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ABSTRACT

Multivariate time series forecasting plays an important role in various applications
ranging from meteorology study, traffic management to economics planning. In the
past decades, many efforts have been made toward accurate and reliable forecasting
methods development under the assumption of intact input data. However, the time
series data from real-world scenarios is often partially observed due to device mal-
function or costly data acquisition, which can seriously impede the performance of
the existing approaches. A naive employment of imputation methods unavoidably
involves error accumulation and leads to suboptimal solutions. Motivated by this,
we propose a Biased Temporal Convolution Graph Network that jointly captures
the temporal dependencies and spatial structure. In particular, we inject bias into
the two carefully developed modules—the Multi-Scale Instance PartialTCN and
Biased GCN—to account for missing patterns. The experimental results show
that our proposed model is able to achieve up to 9.93% improvements over the
existing methods on five real-world benchmark datasets. Our code is available at:
https://github.com/chenxiaodanhit/BiTGraph.

1 INTRODUCTION

Multivariate time series forecasting finds its applications in a wide spectrum of domains such as
meteorology, traffic, energy consumption, economics, etc. The real-world demand has spurred the
development of various forecasting approaches in the literature. From the generative perspective,
the multivariate time series data is produced by a collection of N instances (e.g., sensors) during
a period of time. Thus, an accurate characterization of the underlying dynamics requires faithfully
modeling both the temporal dependencies (intra-instance correlation) and the spatial structure (inter-
instance correlation). The statistical methods—ARIMA (Nelson, 1998), VAR (Zivot & Wang, 2006)—
have made early attempts by building autoregressive models to capture the temporal dependencies.
However, their linear dependency assumption often leads to poor performance in practice. Inspired
by their successes in Natural Language Processing, there has been an increasing trend in designing
forecasting models based on RNNs and Transformers to explore their nonlinear modeling and complex
pattern extraction capacity (Salinas et al., 2020; Zhou et al., 2021; Liu et al., 2021; Wu et al., 2021;
Zhou et al., 2022). Especially, benefiting from the wide-range receptive fields enabled by the attention
mechanism, the Transformer-based methods have exhibited excellent prediction performance on
long-term forecasting tasks.

Apart from the methods dedicated to temporal dependencies modeling, there is another line of
work toward exploiting the spatial correlation of multivariate time series. Many proposals (Salinas
et al., 2020; Liu et al., 2021) model the spatial dependencies implicitly and simply rely on a hidden
representation to capture the correlation. BRITS (Cao et al., 2018) proposes to use a dense connection
layer to learn the correlation between every instance pair, which results in a high model complexity.
The advent of graph neural networks (GNNs) (Kipf & Welling, 2016; Defferrard et al., 2016) enables
us to effectively explore the non-Euclidean structure data. Indeed, the DCRNN (Li et al., 2018)
proposes to build graphs and conduct graph convolution operations to capture the spatial correlation
explicitly in traffic flow forecasting, in which the graphs are induced by spatial proximity. To apply
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GNNs to the more general forecasting scenarios, in which the graph structures are not available,
the proposals (Bai et al., 2020; Wu et al., 2020) propose to learn the graphs adaptively by learning
each node an embedding and building the graphs using the node embeddings, which achieves great
progress in enhancing the prediction accuracy.

Despite the promising results achieved, the existing methods pay relatively less attention to mul-
tivariate time series forecasting with missing values. In practice, the collected time series data is
often partially observed, caused by device malfunction, communication failure, or data acquisition
difficulty. One commonly adopted solution is to employ the existing time series imputation meth-
ods (Cao et al., 2018; Marisca et al., 2022; Cini et al., 2022) and then build the forecasting models
on the imputed data. However, this two-step process separates the forecasting from the imputation,
and the accumulated errors may impede the model performance and lead to suboptimal solutions.
GRU-D (Che et al., 2018) proposes a decayed-GRU mechanism to handle the missing values for time
series classification, and a similar idea is also adopted by BRITS (Cao et al., 2018) and GRUI (Luo
et al., 2018) for time series imputation. However, these methods are not dedicated to time series
forecasting. Neural ODE (Chen et al., 2018) is capable of handling irregularly-sampled time series
data and many variants including LatentODE, NeuralCDE, and CRUs (Rubanova et al., 2019;
Kidger et al., 2020; Schirmer et al., 2022) have been proposed. However, these methods often entail
an ODE-solver computation for each iteration and have to align time steps of different time series,
and thus cannot utilize the sparsity of the observations.

Motivated by the above observations, in this paper, we propose a Biased Temporal Convolution
Graph Network, dubbed BiTGraph, to jointly capture the temporal dependencies and spatial struc-
ture by explicitly exploring the missing values in the model architecture design. We develop two
core modules—the Multi-Scale Instance PartialTCN and Biased GCN. The Multi-Scale Instance
PartialTCN performs instance-independent partial temporal convolution to capture the intra-instance
temporal dependencies contaminated by the missing values. Furthermore, the Biased GCN module
explores the spatial structure by constructing a biased graph to account for the missing patterns.
Besides, we integrate the two modules with a hierarchical architecture, in which the missing patterns
will be updated progressively along the temporal and spatial dimensions to maximize information
propagation and minimize the impacts of missing values. To summarize, our contributions are as
follows.

• We present BiTGraph to jointly capture the temporal dependencies and spatial structure for
the time series forecasting with missing values, the proposed model explicitly considers the
missing patterns in its model design.

• We introduce Multi-Scale Instance PartialTCN to effectively model temporal dependencies
destroyed by the missing values and present Biased GCN to propagate information among
instances by building a biased graph in a missing patterns aware manner.

• BiTGraph achieves up to 9.93% improvements over the existing forecasting methods under
various missing values scenarios as verified on five real-world benchmark datasets.

2 RELATED WORK

Time series forecasting with complete data Due to its practical importance, a lot of efforts have
been devoted to developing accurate time series forecasting methods. The classic ARIMA (Nelson,
1998), VAR (Zivot & Wang, 2006) build the autoregressive models based on linear dependency
assumption. RNNs-based methods (Salinas et al., 2020) and (Zaremba et al., 2014) exploit the
expressive power of recurrent neural networks to relax the linear assumption. Very recently, various
Transformer-based methods have been proposed to exploit the wide-range receptive fields of attention
mechanism for long-term forecasting. To reduce the quadratic complexity of vanilla attention,
Informer (Zhou et al., 2021), Pyraformer (Liu et al., 2021), Autoformer (Wu et al., 2021), and
FEDformer (Zhou et al., 2022) have been proposed successively. Non-stationary Transformer (Liu
et al., 2022) aims to renovate the attention mechanism to account for the non-stationary property of
time series data. PatchTST (Nie et al., 2023) explores the patch and channel-independence design.
Apart from enhancing the temporal dynamics modeling capability, many proposals are dedicated to
exploring spatial correlation. DCRNN (Li et al., 2018), AGCRN (Bai et al., 2020), MTGNN (Wu
et al., 2020), GTS (Shang et al., 2021), and SAGDFN (Jiang et al., 2024) model the spatial structure
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with the graph neural networks. In addition, CoST (Woo et al., 2022) and TS2Vec (Yue et al., 2022)
approach the time series forecasting from the self-supervised learning perspective.

Modeling time series with missing values Caused by device malfunction, communication failure,
or costly data acquisition, the real-world collected time series data is often incomplete and partially
observed. To fill missing entries, many time series imputation methods—BRITS (Cao et al., 2018),
GRIN (Cini et al., 2022), CSDI (Tashiro et al., 2021), SPIN (Marisca et al., 2022), GRIN (Cini et al.,
2022), and TIDER (Liu et al., 2023)—have been presented in the machine learning community. To
deal with the partially observed time series, one may attempt to build the forecasting models with
the imputed results produced by the imputation methods. However, the imputation is disparate from
the forecasting in this two-step process, and thus the accumulated errors may seriously degrade the
forecasting performance. GRU-D (Che et al., 2018) presents a decayed-GRU to handle the missing
values for time series classification without resorting to the imputation. Tang et al. (2020); Zuo et al.
(2023) attempt to capture local dependencies based on global statistic characteristics for the missing
value forecasting. The neural ODE-based models NeuralCDE, LatentODE, and CRUs (Chen et al.,
2018; Rubanova et al., 2019; Schirmer et al., 2022) are capable of handling irregularly-sampled time
series data. Nonetheless, they have to align time steps of different time series and cannot utilize the
sparsity of the samples.

