 29.27 \pm 0.40 \\ 29.87 \pm 0.09 \\ 29.05 \pm 0.11 \\ \textbf{25.37 \pm 0.13} \\ \textbf{27.38 \pm 0.49} \\ \end{array}$                                                                                                                                                                                                                                                                                         |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 7.50 \pm 0.04 \\ \hline 6.82 \pm 0.02 \\ \hline 6.95 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 7.22 \pm 0.08 \\ \hline 7.22 \pm 0.08 \\ \hline 7.26 \pm 0.04 \\ \hline 6.55 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.68 \pm 0.31 \\ \hline 8.00 \pm 0.02 \\ \hline 7.75 \pm 0.03 \\ \hline 11.35 \pm 0.12 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ 12.67 \pm 0.11 \\ \hline \textbf{MAPE} $ | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                          | $\frac{\text{Electricity}}{\text{RMSE}}$ 10118.18 ± 33.04 8126.82 ± 59.42 13891.03 ± 17.38 2952.28 ± 25.54 5329.18 ± 26.71 2479.75 ± 21.17 2490.45 ± 23.38 12069.56 ± 19.73 2506.62 ± 23.17 2682.73 ± 24.97 2407.39 ± 23.05 2399.51 ± 20.09 2239.06 ± 26.39 Electricity RMSE 10150.54 ± 31.05                                                                                                                                                                                                       | $\begin{array}{r} \text{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline $8.48 \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \\ 11.02 \pm 0.02 \\ 14.87 \pm 0.04 \\ 7.46 \pm 0.01 \\ 7.50 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.04 \\ 6.55 \pm 0.02 \\ 6.63 \pm 0.02 \\ 6.63 \pm 0.02 \\ 6.63 \pm 0.02 \\ 6.63 \pm 0.02 \\ 6.68 \pm 0.01 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ \underline{13.48 \pm 0.05} \\ \textbf{12.67 \pm 0.11} \\ \hline \textbf{MAPE} \\ 18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ 18.35 \pm 0.05 \\ 17.94 \pm 0.02 \\ 22.08 \pm 0.22 \\ 29.92 \pm 0.08 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\begin{tabular}{ c c c c c } \hline Electricity RMSE \\ \hline 10118.18 \pm 33.04 \\ - \\ - \\ - \\ - \\ \hline \\ 8126.82 \pm 59.42 \\ 13891.03 \pm 17.38 \\ 2952.28 \pm 25.54 \\ 5329.18 \pm 26.71 \\ 2479.75 \pm 21.17 \\ 2490.45 \pm 23.38 \\ 12069.56 \pm 19.73 \\ 2506.62 \pm 23.17 \\ 2490.45 \pm 23.38 \\ 12069.56 \pm 19.73 \\ 2506.62 \pm 23.17 \\ 2407.39 \pm 23.05 \\ 2399.51 \pm 20.09 \\ \hline \\ $ | $\begin{array}{r} \textbf{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 6.82 \pm 0.02 \\ \hline 6.95 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 7.22 \pm 0.08 \\ \hline 7.26 \pm 0.04 \\ \hline 6.55 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.32 \pm 0.01 \\ \hline \hline MAE \\ \hline 8.56 \pm 0.09 \\ \hline 6.68 \pm 0.31 \\ \hline 8.00 \pm 0.02 \\ \hline 7.75 \pm 0.03 \\ \hline 11.35 \pm 0.12 \\ \hline 14.86 \pm 0.01 \\ \hline 8.06 \pm 0.02 \\ \hline \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ 12.67 \pm 0.11 \\ \hline \\ \textbf{MAPE} \\ 18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ 18.35 \pm 0.05 \\ 17.94 \pm 0.02 \\ 22.08 \pm 0.22 \\ 29.92 \pm 0.08 \\ 18.37 \pm 0.11 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\frac{\text{Electricity}}{\text{RMSE}}$ 10118.18 ± 33.04 8126.82 ± 59.42 13891.03 ± 17.38 2952.28 ± 25.54 5329.18 ± 26.71 2479.75 ± 21.17 2490.45 ± 23.38 12069.56 ± 19.73 2506.62 ± 23.17 2682.73 ± 24.97 2407.39 ± 23.05 2399.51 ± 20.09 2239.06 ± 26.39 2239.06 ± 26.39 Electricity RMSE 10150.54 ± 31.05 7033.29 ± 17.85 16824.28 ± 29.33 3612.37 ± 24.19                                                                                                                                      | $\begin{array}{r} \text{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.26 \pm 0.02 \\ \hline 6.95 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 7.22 \pm 0.08 \\ \hline 7.26 \pm 0.04 \\ \hline 6.55 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.68 \pm 0.01 \\ \hline \hline MAE \\ \hline 8.56 \pm 0.09 \\ \hline 6.68 \pm 0.31 \\ \hline 8.00 \pm 0.02 \\ \hline 7.75 \pm 0.03 \\ \hline 11.35 \pm 0.12 \\ \hline 14.86 \pm 0.01 \\ \hline 8.06 \pm 0.02 \\ \hline 7.83 \pm 0.05 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ \textbf{12.67 \pm 0.11} \\ \hline \textbf{MAPE} \\ \hline \textbf{18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ 18.35 \pm 0.05 \\ 17.94 \pm 0.02 \\ 22.08 \pm 0.22 \\ 29.92 \pm 0.08 \\ 18.37 \pm 0.11 \\ 17.93 \pm 0.06 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\begin{tabular}{ c c c c c } \hline Electricity RMSE \\ \hline 10118.18 \pm 33.04 & - & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} \text{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 6.82 \pm 0.02 \\ \hline 6.95 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 7.22 \pm 0.08 \\ \hline 7.26 \pm 0.04 \\ \hline 6.55 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.32 \pm 0.01 \\ \hline \hline MAE \\ \hline 8.56 \pm 0.09 \\ \hline 6.68 \pm 0.31 \\ \hline 8.00 \pm 0.02 \\ \hline 7.75 \pm 0.03 \\ \hline 11.35 \pm 0.12 \\ \hline 14.86 \pm 0.01 \\ \hline 8.06 \pm 0.02 \\ \hline \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ 12.67 \pm 0.11 \\ \hline \\ \textbf{MAPE} \\ 18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ 18.35 \pm 0.05 \\ 17.94 \pm 0.02 \\ 22.08 \pm 0.22 \\ 29.92 \pm 0.08 \\ 18.37 \pm 0.11 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                      | $\frac{\text{Electricity}}{\text{RMSE}}$ 10118.18 ± 33.04 8126.82 ± 59.42 13891.03 ± 17.38 2952.28 ± 25.54 5329.18 ± 26.71 2479.75 ± 21.17 2490.45 ± 23.38 12069.56 ± 19.73 2506.62 ± 23.17 2682.73 ± 24.97 2407.39 ± 23.05 2399.51 ± 20.09 2239.06 ± 26.39 2239.06 ± 26.39 Electricity RMSE 10150.54 ± 31.05 7033.29 ± 17.85 16824.28 ± 29.33 3612.37 ± 24.19                                                                                                                                      | $\begin{array}{r} \text{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 8.48 \pm 0.02 \\ \hline 6.61 \pm 0.02 \\ \hline 7.04 \pm 0.04 \\ \hline 7.27 \pm 0.02 \\ \hline 11.02 \pm 0.02 \\ \hline 14.87 \pm 0.04 \\ \hline 7.46 \pm 0.01 \\ \hline 7.50 \pm 0.04 \\ \hline 6.82 \pm 0.02 \\ \hline 6.95 \pm 0.03 \\ \hline 12.73 \pm 0.02 \\ \hline 7.22 \pm 0.08 \\ \hline 7.26 \pm 0.04 \\ \hline 6.55 \pm 0.02 \\ \hline 6.63 \pm 0.02 \\ \hline 6.68 \pm 0.01 \\ \hline 8.56 \pm 0.09 \\ \hline 6.68 \pm 0.31 \\ \hline 8.00 \pm 0.02 \\ \hline 7.75 \pm 0.03 \\ \hline 11.35 \pm 0.12 \\ \hline 14.86 \pm 0.01 \\ \hline 8.06 \pm 0.02 \\ \hline 7.83 \pm 0.05 \\ \hline 7.57 \pm 0.06 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{tabular}{ c c c c c c c } \hline Metr-LA & RMSE \\ \hline 12.94 \pm 0.08 & \\ 11.35 \pm 0.17 & \\ 12.71 \pm 0.14 & \\ 11.55 \pm 0.02 & \\ 13.38 \pm 0.24 & \\ 14.30 \pm 0.09 & \\ 12.03 \pm 0.03 & \\ 12.03 \pm 0.03 & \\ 11.72 \pm 0.10 & \\ 12.09 \pm 0.02 & \\ 12.49 \pm 0.14 & \\ 13.61 \pm 0.17 & \\ 13.08 \pm 0.07 & \\ 11.28 \pm 0.07 & \\ 11.28 \pm 0.07 & \\ 11.10 \pm 0.04 & \\ \hline 10.93 \pm 0.03 & \\ \hline Metr-LA & RMSE & \\ \hline 13.03 \pm 0.18 & \\ 11.42 \pm 0.35 & \\ 12.68 \pm 0.09 & \\ 11.65 \pm 0.04 & \\ 14.06 \pm 0.70 & \\ 12.82 \pm 0.05 & \\ 12.97 \pm 0.14 & \\ 12.15 \pm 0.07 & \\ \hline \end{tabular}$                        | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.57 \pm 0.01 \\ 12.67 \pm 0.11 \\ \hline \textbf{MAPE} \\ \hline \textbf{MAPE} \\ \hline \textbf{18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ 18.35 \pm 0.05 \\ 17.94 \pm 0.02 \\ 22.08 \pm 0.22 \\ 29.92 \pm 0.08 \\ 18.37 \pm 0.11 \\ 17.93 \pm 0.06 \\ 17.31 \pm 0.12 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ \hline - \\ - \\ - \\ \hline - \\ - \\ - \\ - \\ - \\ -$                                                  | $\begin{tabular}{ c c c c c } \hline Electricity RMSE \\ \hline 10118.18 \pm 33.04 & - & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} \text{MAPE} \\ \hline 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{array}{r} \textbf{MAE} \\ \hline \textbf{8.48} \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \\ 11.02 \pm 0.02 \\ 14.87 \pm 0.04 \\ 7.46 \pm 0.01 \\ 7.50 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.04 \\ \underline{6.55 \pm 0.02} \\ 6.63 \pm 0.02 \\ \hline \textbf{6.68} \pm 0.01 \\ \hline \textbf{8.56} \pm 0.09 \\ 6.68 \pm 0.31 \\ 8.00 \pm 0.02 \\ 7.75 \pm 0.03 \\ 11.35 \pm 0.12 \\ 14.86 \pm 0.01 \\ 8.06 \pm 0.02 \\ 7.45 \pm 0.03 \\ 14.88 \pm 0.01 \\ 7.32 \pm 0.04 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{tabular}{ c c c c c c c } \hline Metr-LA & RMSE \\ \hline 12.94 \pm 0.08 \\ 11.35 \pm 0.17 & 12.71 \pm 0.14 \\ 11.55 \pm 0.02 \\ 13.38 \pm 0.24 & 14.30 \pm 0.05 \\ 12.03 \pm 0.03 & 10.72 \pm 0.10 & 12.09 \pm 0.02 & 12.49 \pm 0.14 & 13.61 \pm 0.17 & 13.08 \pm 0.07 & 11.28 \pm 0.07 & 11.10 \pm 0.04 & 10.93 \pm 0.03 & 10.93 \pm 0.03 & 11.42 \pm 0.35 & 11.42 \pm 0.35 & 11.42 \pm 0.35 & 11.65 \pm 0.04 & 11.42 \pm 0.35 & 11.65 \pm 0.04 & 14.06 \pm 0.70 & 14.27 \pm 0.02 & 12.82 \pm 0.05 & 12.97 \pm 0.14 & 12.15 \pm 0.07 & 12.21 \pm 0.08 & 14.20 \pm 0.05 & 12.96 \pm 0.08 & \end{tabular}$                                                          | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.48 \pm 0.05 \\ 13.48 \pm 0.05 \\ 13.48 \pm 0.05 \\ 13.48 \pm 0.05 \\ 12.67 \pm 0.11 \\ \hline \textbf{MAPE} \\ 18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ 18.35 \pm 0.05 \\ 17.94 \pm 0.02 \\ 22.08 \pm 0.22 \\ 29.92 \pm 0.08 \\ 18.37 \pm 0.11 \\ 17.93 \pm 0.06 \\ 17.31 \pm 0.12 \\ 17.22 \pm 0.09 \\ 29.92 \pm 0.10 \\ 16.87 \pm 0.05 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{tabular}{ c c c c } \hline MAE \\ \hline 1029.38 \pm 1.84 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                              | $\frac{\text{Electricity}}{\text{RMSE}}$ 10118.18 ± 33.04 8126.82 ± 59.42 13891.03 ± 17.38 2952.28 ± 25.54 5329.18 ± 26.71 2479.75 ± 21.17 2490.45 ± 23.38 12069.56 ± 19.73 2506.62 ± 23.17 2682.73 ± 24.97 2407.39 ± 23.05 2399.51 ± 20.09 239.06 ± 26.39 239.06 ± 26.39 Electricity RMSE 10150.54 ± 31.05 7033.29 ± 17.85 16824.28 ± 29.33 3612.37 ± 24.19 7859.76 ± 31.13 3512.37 ± 22.09 3539.74 ± 15.22 17376.51 ± 44.79 3451.33 ± 5.62                                                        | $\begin{array}{r} \textbf{MAPE} \\ \hline 48.25 \pm 0.29 \\ \hline \\ - \\ - \\ \hline \\ - \\ \hline \\ 31.44 \pm 0.45 \\ 75.20 \pm 0.29 \\ 28.96 \pm 0.37 \\ 42.09 \pm 0.46 \\ 30.06 \pm 0.22 \\ 28.20 \pm 0.27 \\ 61.92 \pm 0.28 \\ 29.27 \pm 0.40 \\ 29.87 \pm 0.09 \\ 29.05 \pm 0.11 \\ \textbf{25.37 \pm 0.13} \\ \textbf{27.38 \pm 0.49} \\ \hline \\ \textbf{MAPE} \\ \hline \\ \textbf{48.04 \pm 0.02} \\ \hline \\ - \\ \hline \\ 33.29 \pm 0.74 \\ 207.77 \pm 0.56 \\ 30.07 \pm 0.18 \\ 64.79 \pm 0.35 \\ 31.15 \pm 0.08 \\ 30.29 \pm 0.11 \\ 70.38 \pm 0.56 \\ 32.26 \pm 0.17 \\ \hline \end{array}$ |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{array}{r} \textbf{MAE} \\ \hline \textbf{8.48} \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \\ 11.02 \pm 0.02 \\ 11.02 \pm 0.02 \\ 14.87 \pm 0.04 \\ 7.46 \pm 0.01 \\ 7.46 \pm 0.01 \\ 6.82 \pm 0.02 \\ 6.95 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.04 \\ \underline{6.55 \pm 0.02} \\ 6.63 \pm 0.02 \\ \hline \textbf{6.32 \pm 0.01} \\ \hline \textbf{MAE} \\ \hline \textbf{8.56 \pm 0.09} \\ 6.68 \pm 0.31 \\ 8.00 \pm 0.02 \\ 7.75 \pm 0.03 \\ 11.35 \pm 0.12 \\ 14.86 \pm 0.01 \\ 8.06 \pm 0.02 \\ 7.83 \pm 0.05 \\ 7.57 \pm 0.06 \\ 7.45 \pm 0.03 \\ 14.88 \pm 0.01 \\ 7.32 \pm 0.04 \\ 7.33 \pm 0.06 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{tabular}{ c c c c c } \hline Metr-LA & RMSE \\ \hline 12.94 \pm 0.08 \\ 11.35 \pm 0.17 \\ 12.71 \pm 0.14 \\ 11.55 \pm 0.02 \\ 13.38 \pm 0.24 \\ 14.30 \pm 0.09 \\ 12.03 \pm 0.03 \\ 12.32 \pm 0.03 \\ 11.72 \pm 0.10 \\ 12.09 \pm 0.02 \\ 12.49 \pm 0.14 \\ 13.61 \pm 0.17 \\ 13.08 \pm 0.07 \\ 11.28 \pm 0.07 \\ 11.10 \pm 0.04 \\ \hline 10.93 \pm 0.03 \\ \hline 10.93 \pm 0.03 \\ \hline 11.05 \pm 0.04 \\ 14.06 \pm 0.70 \\ 12.68 \pm 0.09 \\ 11.65 \pm 0.04 \\ 14.06 \pm 0.70 \\ 12.25 \pm 0.05 \\ 12.97 \pm 0.14 \\ 12.15 \pm 0.07 \\ 12.21 \pm 0.08 \\ 14.20 \pm 0.05 \\ 12.96 \pm 0.08 \\ 13.17 \pm 0.06 \\ \hline 13.17 \pm 0.06 \\ \hline \end{tabular}$ | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ 13.48 \pm 0.05 \\ 13.48 \pm 0.05 \\ 12.67 \pm 0.11 \\ \hline \textbf{MAPE} \\ 18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ 18.35 \pm 0.05 \\ 17.94 \pm 0.02 \\ 22.08 \pm 0.22 \\ 29.92 \pm 0.08 \\ 18.37 \pm 0.11 \\ 17.93 \pm 0.06 \\ 17.31 \pm 0.12 \\ 17.22 \pm 0.09 \\ 29.92 \pm 0.10 \\ 16.87 \pm 0.05 \\ 16.71 \pm 0.04 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                          | $\frac{\text{Electricity}}{\text{RMSE}}$ 10118.18 ± 33.04 8126.82 ± 59.42 13891.03 ± 17.38 2952.28 ± 25.54 5329.18 ± 26.71 2479.75 ± 21.17 2490.45 ± 23.38 12069.56 ± 19.73 2506.62 ± 23.17 2682.73 ± 24.97 2407.39 ± 23.05 2399.51 ± 20.09 2239.06 ± 26.39 2239.06 ± 26.39 2239.06 ± 26.39 2239.06 ± 26.39 2239.06 ± 31.05 7033.29 ± 17.85 16824.28 ± 29.33 3612.37 ± 24.19 7859.76 ± 31.13 3512.37 ± 22.09 3539.74 ± 15.22 17376.51 ± 44.79 3451.33 ± 5.62 3335.18 ± 20.10                        | $\begin{array}{r} \textbf{MAPE} \\ \hline \textbf{48.25 \pm 0.29} \\ \hline \\ - \\ - \\ \hline \\ - \\ - \\ \hline \\ - \\ - \\ \hline \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                   | $\begin{array}{r} \textbf{MAE} \\ \hline \textbf{8.48} \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \\ 11.02 \pm 0.02 \\ 11.02 \pm 0.02 \\ 14.87 \pm 0.04 \\ 7.46 \pm 0.01 \\ 7.50 \pm 0.04 \\ 6.82 \pm 0.02 \\ 6.95 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.04 \\ \underline{6.55 \pm 0.02} \\ 6.63 \pm 0.02 \\ \hline \textbf{6.63} \pm 0.02 \\ \hline \textbf{6.63} \pm 0.02 \\ \hline \textbf{6.68} \pm 0.01 \\ \hline \textbf{MAE} \\ \hline \textbf{8.56} \pm 0.09 \\ 6.68 \pm 0.01 \\ \hline \textbf{8.56} \pm 0.01 \\ \hline \textbf{MAE} \\ \hline \textbf{8.56} \pm 0.01 \\ \hline \textbf{MAE} \\ \hline \textbf{8.56} \pm 0.01 \\ \hline \textbf{1.35} \pm 0.12 \\ 14.86 \pm 0.01 \\ 8.06 \pm 0.02 \\ 7.57 \pm 0.06 \\ 7.45 \pm 0.03 \\ 14.88 \pm 0.01 \\ 7.32 \pm 0.04 \\ 7.33 \pm 0.06 \\ 6.90 \pm 0.03 \\ \hline \textbf{8.90} \pm 0.03 \\ \hline \textbf{8.90} \pm 0.03 \\ \hline \textbf{8.90} \pm 0.04 \\$ | $\begin{array}{r} \mbox{Metr-LA}\\ \mbox{RMSE} \\ \hline 12.94 \pm 0.08\\ 11.35 \pm 0.17\\ 12.71 \pm 0.14\\ 11.55 \pm 0.02\\ 13.38 \pm 0.24\\ 14.30 \pm 0.09\\ 12.03 \pm 0.03\\ 12.32 \pm 0.03\\ 11.72 \pm 0.10\\ 12.09 \pm 0.02\\ 12.49 \pm 0.14\\ 13.61 \pm 0.17\\ 13.08 \pm 0.07\\ 11.28 \pm 0.07\\ 11.28 \pm 0.07\\ 11.10 \pm 0.04\\ \hline 10.93 \pm 0.03\\ \hline 10.93 \pm 0.03\\ \hline 11.42 \pm 0.35\\ 12.68 \pm 0.09\\ 11.65 \pm 0.04\\ 14.06 \pm 0.70\\ 14.27 \pm 0.02\\ 12.82 \pm 0.05\\ 12.97 \pm 0.14\\ 12.15 \pm 0.07\\ 12.21 \pm 0.08\\ 14.20 \pm 0.05\\ 12.96 \pm 0.08\\ 13.17 \pm 0.06\\ 11.30 \pm 0.05\\ \hline \end{array}$                            | $\begin{array}{r} \textbf{MAPE} \\ \hline 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ 12.67 \pm 0.11 \\ \hline \textbf{MAPE} \\ \hline \textbf{MAPE} \\ \hline \textbf{18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ 18.35 \pm 0.05 \\ 17.94 \pm 0.02 \\ 22.08 \pm 0.22 \\ 29.92 \pm 0.08 \\ 18.37 \pm 0.11 \\ 17.93 \pm 0.06 \\ 17.31 \pm 0.12 \\ 17.22 \pm 0.09 \\ 16.87 \pm 0.05 \\ 16.71 \pm 0.04 \\ 13.69 \pm 0.07 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{tabular}{ c c c c } \hline MAE \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                            | $\begin{array}{r} \mbox{Electricity}\\ \mbox{RMSE}\\ \hline 10118.18 \pm 33.04 & - & \\ - & - & \\ - & - & \\ - & - & \\ - & - &$                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} \text{MAPE} \\ \hline \text{48.25 \pm 0.29} \\ \hline \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                         |
| $\label{eq:constraint} \begin{array}{l} \mbox{Method} \\ (r = 0.6) \\ \mbox{BRITS} \\ \mbox{SPIN} \\ \mbox{GRIN} \\ \mbox{GRIN} \\ \mbox{GCRN}_0 \\ \mbox{AGCRN}_0 \\ \mbox{AGCRN}_t \\ \mbox{Transformer}_t \\ \mbox{FEDformer}_t \\ \mbox{STWA}_t \\ \mbox{MTGNN}_t \\ \end{array} $                                  | $\begin{array}{r} \textbf{MAE} \\ \hline \textbf{8.48} \pm 0.02 \\ 6.61 \pm 0.02 \\ 7.04 \pm 0.04 \\ 7.27 \pm 0.02 \\ 11.02 \pm 0.02 \\ 11.02 \pm 0.02 \\ 14.87 \pm 0.04 \\ 7.46 \pm 0.01 \\ 7.46 \pm 0.01 \\ 6.82 \pm 0.02 \\ 6.95 \pm 0.03 \\ 12.73 \pm 0.02 \\ 7.22 \pm 0.08 \\ 7.26 \pm 0.04 \\ \underline{6.55 \pm 0.02} \\ 6.63 \pm 0.02 \\ \hline \textbf{6.32 \pm 0.01} \\ \hline \textbf{MAE} \\ \hline \textbf{8.56 \pm 0.09} \\ 6.68 \pm 0.31 \\ 8.00 \pm 0.02 \\ 7.75 \pm 0.03 \\ 11.35 \pm 0.12 \\ 14.86 \pm 0.01 \\ 8.06 \pm 0.02 \\ 7.83 \pm 0.05 \\ 7.57 \pm 0.06 \\ 7.45 \pm 0.03 \\ 14.88 \pm 0.01 \\ 7.32 \pm 0.04 \\ 7.33 \pm 0.06 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{tabular}{ c c c c c } \hline Metr-LA & RMSE \\ \hline 12.94 \pm 0.08 \\ 11.35 \pm 0.17 \\ 12.71 \pm 0.14 \\ 11.55 \pm 0.02 \\ 13.38 \pm 0.24 \\ 14.30 \pm 0.09 \\ 12.03 \pm 0.03 \\ 12.32 \pm 0.03 \\ 11.72 \pm 0.10 \\ 12.09 \pm 0.02 \\ 12.49 \pm 0.14 \\ 13.61 \pm 0.17 \\ 13.08 \pm 0.07 \\ 11.28 \pm 0.07 \\ 11.10 \pm 0.04 \\ \hline 10.93 \pm 0.03 \\ \hline 10.93 \pm 0.03 \\ \hline 11.05 \pm 0.04 \\ 14.06 \pm 0.70 \\ 12.68 \pm 0.09 \\ 11.65 \pm 0.04 \\ 14.06 \pm 0.70 \\ 12.25 \pm 0.05 \\ 12.97 \pm 0.14 \\ 12.15 \pm 0.07 \\ 12.21 \pm 0.08 \\ 14.20 \pm 0.05 \\ 12.96 \pm 0.08 \\ 13.17 \pm 0.06 \\ \hline 13.17 \pm 0.06 \\ \hline \end{tabular}$ | $\begin{array}{r} \textbf{MAPE} \\ 18.66 \pm 0.22 \\ 13.31 \pm 0.12 \\ 17.04 \pm 0.03 \\ 16.42 \pm 0.03 \\ 20.40 \pm 0.04 \\ 29.92 \pm 0.06 \\ 17.09 \pm 0.07 \\ 17.31 \pm 0.07 \\ 13.66 \pm 0.04 \\ 13.87 \pm 0.09 \\ 24.13 \pm 0.16 \\ 16.75 \pm 0.06 \\ 17.16 \pm 0.03 \\ 13.57 \pm 0.03 \\ 13.48 \pm 0.05 \\ 13.48 \pm 0.05 \\ 13.48 \pm 0.05 \\ 12.67 \pm 0.11 \\ \hline \textbf{MAPE} \\ 18.92 \pm 0.09 \\ 14.41 \pm 1.20 \\ 18.35 \pm 0.05 \\ 17.94 \pm 0.02 \\ 22.08 \pm 0.22 \\ 29.92 \pm 0.08 \\ 18.37 \pm 0.11 \\ 17.93 \pm 0.06 \\ 17.31 \pm 0.12 \\ 17.22 \pm 0.09 \\ 29.92 \pm 0.10 \\ 16.87 \pm 0.05 \\ 16.71 \pm 0.04 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                          | $\frac{\text{Electricity}}{\text{RMSE}}$ 10118.18 ± 33.04 8126.82 ± 59.42 13891.03 ± 17.38 2952.28 ± 25.54 5329.18 ± 26.71 2479.75 ± 21.17 2490.45 ± 23.38 12069.56 ± 19.73 2506.62 ± 23.17 2682.73 ± 24.97 2407.39 ± 23.05 2399.51 ± 20.09 2239.06 ± 26.39 2239.06 ± 26.39 2239.06 ± 26.39 2239.06 ± 26.39 2239.06 ± 31.05 7033.29 ± 17.85 16824.28 ± 29.33 3612.37 ± 24.19 7859.76 ± 31.13 3512.37 ± 22.09 3539.74 ± 15.22 17376.51 ± 44.79 3451.33 ± 5.62 3335.18 ± 20.10                        | $\begin{array}{r} \text{MAPE} \\ 48.25 \pm 0.29 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Missing Data | Madal      | Metr                                       |                                    | Elec                                           | ctricity                                         | PE                                         | MS                                         |
|--------------|------------|--------------------------------------------|------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------|
| Missing Rate | Model      | MAE                                        | RMSE                               | MAE                                            | RMSE                                             | MAE                                        | RMSE                                       |
|              | TCGNet     | $6.25 \pm 0.01$                            | $11.01\pm0.02$                     | $255.46 \pm 2.86$                              | $2026.43 \pm 35.79$                              | $1.94 \pm 0.00$                            | $4.35 \pm 0.02$                            |
|              | w/o. MSIPT | $6.34 \pm 0.04$                            | $11.25\pm0.05$                     | $279.73 \pm 4.91$                              | $2159.16 \pm 28.74$                              | $1.97\pm0.02$                              | $4.40 \pm 0.04$                            |
| 0.2          | w/o. BGCN  | $6.26 \pm 0.03$                            | $11.33\pm0.03$                     | $263.69 \pm 3.32$                              | $2029.16 \pm 25.56$                              | $1.94 \pm 0.00$                            | $4.37 \pm 0.03$                            |
| 0.2          | w/o. Eq. 9 | $6.14 \pm 0.02$                            | $10.72\pm0.02$                     | $250.75\pm5.01$                                | $2020.13 \pm 36.75$                              | $1.94 \pm 0.02$                            | $4.33 \pm 0.03$                            |
|              | w/o. Eq. 4 | $6.12 \pm 0.01$                            | $\overline{10.91\pm0.03}$          | $246.18\pm2.89$                                | $2003.22 \pm 35.09$                              | $\underline{1.93 \pm 0.01}$                | $4.30 \pm 0.02$                            |
|              | BiTGraph   | $\overline{\textbf{6.04}\pm\textbf{0.02}}$ | $\textbf{10.69} \pm \textbf{0.02}$ | $\overline{\textbf{243.23}\pm\textbf{2.12}}$   | $\overline{\textbf{1834.18}\pm\textbf{15.36}}$   | $\overline{\textbf{1.90}\pm\textbf{0.01}}$ | $\overline{\textbf{4.28}\pm\textbf{0.01}}$ |
|              | TCGNet     | $6.41 \pm 0.03$                            | $11.14\pm0.04$                     | $284.39 \pm 5.26$                              | $2323.03 \pm 40.15$                              | $1.99 \pm 0.01$                            | $4.47 \pm 0.03$                            |
|              | w/o. MSIPT | $6.48 \pm 0.02$                            | $11.20\pm0.03$                     | $299.34 \pm 4.17$                              | $2361.79 \pm 37.82$                              | $2.02 \pm 0.02$                            | $4.50 \pm 0.03$                            |
| 0.4          | w/o. BGCN  | $6.40 \pm 0.02$                            | $11.20\pm0.02$                     | $291.81 \pm 3.87$                              | $2337.69 \pm 31.98$                              | $1.98 \pm 0.01$                            | $4.45 \pm 0.02$                            |
| 0.4          | w/o. Eq. 9 | $6.18 \pm 0.01$                            | $10.81\pm0.04$                     | $282.12\pm2.88$                                | $2236.82 \pm 30.26$                              | $1.98 \pm 0.01$                            | $4.32 \pm 0.02$                            |
|              | w/o. Eq. 4 | $\overline{6.25 \pm 0.00}$                 | $\overline{10.87\pm0.02}$          | $280.30 \pm 2.73$                              | $2277.50 \pm 28.49$                              | $1.97 \pm 0.01$                            | $4.34 \pm 0.02$                            |
|              | BiTGraph   | $\textbf{6.13} \pm \textbf{0.01}$          | $\textbf{10.76} \pm \textbf{0.02}$ | $\overline{\textbf{270.14} \pm \textbf{3.77}}$ | $\overline{\textbf{2091.88}\pm\textbf{30.49}}$   | $\overline{\textbf{1.96}\pm\textbf{0.00}}$ | $4.34 \pm 0.0$                             |
|              | TCGNet     | $6.48 \pm 0.02$                            | $11.10\pm0.05$                     | $313.60\pm3.29$                                | $2372.36 \pm 36.19$                              | $2.04 \pm 0.02$                            | $4.55 \pm 0.02$                            |
|              | w/o. MSIPT | $6.65 \pm 0.03$                            | $11.50\pm0.04$                     | $332.39 \pm 3.82$                              | $2469.15 \pm 33.63$                              | $2.09\pm0.02$                              | $4.62 \pm 0.04$                            |
| 0.6          | w/o. BGCN  | $6.65 \pm 0.02$                            | $11.94\pm0.01$                     | $322.68 \pm 2.74$                              | $2487.22 \pm 25.39$                              | $2.03 \pm 0.00$                            | $4.49 \pm 0.0$                             |
| 0.0          | w/o. Eq. 9 | $6.35 \pm 0.03$                            | $11.06\pm0.02$                     | $308.59 \pm 3.97$                              | $2366.39 \pm 32.16$                              | $2.03 \pm 0.01$                            | $4.52 \pm 0.02$                            |
|              | w/o. Eq. 4 | $\overline{6.38\pm0.02}$                   | $\textbf{10.84} \pm \textbf{0.02}$ | $\underline{301.25 \pm 2.05}$                  | $\underline{2312.39 \pm 22.46}$                  | $\underline{2.03\pm0.02}$                  | $4.54 \pm 0.00$                            |
|              | BiTGraph   | $\textbf{6.32} \pm \textbf{0.01}$          | $\underline{10.93 \pm 0.03}$       | $\overline{\textbf{295.23} \pm \textbf{2.75}}$ | $\overline{\textbf{2239.06} \pm \textbf{26.39}}$ | $\overline{\textbf{1.99}\pm\textbf{0.01}}$ | $\textbf{4.47} \pm \textbf{0.0}$           |

