
Learn Your Tokens:
Word-Pooled Tokenization for Language Modeling

Avijit Thawani
thawani@usc.edu

Saurabh Ghanekar
USC

Xiaoyuan Zhu
USC

Jay Pujara
USC / ISI

Abstract

Language models typically tokenize text
into subwords, using a deterministic, hand-
engineered heuristic of combining characters
into longer surface-level strings such as ‘ing’
or whole words. Recent literature has repeat-
edly shown the limitations of such a tokeniza-
tion strategy, particularly for documents not
written in English and for representing num-
bers. On the other extreme, byte/character-
level language models are much less restricted
but suffer from increased sequence descrip-
tion lengths and a subsequent quadratic ex-
pansion in self-attention computation. Recent
attempts to compress and limit these context
lengths with fixed size convolutions is help-
ful but completely ignores the word boundary.
This paper considers an alternative ‘learn your
tokens’ scheme which utilizes the word bound-
ary to pool bytes/characters into word repre-
sentations, which are fed to the primary lan-
guage model, before again decoding individual
characters/bytes per word in parallel. We find
that our moderately expressive and moderately
fast end-to-end tokenizers outperform by over
300% both subwords and byte/character mod-
els over the intrinsic language modeling metric
of next-word prediction across datasets. It par-
ticularly outshines on rare words, outperform-
ing by a factor of 30! We extensively study
the language modeling setup for all three cate-
gories of tokenizers and theoretically analyze
how our end-to-end models can also be a strong
trade-off in efficiency and robustness. [Github].

1 Introduction

Almost all natural language processing (NLP) be-
gins with tokenization (Mielke et al., 2021). Se-
quences of characters are (mostly deterministically)
segmented into discrete tokens, each of which has
a lookup embedding in an enormous vocabulary
matrix. Statistical NLP methods, similar to other
forms of machine learning at the time, relied on
feature extraction from these tokens, in the form of

Efficiency Expressivity Accuracy

Subword High Low Mid
Byte/ Low High Low
Char

eByte/ Mid Mid High
eChar

Table 1: Trade-offs involved when choosing tokenizers:
Subword vs Bytes/Characters vs eByte/eChar (ours).

n-gram occurrences or part-of-speech tags or other
representations of syntax. All of these pipelines
have over time been replaced with end-to-end learn-
ing using recurrent neural networks (RNNs) or
transformers, however the tokenization schemes
remain static, deterministic, and manually engi-
neered.

State-of-the-art approaches include subword to-
kenization schemes such as WordPiece (Wu et al.,
2016), Byte Pair Encoding or BPE (Sennrich et al.,
2016), and Unigram (Kudo, 2018), all of which
are statistical methods for preprocessing a large
unlabeled corpus of text to yield a fixed vocabu-
lary, midway between characters or bytes at one
end and whole words at the other. This results in a
convenient trade-off in sequence description length
while avoiding the UNK token, that is, a fallback
mechanism for handling rare words. However, it is
not obvious why these hand-engineered algorithms
would be the optimal forms of tokenization and
whether there exists a possibility for end-to-end
models to also include this crucial stage of the NLP
pipeline.

Recent work has shown countless limitations
with subword embeddings. Several languages con-
tain diverse morphological features whereas sub-
word segmentation is mostly apt at only identifying
suffixes and prefixes (Clark et al., 2022). Technical
domains such as biomedical documents often need
to pre-train their own tokenizer for improved vocab-
ulary (Boecking et al., 2022). Finally, numbers are

https://github.com/avi-jit/eTok


often inconsistently segmented into subwords, lead-
ing to decreased arithmetic (Wallace et al., 2019)
and estimation (Thawani et al., 2021b) skills. The
extent of these numeric limitations is so dire that
GPT-4 (OpenAI, 2023) has an explicit workaround
of adding all numbers from 0 to 999 as individual
tokens to the model’s vocabulary.

Recently, several language models have been
proposed which remove the tokenizer vocabulary
entirely, beginning with a character (El Boukkouri
et al., 2020) or byte-level (Xue et al., 2022) vocab-
ulary and often compressing them into fixed units
of around four tokens each (Tay et al., 2021; Yu
et al., 2023; Clark et al., 2022). While these zero-
assumption methods are useful in compressing text
and consequently expand context windows, they
completely ignore the word boundary. Besides, the
so-called ‘tokenizer-free’ byte-based models are
not entirely bias-free since the Unicode-8 encod-
ing they use is itself biased towards representing
Latin scripts with a single byte each, whereas some
scripts1 like Bammum (Africa), Meetei (India), and
Cherokee (North America) may require four bytes
to represent a single character.