3 PRELIMINARIES

In this paper, we consider the multivariate time series X ∈ RN×T×D consisting of N univariate
time series x(1), x(2), . . ., x(N) collecting over T time steps with D-dimension observation. Due
to the malfunction of devices, communication failure, or costly data acquisition, there may exist
missing values in X, and we use a mask matrix M ∈ RN×T to represent the missing patterns, which
is defined as follows.

Mnt =

{
1, if Xnt is observed,
0, otherwise,

(1)

where Xnt denotes the value of n-th instance (or channel) at time step t, we alternatively use x
(n)
t or

Xnt to represent the same entry. Similarly, we use m(n) ∈ RT to denote the n-th row of the mask
matrix M, and both Mnt and m

(n)
t represent the n-row, t-column element of M. In addition, the

slice notation xt−H:t ∈ RH×D or Xt−H:t ∈ RN×H×D denotes the values in a time window of size
H from time step t−H to t− 1, i.e., the time interval [t−H, t). In the subsequent discussion, we
will also refer to the mask as the missing pattern.

Multivariate time series forecasting with missing values Given the partial observed multivariate
time series X and the corresponding mask matrix M, the multivariate time series forecasting with
missing values problem aims to build a forecasting model ϕ to predict the future F -step values
Y = Xt:t+F by taking as inputs the historical observation Xt−H:t and its mask Mt−H:t, that is,
Ŷ = ϕ(Xt−H:t,Mt−H:t). In the training phase, we only resort to the observed values to provide the
learning signals. More formally, the loss function L of the model can be described as follows.

L(Y, Ŷ,Mt:t+F ) =

∑N
n=1

∑t+F−1
τ=t m

(n)
τ |ŷ(n)τ − y

(n)
τ |∑N

n=1

∑t+F−1
τ=t m

(n)
τ

, (2)

which measures the mean absolute error between the predicted values and ground truths.

4 METHODOLOGY

The framework of our proposed BiTGraph (Biased Temporal Convolution Graph Network) is shown
in Figure 1-(a). It comprises L identical blocks, dubbed Biased TCGBlock (Biased Temporal
Convolution Graph Block), which is the basic building block of our proposed method. The Biased
TCGBlock consists of two key modules: the Multi-Scale Instance PartialTCN module and the Biased
GCN module. The two modules are responsible for fusing the information along the temporal
dimension and spatial dimension, respectively. In contrast to the existing time series forecasting
methods, we explicitly consider the missing values in the model design and inject bias to account
for the different missing patterns, and the model also progressively updates the missing patterns
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Figure 1: (a) The framework of our proposed BiTGraph, and (b) the illustration of the Biased GCN
module.

as the information diffusion proceeds. As the Figure 1-(a) shows, the ℓ-th block takes as inputs
X(ℓ−1) ∈ RN×H×D(ℓ−1)

and the missing patterns M(ℓ−1) ∈ RN×H , and it produces two transformed
tensors X(ℓ) ∈ RN×H×D(ℓ)

and M(ℓ) ∈ RN×H , where D(ℓ) is the feature dimension of the ℓ-th
block.

4.1 MULTI-SCALE INSTANCE PARTIALTCN MODULE

In this paper, we opt for Temporal Convolution Network (TCN) as our backbone to capture the
temporal dynamics for two main reasons: 1) it has been shown empirically that the TCN exhibits
more favorable sequence modeling abilities in comparison to RNNs in a variety of tasks (Bai et al.,
2018), 2) the convolution operation permits a simple modification to account for partial observations
as evidenced in computer vision (Liu et al., 2018). Different from the vanilla partial convolution
(PartialCNN), we propose to apply the partial temporal convolution (PartialTCN) within each time
series (instance), i.e., the parameters of PartialTCN are shareable across different instances. The
benefits are twofold: 1) we decouple the temporal dependency modeling from spatial correlation
modeling, which enables exploring the temporal patterns invariant to instances and enhancing the
statistical strengths; 2) the PartialTCN is shareable across instances and this will lead to a more
parameter-efficient model, we refer to the resulting approach as Instance ParatialTCN. In addition,
we further adopt the multi-scale strategy to develop Multi-Scale Instance ParitalTCN, which can
handle missing patterns from different time scales more effectively. Next, we illustrate the module
by focusing on a particular instance x(n) ∈ RH×D and its mask m(n) ∈ RH . To keep the notation
uncluttered, we drop the upper script temporally.

Instance PartialTCN Given the kernel size K, the TCN applies the same linear transformation
into different time windows under the time translation invariance assumption, i.e.,

x′ = xt−K:tW + b, (3)

where xt−K:t ∈ RK×Di is a time window sequence with Di input features, x′ ∈ RDo is the output
feature map at location t − 1, and W ∈ RK×Di×Do and b ∈ RDo are convolution parameters.
Motivated by the success of partial convolutions in vision tasks, we introduce Instance PartialTCN to
model the temporal dependencies of partially-observed time series to account for missing values as,

x′ =

{
K

sum(mt−K:t)
(xt−K:t ⊙mt−K:t)W + b, if sum(mt−K:t) > 0,

0, otherwise.
(4)

where ⊙ denotes the Hadamard product. The Instance PartialTCN only attends to the time steps
with observations to compute the new feature maps and the factor K/ sum(mt−K:t) rescales the
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computation result to the same magnitude of convolutions on complete observations. In such a
manner, the missing patterns are integrated into the temporal dynamics modeling. As the temporal
convolution proceeds, the time steps with missing values will have chances to gather sufficient
information from their surrounding neighbors. To account for this, the missing pattern m is updated
as,

mt−1 =

{
1, if sum(mt−K:t) > 0,

0, otherwise.
(5)

In other words, the time step t− 1 is considered filled if we could collect values from the present time
window [t−K, t). The missing pattern m will be progressively filled as the convolution proceeds.

Multi-Scale Instance PartialTCN To capture the multi-scale temporal dependencies of the time
series, we propose to integrate the multi-scale convolution with different kernel sizes into the Instance
PartialTCN, specifically, we adopt 1×3, 1×5, and 1×7 in this paper. Consequently, different kernels
will yield multiple different updated missing patterns m(n)

i ∈ RH for each instance n, 1 ≤ i ≤ Nker

and Nker is the number of kernels. We propose to aggregate these missing patterns generated by
different kernels by max pooling as,

m(n) = max(m
(n)
i ), 1 ≤ i ≤ Nker. (6)

The aggregated m(n) will then be used in the subsequent graph convolution module to diffuse
information along spatial dimensions. By applying the Multi-Scale Instance PartialTCN to each
instance x(n) (n = 1, 2, . . . , N ), we transform the input feature map X(ℓ−1) ∈ RN×H×D

(ℓ−1)
i

and missing pattern M(ℓ−1) ∈ RN×H into X′(ℓ−1) ∈ RN×H×D(ℓ−1)
o and updated missing pattern

M′(ℓ−1) ∈ RN×H , respectively.

4.2 BIASED GCN MODULE

The Multi-Scale Instance PartialTCN focuses on capturing the temporal dynamics hidden in each
instance without considering the inter-instance correlation. However, it is equally important to
model both the spatial correlation and temporal dependencies for accurate multivariate time series
forecasting. In this paper, we propose to use graph convolution networks to explore the spatial
structure of the temporally fused feature map X′(ℓ−1) and updated M′(ℓ−1), produced by the Multi-
Scale Instance PartialTCN. The graph neural networks have been exploited to model the spatial
correlation for time series forecasting in the literature either by using the predefined (Li et al., 2018)
or adaptively-learned graph structures (Bai et al., 2020; Wu et al., 2020; Shang et al., 2021), in which
each time series is treated as a graph node. In contrast to the existing approaches, we explicitly
consider and incorporate a bias term (i.e., prior knowledge) into graph structure learning to account
for the missing values, leading to Biased GCN. It is therefore able to deliver promising performance
in the missing value scenarios. The Biased GCN module is shown in Figure 1-(b).

In this paper, we choose the adaptive graph structure learning approach since it is more flexible and
applies to cases where the graph structures are unavailable. In particular, we learn the graph structure
or adjacency matrix A by using two learnable embedding matrices E1, E2 ∈ RN×Dnode as follows.