Table 3: The results of ablation studies on Metr, Electricity, and PEMS datasets under the missing rates of 0.2, 0.4, and 0.6.

and spatial dimensions. The results reveal that when we adopt MSIPT or BGCN the performance drops significantly, which can be explained by that the MUP builds a complete information-passing path between the spatial and temporal dimensions and the absence of any module will cut off the information flow between the two dimensions.

To further validate the effectiveness of the IAP and MUP, we conduct ablation studies by modifying the IAP. First, we replace the temporal convolution in the MSIPT module with the standard convolution operation (e.g., Eq. 3). Next, we alter the generation of adjacent matrix A by using Eq. 7. The results are shown in the fourth and fifth rows of the table. As we can see, the replacement of either spatial or temporal operations within IAP leads to a notable performance drop, which further verifies the effectiveness of our proposed modules in handling missing values. We also conduct the corresponding ablation study under the block missing scenarios and the results are shown in Appendix C. The results of parameter sensitivity including window size H, the number of blocks L, and the number of nearest neighbors k are shown in Appendix D. We analyze the role of  $\beta$  in Appendix E. We visualize the prediction curves in Appendix F. The model complexity analysis is given in Appendix G.

## 6 CONCLUSIONS

In this paper, we present BiTGraph for the time series forecasting with missing values. BiTGraph jointly captures the temporal dynamics and spatial structure by explicitly taking the missing values into consideration. We inject bias into the two carefully designed modules, the Multi-Scale Instance PartialTCN and Biased GCN, to account for the missing patterns. The experimental results on five real-world benchmark datasets verify its superiority under various missing value scenarios. The ablation studies also show that its excellent performance stems from the two carefully designed Multi-Scale Instance PartialTCN and Biased GCN components. In the future, we would like to explore the Transformer architecture as the backbone of our temporal module to further enhance its long-term forecasting performance for partially observed time series data.

#### ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China under Grant No. 62206074 and Grant No. 62072137, Shenzhen College Stability Support Plan under Grant No. GXWD20220811173233001, and the National Key R&D Program of China under Grant No. 2023YFB4503100.

#### REFERENCES

- Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent network for traffic forecasting. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
- Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.
- Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent imputation for time series. Advances in Neural Information Processing Systems (NeurIPS), 2018.
- Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural networks for multivariate time series with missing values. *Scientific reports*, 2018.
- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.
- Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the g\_ap\_s: Multivariate time series imputation by graph neural networks. In *International Conference on Learning Representations (ICLR)*, 2022.
- Razvan-Gabriel Cirstea, Bin Yang, Chenjuan Guo, Tung Kieu, and Shirui Pan. Towards spatiotemporal aware traffic time series forecasting. In *International Conference on Data Engineering* (*ICDE*), 2022.
- Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. *Advances in Neural Information Processing Systems* (*NeurIPS*), 2016.
- Yue Jiang, Xiucheng Li, Yile Chen, Shuai Liu, Weilong Kong, Antonis F. Lentzakis, and Gao Cong. A scalable adaptive graph diffusion forecasting network for multivariate time series forecasting. In 40th IEEE International Conference on Data Engineering (ICDE), 2024.
- Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations for irregular time series. Advances in Neural Information Processing Systems (NeurIPS), 2020.
- Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907*, 2016.
- Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. *International Conference on Learning Representations (ICLR)*, 2018.
- Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. Image inpainting for irregular holes using partial convolutions. In *European Conference on Computer Vision (ECCV)*, 2018.
- Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In *International Conference on Learning Representations (ICLR)*, 2021.
- Shuai Liu, Xiucheng Li, Gao Cong, Yile Chen, and Yue Jiang. Multivariate time-series imputation with disentangled temporal representations. In *International Conference on Learning Representations (ICLR)*, 2023.
- Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the stationarity in time series forecasting. In *Advances in Neural Information Processing Systems* (*NeurIPS*), 2022.
- Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with generative adversarial networks. *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.

- Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to reconstruct missing data from spatiotemporal graphs with sparse observations. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
- Brian K Nelson. Time series analysis using autoregressive integrated moving average (arima) models. *Academic Emergency Medicine*, 1998.
- Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. *International Conference on Learning Representations (ICLR)*, 2023.
- Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent odes for irregularly-sampled time series. Advances in Neural Information Processing Systems (NeurIPS), 2019.
- David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, 2020.
- Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time series with continuous recurrent units. In *International Conference on Machine Learning (ICML)*, 2022.
- Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time series. In *International Conference on Learning Representations (ICLR)*, 2021.
- Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu Aggarwal, Prasenjit Mitra, and Suhang Wang. Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values. In *International Joint Conference on Artificial Intelligence(AAAI)*, 2020.
- Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion models for probabilistic time series imputation. Advances in Neural Information Processing Systems (NeurIPS), 2021.
- Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. CoST: Contrastive learning of disentangled seasonal-trend representations for time series forecasting. In *International Conference on Learning Representations (ICLR)*, 2022.
- Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.
- Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:temporal 2d-variation modeling for general time series analysis. In *International Conference on Learning Representations (ICLR)*, 2023.
- Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting the dots: Multivariate time series forecasting with graph neural networks. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), 2020.
- Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu. Ts2vec: Towards universal representation of time series. In *Association for the Advancement of Artificial Intelligence (AAAI)*, 2022.
- Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. *arXiv* preprint arXiv:1409.2329, 2014.
- George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff. A transformer-based framework for multivariate time series representation learning. In ACM SIGKDD Conference on Knowledge Discovery Data Mining (SIGKDD), 2021.
- Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Association* for the Advancement of Artificial Intelligence (AAAI), 2021.
- Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In *International Conference on Machine Learning (ICML)*, 2022.

Eric Zivot and Jiahui Wang. Vector autoregressive models for multivariate time series. In *Modeling Financial Time Series with S-PLUS®*, 2006.

Jingwei Zuo, Karine Zeitouni, Yehia Taher, and Sandra Garcia-Rodriguez. Graph convolutional networks for traffic forecasting with missing values. *Data Mining and Knowledge Discovery*, 2023.

## A EXPERIMENTAL DETAILS

#### A.1 DETAILS OF BASELINE MODELS

The details of the baseline models are briefly summarized as follows. For BRITS, SPIN, GRIN, CRUS, AGCRN, MTGNN, FEDformer, and STWA, we use the source codes released by their authors. While for Transformer, we use the version implemented in FEDformer.

- BRITS<sup>2</sup>: It is a time series imputation model that combines a Bidirectional Recurrent Neural Network with the time decay mechanism to establish the relationship between missing values and observed data.
- SPIN<sup>3</sup>: It handles missing values by constructing a sparsely connected graph in both spatial and temporal dimensions.
- GRIN<sup>4</sup>: It incorporates recurrent neural network (RNN) and graph neural network (GNN) to capture inter- and intra-series dependencies to build the relationship between missing values and observed ones.
- GCN-M<sup>5</sup>: It considers local spatiotemporal features and global historical patterns in an attention-based memory network.
- CRUs<sup>6</sup>: It combines the Kalman filter and encoder-decoder frameworks to update the continuous hidden states.
- AGCRN<sup>7</sup>: The adaptive graph and node-specific patterns are learned by node embeddings and matrix factorization, respectively.
- MTGNN<sup>8</sup>: The approach constructs a skew-symmetrical spatial correlation matrix and employs the Temporal Convolutional Network (TCN) and GCN to capture the intra- and inter-series dependencies.
- Transformer: The classic sequential model that uses a stack of self-attention blocks to capture the temporal dependencies in time series.
- FEDformer<sup>9</sup>: The method decomposes the time series into seasonal and trend components and employs the self-attention mechanism in the frequency domain.
- STWA<sup>10</sup>: It constructs spatial-temporal aware embeddings within the self-attention mechanism and introduces window attention to reduce complexity.

## A.2 DETAILS OF METRICS

The metrics of mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) adopted in the paper are defined as follows.

$$MAE = \frac{\sum_{ij\in\Omega} |y_{ij} - \hat{y}_{ij}|}{|\Omega|}, RMSE = \sqrt{\frac{\sum_{ij\in\Omega} (y_{ij} - \hat{y}_{ij})^2}{|\Omega|}}, MAPE = \sum_{ij\in\Omega} \frac{|y_{ij} - \hat{y}_{ij}|}{|\Omega| \cdot |y_{ij}|} \quad (12)$$

where  $\Omega$  represents the index set of observed values.

<sup>&</sup>lt;sup>2</sup>https://github.com/caow13/BRITS

<sup>&</sup>lt;sup>3</sup>https://github.com/Graph-Machine-Learning-Group/spin

<sup>&</sup>lt;sup>4</sup>https://github.com/Graph-Machine-Learning-Group/grin

<sup>&</sup>lt;sup>5</sup>https://github.com/JingweiZuo/GCN-M

<sup>&</sup>lt;sup>6</sup>https://github.com/boschresearch/Continuous-Recurrent-Units

<sup>&</sup>lt;sup>7</sup>https://github.com/LeiBAI/AGCRN

<sup>%</sup>https://github.com/nnzhan/MTGNN

<sup>&</sup>lt;sup>9</sup>https://github.com/DAMO-DI-ML/ICML2022-FEDformer

<sup>&</sup>lt;sup>10</sup>https://github.com/razvanc92/ST-WA

| r = 0.1.                 |                                   |                                    |                                    |                                     |                                       |                                    |
|--------------------------|-----------------------------------|------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|------------------------------------|
| Method                   |                                   | Metr-LA                            |                                    |                                     | Electricity                           |                                    |
| (r = 0.1)                | MAE                               | RMSE                               | MAPE                               | MAE                                 | RMSE                                  | MAPE                               |
| BRITS                    | $8.21 \pm 0.01$                   | $12.63\pm0.10$                     | $18.04\pm0.20$                     | $1027.47 \pm 3.92$                  | $10157.39 \pm 64.012$                 | $47.54 \pm 0.01$                   |
| SPIN                     | $6.36\pm0.00$                     | $11.07\pm0.01$                     | $12.00\pm0.00$                     | -                                   | -                                     | -                                  |
| GRIN                     | $6.69 \pm 0.02$                   | $12.27\pm0.00$                     | $15.88\pm0.01$                     | -                                   | -                                     | -                                  |
| GCN-M                    | $6.72 \pm 0.01$                   | $12.33\pm0.01$                     | $13.06\pm0.02$                     | -                                   | -                                     | -                                  |
| CRU                      | $10.51 \pm 0.03$                  | $13.00\pm0.63$                     | $19.71\pm0.31$                     | $334.40 \pm 31.80$                  | $2923.44 \pm 39.73$                   | $24.99 \pm 0.72$                   |
|                          | $14.66 \pm 0.01$                  | $14.00\pm0.02$                     | $29.30 \pm 0.13$                   | $1361.11 \pm 8.39$                  | $12569.27 \pm 30.09$                  | $62.54 \pm 0.31$                   |
| Transformer <sub>0</sub> | $7.07 \pm 0.05$                   | $12.97\pm0.08$                     | $16.78\pm0.13$                     | $289.65\pm3.39$                     | $2296.17 \pm 27.77$                   | $25.08 \pm 0.32$                   |
| FEDformer <sub>0</sub>   | $6.96 \pm 0.03$                   | $12.37\pm0.08$                     | $16.22\pm0.14$                     | $337.16 \pm 5.25$                   | $2713.72 \pm 33.37$                   | $30.24 \pm 0.28$                   |
| STWA <sub>0</sub>        | $6.22 \pm 0.04$                   | $14.64\pm0.06$                     | $12.71\pm0.05$                     | $269.81 \pm 5.95$                   | $2039.64 \pm 24.06$                   | $22.39 \pm 0.33$                   |
| MTGNN <sub>0</sub>       | $6.25 \pm 0.06$                   | $10.68\pm0.07$                     | $12.18\pm0.05$                     | $256.98 \pm 5.12$                   | $1974.50 \pm 14.69$                   | $20.95 \pm 0.26$                   |
|                          | $13.72 \pm 0.06$                  | $13.11\pm0.23$                     | $27.06 \pm 0.18$                   | $1109.57 \pm 3.95$                  | $10794.08 \pm 34.26$                  | $57.95 \pm 0.18$                   |
| Transformer <sub>t</sub> | $6.90\pm0.07$                     | $12.81\pm0.04$                     | $16.49\pm0.06$                     | $265.76 \pm 6.03$                   | $2064.82 \pm 23.51$                   | $20.06 \pm 0.27$                   |
| FEDformer <sub>t</sub>   | $6.61 \pm 0.03$                   | $11.09\pm0.10$                     | $13.23\pm0.06$                     | $283.63 \pm 2.15$                   | $2269.11 \pm 19.86$                   | $23.23\pm0.18$                     |
| STWA <sub>t</sub>        | $6.17 \pm 0.02$                   | $10.82\pm0.09$                     | $12.14\pm0.04$                     | $248.87\pm3.79$                     | $1945.16 \pm 23.20$                   | $18.20\pm0.16$                     |
| MTGNNt                   | $\underline{6.10 \pm 0.02}$       | $\textbf{10.69} \pm \textbf{0.03}$ | $\underline{12.02\pm0.08}$         | $\overline{254.67\pm3.22}$          | $\overline{1994.07 \pm 25.99}$        | $\overline{22.41\pm0.26}$          |
| BiTGraph                 | $\textbf{5.96} \pm \textbf{0.01}$ | $\underline{10.71\pm0.00}$         | $\textbf{11.13} \pm \textbf{0.02}$ | $\textbf{231.70} \pm \textbf{1.76}$ | $\textbf{1823.18} \pm \textbf{25.49}$ | $\textbf{17.93} \pm \textbf{0.27}$ |

Table 4: The results of forecasting error on Metr-LA and Electricity datasets with the missing rate r = 0.1.