The concept of words is a fundamental feature of
nearly all human languages, including those written
in Chinese or Japanese scripts that do not explic-
itly delineate words by whitespaces. This paper
empirically studies the case where tokenizers lose
their subword segmentation algorithms but utilize
the word boundary for a multi-level model with
added efficiency. More concretely, we use the word
boundary to compress the base tokens of bytes or
characters into word representations, which are
then fed into the underlying language model (here,
a small version of GPT (Radford et al., 2018)).

Our end-to-end learned tokenization undoubt-
edly has several limitations. It is not faster than
subwords. It does not allow characters/bytes within
one word to directly attend to those in another
word. It relies on the word boundary, which is
not straightforward to find for most internet-scale
datasets. Nevertheless, we believe this empirical
deep-dive into tokenizers for language modeling
offers the following contributions:

1. We compare different tokenizer strategies for
language modeling on multiple facets and on
a fair footing across languages.

2. We are the first to explicitly use word bound-
1https://unicode.org/roadmaps/bmp/

Figure 1: Overview of our proposed simple end-to-
end tokenized autoregressive language model. A trans-
former encoder compresses the variable number of base
units (here, characters) into n=1 CLS tokens per word.
Dotted characters are the previously predicted tokens at
inference, and when training they are the ground truth.

ary to compress an autoregressive language
model’s base tokens.

3. We report over 300% gains in language mod-
eling capabilities over multiple languages and
datasets, against both subwords and charac-
ter/byte models, and by a factor of 30 on rare
words.

4. We theoretically analyze strengths and weak-
nesses of our word-compressed tokenization
scheme, which carries insights for the lan-
guage modeling community.

We will publicly release all code (see supplemen-
tary material) and checkpoints upon acceptance.

2 Method

Figure 1 pictorially depicts our proposed language
model architecture. Our end-to-end tokenization
strategy is a straightforward word pooling method
which uses a transformer encoder (Step 1) to pool
in the base tokens (characters or bytes) into a fixed
number of embeddings per word. This is analogous
to how CLS embeddings are often used to pool in
the embeddings of an entire sentence or any text

https://unicode.org/roadmaps/bmp/


sequence in BERT-like transformer encoders. In
our case, we have the equivalent of a fixed number
of CLS tokens2 prepended to each word that store
the meaning of the entire word.

Next, (Step 2) the pooled per-word embeddings
are passed onto the main language model, in our
case, a vanilla transformer decoder like GPT (Rad-
ford et al., 2018). Finally, the contextualized word
embeddings are fed through another transformer
decoder to autoregressively decode the next word,
one base unit (character or byte) at a time. Note
that we call this method an end-to-end ‘tokenizer’
since it compresses the many units into a few em-
beddings per word, just like subwords, except the
compression is learned from scratch. Finally, at de-
coding stage (Step 3), the contextualized word rep-
resentations are unrolled with another transformer
decoder to autoregressively predict one base token
(character/byte) at a time. 3

Note how we achieve our purported trade-off
between subwords and byte/character models. The
CLS representations learnt are unconstrained by a
deterministic mapping as in subwords. They are
also efficient to compute and decode from, since the
first and last steps only allow intra-word attention.
For a tokenizer-free model, roughly 80% of the
memory bottleneck4 is spent on tokens from one
word attending to tokens on another word, which
we contest is of questionable importance relative
to the overhead incurred.

Formally, we begin with a sequence of words
w0, w1, . . . , wn each of which is comprised of an
ordered set of base units (character/bytes) wi =
c0i , c

1
i , . . . , c

mi
i where mi + 1 is the length of the

ith word. The task is autoregressive language
modeling, i.e. given the previously seen words
w0, w1, . . . , wi−1 as well as the previously seen
units in wi (the current word): c0i , c

1
i , . . . , c

j−1
i pre-

dict the next unit cji .
Character/byte level models ignore the word-

boundary and directly model the task as:

cji = Decoder(c00, . . . , c
m0
0 , c01, . . . , c

0
i , . . . c

j−1
i )

2This paper uses 4 CLS tokens per word, except in Section
4.2 where we ablate with 1 CLS per word.