A = ReLU(tanh(E1E
⊤
2 )). (7)

The i-th row of E1 (resp. E2), denoted by e
(1)
i (resp. e

(2)
i ), is the embedding of i-th time series

and e
(1)⊤
i e

(2)
j quantifies the correlation strength from node i to node j. The reason we choose two

embeddings instead of one E and computing A = ReLU(tanh(EE⊤)) is that the spatial correlations
are very likely to be asymmetric in practice. This learned adjacency matrix A will be used by the
subsequent graph convolution operation to aggregate information and aid in the eventual forecasting
task, and thus the embedding matrices E1 and E2 can be learned end-to-end.

However, Eq. 7 fails to account for missing patterns. Intuitively, the information propagation intensity
should vary against the missing patterns and we choose the inner product to quantify it as

A = ReLU(tanh(E1E
⊤
2 )) + βsoftmax(Mt−H:tM

⊤
t−H:t), (8)

where the first term denotes global spatial correlation strength indicating the global message passing
strengths among nodes, the second term is specific to a particular time window [t−H, t) and can be
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considered as a time-window-specific bias that corrects the global message passing strength according
to the current missing pattern in graph diffusion process, β denotes a learnable global parameter that
controls the intensity of the correctness. By intuition, the information propagation should also be
directed and more information should flow from nodes with fewer missing values to the ones with
more missing values, but the second term is a symmetric matrix and cannot mirror this intuition.
To correct this, we assign each node a learnable scalar bias bi and use bi − bj to adjust towards the
asymmetries. Let b ∈ RN be the learnable bias term, we propose to learn the graph structure as,

B = softmax(Mt−H:tM
⊤
t−H:t + b1⊤ − 1b⊤)

A = ReLU(tanh(E1E
⊤
2 )) + βB,

(9)

where 1 is a length-N all-one vector. As shown in Figure 1-(b), global message passing strengths
between node 4 and node 5 are corrected by the time-window-specific bias.

To ensure the structure sparsity, we clamp the small entries of A to zeros by only preserving
the neighbors of node i with the top-k correlation strengths and use the clamped A in the graph
convolution operation to aggregate information (as will be shown shortly). Being analogous to the
Instance PartialTCN, we propose to update the missing patterns of node i after aggregating the
information from its spatial neighbors as follows,

m(i) = max(m(j)), j ∈ {i} ∪ Ni, (10)

where Ni indicates the neighbors of node i in the graph. The missing pattern updating process is
illustrated with the node 1 in Figure 1-(b).

Now considering the ℓ-th block of the model, it performs the graph convolution to diffuse information
as follows.

X(ℓ) =
(
I+D−1

o A+D−1
i A⊤)X′(ℓ−1)Θ(ℓ) + b(ℓ), (11)

where X′(ℓ−1) is the output of the Multi-Scale Instance PartialTCN in the ℓ-th block, Di and Do are
the in-degree and out-degree matrix of A, respectively, and Θ(ℓ) and b(ℓ) are the graph convolution
parameters of the ℓ-th block. X(ℓ) and M(ℓ) will then be fed to the next block as the inputs.

4.3 HIERARCHICAL ARCHITECTURE

By stacking L layers of Biased TCGBlock, we could enhance both the spatial and temporal receptive
fields of the model. We initialize X(0) and M(0) with the original partial observation X ∈ RN×H×D

and its corresponding missing pattern M ∈ RN×H , and the outputs of the L-th block are X(L) ∈
RN×H×D(L)

and M(L) ∈ RN×H . X(L) fuses both the spatial and temporal features, which will be
used to produce the multi-step prediction Ŷ simultaneously by a linear transformation. The mask
of ℓ-th layer M(ℓ) is updated progressively as information flows from bottom to up, and the model
parameters are learned by optimizing the prediction loss in Eq. 2.

5 EXPERIMENTS

We evaluate BiTGraph against the state-of-the-art forecasting methods under different missing rates
on five real-world benchmark datasets. We first assess the forecasting performance of different
methods in terms of three commonly used metrics, and then we verify the efficacy of our proposed
modules by ablation study.

5.1 EXPERIMENT SETTINGS

Datasets We select five most commonly used time series forecasting datasets: Metr-LA, Electricity,
PEMS, ETTh1, and BeijingAir, whose statistics are summarized in Table 1. The five datasets are
collected from different domains and cover diverse magnitude ranges, sampling frequencies, and
statistics. We randomly drop the data according to the missing rate r ranging from 0.1 to 0.8,
including 0.1, 0.2, 0.4, 0.6, and 0.8.

Baseline methods We compare our proposed BiTGraph with the latest state-of-the-art forecasting
methods as well as several classic methods. BRITS (Cao et al., 2018), SPIN (Marisca et al., 2022),
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Table 1: Dataset description.
Metr-LA Electricity PEMS ETTh1 BeijingAir

#Samples (T ) 34272 26304 52116 17420 8759
#Instances (N ) 207 321 325 7 36

Frequency 5 min 1 h 5 min 1 h 1 h
Mean 53.72 2538.79 62.62 4.58 72.01

Variance 410.53 2.26× 108 92.05 42.68 79.07

GRIN (Cini et al., 2022), GCN-M (Zuo et al., 2023), CRUs (Schirmer et al., 2022) are representative
forecasting methods designed specifically for time series with missing values. Meanwhile, we also
include three Transformer-based methods, vanilla Transformer (Zerveas et al., 2021), STWA (Cirstea
et al., 2022), and FEDformer (Zhou et al., 2022), as well as two Spatial-Temporal GNNs-based
methods, AGCRN (Bai et al., 2020) and MTGNN (Wu et al., 2020). Since these five methods require
complete input to perform prediction, we study their two variants, namely, filling the missing entries
with zeros and the values imputed by TimesNet (Wu et al., 2023), the state-of-the-art time series
imputation approach. We denote the corresponding variants as Model0, and Modelt, respectively.
The missing masks are fed as covariates to guide the forecasting for the latter five baseline methods.
The details of baseline methods are presented in Appendix A.

Implementation details The number of blocks L of BiTGraph is set to 3, the number of top-k
nearest neighbors is set to 10 in all our experiments. The batch size is 32, the learning rate is
0.001. We split the datasets into training, validation, and test datasets with the ratio 0.6/0.2/0.2
chronologically. The future window size F is set to 24 for all methods, and the history window size
H for our proposed method is 24. We select the best history window size from the set {24, 48, 96}
for the baseline methods and report their best results. All methods are trained on Nvidia V100 GPUs.
Our method is implemented with PyTorch 2.0 and we use the source codes released by the authors
for all baseline methods. We adjust the hyperparameters of baseline methods to obtain the best
performance on each dataset, and evaluate the performance of different methods in terms of Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE).

5.2 OVERALL PERFORMANCE

Table 2 presents the forecasting performance on the two datasets (Metr-LA and Electricity) of different
methods under the missing rates of 0.2, 0.4, 0.6, and 0.8, the results are averaged over five funs1. We
move the results of the PEMS, ETTh1, and BeijingAir datasets and the results under the missing rate
of 0.1 to Appendix B to save space. It can be seen from the table that our proposed BiTGraph is able
to achieve the best results in most cases in terms of all three metrics. Its performance gains become
more evident when the missing rate grows to 0.8, which benefits from the ability of the Multi-Scale
Instance PartialTCN module and the Biased GCN module in handling the missing patterns adaptively.
It is worth noting that SPIN and GRIN, both of which are explicitly designed to address missing
values, demonstrate a marked superiority. However, their practical applicability is constrained by the
necessity of pre-defined graphs. SPIN, MTGNNt, and STWAt achieves the best results among all
baseline methods under different cases. In comparison, our proposed BiTGraph is able to deliver
the best results consistently. Notably, it achieves up to 9.93% improvement over the best baseline in
terms of RMSE on the Electricity dataset.