Table 5: The results of forecasting error on PEMS, ETTh1, and BeijingAir datasets with the missing rate r = 0.1 and 0.8.

| Method                                                                                                                                                                                                                                             | PE                                                                                                                                                                                                                                                                                                        | EMS                                                                                                                                                                                                                                                                                                    | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Th1                                                                                                                                                                                                                                                    | Beijin                                                                                                                                                                                                                                                                                                                                        | ngAir                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (0.1)                                                                                                                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                       | RMSE                                                                                                                                                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RMSE                                                                                                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                           | RMSE                                                                                                                                                                                                                                                                                                                                       |
| BRITS                                                                                                                                                                                                                                              | $3.06 \pm 0.01$                                                                                                                                                                                                                                                                                           | $6.39\pm0.02$                                                                                                                                                                                                                                                                                          | $1.76 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.17\pm0.03$                                                                                                                                                                                                                                          | $45.79 \pm 0.24$                                                                                                                                                                                                                                                                                                                              | $67.83 \pm 0.21$                                                                                                                                                                                                                                                                                                                           |
| SPIN                                                                                                                                                                                                                                               | $2.03\pm0.00$                                                                                                                                                                                                                                                                                             | $4.62\pm0.00$                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                      | $44.93 \pm 0.03$                                                                                                                                                                                                                                                                                                                              | $68.13 \pm 0.75$                                                                                                                                                                                                                                                                                                                           |
| GRIN                                                                                                                                                                                                                                               | $2.63\pm0.01$                                                                                                                                                                                                                                                                                             | $6.03\pm0.06$                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                      | $45.96 \pm 0.25$                                                                                                                                                                                                                                                                                                                              | $67.06 \pm 1.30$                                                                                                                                                                                                                                                                                                                           |
| GCNM                                                                                                                                                                                                                                               | $2.13\pm0.02$                                                                                                                                                                                                                                                                                             | $5.29 \pm 0.07$                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                      | $47.68 \pm 0.11$                                                                                                                                                                                                                                                                                                                              | $68.29 \pm 0.09$                                                                                                                                                                                                                                                                                                                           |
| CRUs                                                                                                                                                                                                                                               | $3.21\pm0.02$                                                                                                                                                                                                                                                                                             | $6.03\pm0.01$                                                                                                                                                                                                                                                                                          | $2.80\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4.82\pm0.05$                                                                                                                                                                                                                                          | $56.92 \pm 0.72$                                                                                                                                                                                                                                                                                                                              | $76.13 \pm 0.87$                                                                                                                                                                                                                                                                                                                           |
| AGCRN <sub>0</sub>                                                                                                                                                                                                                                 | $5.10\pm0.07$                                                                                                                                                                                                                                                                                             | $10.07\pm0.06$                                                                                                                                                                                                                                                                                         | $2.39\pm0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4.76\pm0.08$                                                                                                                                                                                                                                          | $55.50\pm0.12$                                                                                                                                                                                                                                                                                                                                | $81.31\pm0.19$                                                                                                                                                                                                                                                                                                                             |
| Transformer <sub>0</sub>                                                                                                                                                                                                                           | $2.75\pm0.07$                                                                                                                                                                                                                                                                                             | $6.15\pm0.02$                                                                                                                                                                                                                                                                                          | $1.88\pm0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3.25\pm0.07$                                                                                                                                                                                                                                          | $48.58\pm0.07$                                                                                                                                                                                                                                                                                                                                | $69.50 \pm 0.21$                                                                                                                                                                                                                                                                                                                           |
| FEDformer <sub>0</sub>                                                                                                                                                                                                                             | $2.61\pm0.05$                                                                                                                                                                                                                                                                                             | $5.76\pm0.10$                                                                                                                                                                                                                                                                                          | $1.69 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.22\pm0.04$                                                                                                                                                                                                                                          | $49.65 \pm 0.09$                                                                                                                                                                                                                                                                                                                              | $72.77\pm0.13$                                                                                                                                                                                                                                                                                                                             |
| STWA <sub>0</sub>                                                                                                                                                                                                                                  | $2.01\pm0.04$                                                                                                                                                                                                                                                                                             | $4.57\pm0.03$                                                                                                                                                                                                                                                                                          | $1.75 \pm 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.15\pm0.00$                                                                                                                                                                                                                                          | $46.71\pm0.14$                                                                                                                                                                                                                                                                                                                                | $70.10\pm0.07$                                                                                                                                                                                                                                                                                                                             |
| $MTGNN_0$                                                                                                                                                                                                                                          | $2.02\pm0.01$                                                                                                                                                                                                                                                                                             | $4.52\pm0.04$                                                                                                                                                                                                                                                                                          | $1.58 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.99\pm0.02$                                                                                                                                                                                                                                          | $44.37\pm0.05$                                                                                                                                                                                                                                                                                                                                | $65.92 \pm 0.06$                                                                                                                                                                                                                                                                                                                           |
| $AGCRN_{\mathrm{t}}$                                                                                                                                                                                                                               | $5.08\pm0.02$                                                                                                                                                                                                                                                                                             | $10.05\pm0.00$                                                                                                                                                                                                                                                                                         | $2.16\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4.29\pm0.05$                                                                                                                                                                                                                                          | $47.08 \pm 0.26$                                                                                                                                                                                                                                                                                                                              | $69.62 \pm 0.37$                                                                                                                                                                                                                                                                                                                           |
| $Transformer_{\mathrm{t}}$                                                                                                                                                                                                                         | $2.54\pm0.02$                                                                                                                                                                                                                                                                                             | $6.05\pm0.03$                                                                                                                                                                                                                                                                                          | $1.72\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3.25\pm0.13$                                                                                                                                                                                                                                          | $47.43 \pm 0.16$                                                                                                                                                                                                                                                                                                                              | $69.69 \pm 0.08$                                                                                                                                                                                                                                                                                                                           |
| FEDformert                                                                                                                                                                                                                                         | $2.45 \pm 0.03$                                                                                                                                                                                                                                                                                           | $5.43 \pm 0.02$                                                                                                                                                                                                                                                                                        | $1.67\pm0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3.22\pm0.04$                                                                                                                                                                                                                                          | $44.87 \pm 0.16$                                                                                                                                                                                                                                                                                                                              | $66.54 \pm 0.07$                                                                                                                                                                                                                                                                                                                           |
| $STWA_{\mathrm{t}}$                                                                                                                                                                                                                                | $1.98\pm0.02$                                                                                                                                                                                                                                                                                             | $3.51\pm0.04$                                                                                                                                                                                                                                                                                          | $1.64 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.04\pm0.02$                                                                                                                                                                                                                                          | $45.28 \pm 0.13$                                                                                                                                                                                                                                                                                                                              | $68.93 \pm 0.04$                                                                                                                                                                                                                                                                                                                           |
| $MTGNN_{\mathrm{t}}$                                                                                                                                                                                                                               | $\underline{1.93 \pm 0.01}$                                                                                                                                                                                                                                                                               | $\underline{3.35\pm0.03}$                                                                                                                                                                                                                                                                              | $1.54 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\underline{2.96 \pm 0.02}$                                                                                                                                                                                                                            | $\underline{43.32\pm0.02}$                                                                                                                                                                                                                                                                                                                    | $\underline{65.81 \pm 0.07}$                                                                                                                                                                                                                                                                                                               |
| BiTGraph                                                                                                                                                                                                                                           | $\textbf{1.56} \pm \textbf{0.02}$                                                                                                                                                                                                                                                                         | $\textbf{2.97} \pm \textbf{0.02}$                                                                                                                                                                                                                                                                      | $\mid~1.51\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\textbf{2.92} \pm \textbf{0.02}$                                                                                                                                                                                                                      | $\textbf{42.11} \pm \textbf{0.11}$                                                                                                                                                                                                                                                                                                            | $\textbf{65.53} \pm \textbf{0.23}$                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                            |
| Method                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           | EMS                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Th1                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                               | ngAir                                                                                                                                                                                                                                                                                                                                      |
| Method<br>(0.8)                                                                                                                                                                                                                                    | PE<br>MAE                                                                                                                                                                                                                                                                                                 | EMS<br>RMSE                                                                                                                                                                                                                                                                                            | ET<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Th1<br>RMSE                                                                                                                                                                                                                                            | Beiji<br>MAE                                                                                                                                                                                                                                                                                                                                  | ngAir<br>RMSE                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                            |
| (0.8)                                                                                                                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                       | RMSE                                                                                                                                                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RMSE                                                                                                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                           | RMSE                                                                                                                                                                                                                                                                                                                                       |
| (0.8)<br>BRITS<br>SPIN<br>GRIN                                                                                                                                                                                                                     | $MAE = 3.26 \pm 0.10$                                                                                                                                                                                                                                                                                     | $\begin{array}{r} \text{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \end{array}$                                                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RMSE                                                                                                                                                                                                                                                   | $MAE = 46.75 \pm 0.59$                                                                                                                                                                                                                                                                                                                        | $\frac{\text{RMSE}}{68.17 \pm 0.87}$                                                                                                                                                                                                                                                                                                       |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M                                                                                                                                                                                                            | $\begin{tabular}{ c c c c c } MAE \\ \hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \end{tabular}$                                                                                                                                                                               | $\begin{array}{c} \text{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \end{array}$                                                                                                                                                                                  | MAE<br>2.14 ± 0.01<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RMSE<br>3.81 ± 0.09<br>-<br>-<br>-                                                                                                                                                                                                                     | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ 52.07 \pm 0.92 \\ 52.57 \pm 0.08 \\ \hline \end{tabular}$                                                                                                                                                                                   | RMSE $68.17 \pm 0.87$ $66.58 \pm 0.25$ $74.60 \pm 1.85$ $73.71 \pm 0.14$                                                                                                                                                                                                                                                                   |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUs                                                                                                                                                                                                    | $\begin{tabular}{ c c c c c } MAE \\ \hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \end{tabular}$                                                                                                                                                              | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \end{array}$                                                                                                                                                               | $\begin{tabular}{ c c c c c } MAE \\ \hline $2.14 \pm 0.01$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $3.15 \pm 0.11$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \end{array}$                                                                                                                                                     | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ 52.07 \pm 0.92 \\ 52.57 \pm 0.08 \\ 57.10 \pm 1.45 \\ \hline \end{tabular}$                                                                                                                                                                 | RMSE $68.17 \pm 0.87$ $66.58 \pm 0.25$ $74.60 \pm 1.85$ $73.71 \pm 0.14$ $73.18 \pm 0.14$                                                                                                                                                                                                                                                  |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUs<br>AGCRN <sub>0</sub>                                                                                                                                                                              | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \end{tabular}$                                                                                                                                  | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \end{array}$                                                                                                                                             | $\begin{tabular}{ c c c c c } MAE \\ \hline $2.14 \pm 0.01$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $3.15 \pm 0.11$ \\ $3.18 \pm 0.12$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \end{array}$                                                                                                                                    | $\begin{tabular}{ c c c c c c c } \hline MAE & & & & & & \\ \hline 46.75 \pm 0.59 & & & & & \\ \hline 44.94 \pm 0.13 & & & & \\ 52.07 \pm 0.13 & & & & \\ 52.57 \pm 0.08 & & & & \\ 57.10 \pm 1.45 & & & & \\ 55.59 \pm 0.03 & & & & \\ \hline \end{tabular}$                                                                                 | $\begin{array}{c} \text{RMSE} \\ \hline 68.17 \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \end{array}$                                                                                                                                                            |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUs<br>AGCRN <sub>0</sub><br>Transformer <sub>0</sub>                                                                                                                                                  | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 3.26 \pm 0.10 \\ 2.26 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \\ 2.97 \pm 0.06 \end{tabular}$                                                                                                                                  | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \\ 6.73 \pm 0.08 \end{array}$                                                                                                                            | $\begin{tabular}{ c c c c c } MAE \\ \hline $2.14 \pm 0.01$ \\ \hline $-$ \hline $-$ \\ \hline $-$ \hline $-$ \\ \hline $-$ \hline $$       | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \\ 5.20 \pm 0.06 \end{array}$                                                                                                                   | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ \hline 52.07 \pm 0.92 \\ \hline 52.57 \pm 0.08 \\ \hline 57.10 \pm 1.45 \\ \hline 55.59 \pm 0.03 \\ \hline 52.47 \pm 0.03 \\ \hline \end{tabular}$                                                                                          | $\begin{array}{c} \textbf{RMSE} \\ \hline 68.17 \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \\ 73.10 \pm 0.16 \end{array}$                                                                                                                                        |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUs<br>AGCRN <sub>0</sub><br>Transformer <sub>0</sub><br>FEDformer <sub>0</sub>                                                                                                                        | $\begin{array}{ c c c c c } MAE \\\hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \\ 2.97 \pm 0.06 \\ 2.89 \pm 0.04 \\\hline \end{array}$                                                                                                       | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \\ 6.73 \pm 0.08 \\ 6.37 \pm 0.06 \end{array}$                                                                                                           | $\begin{tabular}{ c c c c c } MAE \\ \hline $2.14 \pm 0.01$ \\ \hline $-$ \hline $-$$        | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \\ 5.20 \pm 0.06 \\ 5.78 \pm 0.02 \end{array}$                                                                                                  | $\begin{tabular}{ c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ \hline 52.07 \pm 0.92 \\ \hline 52.57 \pm 0.08 \\ \hline 57.10 \pm 1.45 \\ \hline 55.59 \pm 0.03 \\ \hline 52.47 \pm 0.03 \\ \hline 56.94 \pm 0.04 \\ \hline \end{tabular}$                                                                   | $\begin{array}{c} \textbf{RMSE} \\ \hline 68.17 \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \\ 73.10 \pm 0.16 \\ 81.88 \pm 0.09 \end{array}$                                                                                                                      |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUs<br>AGCRN <sub>0</sub><br>Transformer <sub>0</sub><br>FEDformer <sub>0</sub><br>STWA <sub>0</sub>                                                                                                   | $\begin{array}{ c c c c c }\hline MAE \\\hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \\ 2.97 \pm 0.06 \\ 2.89 \pm 0.04 \\ 2.34 \pm 0.04 \\\hline \end{array}$                                                                                | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \\ 6.73 \pm 0.08 \\ 6.37 \pm 0.06 \\ 5.16 \pm 0.02 \end{array}$                                                                                          | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline $2.14 \pm 0.01$ \\ \hline $-$ \hline $$ | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \\ 5.20 \pm 0.06 \\ 5.78 \pm 0.02 \\ 4.41 \pm 0.03 \end{array}$                                                                                 | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ 52.07 \pm 0.92 \\ 52.57 \pm 0.08 \\ 57.10 \pm 1.45 \\ 55.59 \pm 0.03 \\ 52.47 \pm 0.03 \\ 56.94 \pm 0.04 \\ 52.07 \pm 0.11 \\ \hline \end{tabular}$                                                                                         | $\begin{array}{c} \textbf{RMSE} \\ \hline 68.17 \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \\ 73.10 \pm 0.16 \\ 81.88 \pm 0.09 \\ 74.95 \pm 0.08 \end{array}$                                                                                                    |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUs<br>AGCRN <sub>0</sub><br>Transformer <sub>0</sub><br>FEDformer <sub>0</sub><br>STWA <sub>0</sub><br>MTGNN <sub>0</sub>                                                                             | $\begin{array}{ c c c c c }\hline MAE \\\hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \\ 2.97 \pm 0.06 \\ 2.89 \pm 0.04 \\ 2.34 \pm 0.04 \\ 2.39 \pm 0.02 \\ \end{array}$                                                                     | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \\ 6.73 \pm 0.08 \\ 6.37 \pm 0.06 \\ 5.16 \pm 0.02 \\ 5.18 \pm 0.09 \end{array}$                                                                         | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline $2.14 \pm 0.01$ \\ \hline $-$ \hline $-$$    | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \\ 5.20 \pm 0.06 \\ 5.78 \pm 0.02 \\ 4.41 \pm 0.03 \\ 5.30 \pm 0.02 \end{array}$                                                                | $\begin{tabular}{ c c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ 52.07 \pm 0.92 \\ 52.57 \pm 0.08 \\ 57.10 \pm 1.45 \\ 55.59 \pm 0.03 \\ 52.47 \pm 0.03 \\ 56.94 \pm 0.04 \\ 52.07 \pm 0.11 \\ 53.05 \pm 0.02 \\ \hline \end{tabular}$                                                                       | $\begin{array}{c} \textbf{RMSE} \\ \hline 68.17 \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \\ 73.10 \pm 0.16 \\ 81.88 \pm 0.09 \\ 74.95 \pm 0.08 \\ 73.57 \pm 0.10 \end{array}$                                                                                  |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUs<br>AGCRN <sub>0</sub><br>Transformer <sub>0</sub><br>FEDformer <sub>0</sub><br>STWA <sub>0</sub><br>MTGNN <sub>0</sub><br>AGCRN <sub>t</sub>                                                       | $\begin{array}{ c c c c c }\hline MAE \\\hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \\ 2.97 \pm 0.06 \\ 2.89 \pm 0.04 \\ 2.34 \pm 0.04 \\ 2.39 \pm 0.02 \\ 5.10 \pm 0.01 \\\hline \end{array}$                                              | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \\ 6.73 \pm 0.08 \\ 6.37 \pm 0.06 \\ 5.16 \pm 0.02 \\ 5.18 \pm 0.09 \\ 10.07 \pm 0.01 \end{array}$                                                       | $\begin{tabular}{ c c c c c } \hline MAE \\ \hline $2.14 \pm 0.01$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$ \\ $-$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \\ 5.20 \pm 0.06 \\ 5.78 \pm 0.02 \\ 4.41 \pm 0.03 \\ 5.30 \pm 0.02 \\ 5.25 \pm 0.12 \end{array}$                                               | $\begin{tabular}{ c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ 52.07 \pm 0.92 \\ 52.57 \pm 0.08 \\ 57.10 \pm 1.45 \\ 55.59 \pm 0.03 \\ 52.47 \pm 0.03 \\ 56.94 \pm 0.04 \\ 52.07 \pm 0.11 \\ 53.05 \pm 0.02 \\ 55.48 \pm 0.05 \\ \hline \end{tabular}$                                                       | $\begin{array}{c} \textbf{RMSE} \\ \hline 68.17 \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \\ 73.10 \pm 0.16 \\ 81.88 \pm 0.09 \\ 74.95 \pm 0.08 \\ 73.57 \pm 0.10 \\ 78.86 \pm 0.13 \\ \end{array}$                                                             |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUs<br>AGCRN <sub>0</sub><br>Transformer <sub>0</sub><br>FEDformer <sub>0</sub><br>STWA <sub>0</sub><br>MTGNN <sub>0</sub><br>AGCRN <sub>t</sub><br>Transformer <sub>t</sub>                           | $\begin{array}{ c c c c c }\hline MAE \\\hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \\ 2.97 \pm 0.06 \\ 2.89 \pm 0.04 \\ 2.34 \pm 0.04 \\ 2.39 \pm 0.02 \\ 5.10 \pm 0.01 \\ 2.85 \pm 0.07 \\\hline \end{array}$                             | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \\ 6.73 \pm 0.08 \\ 6.37 \pm 0.06 \\ 5.16 \pm 0.02 \\ 5.18 \pm 0.09 \\ 10.07 \pm 0.01 \\ 6.29 \pm 0.11 \end{array}$                                      | $\begin{array}{ c c c c c } MAE \\ \hline 2.14 \pm 0.01 \\ \hline - \\ - \\ 3.15 \pm 0.11 \\ 3.18 \pm 0.12 \\ 2.81 \pm 0.07 \\ 2.59 \pm 0.03 \\ 2.56 \pm 0.02 \\ 2.46 \pm 0.04 \\ 3.16 \pm 0.09 \\ 2.51 \pm 0.01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \\ 5.20 \pm 0.06 \\ 5.78 \pm 0.02 \\ 4.41 \pm 0.03 \\ 5.30 \pm 0.02 \\ 5.25 \pm 0.12 \\ 4.98 \pm 0.07 \end{array}$                              | $\begin{tabular}{ c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ 52.07 \pm 0.92 \\ 52.57 \pm 0.08 \\ 57.10 \pm 1.45 \\ 55.59 \pm 0.03 \\ 52.47 \pm 0.03 \\ 56.94 \pm 0.04 \\ 52.07 \pm 0.11 \\ 53.05 \pm 0.02 \\ 55.48 \pm 0.05 \\ 50.09 \pm 0.06 \\ \hline \end{tabular}$                                     | $\begin{array}{c} \textbf{RMSE} \\ \hline 68.17 \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \\ 73.10 \pm 0.16 \\ 81.88 \pm 0.09 \\ 74.95 \pm 0.08 \\ 73.57 \pm 0.10 \\ 78.86 \pm 0.13 \\ 72.00 \pm 0.07 \end{array}$                                              |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUs<br>AGCRN <sub>0</sub><br>Transformer <sub>0</sub><br>FEDformer <sub>0</sub><br>STWA <sub>0</sub><br>MTGNN <sub>0</sub><br>AGCRN <sub>t</sub><br>Transformer <sub>t</sub><br>FEDformer <sub>t</sub> | $\begin{array}{ c c c c c }\hline MAE \\\hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \\ 2.97 \pm 0.06 \\ 2.89 \pm 0.04 \\ 2.34 \pm 0.04 \\ 2.39 \pm 0.02 \\ 5.10 \pm 0.01 \\ 2.85 \pm 0.07 \\ 2.76 \pm 0.03 \\ \end{array}$                  | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \\ 6.73 \pm 0.08 \\ 6.37 \pm 0.06 \\ 5.16 \pm 0.02 \\ 5.18 \pm 0.09 \\ 10.07 \pm 0.01 \\ 6.29 \pm 0.11 \\ 6.18 \pm 0.02 \end{array}$                     | $\begin{array}{ c c c c c } MAE \\ \hline 2.14 \pm 0.01 \\ \hline - \\ - \\ 3.15 \pm 0.11 \\ 3.18 \pm 0.12 \\ 2.81 \pm 0.07 \\ 2.59 \pm 0.03 \\ 2.56 \pm 0.02 \\ 2.46 \pm 0.04 \\ 3.16 \pm 0.09 \\ 2.51 \pm 0.01 \\ 2.55 \pm 0.02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \\ 5.20 \pm 0.06 \\ 5.78 \pm 0.02 \\ 4.41 \pm 0.03 \\ 5.30 \pm 0.02 \\ 5.25 \pm 0.12 \\ 4.98 \pm 0.07 \\ 4.69 \pm 0.06 \end{array}$             | $\begin{tabular}{ c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ 52.07 \pm 0.92 \\ 52.57 \pm 0.08 \\ 57.10 \pm 1.45 \\ 55.59 \pm 0.03 \\ 52.47 \pm 0.03 \\ 56.94 \pm 0.04 \\ 52.07 \pm 0.11 \\ 53.05 \pm 0.02 \\ 55.48 \pm 0.05 \\ 50.09 \pm 0.06 \\ 49.83 \pm 0.15 \\ \hline \end{tabular}$                   | $\begin{array}{c} \textbf{RMSE} \\ \hline \textbf{68.17} \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \\ 73.10 \pm 0.16 \\ 81.88 \pm 0.09 \\ 74.95 \pm 0.08 \\ 73.57 \pm 0.10 \\ 78.86 \pm 0.13 \\ 72.00 \pm 0.07 \\ 71.22 \pm 0.08 \end{array}$                   |
| (0.8) BRITS SPIN GRIN GCN-M CRUs AGCRN <sub>0</sub> Transformer <sub>0</sub> FEDformer <sub>0</sub> STWA <sub>0</sub> MTGNN <sub>0</sub> AGCRN <sub>t</sub> Transformer <sub>t</sub> FEDformer <sub>t</sub> STWA <sub>t</sub>                      | $\begin{array}{ c c c c c }\hline MAE \\\hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \\ 2.97 \pm 0.06 \\ 2.89 \pm 0.04 \\ 2.34 \pm 0.04 \\ 2.39 \pm 0.02 \\ 5.10 \pm 0.01 \\ 2.85 \pm 0.07 \\ 2.76 \pm 0.03 \\ 2.27 \pm 0.02 \\ \end{array}$ | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \\ 6.73 \pm 0.08 \\ 6.37 \pm 0.06 \\ 5.16 \pm 0.02 \\ 5.18 \pm 0.09 \\ 10.07 \pm 0.01 \\ 6.29 \pm 0.11 \\ 6.18 \pm 0.02 \\ 5.00 \pm 0.01 \\ \end{array}$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \\ 5.20 \pm 0.06 \\ 5.78 \pm 0.02 \\ 4.41 \pm 0.03 \\ 5.30 \pm 0.02 \\ 5.25 \pm 0.12 \\ 4.98 \pm 0.07 \\ 4.69 \pm 0.06 \\ 3.73 \pm 0.04 \end{array}$ | $\begin{tabular}{ c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ 52.07 \pm 0.92 \\ 52.57 \pm 0.08 \\ 57.10 \pm 1.45 \\ 55.59 \pm 0.03 \\ 52.47 \pm 0.03 \\ 56.94 \pm 0.04 \\ 52.07 \pm 0.11 \\ 53.05 \pm 0.02 \\ 55.48 \pm 0.05 \\ 50.09 \pm 0.06 \\ 49.83 \pm 0.15 \\ 46.97 \pm 0.06 \\ \hline \end{tabular}$ | $\begin{array}{c} \textbf{RMSE} \\ \hline \textbf{68.17} \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \\ 73.10 \pm 0.16 \\ 81.88 \pm 0.09 \\ 74.95 \pm 0.08 \\ 73.57 \pm 0.10 \\ 78.86 \pm 0.13 \\ 72.00 \pm 0.07 \\ 71.22 \pm 0.08 \\ 72.93 \pm 0.07 \end{array}$ |
| (0.8)<br>BRITS<br>SPIN<br>GRIN<br>GCN-M<br>CRUS<br>AGCRN <sub>0</sub><br>Transformer <sub>0</sub><br>FEDformer <sub>0</sub><br>STWA <sub>0</sub><br>MTGNN <sub>0</sub><br>AGCRN <sub>t</sub><br>Transformer <sub>t</sub><br>FEDformer <sub>t</sub> | $\begin{array}{ c c c c c }\hline MAE \\\hline 3.26 \pm 0.10 \\ 2.26 \pm 0.01 \\ 2.96 \pm 0.02 \\ 2.54 \pm 0.02 \\ 3.15 \pm 0.01 \\ 5.09 \pm 0.00 \\ 2.97 \pm 0.06 \\ 2.89 \pm 0.04 \\ 2.34 \pm 0.04 \\ 2.39 \pm 0.02 \\ 5.10 \pm 0.01 \\ 2.85 \pm 0.07 \\ 2.76 \pm 0.03 \\ \end{array}$                  | $\begin{array}{c} \textbf{RMSE} \\ \hline 7.02 \pm 0.03 \\ 5.03 \pm 0.02 \\ 6.70 \pm 0.12 \\ 5.77 \pm 0.04 \\ 6.07 \pm 0.01 \\ 10.07 \pm 0.02 \\ 6.73 \pm 0.08 \\ 6.37 \pm 0.06 \\ 5.16 \pm 0.02 \\ 5.18 \pm 0.09 \\ 10.07 \pm 0.01 \\ 6.29 \pm 0.11 \\ 6.18 \pm 0.02 \end{array}$                     | $\begin{array}{ c c c c c } MAE \\ \hline 2.14 \pm 0.01 \\ \hline - \\ - \\ 3.15 \pm 0.11 \\ 3.18 \pm 0.12 \\ 2.81 \pm 0.07 \\ 2.59 \pm 0.03 \\ 2.56 \pm 0.02 \\ 2.46 \pm 0.04 \\ 3.16 \pm 0.09 \\ 2.51 \pm 0.01 \\ 2.55 \pm 0.02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{RMSE} \\ \hline 3.81 \pm 0.09 \\ - \\ - \\ - \\ 5.31 \pm 0.09 \\ 6.02 \pm 0.02 \\ 5.20 \pm 0.06 \\ 5.78 \pm 0.02 \\ 4.41 \pm 0.03 \\ 5.30 \pm 0.02 \\ 5.25 \pm 0.12 \\ 4.98 \pm 0.07 \\ 4.69 \pm 0.06 \end{array}$             | $\begin{tabular}{ c c c c c c } \hline MAE \\ \hline 46.75 \pm 0.59 \\ \hline 44.94 \pm 0.13 \\ 52.07 \pm 0.92 \\ 52.57 \pm 0.08 \\ 57.10 \pm 1.45 \\ 55.59 \pm 0.03 \\ 52.47 \pm 0.03 \\ 56.94 \pm 0.04 \\ 52.07 \pm 0.11 \\ 53.05 \pm 0.02 \\ 55.48 \pm 0.05 \\ 50.09 \pm 0.06 \\ 49.83 \pm 0.15 \\ \hline \end{tabular}$                   | $\begin{array}{c} \textbf{RMSE} \\ \hline \textbf{68.17} \pm 0.87 \\ \textbf{66.58} \pm \textbf{0.25} \\ 74.60 \pm 1.85 \\ 73.71 \pm 0.14 \\ 73.18 \pm 0.14 \\ 81.58 \pm 0.10 \\ 73.10 \pm 0.16 \\ 81.88 \pm 0.09 \\ 74.95 \pm 0.08 \\ 73.57 \pm 0.10 \\ 78.86 \pm 0.13 \\ 72.00 \pm 0.07 \\ 71.22 \pm 0.08 \end{array}$                   |