3This autoregressive decoder can also be replaced by a
non-autoregressive transformer which emits the entire word in
O(1) time. Our initial experiments with such a vanilla setup
performed much worse than autoregressive models (in line
with prior work), therefore we leave this to future work.

4In Figure 2, this is the difference in blue attention blocks
depicted in Figure between Byte/Char-level models and our
intra-word attention.

Subword segmentation maps the base units de-
terministically into fewer subwords per word, i.e. ,
wi = c0i . . . c

mi
i → s0i . . . s

m′
i

i where m′
i ≤ mi, the

number of subwords that the ith word is decom-
posed into. Following this determinsitc process, a
subword model predicts the next subword as:

sji = Decoder(s00, . . . , s
m′

0
0 , s01, . . . , s

0
i , . . . s

j−1
i )

Our end-to-end models instead follow a three-
step process to (1) pool base units into a fixed set
of embeddings per word, (2) autoregressively pre-
dicting the next word embedding, and (3) autore-
gressively predicting individual unit embeddings
per word:

CLSi = Encoder(c0i , c
1
i , . . . , c

mi
i ) (1)

CLS′i = Decoder(CLS0,CLS1, . . . ,CLSi−1) (2)

cji = Decoder(CLS′i
⊕

c0i , . . . , c
j−1
i ) (3)

Here, Encoder refers to a transformer BERT-like
encoder and Decoder refers to a transformer GPT-
like decoder. From an implementation standpoint,
we prefix a fixed number (n = 1 or 4 in this pa-
per) of CLS tokens to every word before passing it
through a transformer encoder. The word-level con-
textualized representations obtained on the other
end are collectively depicted here as wi.

Figure 2 is a visualization of how our end-to-end
model saves on self-attention computation bottle-
neck by only allowing intra-word attention at the
first step, before allowing contextualization of in-
formation across the word boundary in step 2 us-
ing the base decoder model. Finally step 3 again
restricts the individual characters/bytes to be pre-
dicted using only the single word-level predicted
embeddings.5

3 Experiments

There are numerous NLP tasks that can bene-
fit from improved tokenization, such as Machine
Translation, Question Answering, and Text Clas-
sification. However, the scope of our preliminary
analysis is not to cast a wide net over every down-
stream application. Instead, we choose to analyze
in depth the most commonly used pre-training task
in NLP i.e. language modeling.

We pretrain autoregressive language models
from scratch using different tokenizers described in

5Note that our current implementation has minor devia-
tions from the shown simplistic figure. Refer to Section 3.4
for details.



Figure 2: Self-attention visualized across (1) Byte/Char-level models, (2) Subword/Word-level models, and (3) Our
proposed end-to-end tokenization modules (word encoder; base LM decoder; word decoder) with character base.
Blue blocks indicate self attention mask. @ symbol indicates a prepended CLS token per word.

the previous section, on different datasets described
in Section 3.2.

3.1 Models

We report results over the following tokenizers:
Subword: a pretrained BPE vocabulary used by
GPT-2 and GPT-3. Byte: a pretrained byte-level vo-
cabulary as implemented in ByT5 Xue et al. (2022).
Character: a corpus-specific vocabulary learnt
from each dataset, with a fallback to UNK for
characters unseen in training. eByte/eChar: Our
end-to-end tokenized models which begin with the
above Byte/Character vocabularies, but are com-
pressed into CLS representations as described in
Section 2.

There can be countless ways to make for a ‘fair’
comparison across tokenizers. We train all models
on all datasets for the same number of total epochs.
We also focus on letting the models access the same
context window size, i.e. amount of information
available to predict the next set of tokens. Different
tokenizers can use vastly different memory sizes
to fit the same amount of information. This is
analogous to how the same book can be published

Dataset Size Words Chars/
(MBs) (Mil.) Word

English 4.7 1.34 5.46
French 5.1 1.55 5.18
Russian 7.5 1.18 6.39
Numeracy 6.6 1.35 5.09

Table 2: Statistics for our language modeling datasets.
See Section 3.2 for more details.

in different font sizes to choose between light and
bulky books. We control for this information parity
by fixing the number of characters in the available
context to 192 for each tokenizer and each dataset.
Subword models will then be allowed to access
192//N subwords where N is the average number
of characters per subword.