5.3 ABLATION STUDY

In this section, we conduct ablation studies to evaluate the effectiveness of our proposed modules,
Multi-Scale Instance PartialTCN (MSIPT) and Biased GCN (BGCN) modules. The results are shown
in Table 3. We divide the MSIPT module or BGCN module into two distinct procedures. The first part
(Eq. 6 or Eq. 10) relates to the mask updating process (MUP), whereas the second part (Eq. 4 or Eq. 9)
is regarding the information aggregation process (IAP). Firstly, we carry out ablation studies (w/o.
MSIPT, w/o. BGCN, and BiTGraph) to assess the joint significance of UID and MUP across temporal

1The model is trained with five different random seeds.
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Table 2: The forecasting performance of different methods.
Method Metr-LA Electricity
(r = 0.2) MAE RMSE MAPE MAE RMSE MAPE

BRITS 8.32± 0.02 13.18± 0.10 18.26± 0.71 1029.30± 1.10 10126.175± 30.57 47.73± 0.35
SPIN 6.46± 0.07 11.21± 0.05 12.98± 0.03 – – –
GRIN 6.80± 0.02 12.24± 0.12 16.18± 0.24 – – –
GCN-M 6.78± 0.03 11.12± 0.04 13.50± 0.02 – – –
CRUs 10.80± 0.02 12.49± 0.15 19.66± 0.54 464.66± 4.14 5276.49± 53.36 25.64 ± 0.53
AGCRN0 14.88± 0.05 14.21± 0.04 28.94± 0.07 1307.62± 4.53 13217.78± 26.81 62.65± 0.22
Transformer0 7.14± 0.06 13.08± 0.08 17.07± 0.09 296.03± 5.77 2432.09± 22.15 29.14± 0.27
FEDformer0 7.09± 0.03 12.75± 0.14 16.73± 0.19 368.29± 3.71 2574.37± 25.89 31.29± 0.31
STWA0 6.24± 0.07 10.99± 0.11 12.89± 0.13 272.60± 7.35 2263.55± 24.10 28.52± 0.26
MTGNN0 6.34± 0.07 10.96± 0.10 12.51± 0.19 274.68± 5.56 2016.44± 13.77 28.54± 0.19
AGCRNt 13.72± 0.06 13.11± 0.23 27.06± 0.18 1049.23± 12.06 11751.49± 20.67 57.76± 0.18
Transformert 6.90± 0.08 12.98± 0.13 16.49± 0.21 280.12± 6.78 2274.28± 25.18 28.74± 0.35
FEDformert 6.89± 0.06 11.75± 0.17 16.01± 0.09 313.59± 4.96 2666.93± 26.31 32.83± 0.23
STWAt 6.20± 0.02 10.71± 0.11 12.26± 0.18 261.92± 4.65 2089.65± 19.35 27.37± 0.26
MTGNNt 6.13± 0.02 10.76± 0.07 12.11± 0.19 269.25± 5.27 2175.24± 12.49 27.71± 0.78

BiTGraph 6.04 ± 0.02 10.69 ± 0.02 11.69 ± 0.11 243.23 ± 2.12 1834.18 ± 15.36 27.38± 0.46

Method Metr-LA Electricity
(r = 0.4) MAE RMSE MAPE MAE RMSE MAPE

BRITS 8.38± 0.08 12.97± 0.11 18.39± 0.28 1029.73± 1.48 10136.39± 63.63 47.96± 0.56
SPIN 6.52± 0.07 11.94± 0.41 13.22± 1.00 – – –
GRIN 6.91± 0.09 12.60± 0.21 16.59± 0.18 – – –
GCN-M 7.09± 0.01 12.42± 0.03 17.06± 0.04 – – –
CRUs 10.94± 0.08 13.18± 0.44 20.13± 0.23 496.95± 6.03 5397.31± 52.52 27.94± 0.33
AGCRN0 14.87± 0.04 14.30± 0.09 29.92± 0.06 1526.90± 13.77 14823.39± 21.68 68.73± 0.41
Transformer0 7.25± 0.04 12.97± 0.06 17.72± 0.08 310.88± 4.67 2586.69± 22.73 31.79± 0.15
FEDformer0 7.15± 0.02 12.89± 0.07 16.91± 0.12 406.17± 8.91 3606.49± 27.73 33.14± 0.33
STWA0 6.37± 0.05 11.19± 0.06 13.13± 0.16 292.47± 4.64 2764.34± 20.06 29.07± 0.16
MTGNN0 6.34± 0.05 11.10± 0.03 12.79± 0.08 305.46± 6.77 2576.44± 25.51 23.15± 0.37
AGCRNt 12.73± 0.02 12.49± 0.14 24.13± 0.16 1283.27± 8.49 13743.42± 49.38 58.62± 0.36
Transformert 6.99± 0.06 12.49± 0.13 16.45± 0.08 300.43± 10.17 2529.26± 19.14 28.86± 0.20
FEDformert 7.10± 0.05 12.63± 0.13 16.62± 0.06 330.90± 7.76 2711.30± 22.31 29.24± 0.18
STWAt 6.28± 0.03 10.93± 0.14 12.68± 0.07 289.59± 6.13 2355.34± 17.67 28.29± 0.31
MTGNNt 6.26± 0.05 10.90± 0.10 12.49± 0.04 281.32± 6.82 2236.74± 16.81 28.46± 0.19

BiTGraph 6.13 ± 0.01 10.76 ± 0.02 12.41 ± 0.12 270.14 ± 3.77 2091.88 ± 30.49 22.04 ± 0.36

Method Metr-LA Electricity
(r = 0.6) MAE RMSE MAPE MAE RMSE MAPE

BRITS 8.48± 0.02 12.94± 0.08 18.66± 0.22 1029.38± 1.84 10118.18± 33.04 48.25± 0.29
SPIN 6.61± 0.02 11.35± 0.17 13.31± 0.12 – – –
GRIN 7.04± 0.04 12.71± 0.14 17.04± 0.03 – – –
GCN-M 7.27± 0.02 11.55± 0.02 16.42± 0.03 – – –
CRUs 11.02± 0.02 13.38± 0.24 20.40± 0.04 664.07± 9.88 8126.82± 59.42 31.44± 0.45
AGCRN0 14.87± 0.04 14.30± 0.09 29.92± 0.06 1945.61± 6.38 13891.03± 17.38 75.20± 0.29
Transformer0 7.46± 0.01 12.03± 0.05 17.09± 0.07 346.43± 5.59 2952.28± 25.54 28.96± 0.37
FEDformer0 7.50± 0.04 12.32± 0.03 17.31± 0.07 535.72± 7.67 5329.18± 26.71 42.09± 0.46
STWA0 6.82± 0.02 11.72± 0.10 13.66± 0.04 325.47± 6.62 2479.75± 21.17 30.06± 0.22
MTGNN0 6.95± 0.03 12.09± 0.02 13.87± 0.09 329.18± 4.61 2490.45± 23.38 28.20± 0.27
AGCRNt 12.73± 0.02 12.49± 0.14 24.13± 0.16 1374.64± 7.11 12069.56± 19.73 61.92± 0.28
Transformert 7.22± 0.08 13.61± 0.17 16.75± 0.06 327.17± 8.68 2506.62± 23.17 29.27± 0.40
FEDformert 7.26± 0.04 13.08± 0.07 17.16± 0.03 341.66± 5.25 2682.73± 24.97 29.87± 0.09
STWAt 6.55± 0.02 11.28± 0.07 13.57± 0.03 312.25± 5.36 2407.39± 23.05 29.05± 0.11
MTGNNt 6.63± 0.02 11.10± 0.04 13.48± 0.05 309.59± 4.73 2399.51± 20.09 25.37 ± 0.13
BiTGraph 6.32 ± 0.01 10.93 ± 0.03 12.67 ± 0.11 295.23 ± 2.75 2239.06 ± 26.39 27.38± 0.49