| 1  ate  7 = 0.2, 0.3     |                                    |                                            |                                    |                                    |                                         |                                      |
|--------------------------|------------------------------------|--------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------|--------------------------------------|
| Method                   | PE                                 | MS                                         | ET                                 |                                    | Beijiı                                  |                                      |
| (0.2)                    | MAE                                | RMSE                                       | MAE                                | RMSE                               | MAE                                     | RMSE                                 |
| BRITS                    | $3.07 \pm 0.02$                    | $6.34 \pm 0.00$                            | $1.81 \pm 0.05$                    | $3.24 \pm 0.00$                    | $47.81 \pm 0.16$                        | $70.66 \pm 2.41$                     |
| SPIN                     | $2.08 \pm 0.05$                    | $4.74 \pm 0.16$                            | $1.01 \pm 0.00$                    | 0.24 ± 0.00                        | $44.03 \pm 0.12$                        | $66.34 \pm 0.75$                     |
| GRIN                     | $2.69 \pm 0.03$<br>$2.69 \pm 0.09$ | $4.74 \pm 0.10$<br>$6.21 \pm 0.22$         | _                                  | _                                  | $\frac{44.03 \pm 0.12}{46.58 \pm 0.03}$ | $68.81 \pm 1.37$                     |
|                          |                                    |                                            |                                    | -                                  |                                         |                                      |
| GCN-M                    | $2.18 \pm 0.01$                    | $5.07 \pm 0.06$                            | -                                  | -                                  | $50.35 \pm 0.03$                        | $70.51 \pm 0.08$                     |
| CRUs                     | $2.82 \pm 0.01$                    | $5.60 \pm 0.03$                            | $2.87 \pm 0.05$                    | $4.92 \pm 0.05$                    | $57.81 \pm 0.55$                        | $75.49 \pm 0.61$                     |
|                          | $5.10\pm0.03$                      | $10.04\pm0.01$                             | $2.57\pm0.02$                      | $4.93\pm0.05$                      | $55.47 \pm 0.16$                        | $81.06\pm0.12$                       |
| Transformer <sub>0</sub> | $2.79 \pm 0.04$                    | $6.20\pm0.07$                              | $2.31 \pm 0.07$                    | $3.79 \pm 0.04$                    | $50.37 \pm 0.06$                        | $73.18 \pm 0.07$                     |
| FEDformer <sub>0</sub>   | $2.70\pm0.06$                      | $5.71\pm0.13$                              | $1.80\pm0.03$                      | $3.36 \pm 0.02$                    | $50.03 \pm 0.09$                        | $71.81 \pm 0.14$                     |
| STWA <sub>0</sub>        | $2.07\pm0.01$                      | $4.69\pm0.03$                              | $1.82\pm0.01$                      | $3.23 \pm 0.03$                    | $45.16\pm0.05$                          | $67.96 \pm 0.13$                     |
| $MTGNN_0$                | $2.10\pm0.03$                      | $4.63\pm0.02$                              | $1.65\pm0.02$                      | $3.07 \pm 0.02$                    | $44.71\pm0.09$                          | $66.11 \pm 0.06$                     |
| $AGCRN_{\mathrm{t}}$     | $5.10 \pm 0.00$                    | $10.05\pm0.01$                             | $2.35\pm0.02$                      | $4.17 \pm 0.04$                    | $53.67 \pm 0.08$                        | $78.55 \pm 0.12$                     |
| $Transformer_t$          | $2.62\pm0.01$                      | $5.42\pm0.02$                              | $1.75\pm0.03$                      | $3.30 \pm 0.06$                    | $47.72\pm0.04$                          | $69.17 \pm 0.16$                     |
| FEDformer <sub>t</sub>   | $2.56\pm0.03$                      | $5.77\pm0.04$                              | $1.72\pm0.01$                      | $3.23 \pm 0.03$                    | $45.70\pm0.09$                          | $68.91 \pm 0.02$                     |
| STWAt                    | $2.03 \pm 0.02$                    | $4.61\pm0.07$                              | $1.67\pm0.02$                      | $3.12 \pm 0.01$                    | $45.08\pm0.02$                          | $67.57 \pm 0.10$                     |
| MTGNNt                   | $\underline{1.98\pm0.01}$          | $4.51\pm0.06$                              | $\textbf{1.56} \pm \textbf{0.01}$  | $3.05\pm0.01$                      | $44.40\pm0.06$                          | $66.86 \pm 0.11$                     |
|                          |                                    |                                            |                                    |                                    |                                         |                                      |
| BiTGraph                 | $  1.90 \pm 0.01$                  | $\textbf{4.28} \pm \textbf{0.01}$          | $\textbf{1.56} \pm \textbf{0.01}$  | 2.97 ± 0.02                        | $\textbf{42.94} \pm \textbf{0.13}$      | $\underline{66.36 \pm 0.25}$         |
| Method                   | PE                                 | EMS                                        | ET ET                              | Th1                                | Beiji                                   | ngAir                                |
| (0.4)                    | MAE                                | RMSE                                       | MAE                                | RMSE                               | MAE                                     | RMSE                                 |
| BRITS                    | $3.08 \pm 0.01$                    | $6.31\pm0.03$                              | $1.82 \pm 0.07$                    | $3.26\pm0.06$                      | $46.20\pm0.35$                          | $67.95 \pm 0.06$                     |
| SPIN                     | $2.13 \pm 0.10$                    | $4.81\pm0.24$                              | _                                  | _                                  | $45.37 \pm 0.55$                        | $67.38 \pm 0.77$                     |
| GRIN                     | $2.81 \pm 0.03$                    | $6.76 \pm 0.14$                            | _                                  | _                                  | $46.79 \pm 0.25$                        | $68.22 \pm 0.14$                     |
| GCN-M                    | $2.26 \pm 0.02$                    | $5.51\pm0.03$                              | _                                  | _                                  | $50.61 \pm 0.04$                        | $71.61 \pm 0.17$                     |
| CRUs                     | $2.85 \pm 0.02$                    | $5.65 \pm 0.04$                            | $2.94 \pm 0.05$                    | $5.01\pm0.04$                      | $55.80 \pm 0.46$                        | $76.41 \pm 1.16$                     |
|                          | $5.09 \pm 0.01$                    | $10.05 \pm 0.02$                           | $3.19 \pm 0.03$                    | $5.06 \pm 0.07$                    | $55.52 \pm 0.07$                        | $81.27 \pm 0.03$                     |
| Transformer <sub>0</sub> | $2.86 \pm 0.02$                    | $6.38 \pm 0.07$                            | $2.36 \pm 0.04$                    | $4.79 \pm 0.08$                    | $53.11 \pm 0.06$                        | $77.03 \pm 0.17$                     |
| FEDformer <sub>0</sub>   | $2.80 \pm 0.02$<br>$2.81 \pm 0.05$ | $5.81 \pm 0.09$                            | $1.96 \pm 0.02$                    | $3.61 \pm 0.03$                    | $53.11 \pm 0.00$<br>$52.18 \pm 0.05$    | $74.78 \pm 0.16$                     |
| STWA <sub>0</sub>        | $2.12 \pm 0.03$<br>$2.12 \pm 0.02$ | $4.67 \pm 0.03$                            | $1.90 \pm 0.02$<br>$1.90 \pm 0.03$ | $3.40 \pm 0.03$                    | $47.38 \pm 0.07$                        | $74.78 \pm 0.10$<br>$71.16 \pm 0.06$ |
|                          | $2.12 \pm 0.02$<br>$2.12 \pm 0.01$ |                                            |                                    |                                    | $47.38 \pm 0.07$<br>$45.17 \pm 0.08$    |                                      |
|                          |                                    | $\frac{4.50 \pm 0.02}{10.06 \pm 0.01}$     | $1.92 \pm 0.02$                    | $3.43 \pm 0.01$                    |                                         | $66.73 \pm 0.02$                     |
| AGCRN <sub>t</sub>       | $5.10 \pm 0.00$                    | $10.06 \pm 0.01$                           | $2.87 \pm 0.04$                    | $5.24 \pm 0.03$                    | $55.56 \pm 0.07$                        | $82.67 \pm 0.10$                     |
| Transformer <sub>t</sub> | $2.80 \pm 0.03$                    | $6.09 \pm 0.07$                            | $1.88 \pm 0.02$                    | $3.68 \pm 0.08$                    | $48.28 \pm 0.16$                        | $69.71 \pm 0.09$                     |
| FEDformer <sub>t</sub>   | $2.74 \pm 0.02$                    | $5.78 \pm 0.03$                            | $1.86 \pm 0.02$                    | $3.31 \pm 0.01$                    | $46.96 \pm 0.13$                        | $68.17 \pm 0.08$                     |
| STWAt                    | $2.07 \pm 0.03$                    | $4.80 \pm 0.02$                            | $1.81 \pm 0.04$                    | $3.26 \pm 0.07$                    | $45.69 \pm 0.13$                        | $70.56 \pm 0.19$                     |
|                          | $2.05 \pm 0.02$                    | $4.61 \pm 0.07$                            | $1.67 \pm 0.01$                    | $\underline{3.12 \pm 0.01}$        | $\underline{44.29 \pm 0.02}$            | $\underline{66.39 \pm 0.08}$         |
| BiTGraph                 | $1.96 \pm 0.00$                    | $\textbf{4.34} \pm \textbf{0.02}$          | $  1.64 \pm 0.02$                  | $\textbf{3.07} \pm \textbf{0.02}$  | $\textbf{43.13} \pm \textbf{0.22}$      | $\textbf{65.55} \pm \textbf{0.24}$   |
| Method                   | PE                                 | MS                                         | ET ET                              | Th1                                | Beiji                                   | ngAir                                |
| (0.6)                    | MAE                                | RMSE                                       | MAE                                | RMSE                               | MAE                                     | RMSE                                 |
| BRITS                    | $3.14\pm0.03$                      | $6.22\pm0.01$                              | $1.87 \pm 0.11$                    | $3.24\pm0.02$                      | $46.71\pm0.17$                          | $67.93 \pm 0.04$                     |
| SPIN                     | $2.18\pm0.05$                      | $4.91\pm0.15$                              | -                                  | _                                  | $44.28 \pm 0.45$                        | $65.68 \pm 0.08$                     |
| GRIN                     | $2.84\pm0.01$                      | $6.61 \pm 0.1$                             | _                                  | _                                  | $\overline{49.10\pm1.01}$               | $\overline{71.43 \pm 1.63}$          |
| GCN-M                    | $2.39\pm0.02$                      | $5.32\pm0.03$                              | _                                  | _                                  | $51.47 \pm 0.05$                        | $77.41 \pm 0.22$                     |
| CRUs                     | $2.97 \pm 0.31$                    | $5.79 \pm 0.09$                            | $3.05 \pm 0.05$                    | $5.13 \pm 0.04$                    | $56.63 \pm 0.11$                        | $75.42 \pm 1.76$                     |
|                          | $5.09 \pm 0.01$                    | $10.06 \pm 0.01$                           | $3.43 \pm 0.02$                    | $5.81 \pm 0.05$                    | $55.67 \pm 0.06$                        | $82.10 \pm 0.05$                     |
| Transformer              | $2.91 \pm 0.03$                    | $6.31 \pm 0.04$                            | $3.45 \pm 0.02$<br>$2.45 \pm 0.03$ | $4.30 \pm 0.03$                    | $50.79 \pm 0.11$                        | $71.73 \pm 0.09$                     |
| FEDformer <sub>0</sub>   | $2.91 \pm 0.03$<br>$2.85 \pm 0.04$ | $6.02 \pm 0.04$                            | $2.45 \pm 0.03$<br>$2.06 \pm 0.01$ | $4.30 \pm 0.03$<br>$3.96 \pm 0.02$ | $55.32 \pm 0.13$                        | $71.73 \pm 0.03$<br>$79.83 \pm 0.03$ |
| STWA <sub>0</sub>        | $2.85 \pm 0.04$<br>$2.15 \pm 0.02$ | $     6.02 \pm 0.00 \\     4.64 \pm 0.06 $ | $2.00 \pm 0.01$<br>$2.16 \pm 0.02$ | $3.90 \pm 0.02$<br>$4.86 \pm 0.09$ | $35.32 \pm 0.13$<br>$48.22 \pm 0.07$    | $79.83 \pm 0.03$<br>$70.09 \pm 0.15$ |
|                          |                                    |                                            | $2.10 \pm 0.02$<br>$2.36 \pm 0.02$ | $4.80 \pm 0.09$<br>$4.14 \pm 0.03$ |                                         |                                      |
|                          | $2.13 \pm 0.01$<br>5 10 ± 0.00     | $4.62 \pm 0.02$                            |                                    |                                    | $47.05 \pm 0.11$                        | $67.80 \pm 0.06$                     |
|                          | $5.10 \pm 0.00$                    | $10.06 \pm 0.01$                           | $3.35 \pm 0.02$                    | $5.29 \pm 0.04$                    | $55.45 \pm 0.17$                        | $80.76 \pm 0.04$                     |
| Transformer <sub>t</sub> | $2.83 \pm 0.04$                    | $5.22 \pm 0.07$                            | $2.19 \pm 0.01$                    | $4.29 \pm 0.03$                    | $49.23 \pm 0.04$                        | $72.38 \pm 0.12$                     |
| FEDformer <sub>t</sub>   | $2.79 \pm 0.02$                    | $6.31 \pm 0.05$                            | $2.07 \pm 0.01$                    | $4.26 \pm 0.03$                    | $49.21 \pm 0.06$                        | $68.27 \pm 0.07$                     |
| STWAt                    | $2.14 \pm 0.02$                    | $4.67 \pm 0.03$                            | $1.85 \pm 0.02$                    | $3.37 \pm 0.03$                    | $46.06 \pm 0.03$                        | $69.92 \pm 0.07$                     |
| MTGNNt                   | $2.11 \pm 0.01$                    | $\underline{4.59 \pm 0.03}$                | $1.79 \pm 0.02$                    | $3.29 \pm 0.03$                    | $44.85 \pm 0.02$                        | $67.78 \pm 0.05$                     |
| BiTGraph                 | $\textbf{1.99} \pm \textbf{0.01}$  | $\textbf{4.47} \pm \textbf{0.01}$          | $  \textbf{ 1.74 \pm 0.00}  $      | $\textbf{3.21} \pm \textbf{0.01}$  | $\textbf{44.23} \pm \textbf{0.15}$      | $\textbf{64.20} \pm \textbf{0.32}$   |