Method Metr-LA Electricity
(r = 0.8) MAE RMSE MAPE MAE RMSE MAPE

BRITS 8.56± 0.09 13.03± 0.18 18.92± 0.09 1027.28± 0.50 10150.54± 31.05 48.04± 0.02
SPIN 6.68± 0.31 11.42± 0.35 14.41± 1.20 – – –
GRIN 8.00± 0.02 12.68± 0.09 18.35± 0.05 – – –
GCN-M 7.75± 0.03 11.65± 0.04 17.94± 0.02 – – –
CRUs 11.35± 0.12 14.06± 0.70 22.08± 0.22 623.63± 13.07 7033.29± 17.85 33.29± 0.74
AGCRN0 14.86± 0.01 14.27± 0.02 29.92± 0.08 2351.41± 26.79 16824.28± 29.33 207.77± 0.56
Transformer0 8.06± 0.02 12.82± 0.05 18.37± 0.11 398.99± 6.62 3612.37± 24.19 30.07± 0.18
FEDformer0 7.83± 0.05 12.97± 0.14 17.93± 0.06 676.93± 5.62 7859.76± 31.13 64.79± 0.35
STWA0 7.57± 0.06 12.15± 0.07 17.31± 0.12 376.26± 5.36 3512.37± 22.09 31.15± 0.08
MTGNN0 7.45± 0.03 12.21± 0.08 17.22± 0.09 383.89± 6.72 3539.74± 15.22 30.29± 0.11
AGCRNt 14.88± 0.01 14.20± 0.05 29.92± 0.10 1841.76± 6.87 17376.51± 44.79 70.38± 0.56
Transformert 7.32± 0.04 12.96± 0.08 16.87± 0.05 391.83± 4.17 3451.33± 5.62 32.26± 0.17
FEDformert 7.33± 0.06 13.17± 0.06 16.71± 0.04 380.06± 3.39 3335.18± 20.10 31.56± 0.13
STWAt 6.90± 0.03 11.30± 0.05 13.69± 0.07 362.25± 3.21 3156.68± 24.41 29.22± 0.15
MTGNNt 6.79± 0.04 11.05 ± 0.07 13.54± 0.10 355.68± 5.11 3023.30± 11.46 28.78± 0.31

BiTGraph 6.63 ± 0.01 11.20± 0.00 13.44 ± 0.02 347.35 ± 1.76 2839.79 ± 25.49 27.97 ± 0.27
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Table 3: The results of ablation studies on Metr, Electricity, and PEMS datasets under the missing
rates of 0.2, 0.4, and 0.6.

Missing Rate Model Metr Electricity PEMS
MAE RMSE MAE RMSE MAE RMSE

0.2

TCGNet 6.25± 0.01 11.01± 0.02 255.46± 2.86 2026.43± 35.79 1.94± 0.00 4.35± 0.02
w/o. MSIPT 6.34± 0.04 11.25± 0.05 279.73± 4.91 2159.16± 28.74 1.97± 0.02 4.40± 0.04
w/o. BGCN 6.26± 0.03 11.33± 0.03 263.69± 3.32 2029.16± 25.56 1.94± 0.00 4.37± 0.03
w/o. Eq. 9 6.14± 0.02 10.72± 0.02 250.75± 5.01 2020.13± 36.75 1.94± 0.02 4.33± 0.03
w/o. Eq. 4 6.12± 0.01 10.91± 0.03 246.18± 2.89 2003.22± 35.09 1.93± 0.01 4.30± 0.02
BiTGraph 6.04 ± 0.02 10.69 ± 0.02 243.23 ± 2.12 1834.18 ± 15.36 1.90 ± 0.01 4.28 ± 0.01

0.4

TCGNet 6.41± 0.03 11.14± 0.04 284.39± 5.26 2323.03± 40.15 1.99± 0.01 4.47± 0.03
w/o. MSIPT 6.48± 0.02 11.20± 0.03 299.34± 4.17 2361.79± 37.82 2.02± 0.02 4.50± 0.03
w/o. BGCN 6.40± 0.02 11.20± 0.02 291.81± 3.87 2337.69± 31.98 1.98± 0.01 4.45± 0.02
w/o. Eq. 9 6.18± 0.01 10.81± 0.04 282.12± 2.88 2236.82± 30.26 1.98± 0.01 4.32 ± 0.02
w/o. Eq. 4 6.25± 0.00 10.87± 0.02 280.30± 2.73 2277.50± 28.49 1.97± 0.01 4.34± 0.01
BiTGraph 6.13 ± 0.01 10.76 ± 0.02 270.14 ± 3.77 2091.88 ± 30.49 1.96 ± 0.00 4.34± 0.02

0.6

TCGNet 6.48± 0.02 11.10± 0.05 313.60± 3.29 2372.36± 36.19 2.04± 0.02 4.55± 0.02
w/o. MSIPT 6.65± 0.03 11.50± 0.04 332.39± 3.82 2469.15± 33.63 2.09± 0.02 4.62± 0.04
w/o. BGCN 6.65± 0.02 11.94± 0.01 322.68± 2.74 2487.22± 25.39 2.03± 0.00 4.49± 0.01
w/o. Eq. 9 6.35± 0.03 11.06± 0.02 308.59± 3.97 2366.39± 32.16 2.03± 0.01 4.52± 0.02
w/o. Eq. 4 6.38± 0.02 10.84 ± 0.02 301.25± 2.05 2312.39± 22.46 2.03± 0.02 4.54± 0.00
BiTGraph 6.32 ± 0.01 10.93± 0.03 295.23 ± 2.75 2239.06 ± 26.39 1.99 ± 0.01 4.47 ± 0.01

and spatial dimensions. The results reveal that when we adopt MSIPT or BGCN the performance
drops significantly, which can be explained by that the MUP builds a complete information-passing
path between the spatial and temporal dimensions and the absence of any module will cut off the
information flow between the two dimensions.

To further validate the effectiveness of the IAP and MUP, we conduct ablation studies by modifying the
IAP. First, we replace the temporal convolution in the MSIPT module with the standard convolution
operation (e.g., Eq. 3). Next, we alter the generation of adjacent matrix A by using Eq. 7. The results
are shown in the fourth and fifth rows of the table. As we can see, the replacement of either spatial
or temporal operations within IAP leads to a notable performance drop, which further verifies the
effectiveness of our proposed modules in handling missing values. We also conduct the corresponding
ablation study under the block missing scenarios and the results are shown in Appendix C. The results
of parameter sensitivity including window size H , the number of blocks L, and the number of nearest
neighbors k are shown in Appendix D. We analyze the role of β in Appendix E. We visualize the
prediction curves in Appendix F. The model complexity analysis is given in Appendix G.

6 CONCLUSIONS

In this paper, we present BiTGraph for the time series forecasting with missing values. BiTGraph
jointly captures the temporal dynamics and spatial structure by explicitly taking the missing values
into consideration. We inject bias into the two carefully designed modules, the Multi-Scale Instance
PartialTCN and Biased GCN, to account for the missing patterns. The experimental results on five
real-world benchmark datasets verify its superiority under various missing value scenarios. The
ablation studies also show that its excellent performance stems from the two carefully designed
Multi-Scale Instance PartialTCN and Biased GCN components. In the future, we would like to
explore the Transformer architecture as the backbone of our temporal module to further enhance its
long-term forecasting performance for partially observed time series data.
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A EXPERIMENTAL DETAILS

A.1 DETAILS OF BASELINE MODELS

The details of the baseline models are briefly summarized as follows. For BRITS, SPIN, GRIN,
CRUs, AGCRN, MTGNN, FEDformer, and STWA, we use the source codes released by their
authors. While for Transformer, we use the version implemented in FEDformer.

• BRITS2: It is a time series imputation model that combines a Bidirectional Recurrent Neural
Network with the time decay mechanism to establish the relationship between missing
values and observed data.

• SPIN3: It handles missing values by constructing a sparsely connected graph in both spatial
and temporal dimensions.

• GRIN4: It incorporates recurrent neural network (RNN) and graph neural network (GNN) to
capture inter- and intra-series dependencies to build the relationship between missing values
and observed ones.

• GCN-M5: It considers local spatiotemporal features and global historical patterns in an
attention-based memory network.

• CRUs6: It combines the Kalman filter and encoder-decoder frameworks to update the
continuous hidden states.

• AGCRN7: The adaptive graph and node-specific patterns are learned by node embeddings
and matrix factorization, respectively.

• MTGNN8: The approach constructs a skew-symmetrical spatial correlation matrix and
employs the Temporal Convolutional Network (TCN) and GCN to capture the intra- and
inter-series dependencies.

• Transformer: The classic sequential model that uses a stack of self-attention blocks to
capture the temporal dependencies in time series.

• FEDformer9: The method decomposes the time series into seasonal and trend components
and employs the self-attention mechanism in the frequency domain.

• STWA10: It constructs spatial-temporal aware embeddings within the self-attention mecha-
nism and introduces window attention to reduce complexity.

A.2 DETAILS OF METRICS

The metrics of mean absolute error (MAE), root mean square error (RMSE), and mean absolute
percentage error (MAPE) adopted in the paper are defined as follows.