Table 6: The results of forecasting error on PEMS, ETTh1, and Beijing Air datasets with the missing rate r = 0.2, 0.4, and 0.6.

| Method                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                    | Metr-LA                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  | ETTh1                                                                                                                                                                                                                                           |                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| (r = 0.0015)                                                                                                                                                                                                                                                                                                                                                                                     | MAE                                                                                                                                                                                                                                                | RMSE                                                                                                                                                                                                                                                                                                          | MAPE                                                                                                                                                                                                                                                         | MAE                                                                                                                                                                                                                              | RMSE                                                                                                                                                                                                                                            | MAPE                                                                                                                  |
| BRITS                                                                                                                                                                                                                                                                                                                                                                                            | $8.66 \pm 0.02$                                                                                                                                                                                                                                    | $12.24\pm0.02$                                                                                                                                                                                                                                                                                                | $18.49\pm0.03$                                                                                                                                                                                                                                               | $2.12 \pm 0.01$                                                                                                                                                                                                                  | $4.55\pm0.04$                                                                                                                                                                                                                                   | $96.73 \pm 0.09$                                                                                                      |
| SPIN                                                                                                                                                                                                                                                                                                                                                                                             | $6.58\pm0.02$                                                                                                                                                                                                                                      | $11.02\pm0.03$                                                                                                                                                                                                                                                                                                | $12.76\pm0.03$                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                               | -                                                                                                                     |
| GRIN                                                                                                                                                                                                                                                                                                                                                                                             | $6.73\pm0.02$                                                                                                                                                                                                                                      | $11.27\pm0.03$                                                                                                                                                                                                                                                                                                | $12.92\pm0.04$                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                               | -                                                                                                                     |
| GCN-M                                                                                                                                                                                                                                                                                                                                                                                            | $6.77\pm0.03$                                                                                                                                                                                                                                      | $11.68\pm0.02$                                                                                                                                                                                                                                                                                                | $13.06\pm0.03$                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                               | -                                                                                                                     |
| CRU                                                                                                                                                                                                                                                                                                                                                                                              | $7.32\pm0.02$                                                                                                                                                                                                                                      | $12.04\pm0.03$                                                                                                                                                                                                                                                                                                | $14.86\pm0.02$                                                                                                                                                                                                                                               | $1.92\pm0.00$                                                                                                                                                                                                                    | $4.08\pm0.02$                                                                                                                                                                                                                                   | $81.09\pm0.06$                                                                                                        |
| AGCRN <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                               | $14.88\pm0.01$                                                                                                                                                                                                                                     | $14.30\pm0.02$                                                                                                                                                                                                                                                                                                | $29.94 \pm 0.02$                                                                                                                                                                                                                                             | $2.79 \pm 0.00$                                                                                                                                                                                                                  | $5.02\pm0.01$                                                                                                                                                                                                                                   | $116.64\pm0.13$                                                                                                       |
| Transformer <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                         | $7.59\pm0.02$                                                                                                                                                                                                                                      | $12.87\pm0.03$                                                                                                                                                                                                                                                                                                | $16.03\pm0.02$                                                                                                                                                                                                                                               | $2.04 \pm 0.01$                                                                                                                                                                                                                  | $4.20\pm0.02$                                                                                                                                                                                                                                   | $95.09 \pm 0.05$                                                                                                      |
| FEDformer <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                           | $7.50\pm0.03$                                                                                                                                                                                                                                      | $12.55\pm0.01$                                                                                                                                                                                                                                                                                                | $15.94\pm0.03$                                                                                                                                                                                                                                               | $2.01 \pm 0.00$                                                                                                                                                                                                                  | $3.96\pm0.02$                                                                                                                                                                                                                                   | $85.28 \pm 0.04$                                                                                                      |
| STWA <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                | $7.12 \pm 0.02$                                                                                                                                                                                                                                    | $14.84\pm0.03$                                                                                                                                                                                                                                                                                                | $13.62\pm0.03$                                                                                                                                                                                                                                               | $1.98 \pm 0.01$                                                                                                                                                                                                                  | $3.69\pm0.02$                                                                                                                                                                                                                                   | $79.29 \pm 0.09$                                                                                                      |
| MTGNN <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                               | $7.18\pm0.03$                                                                                                                                                                                                                                      | $15.49\pm0.04$                                                                                                                                                                                                                                                                                                | $18.31\pm0.02$                                                                                                                                                                                                                                               | $1.92 \pm 0.01$                                                                                                                                                                                                                  | $3.76\pm0.01$                                                                                                                                                                                                                                   | $81.47\pm0.06$                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                  | $14.88\pm0.00$                                                                                                                                                                                                                                     | $14.30\pm0.01$                                                                                                                                                                                                                                                                                                | $29.94 \pm 0.02$                                                                                                                                                                                                                                             | $2.50 \pm 0.00$                                                                                                                                                                                                                  | $4.92\pm0.02$                                                                                                                                                                                                                                   | $107.79\pm0.12$                                                                                                       |
| Transformert                                                                                                                                                                                                                                                                                                                                                                                     | $7.08\pm0.01$                                                                                                                                                                                                                                      | $11.75\pm0.03$                                                                                                                                                                                                                                                                                                | $13.24\pm0.04$                                                                                                                                                                                                                                               | $1.81 \pm 0.02$                                                                                                                                                                                                                  | $3.39\pm0.01$                                                                                                                                                                                                                                   | $84.67\pm0.06$                                                                                                        |
| $FEDformer_{\mathrm{t}}$                                                                                                                                                                                                                                                                                                                                                                         | $6.81\pm0.02$                                                                                                                                                                                                                                      | $11.56\pm0.03$                                                                                                                                                                                                                                                                                                | $13.15\pm0.03$                                                                                                                                                                                                                                               | $1.77 \pm 0.00$                                                                                                                                                                                                                  | $3.43\pm0.01$                                                                                                                                                                                                                                   | $73.58 \pm 0.07$                                                                                                      |
| STWAt                                                                                                                                                                                                                                                                                                                                                                                            | $6.56\pm0.01$                                                                                                                                                                                                                                      | $\textbf{10.57} \pm \textbf{0.04}$                                                                                                                                                                                                                                                                            | $12.90\pm0.03$                                                                                                                                                                                                                                               | $1.79 \pm 0.01$                                                                                                                                                                                                                  | $3.21\pm0.02$                                                                                                                                                                                                                                   | $74.59 \pm 0.06$                                                                                                      |
| $MTGNN_{\mathrm{t}}$                                                                                                                                                                                                                                                                                                                                                                             | $\underline{6.41 \pm 0.01}$                                                                                                                                                                                                                        | $10.99\pm0.02$                                                                                                                                                                                                                                                                                                | $\underline{12.74\pm0.04}$                                                                                                                                                                                                                                   | $1.61 \pm 0.00$                                                                                                                                                                                                                  | $\underline{3.09\pm0.02}$                                                                                                                                                                                                                       | $\underline{68.31 \pm 0.07}$                                                                                          |