MAE =

∑
ij∈Ω |yij − ŷij |

|Ω|
,RMSE =

√∑
ij∈Ω (yij − ŷij)

2

|Ω|
,MAPE =

∑
ij∈Ω

|yij − ŷij |
|Ω| · |yij |

(12)

where Ω represents the index set of observed values.

2https://github.com/caow13/BRITS
3https://github.com/Graph-Machine-Learning-Group/spin
4https://github.com/Graph-Machine-Learning-Group/grin
5https://github.com/JingweiZuo/GCN-M
6https://github.com/boschresearch/Continuous-Recurrent-Units
7https://github.com/LeiBAI/AGCRN
8https://github.com/nnzhan/MTGNN
9https://github.com/DAMO-DI-ML/ICML2022-FEDformer

10https://github.com/razvanc92/ST-WA
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Table 4: The results of forecasting error on Metr-LA and Electricity datasets with the missing rate
r = 0.1.

Method Metr-LA Electricity
(r = 0.1) MAE RMSE MAPE MAE RMSE MAPE

BRITS 8.21± 0.01 12.63± 0.10 18.04± 0.20 1027.47± 3.92 10157.39± 64.012 47.54± 0.01
SPIN 6.36± 0.00 11.07± 0.01 12.00± 0.00 – – –
GRIN 6.69± 0.02 12.27± 0.00 15.88± 0.01 – – –
GCN-M 6.72± 0.01 12.33± 0.01 13.06± 0.02 – – –
CRU 10.51± 0.03 13.00± 0.63 19.71± 0.31 334.40± 31.80 2923.44± 39.73 24.99± 0.72
AGCRN0 14.66± 0.01 14.00± 0.02 29.30± 0.13 1361.11± 8.39 12569.27± 30.09 62.54± 0.31
Transformer0 7.07± 0.05 12.97± 0.08 16.78± 0.13 289.65± 3.39 2296.17± 27.77 25.08± 0.32
FEDformer0 6.96± 0.03 12.37± 0.08 16.22± 0.14 337.16± 5.25 2713.72± 33.37 30.24± 0.28
STWA0 6.22± 0.04 14.64± 0.06 12.71± 0.05 269.81± 5.95 2039.64± 24.06 22.39± 0.33
MTGNN0 6.25± 0.06 10.68± 0.07 12.18± 0.05 256.98± 5.12 1974.50± 14.69 20.95± 0.26
AGCRNt 13.72± 0.06 13.11± 0.23 27.06± 0.18 1109.57± 3.95 10794.08± 34.26 57.95± 0.18
Transformert 6.90± 0.07 12.81± 0.04 16.49± 0.06 265.76± 6.03 2064.82± 23.51 20.06± 0.27
FEDformert 6.61± 0.03 11.09± 0.10 13.23± 0.06 283.63± 2.15 2269.11± 19.86 23.23± 0.18
STWAt 6.17± 0.02 10.82± 0.09 12.14± 0.04 248.87± 3.79 1945.16± 23.20 18.20± 0.16
MTGNNt 6.10± 0.02 10.69 ± 0.03 12.02± 0.08 254.67± 3.22 1994.07± 25.99 22.41± 0.26

BiTGraph 5.96 ± 0.01 10.71± 0.00 11.13 ± 0.02 231.70 ± 1.76 1823.18 ± 25.49 17.93 ± 0.27

Table 5: The results of forecasting error on PEMS, ETTh1, and BeijingAir datasets with the missing
rate r = 0.1 and 0.8.

Method PEMS ETTh1 BeijingAir
(0.1) MAE RMSE MAE RMSE MAE RMSE

BRITS 3.06± 0.01 6.39± 0.02 1.76± 0.03 3.17± 0.03 45.79± 0.24 67.83± 0.21
SPIN 2.03± 0.00 4.62± 0.00 – – 44.93± 0.03 68.13± 0.75
GRIN 2.63± 0.01 6.03± 0.06 – – 45.96± 0.25 67.06± 1.30
GCNM 2.13± 0.02 5.29± 0.07 – – 47.68± 0.11 68.29± 0.09
CRUs 3.21± 0.02 6.03± 0.01 2.80± 0.03 4.82± 0.05 56.92± 0.72 76.13± 0.87
AGCRN0 5.10± 0.07 10.07± 0.06 2.39± 0.04 4.76± 0.08 55.50± 0.12 81.31± 0.19
Transformer0 2.75± 0.07 6.15± 0.02 1.88± 0.05 3.25± 0.07 48.58± 0.07 69.50± 0.21
FEDformer0 2.61± 0.05 5.76± 0.10 1.69± 0.02 3.22± 0.04 49.65± 0.09 72.77± 0.13
STWA0 2.01± 0.04 4.57± 0.03 1.75± 0.00 3.15± 0.00 46.71± 0.14 70.10± 0.07
MTGNN0 2.02± 0.01 4.52± 0.04 1.58± 0.01 2.99± 0.02 44.37± 0.05 65.92± 0.06
AGCRNt 5.08± 0.02 10.05± 0.00 2.16± 0.03 4.29± 0.05 47.08± 0.26 69.62± 0.37
Transformert 2.54± 0.02 6.05± 0.03 1.72± 0.01 3.25± 0.13 47.43± 0.16 69.69± 0.08
FEDformert 2.45± 0.03 5.43± 0.02 1.67± 0.02 3.22± 0.04 44.87± 0.16 66.54± 0.07
STWAt 1.98± 0.02 3.51± 0.04 1.64± 0.01 3.04± 0.02 45.28± 0.13 68.93± 0.04
MTGNNt 1.93± 0.01 3.35± 0.03 1.54± 0.01 2.96± 0.02 43.32± 0.02 65.81± 0.07

BiTGraph 1.56 ± 0.02 2.97 ± 0.02 1.51 ± 0.01 2.92 ± 0.02 42.11 ± 0.11 65.53 ± 0.23

Method PEMS ETTh1 BeijingAir
(0.8) MAE RMSE MAE RMSE MAE RMSE

BRITS 3.26± 0.10 7.02± 0.03 2.14± 0.01 3.81± 0.09 46.75± 0.59 68.17± 0.87
SPIN 2.26± 0.01 5.03± 0.02 – – 44.94 ± 0.13 66.58 ± 0.25
GRIN 2.96± 0.02 6.70± 0.12 – – 52.07± 0.92 74.60± 1.85
GCN-M 2.54± 0.02 5.77± 0.04 – – 52.57± 0.08 73.71± 0.14
CRUs 3.15± 0.01 6.07± 0.01 3.15± 0.11 5.31± 0.09 57.10± 1.45 73.18± 0.14
AGCRN0 5.09± 0.00 10.07± 0.02 3.18± 0.12 6.02± 0.02 55.59± 0.03 81.58± 0.10
Transformer0 2.97± 0.06 6.73± 0.08 2.81± 0.07 5.20± 0.06 52.47± 0.03 73.10± 0.16
FEDformer0 2.89± 0.04 6.37± 0.06 2.59± 0.03 5.78± 0.02 56.94± 0.04 81.88± 0.09
STWA0 2.34± 0.04 5.16± 0.02 2.56± 0.02 4.41± 0.03 52.07± 0.11 74.95± 0.08
MTGNN0 2.39± 0.02 5.18± 0.09 2.46± 0.04 5.30± 0.02 53.05± 0.02 73.57± 0.10
AGCRNt 5.10± 0.01 10.07± 0.01 3.16± 0.09 5.25± 0.12 55.48± 0.05 78.86± 0.13
Transformert 2.85± 0.07 6.29± 0.11 2.51± 0.01 4.98± 0.07 50.09± 0.06 72.00± 0.07
FEDformert 2.76± 0.03 6.18± 0.02 2.55± 0.02 4.69± 0.06 49.83± 0.15 71.22± 0.08
STWAt 2.27± 0.02 5.00± 0.01 2.11± 0.02 3.73± 0.04 46.97± 0.06 72.93± 0.07
MTGNNt 2.21± 0.01 4.89± 0.01 2.01± 0.01 3.73± 0.02 45.93± 0.04 68.17± 0.11

BiTGraph 2.15 ± 0.01 4.73 ± 0.02 1.91 ± 0.01 3.54 ± 0.01 45.47± 0.17 66.98± 0.29
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Table 6: The results of forecasting error on PEMS, ETTh1, and Beijing Air datasets with the missing
rate r = 0.2, 0.4, and 0.6.