| BiTGraph                                                                                                                                                                                                                                                                                                                                                                                         | $\textbf{6.22} \pm \textbf{0.01}$                                                                                                                                                                                                                  | $\underline{10.97\pm0.03}$                                                                                                                                                                                                                                                                                    | $\textbf{12.70} \pm \textbf{0.02}$                                                                                                                                                                                                                           | $\mid \textbf{1.56} \pm \textbf{0.00}$                                                                                                                                                                                           | $\textbf{3.03} \pm \textbf{0.01}$                                                                                                                                                                                                               | $\textbf{66.20} \pm \textbf{0.03}$                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |                                                                                                                       |
| Method                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                    | Metr-LA                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  | ETTh1                                                                                                                                                                                                                                           |                                                                                                                       |
| Method $(r = 0.002)$                                                                                                                                                                                                                                                                                                                                                                             | MAE                                                                                                                                                                                                                                                | Metr-LA<br>RMSE                                                                                                                                                                                                                                                                                               | MAPE                                                                                                                                                                                                                                                         | MAE                                                                                                                                                                                                                              | ETTh1<br>RMSE                                                                                                                                                                                                                                   | MAPE                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                  | $MAE$ $9.09 \pm 0.02$                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                               | $\frac{\text{MAPE}}{18.39 \pm 0.11}$                                                                                                                                                                                                                         | $MAE = 2.37 \pm 0.02$                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 | $\frac{\text{MAPE}}{107.38 \pm 0.06}$                                                                                 |
| (r = 0.002)                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                    | RMSE                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              | l<br>                                                                                                                                                                                                                            | RMSE                                                                                                                                                                                                                                            |                                                                                                                       |
| $\frac{(r=0.002)}{BRITS}$                                                                                                                                                                                                                                                                                                                                                                        | $9.09 \pm 0.02$                                                                                                                                                                                                                                    | $\frac{\text{RMSE}}{11.94 \pm 0.04}$                                                                                                                                                                                                                                                                          | $18.39\pm0.11$                                                                                                                                                                                                                                               | l<br>                                                                                                                                                                                                                            | RMSE                                                                                                                                                                                                                                            |                                                                                                                       |
| (r = 0.002) BRITS SPIN GRIN GCN-M                                                                                                                                                                                                                                                                                                                                                                | $9.09 \pm 0.02$<br>$6.68 \pm 0.03$                                                                                                                                                                                                                 | $\begin{array}{c} \text{RMSE} \\ 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \end{array}$                                                                                                                                                                                                                                | $\begin{array}{c} 18.39 \pm 0.11 \\ 12.88 \pm 0.04 \end{array}$                                                                                                                                                                                              | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                           | RMSE<br>4.66 ± 0.03<br>-<br>-<br>-                                                                                                                                                                                                              | $107.38 \pm 0.06$<br>-<br>-<br>-                                                                                      |
| (r = 0.002) BRITS SPIN GRIN GCN-M CRU                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{RMSE} \\ 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \end{array}$                                                                                                                                                                          | $\begin{array}{c} 18.39 \pm 0.11 \\ 12.88 \pm 0.04 \\ 13.47 \pm 0.03 \\ 13.35 \pm 0.03 \\ 17.63 \pm 0.05 \end{array}$                                                                                                                                        | $\begin{vmatrix} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \end{vmatrix}$                                                                                                                                                         | RMSE<br>$4.66 \pm 0.03$<br>-<br>-<br>$5.05 \pm 0.00$                                                                                                                                                                                            | $107.38 \pm 0.06$ 97.58 $\pm 0.11$                                                                                    |
| (r = 0.002) BRITS SPIN GRIN GCN-M CRU AGCRN <sub>0</sub>                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 9.09 \pm 0.02 \\ 6.68 \pm 0.03 \\ 6.87 \pm 0.02 \\ 6.85 \pm 0.02 \\ 7.91 \pm 0.02 \\ 14.88 \pm 0.00 \end{array}$                                                                                                                 | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \end{array}$                                                                                                                                                 | $\begin{array}{c} 18.39 \pm 0.11 \\ 12.88 \pm 0.04 \\ 13.47 \pm 0.03 \\ 13.35 \pm 0.03 \\ 17.63 \pm 0.05 \\ 29.90 \pm 0.09 \end{array}$                                                                                                                      | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \end{array}$                                                                                                                                         | $\begin{array}{c} \text{RMSE} \\ 4.66 \pm 0.03 \\ - \\ - \\ 5.05 \pm 0.00 \\ 5.13 \pm 0.04 \end{array}$                                                                                                                                         | $\begin{array}{c} 107.38 \pm 0.06 \\ - \\ - \\ - \\ 97.58 \pm 0.11 \\ 124.61 \pm 0.13 \end{array}$                    |
| (r = 0.002) BRITS SPIN GRIN GCN-M CRU AGCRN <sub>0</sub> Transformer <sub>0</sub>                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 9.09 \pm 0.02 \\ 6.68 \pm 0.03 \\ 6.87 \pm 0.02 \\ 6.85 \pm 0.02 \\ 7.91 \pm 0.02 \\ 14.88 \pm 0.00 \\ 8.13 \pm 0.02 \end{array}$                                                                                                | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \\ 13.67 \pm 0.02 \end{array}$                                                                                                                               | $\begin{array}{c} 18.39\pm0.11\\ 12.88\pm0.04\\ 13.47\pm0.03\\ 13.35\pm0.03\\ 17.63\pm0.05\\ 29.90\pm0.09\\ 18.05\pm0.04 \end{array}$                                                                                                                        | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \\ 2.19 \pm 0.00 \end{array}$                                                                                                                        | $\begin{array}{c} {\rm RMSE} \\ \hline 4.66 \pm 0.03 \\ - \\ - \\ - \\ - \\ 5.05 \pm 0.00 \\ 5.13 \pm 0.04 \\ 4.24 \pm 0.01 \end{array}$                                                                                                        | $\begin{array}{c} 107.38 \pm 0.06 \\ - \\ - \\ - \\ 97.58 \pm 0.11 \\ 124.61 \pm 0.13 \\ 103.02 \pm 0.08 \end{array}$ |
| (r = 0.002) BRITS SPIN GRIN GCN-M CRU AGCRN <sub>0</sub> Transformer <sub>0</sub> FEDformer <sub>0</sub>                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 9.09 \pm 0.02 \\ 6.68 \pm 0.03 \\ 6.87 \pm 0.02 \\ 6.85 \pm 0.02 \\ 7.91 \pm 0.02 \\ 14.88 \pm 0.00 \\ 8.13 \pm 0.02 \\ 8.02 \pm 0.01 \end{array}$                                                                               | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \\ 13.67 \pm 0.02 \\ 13.36 \pm 0.03 \end{array}$                                                                                                             | $\begin{array}{c} 18.39\pm0.11\\ 12.88\pm0.04\\ 13.47\pm0.03\\ 13.35\pm0.03\\ 17.63\pm0.05\\ 29.90\pm0.09\\ 18.05\pm0.04\\ 17.93\pm0.06\end{array}$                                                                                                          | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \\ 2.19 \pm 0.00 \\ 2.13 \pm 0.01 \end{array}$                                                                                                       | $\begin{array}{c} \text{RMSE} \\ \hline 4.66 \pm 0.03 \\ \hline \\ - \\ - \\ - \\ 5.05 \pm 0.00 \\ 5.13 \pm 0.04 \\ 4.24 \pm 0.01 \\ 4.20 \pm 0.01 \end{array}$                                                                                 | $\begin{array}{c} 107.38 \pm 0.06 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                   |
| (r = 0.002) BRITS SPIN GRIN GCN-M CRU AGCRN <sub>0</sub> Transformer <sub>0</sub> FEDformer <sub>0</sub> STWA <sub>0</sub>                                                                                                                                                                                                                                                                       | $\begin{array}{c} 9.09 \pm 0.02 \\ 6.68 \pm 0.03 \\ 6.87 \pm 0.02 \\ 6.85 \pm 0.02 \\ 7.91 \pm 0.02 \\ 14.88 \pm 0.00 \\ 8.13 \pm 0.02 \\ 8.02 \pm 0.01 \\ 7.60 \pm 0.01 \end{array}$                                                              | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \\ 13.67 \pm 0.02 \\ 13.36 \pm 0.03 \\ 16.76 \pm 0.07 \end{array}$                                                                                           | $\begin{array}{c} 18.39\pm0.11\\ 12.88\pm0.04\\ 13.47\pm0.03\\ 13.35\pm0.03\\ 17.63\pm0.05\\ 29.90\pm0.09\\ 18.05\pm0.04\\ 17.93\pm0.06\\ 16.38\pm0.03\\ \end{array}$                                                                                        | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \\ 2.19 \pm 0.00 \\ 2.13 \pm 0.01 \\ 2.00 \pm 0.00 \end{array}$                                                                                      | $\begin{array}{c} \text{RMSE} \\ \hline 4.66 \pm 0.03 \\ \hline \\ - \\ - \\ - \\ 5.05 \pm 0.00 \\ 5.13 \pm 0.04 \\ 4.24 \pm 0.01 \\ 4.20 \pm 0.01 \\ 3.76 \pm 0.00 \end{array}$                                                                | $\begin{array}{c} 107.38 \pm 0.06 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                   |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 9.09\pm 0.02\\ 6.68\pm 0.03\\ 6.87\pm 0.02\\ 6.85\pm 0.02\\ 7.91\pm 0.02\\ 14.88\pm 0.00\\ 8.13\pm 0.02\\ 8.02\pm 0.01\\ 7.60\pm 0.01\\ 7.36\pm 0.02\\ \end{array}$                                                              | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \\ 13.67 \pm 0.02 \\ 13.36 \pm 0.03 \\ 16.76 \pm 0.07 \\ 11.51 \pm 0.09 \end{array}$                                                                         | $\begin{array}{c} 18.39\pm0.11\\ 12.88\pm0.04\\ 13.47\pm0.03\\ 13.35\pm0.03\\ 17.63\pm0.05\\ 29.90\pm0.09\\ 18.05\pm0.04\\ 17.93\pm0.06\\ 16.38\pm0.03\\ 15.28\pm0.03\\ \end{array}$                                                                         | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \\ 2.19 \pm 0.00 \\ 2.13 \pm 0.01 \\ 2.00 \pm 0.00 \\ 2.06 \pm 0.01 \end{array}$                                                                     | $\begin{array}{c} \text{RMSE} \\ \hline 4.66 \pm 0.03 \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                   | $\begin{array}{c} 107.38 \pm 0.06 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                   |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 9.09\pm 0.02\\ 6.68\pm 0.03\\ 6.87\pm 0.02\\ 6.85\pm 0.02\\ 7.91\pm 0.02\\ 14.88\pm 0.00\\ 8.13\pm 0.02\\ 8.02\pm 0.01\\ 7.60\pm 0.01\\ 7.36\pm 0.02\\ 14.88\pm 0.01\\ \end{array}$                                              | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \\ 13.67 \pm 0.02 \\ 13.36 \pm 0.03 \\ 16.76 \pm 0.07 \\ 11.51 \pm 0.09 \\ 14.26 \pm 0.02 \end{array}$                                                       | $\begin{array}{c} 18.39\pm0.11\\ 12.88\pm0.04\\ 13.47\pm0.03\\ 13.35\pm0.03\\ 17.63\pm0.05\\ 29.90\pm0.09\\ 18.05\pm0.04\\ 17.93\pm0.06\\ 16.38\pm0.03\\ 15.28\pm0.03\\ 29.90\pm0.02\\ \end{array}$                                                          | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \\ 2.19 \pm 0.00 \\ 2.13 \pm 0.01 \\ 2.00 \pm 0.00 \\ 2.06 \pm 0.01 \\ 2.43 \pm 0.01 \end{array}$                                                    | $\begin{array}{c} \text{RMSE} \\ \hline 4.66 \pm 0.03 \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                   | $\begin{array}{c} 107.38 \pm 0.06 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                   |
| $\label{eq:constraint} \begin{array}{c} (r=0.002) \\ \hline \text{BRITS} \\ \text{SPIN} \\ \text{GRIN} \\ \text{GCN-M} \\ \text{CRU} \\ \text{AGCRN}_0 \\ \hline \text{Transformer}_0 \\ \hline \text{FEDformer}_0 \\ \text{STWA}_0 \\ \hline \text{MTGNN}_0 \\ \hline \text{AGCRN}_t \\ \hline \text{Transformer}_t \end{array}$                                                                | $\begin{array}{c} 9.09\pm 0.02\\ 6.68\pm 0.03\\ 6.87\pm 0.02\\ 6.85\pm 0.02\\ 7.91\pm 0.02\\ 14.88\pm 0.00\\ 8.13\pm 0.02\\ 8.02\pm 0.01\\ 7.60\pm 0.01\\ 7.36\pm 0.02\\ 14.88\pm 0.01\\ 7.47\pm 0.03\\ \end{array}$                               | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \\ 13.67 \pm 0.02 \\ 13.36 \pm 0.03 \\ 16.76 \pm 0.07 \\ 11.51 \pm 0.09 \\ 14.26 \pm 0.02 \\ 12.34 \pm 0.04 \end{array}$                                     | $\begin{array}{c} 18.39\pm0.11\\ 12.88\pm0.04\\ 13.47\pm0.03\\ 13.35\pm0.03\\ 17.63\pm0.05\\ 29.90\pm0.09\\ 18.05\pm0.04\\ 17.93\pm0.06\\ 16.38\pm0.03\\ 15.28\pm0.03\\ 29.90\pm0.02\\ 15.72\pm0.03\\ \end{array}$                                           | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \\ 2.19 \pm 0.00 \\ 2.13 \pm 0.01 \\ 2.00 \pm 0.00 \\ 2.06 \pm 0.01 \\ 2.43 \pm 0.01 \\ 1.76 \pm 0.00 \end{array}$                                   | $\begin{array}{c} \text{RMSE} \\ \hline 4.66 \pm 0.03 \\ \hline - \\ \hline - \\ 5.05 \pm 0.00 \\ 5.13 \pm 0.04 \\ 4.24 \pm 0.01 \\ 4.20 \pm 0.01 \\ 3.76 \pm 0.00 \\ 4.08 \pm 0.02 \\ 4.82 \pm 0.00 \\ 3.35 \pm 0.01 \end{array}$              | $\begin{array}{c} 107.38 \pm 0.06 \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$                               |
| $\label{eq:constraint} \begin{array}{c} (r=0.002) \\ \hline \text{BRITS} \\ \text{SPIN} \\ \text{GRIN} \\ \text{GCN-M} \\ \text{CRU} \\ \text{AGCRN}_0 \\ \hline \text{Transformer}_0 \\ \hline \text{FEDformer}_0 \\ \hline \text{STWA}_0 \\ \hline \text{MTGNN}_0 \\ \hline \text{AGCRN}_t \\ \hline \text{Transformer}_t \\ \hline \text{FEDformer}_t \end{array}$                            | $\begin{array}{c} 9.09\pm 0.02\\ 6.68\pm 0.03\\ 6.87\pm 0.02\\ 6.85\pm 0.02\\ 7.91\pm 0.02\\ 14.88\pm 0.00\\ 8.13\pm 0.02\\ 8.02\pm 0.01\\ 7.60\pm 0.01\\ 7.36\pm 0.02\\ 14.88\pm 0.01\\ 7.47\pm 0.03\\ 7.42\pm 0.02\\ \end{array}$                | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \\ 13.67 \pm 0.02 \\ 13.36 \pm 0.03 \\ 16.76 \pm 0.07 \\ 11.51 \pm 0.09 \\ 14.26 \pm 0.02 \\ 12.34 \pm 0.04 \\ 12.11 \pm 0.06 \end{array}$                   | $\begin{array}{c} 18.39\pm0.11\\ 12.88\pm0.04\\ 13.47\pm0.03\\ 13.35\pm0.03\\ 17.63\pm0.05\\ 29.90\pm0.09\\ 18.05\pm0.04\\ 17.93\pm0.06\\ 16.38\pm0.03\\ 15.28\pm0.03\\ 29.90\pm0.02\\ 15.72\pm0.03\\ 15.54\pm0.03\\ \end{array}$                            | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \\ 2.19 \pm 0.00 \\ 2.13 \pm 0.01 \\ 2.00 \pm 0.00 \\ 2.06 \pm 0.01 \\ 2.43 \pm 0.01 \\ 1.76 \pm 0.00 \\ 1.85 \pm 0.01 \end{array}$                  | $\begin{array}{c} \text{RMSE} \\ \hline 4.66 \pm 0.03 \\ \hline - \\ - \\ 5.05 \pm 0.00 \\ 5.13 \pm 0.04 \\ 4.24 \pm 0.01 \\ 4.20 \pm 0.01 \\ 3.76 \pm 0.00 \\ 4.08 \pm 0.02 \\ 4.82 \pm 0.00 \\ 3.35 \pm 0.01 \\ 3.45 \pm 0.01 \end{array}$    | $\begin{array}{c} 107.38 \pm 0.06 \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$                               |
| $\label{eq:constraint} \begin{array}{c} (r=0.002) \\ \hline \text{BRITS} \\ \text{SPIN} \\ \text{GRIN} \\ \text{GCN-M} \\ \text{CRU} \\ \text{AGCRN}_0 \\ \hline \text{Transformer}_0 \\ \hline \text{FEDformer}_0 \\ \hline \text{STWA}_0 \\ \hline \text{MTGNN}_0 \\ \hline \text{AGCRN}_t \\ \hline \text{Transformer}_t \\ \hline \text{FEDformer}_t \\ \hline \text{STWA}_t \\ \end{array}$ | $\begin{array}{c} 9.09\pm 0.02\\ 6.68\pm 0.03\\ 6.87\pm 0.02\\ 6.85\pm 0.02\\ 7.91\pm 0.02\\ 14.88\pm 0.00\\ 8.13\pm 0.02\\ 8.02\pm 0.01\\ 7.60\pm 0.01\\ 7.36\pm 0.02\\ 14.88\pm 0.01\\ 7.47\pm 0.03\\ 7.42\pm 0.02\\ 6.65\pm 0.01\\ \end{array}$ | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \\ 13.67 \pm 0.02 \\ 13.36 \pm 0.03 \\ 16.76 \pm 0.07 \\ 11.51 \pm 0.09 \\ 14.26 \pm 0.02 \\ 12.34 \pm 0.04 \\ 12.11 \pm 0.06 \\ 10.92 \pm 0.03 \end{array}$ | $\begin{array}{c} 18.39\pm0.11\\ 12.88\pm0.04\\ 13.47\pm0.03\\ 13.35\pm0.03\\ 17.63\pm0.05\\ 29.90\pm0.09\\ 18.05\pm0.04\\ 17.93\pm0.06\\ 16.38\pm0.03\\ 15.28\pm0.03\\ 29.90\pm0.02\\ 15.72\pm0.03\\ 15.54\pm0.03\\ 12.72\pm0.03\\ 12.72\pm0.03\end{array}$ | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \\ 2.19 \pm 0.00 \\ 2.13 \pm 0.01 \\ 2.00 \pm 0.00 \\ 2.06 \pm 0.01 \\ 2.43 \pm 0.01 \\ 1.76 \pm 0.00 \\ 1.85 \pm 0.01 \\ 1.79 \pm 0.00 \end{array}$ | $\begin{array}{c} \text{RMSE} \\ 4.66 \pm 0.03 \\ - \\ - \\ 5.05 \pm 0.00 \\ 5.13 \pm 0.04 \\ 4.24 \pm 0.01 \\ 4.20 \pm 0.01 \\ 3.76 \pm 0.00 \\ 4.08 \pm 0.02 \\ 4.82 \pm 0.00 \\ 3.35 \pm 0.01 \\ 3.45 \pm 0.01 \\ 3.33 \pm 0.02 \end{array}$ | $\begin{array}{c} 107.38\pm 0.06\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$                               |
| $\label{eq:constraint} \begin{array}{c} (r=0.002) \\ \hline \text{BRITS} \\ \text{SPIN} \\ \text{GRIN} \\ \text{GCN-M} \\ \text{CRU} \\ \text{AGCRN}_0 \\ \hline \text{Transformer}_0 \\ \hline \text{FEDformer}_0 \\ \hline \text{STWA}_0 \\ \hline \text{MTGNN}_0 \\ \hline \text{AGCRN}_t \\ \hline \text{Transformer}_t \\ \hline \text{FEDformer}_t \end{array}$                            | $\begin{array}{c} 9.09\pm 0.02\\ 6.68\pm 0.03\\ 6.87\pm 0.02\\ 6.85\pm 0.02\\ 7.91\pm 0.02\\ 14.88\pm 0.00\\ 8.13\pm 0.02\\ 8.02\pm 0.01\\ 7.60\pm 0.01\\ 7.36\pm 0.02\\ 14.88\pm 0.01\\ 7.47\pm 0.03\\ 7.42\pm 0.02\\ \end{array}$                | $\begin{array}{c} \text{RMSE} \\ \hline 11.94 \pm 0.04 \\ 11.19 \pm 0.02 \\ 12.18 \pm 0.06 \\ 11.74 \pm 0.03 \\ 13.25 \pm 0.03 \\ 14.26 \pm 0.02 \\ 13.67 \pm 0.02 \\ 13.36 \pm 0.03 \\ 16.76 \pm 0.07 \\ 11.51 \pm 0.09 \\ 14.26 \pm 0.02 \\ 12.34 \pm 0.04 \\ 12.11 \pm 0.06 \end{array}$                   | $\begin{array}{c} 18.39\pm0.11\\ 12.88\pm0.04\\ 13.47\pm0.03\\ 13.35\pm0.03\\ 17.63\pm0.05\\ 29.90\pm0.09\\ 18.05\pm0.04\\ 17.93\pm0.06\\ 16.38\pm0.03\\ 15.28\pm0.03\\ 29.90\pm0.02\\ 15.72\pm0.03\\ 15.54\pm0.03\\ \end{array}$                            | $\begin{array}{c} 2.37 \pm 0.02 \\ - \\ - \\ 2.97 \pm 0.01 \\ 2.82 \pm 0.01 \\ 2.19 \pm 0.00 \\ 2.13 \pm 0.01 \\ 2.00 \pm 0.00 \\ 2.06 \pm 0.01 \\ 2.43 \pm 0.01 \\ 1.76 \pm 0.00 \\ 1.85 \pm 0.01 \end{array}$                  | $\begin{array}{c} \text{RMSE} \\ \hline 4.66 \pm 0.03 \\ \hline - \\ - \\ 5.05 \pm 0.00 \\ 5.13 \pm 0.04 \\ 4.24 \pm 0.01 \\ 4.20 \pm 0.01 \\ 3.76 \pm 0.00 \\ 4.08 \pm 0.02 \\ 4.82 \pm 0.00 \\ 3.35 \pm 0.01 \\ 3.45 \pm 0.01 \end{array}$    | $\begin{array}{c} 107.38 \pm 0.06 \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$                               |