Method PEMS ETTh1 BeijingAir
(0.2) MAE RMSE MAE RMSE MAE RMSE

BRITS 3.07± 0.02 6.34± 0.00 1.81± 0.05 3.24± 0.00 47.81± 0.16 70.66± 2.41
SPIN 2.08± 0.05 4.74± 0.16 – – 44.03± 0.12 66.34 ± 0.75
GRIN 2.69± 0.09 6.21± 0.22 – – 46.58± 0.03 68.81± 1.37
GCN-M 2.18± 0.01 5.07± 0.06 – – 50.35± 0.03 70.51± 0.08
CRUs 2.82± 0.01 5.60± 0.03 2.87± 0.05 4.92± 0.05 57.81± 0.55 75.49± 0.61
AGCRN0 5.10± 0.03 10.04± 0.01 2.57± 0.02 4.93± 0.05 55.47± 0.16 81.06± 0.12
Transformer0 2.79± 0.04 6.20± 0.07 2.31± 0.07 3.79± 0.04 50.37± 0.06 73.18± 0.07
FEDformer0 2.70± 0.06 5.71± 0.13 1.80± 0.03 3.36± 0.02 50.03± 0.09 71.81± 0.14
STWA0 2.07± 0.01 4.69± 0.03 1.82± 0.01 3.23± 0.03 45.16± 0.05 67.96± 0.13
MTGNN0 2.10± 0.03 4.63± 0.02 1.65± 0.02 3.07± 0.02 44.71± 0.09 66.11± 0.06
AGCRNt 5.10± 0.00 10.05± 0.01 2.35± 0.02 4.17± 0.04 53.67± 0.08 78.55± 0.12
Transformert 2.62± 0.01 5.42± 0.02 1.75± 0.03 3.30± 0.06 47.72± 0.04 69.17± 0.16
FEDformert 2.56± 0.03 5.77± 0.04 1.72± 0.01 3.23± 0.03 45.70± 0.09 68.91± 0.02
STWAt 2.03± 0.02 4.61± 0.07 1.67± 0.02 3.12± 0.01 45.08± 0.02 67.57± 0.10
MTGNNt 1.98± 0.01 4.51± 0.06 1.56 ± 0.01 3.05± 0.01 44.40± 0.06 66.86± 0.11

BiTGraph 1.90 ± 0.01 4.28 ± 0.01 1.56 ± 0.01 2.97 ± 0.02 42.94 ± 0.13 66.36± 0.25

Method PEMS ETTh1 BeijingAir
(0.4) MAE RMSE MAE RMSE MAE RMSE

BRITS 3.08± 0.01 6.31± 0.03 1.82± 0.07 3.26± 0.06 46.20± 0.35 67.95± 0.06
SPIN 2.13± 0.10 4.81± 0.24 – – 45.37± 0.55 67.38± 0.77
GRIN 2.81± 0.03 6.76± 0.14 – – 46.79± 0.25 68.22± 0.14
GCN-M 2.26±0.02 5.51± 0.03 – – 50.61± 0.04 71.61± 0.17
CRUs 2.85± 0.02 5.65± 0.04 2.94± 0.05 5.01± 0.04 55.80± 0.46 76.41± 1.16
AGCRN0 5.09± 0.01 10.05± 0.02 3.19± 0.03 5.06± 0.07 55.52± 0.07 81.27± 0.03
Transformer0 2.86± 0.02 6.38± 0.07 2.36± 0.04 4.79± 0.08 53.11± 0.06 77.03± 0.17
FEDformer0 2.81± 0.05 5.81± 0.09 1.96± 0.02 3.61± 0.03 52.18± 0.05 74.78± 0.16
STWA0 2.12± 0.02 4.67± 0.03 1.90± 0.03 3.40± 0.03 47.38± 0.07 71.16± 0.06
MTGNN0 2.12± 0.01 4.50± 0.02 1.92± 0.02 3.43± 0.01 45.17± 0.08 66.73± 0.02
AGCRNt 5.10± 0.00 10.06± 0.01 2.87± 0.04 5.24± 0.03 55.56± 0.07 82.67± 0.10
Transformert 2.80± 0.03 6.09± 0.07 1.88± 0.02 3.68± 0.08 48.28± 0.16 69.71± 0.09
FEDformert 2.74± 0.02 5.78± 0.03 1.86± 0.02 3.31± 0.01 46.96± 0.13 68.17± 0.08
STWAt 2.07± 0.03 4.80± 0.02 1.81± 0.04 3.26± 0.07 45.69± 0.13 70.56± 0.19
MTGNNt 2.05± 0.02 4.61± 0.07 1.67± 0.01 3.12± 0.01 44.29± 0.02 66.39± 0.08

BiTGraph 1.96 ± 0.00 4.34 ± 0.02 1.64 ± 0.02 3.07 ± 0.02 43.13 ± 0.22 65.55 ± 0.24

Method PEMS ETTh1 BeijingAir
(0.6) MAE RMSE MAE RMSE MAE RMSE

BRITS 3.14± 0.03 6.22± 0.01 1.87± 0.11 3.24± 0.02 46.71± 0.17 67.93± 0.04
SPIN 2.18± 0.05 4.91± 0.15 – – 44.28± 0.45 65.68± 0.08
GRIN 2.84± 0.01 6.61± 0.1 – – 49.10± 1.01 71.43± 1.63
GCN-M 2.39± 0.02 5.32± 0.03 – – 51.47± 0.05 77.41± 0.22
CRUs 2.97± 0.31 5.79± 0.09 3.05± 0.05 5.13± 0.04 56.63± 0.11 75.42± 1.76
AGCRN0 5.09± 0.01 10.06± 0.01 3.43± 0.02 5.81± 0.05 55.67± 0.06 82.10± 0.05
Transformer0 2.91± 0.03 6.31± 0.04 2.45± 0.03 4.30± 0.03 50.79± 0.11 71.73± 0.09
FEDformer0 2.85± 0.04 6.02± 0.06 2.06± 0.01 3.96± 0.02 55.32± 0.13 79.83± 0.03
STWA0 2.15± 0.02 4.64± 0.06 2.16± 0.02 4.86± 0.09 48.22± 0.07 70.09± 0.15
MTGNN0 2.13± 0.01 4.62± 0.02 2.36± 0.02 4.14± 0.03 47.05± 0.11 67.80± 0.06
AGCRNt 5.10± 0.00 10.06± 0.01 3.35± 0.02 5.29± 0.04 55.45± 0.17 80.76± 0.04
Transformert 2.83± 0.04 5.22± 0.07 2.19± 0.01 4.29± 0.03 49.23± 0.04 72.38± 0.12
FEDformert 2.79± 0.02 6.31± 0.05 2.07± 0.01 4.26± 0.03 49.21± 0.06 68.27± 0.07
STWAt 2.14± 0.02 4.67± 0.03 1.85± 0.02 3.37± 0.03 46.06± 0.03 69.92± 0.07
MTGNNt 2.11± 0.01 4.59± 0.03 1.79± 0.02 3.29± 0.03 44.85± 0.02 67.78± 0.05

BiTGraph 1.99 ± 0.01 4.47 ± 0.01 1.74 ± 0.00 3.21 ± 0.01 44.23 ± 0.15 64.20 ± 0.32
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Table 7: The results of forecasting error on Metr-LA and ETTh1 datasets with the block missing rate
r = 0.0015 and 0.002.