Table 7: The results of forecasting error on Metr-LA and ETTh1 datasets with the block missing rate r = 0.0015 and 0.002.

## **B** MORE COMPARISON

Table 4 presents the results of different methods for the missing rate r = 0.1 on Metr-LA and Electricity datasets. Table 5 and Table 6 demonstrates the results on ETTh1, PEMS and BeijingAir datasets. Our proposed BiTGraph demonstrates significant superiority, especially in the Electricity dataset with the highest variance. The performance of STWA<sub>t</sub> is very close to that of MTGNN<sub>t</sub>, and both models outperform the other baseline models. Moreover, the BiTGraph improves the MAE by 5.12 percent under the largest mask ratio on the PEMS dataset, which further demonstrates the effectiveness of our proposed method.

# C BLOCK MISSING

To further substantiate the effectiveness of our method, we assess its performance in block-missing scenarios. We follow the method of GRIN to generate block-missing masks, and the results are presented in Table 7. We can observe that the proposed BiTGraph also demonstrates its great superiority, achieving a notable 5% improvement over the best baseline.

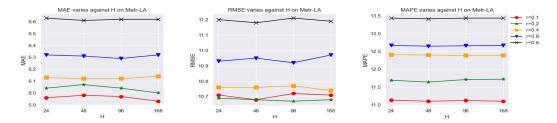



Figure 2: The performance under different window sizes with H=24, 48, 96, and 168

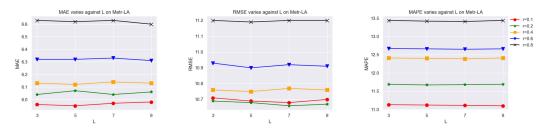



Figure 3: The performance under L=3, 5, 7, and 9

## D HYPERPARAMETER SENSITIVITY

In this section, we evaluate the hyperparameter sensitivity of our method with respect to the history window size H, the number of blocks L, as well as the number of nearest neighbors k on the Metr-LA dataset.

Figure 2 shows the performance changes over the history window size H. No evident performance improvements are observed as H increases from 24 to 168. We then evaluate the sensitivity of L. As shown in Figure 3, BiTGraph achieves the best performance when L=5. However, the performance does not improve further when L continues growing. We hypothesize that this is due to the over-smoothing issue of GNNs, that is, the node representations become indistinguishable when the graph convolutional layer reaches 5. We then further assess the impact of the k on the model performance. In particular, We study the metrics change as k varies from 5, 10, 15, to 20. As observed from Figure 4, the performance gains by incorporating spatial information from more neighboring nodes. However, once enough spatial correlations are obtained (i.e., k=10), further increasing the number of neighbors will no longer yield performance improvement. This suggests that only a few neighborhood nodes have a significant impact on a given node.

## E THE ROLE OF $\beta$

Table 8 shows the change of learnable  $\beta$  against missing rates on three representative datasets (traffic, solar energy, and air quality). We found that  $\beta$  demonstrates similar values with different missing rates, indicating that  $\beta$  is primarily responsible for adjusting the strength of correctness and is

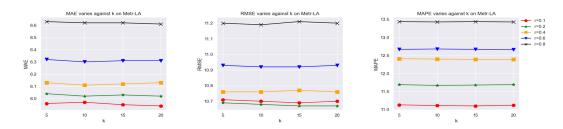



Figure 4: The performance under k = 5, 10, 15, and 20

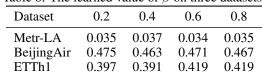



Table 8: The learned value of  $\beta$  on three datasets.

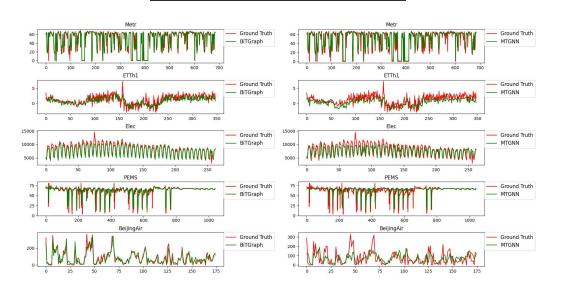



Figure 5: The forecasting curves produced by our BiTGraph on four datasets.

independent of missing rates. Additionally, the possible reason for the value variation of  $\beta$  across different datasets may caused by the unique characteristics of different datasets.

# F PREDICTION VISUALIZATION

In this section, we demonstrate the forecasting curves of our method on four datasets with a missing ratio r = 0.8. The time series is down-sampled in the temporal domain, and it is randomly selected in the spatial domain. As shown in the left part of Figure 5, our proposed method is able to produce results that well match the ground truth trends on all five datasets, which demonstrates the effectiveness of BiTGraph. In addition, we present the forecasting results of one representative method MTGNN<sub>t</sub>, which are displayed in the right part of Figure 5. We can observe that the curves produced by MTGNN<sub>t</sub> struggle to match the ground truths when the missing rate is high. Especially, on the BeijingAir dataset, the forecasting curves largely deviate from the ground truths.

## G MODEL COMPLEXITY ANALYSIS

In this section, we assess the complexity of different methods in terms of memory usage and number of parameters. Table 9 shows the model complexity of different methods. It can be observed that our proposed BiTGraph has a relatively small memory usage as well as a small number of parameters, which implies the model can be trained with much less energy consumption.

| Method      | Memory Usage | #Parameters |
|-------------|--------------|-------------|
| BRITS       | 85.48M       | 173.72K     |
| SPIN        | 10.85G       | 1.31K       |
| GRIN        | 2.00G        | 12.76K      |
| GCN-M       | 15.39G       | 396.50K     |
| CRUs        | 41.97M       | 54.75K      |
| AGCRN       | 10.17M       | 1.56K       |
| MTGNN       | 250.55M      | 9.184K      |
| Transformer | 14.85G       | 15.46M      |
| FEDformer   | 15.57G       | 16.08M      |
| STWA        | 1.96G        | 256.50K     |
| BiTGraph    | 194.17M      | 11.82K      |

Table 9: The model complexity of different methods.