Method Metr-LA ETTh1
(r = 0.0015) MAE RMSE MAPE MAE RMSE MAPE

BRITS 8.66± 0.02 12.24± 0.02 18.49± 0.03 2.12± 0.01 4.55± 0.04 96.73± 0.09
SPIN 6.58± 0.02 11.02± 0.03 12.76± 0.03 – – –
GRIN 6.73± 0.02 11.27± 0.03 12.92± 0.04 – – –
GCN-M 6.77± 0.03 11.68± 0.02 13.06± 0.03 – – –
CRU 7.32± 0.02 12.04± 0.03 14.86± 0.02 1.92± 0.00 4.08± 0.02 81.09± 0.06
AGCRN0 14.88± 0.01 14.30± 0.02 29.94± 0.02 2.79± 0.00 5.02± 0.01 116.64± 0.13
Transformer0 7.59± 0.02 12.87± 0.03 16.03± 0.02 2.04± 0.01 4.20± 0.02 95.09± 0.05
FEDformer0 7.50± 0.03 12.55± 0.01 15.94± 0.03 2.01± 0.00 3.96± 0.02 85.28± 0.04
STWA0 7.12± 0.02 14.84± 0.03 13.62± 0.03 1.98± 0.01 3.69± 0.02 79.29± 0.09
MTGNN0 7.18± 0.03 15.49± 0.04 18.31± 0.02 1.92± 0.01 3.76± 0.01 81.47± 0.06
AGCRNt 14.88± 0.00 14.30± 0.01 29.94± 0.02 2.50± 0.00 4.92± 0.02 107.79± 0.12
Transformert 7.08± 0.01 11.75± 0.03 13.24± 0.04 1.81± 0.02 3.39± 0.01 84.67± 0.06
FEDformert 6.81± 0.02 11.56± 0.03 13.15± 0.03 1.77± 0.00 3.43± 0.01 73.58± 0.07
STWAt 6.56± 0.01 10.57 ± 0.04 12.90± 0.03 1.79± 0.01 3.21± 0.02 74.59± 0.06
MTGNNt 6.41± 0.01 10.99± 0.02 12.74± 0.04 1.61± 0.00 3.09± 0.02 68.31± 0.07

BiTGraph 6.22 ± 0.01 10.97± 0.03 12.70 ± 0.02 1.56 ± 0.00 3.03 ± 0.01 66.20 ± 0.03

Method Metr-LA ETTh1
(r = 0.002) MAE RMSE MAPE MAE RMSE MAPE

BRITS 9.09± 0.02 11.94± 0.04 18.39± 0.11 2.37± 0.02 4.66± 0.03 107.38± 0.06
SPIN 6.68± 0.03 11.19± 0.02 12.88± 0.04 – – –
GRIN 6.87± 0.02 12.18± 0.06 13.47± 0.03 – – –
GCN-M 6.85± 0.02 11.74± 0.03 13.35± 0.03 – – –
CRU 7.91± 0.02 13.25± 0.03 17.63± 0.05 2.97± 0.01 5.05± 0.00 97.58± 0.11
AGCRN0 14.88± 0.00 14.26± 0.02 29.90± 0.09 2.82± 0.01 5.13± 0.04 124.61± 0.13
Transformer0 8.13± 0.02 13.67± 0.02 18.05± 0.04 2.19± 0.00 4.24± 0.01 103.02± 0.08
FEDformer0 8.02± 0.01 13.36± 0.03 17.93± 0.06 2.13± 0.01 4.20± 0.01 85.07± 0.05
STWA0 7.60± 0.01 16.76± 0.07 16.38± 0.03 2.00± 0.00 3.76± 0.00 79.43± 0.04
MTGNN0 7.36± 0.02 11.51± 0.09 15.28± 0.03 2.06± 0.01 4.08± 0.02 79.84± 0.04
AGCRNt 14.88± 0.01 14.26± 0.02 29.90± 0.02 2.43± 0.01 4.82± 0.00 99.99± 0.16
Transformert 7.47± 0.03 12.34± 0.04 15.72± 0.03 1.76± 0.00 3.35± 0.01 75.32± 0.08
FEDformert 7.42± 0.02 12.11± 0.06 15.54± 0.03 1.85± 0.01 3.45± 0.01 87.11± 0.07
STWAt 6.65± 0.01 10.92± 0.03 12.72± 0.03 1.79± 0.00 3.33± 0.02 76.30± 0.10
MTGNNt 6.49± 0.02 11.20± 0.01 12.60± 0.04 1.68± 0.01 3.27± 0.02 71.41± 0.11

BiTGraph 6.31 ± 0.01 10.84 ± 0.02 12.49 ± 0.02 1.60 ± 0.01 3.18 ± 0.02 68.11 ± 0.04

B MORE COMPARISON

Table 4 presents the results of different methods for the missing rate r = 0.1 on Metr-LA and
Electricity datasets. Table 5 and Table 6 demonstrates the results on ETTh1, PEMS and BeijingAir
datasets. Our proposed BiTGraph demonstrates significant superiority, especially in the Electricity
dataset with the highest variance. The performance of STWAt is very close to that of MTGNNt, and
both models outperform the other baseline models. Moreover, the BiTGraph improves the MAE
by 5.12 percent under the largest mask ratio on the PEMS dataset, which further demonstrates the
effectiveness of our proposed method.

C BLOCK MISSING

To further substantiate the effectiveness of our method, we assess its performance in block-missing
scenarios. We follow the method of GRIN to generate block-missing masks, and the results are
presented in Table 7. We can observe that the proposed BiTGraph also demonstrates its great
superiority, achieving a notable 5% improvement over the best baseline.
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Figure 2: The performance under different window sizes with H=24, 48, 96, and 168

Figure 3: The performance under L=3, 5, 7, and 9

D HYPERPARAMETER SENSITIVITY

In this section, we evaluate the hyperparameter sensitivity of our method with respect to the history
window size H , the number of blocks L, as well as the number of nearest neighbors k on the Metr-LA
dataset.

Figure 2 shows the performance changes over the history window size H . No evident performance
improvements are observed as H increases from 24 to 168. We then evaluate the sensitivity of
L. As shown in Figure 3, BiTGraph achieves the best performance when L=5. However, the
performance does not improve further when L continues growing. We hypothesize that this is due to
the over-smoothing issue of GNNs, that is, the node representations become indistinguishable when
the graph convolutional layer reaches 5. We then further assess the impact of the k on the model
performance. In particular, We study the metrics change as k varies from 5, 10, 15, to 20. As observed
from Figure 4, the performance gains by incorporating spatial information from more neighboring
nodes. However, once enough spatial correlations are obtained (i.e., k=10), further increasing the
number of neighbors will no longer yield performance improvement. This suggests that only a few
neighborhood nodes have a significant impact on a given node.

E THE ROLE OF β

Table 8 shows the change of learnable β against missing rates on three representative datasets (traffic,
solar energy, and air quality). We found that β demonstrates similar values with different missing
rates, indicating that β is primarily responsible for adjusting the strength of correctness and is

Figure 4: The performance under k =5, 10, 15, and 20
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Table 8: The learned value of β on three datasets.
Dataset 0.2 0.4 0.6 0.8

Metr-LA 0.035 0.037 0.034 0.035
BeijingAir 0.475 0.463 0.471 0.467
ETTh1 0.397 0.391 0.419 0.419

Figure 5: The forecasting curves produced by our BiTGraph on four datasets.

independent of missing rates. Additionally, the possible reason for the value variation of β across
different datasets may caused by the unique characteristics of different datasets.

F PREDICTION VISUALIZATION

In this section, we demonstrate the forecasting curves of our method on four datasets with a missing
ratio r = 0.8. The time series is down-sampled in the temporal domain, and it is randomly selected
in the spatial domain. As shown in the left part of Figure 5, our proposed method is able to
produce results that well match the ground truth trends on all five datasets, which demonstrates the
effectiveness of BiTGraph. In addition, we present the forecasting results of one representative
method MTGNNt, which are displayed in the right part of Figure 5. We can observe that the curves
produced by MTGNNt struggle to match the ground truths when the missing rate is high. Especially,
on the BeijingAir dataset, the forecasting curves largely deviate from the ground truths.

G MODEL COMPLEXITY ANALYSIS

In this section, we assess the complexity of different methods in terms of memory usage and number
of parameters. Table 9 shows the model complexity of different methods. It can be observed that our
proposed BiTGraph has a relatively small memory usage as well as a small number of parameters,
which implies the model can be trained with much less energy consumption.

18



Published as a conference paper at ICLR 2024

Table 9: The model complexity of different methods.
Method Memory Usage #Parameters

BRITS 85.48M 173.72K
SPIN 10.85G 1.31K
GRIN 2.00G 12.76K
GCN-M 15.39G 396.50K
CRUs 41.97M 54.75K
AGCRN 10.17M 1.56K
MTGNN 250.55M 9.184K
Transformer 14.85G 15.46M
FEDformer 15.57G 16.08M
STWA 1.96G 256.50K
BiTGraph 194.17M 11.82K
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