3.2 Datasets

Our proposed method requires access to a word
boundary signal, which can either be obtained from
a clean natural language corpus, or by running a
preprocessing pipeline on an unclean corpus to fil-



Tokenizer Acc Mem Params Acc Mem Params Acc Mem Params
(%) (GBs) (Mil.) (%) (GBs) (Mil.) (%) (GBs) (Mil.)

Language English French Russian

Subword 14.37 0.55 76.8 41.20 1.50 76.8 8.31 1.49 76.8
Byte 13.69 0.53 25.7 17.39 0.54 25.7 12.76 0.53 25.7
Char 13.68 0.54 26.3 16.95 0.53 25.7 10.01 0.54 26.1

eByte 44.17 3.84 38.7 46.44 6.01 38.7 35.00 4.92 38.7
eChar 42.94 2.94 39.2 47.06 3.59 38.7 37.15 3.95 39.0

Table 3: Word Prediction Accuracies (Acc %) for different languages and tokenizers. See Section 4.1 for details.

ter out nonlinguistic tokens such as URLs or meta-
data. We chose the former to avoid confounding
our results with a layer of preprocessing decisions.
Therefore, our datasets are smaller but cleaner than
the large-scale mC4 and OSCAR datasets typically
used for training large language models.

Our choice of languages depended on the avail-
ability of a large enough corpus of clean data. We
also deliberately avoid Chinese and Japanese cor-
pora since segmenting them into words would re-
quire an additional, possibly confounding step of
segmentation through an off-the-shelf model.

Concretely, here are the four datasets we pre-
train and evaluate our language models on:

1. English: We randomly sample 10,000
paragraphs from the comprehensions of
SQuAD2.0 (Rajpurkar et al., 2016) dataset.

2. French: We randomly sample 10,000
paragraphs from the comprehensions of
SQuAD_FR (Cattan et al., 2021) dataset.

3. Russian: We randomly sample 10,000 para-
graphs from the reading passages of the
SberQuAD (Efimov et al., 2020) dataset.

4. Numeracy: We sample 60,000 rows of
number-annotated sentences from Wiki-
Convert (Thawani et al., 2021a), itself derived
from the English Wikipedia. The task is to
estimate these numbers approximately using
the preceding words as context.

Table 2 presents statistics for the datasets that we
use. The average dataset consists of 7.4M charac-
ters (676 unique) and 1.4M words (102k unique).

3.3 Metrics
Since the models have different vocabularies, we
can not compare their perplexity scores. Instead,

we fix the number of context to be exactly 192 char-
acters and report the accuracy of predicting the next
word (over held-out validation data from the same
corpus as the training set). When estimating num-
bers, we report magnitude-based metrics that are
typically reported in the literature (Thawani et al.,
2021a; Berg-Kirkpatrick and Spokoyny, 2020):
the order-of-magnitude Exponent Accuracy (EAcc:
whether the number of digits are the same in the
ground truth and predicted number) and Median
Absolute Percentage Error (MdAPE: median of
100|x− y|/y where x is the prediction and y is the
ground truth number).

3.4 Implementation

Every model (using a different tokenizer) is pre-
trained from scratch on every dataset described
above. We report the aforementioned metrics on
the individual test set from each corpus. Our
base language model is a decoder-only transformer
called minGPT6 with 8 layers. For our end-to-end
models, the main language model (Step 2) remains
the same - with 8 layers like the others, whereas the
word-encoder (Step 1) and word-decoder (Step 3)
are both shallow transformers (encoder and decoder
respectively) with 2 layers each. They use padding
tokens to make each word of equal length for ease
of training. We use trained absolute positional em-
beddings for all models, and the end-to-end models
use it thrice - one for each step. We pretrain all
models on all datasets from scratch for 100 epochs.

We set the learning rate to 0.0001, batch size
to 2, and block size to 192. We used AdamW as
our optimizer and trained our models on NVIDIA
A100-PCIe-40GB GPUs. With this configuration,
training each model variant for 100 epochs took an
average of 52 hours.

6https://github.com/karpathy/minGPT

https://github.com/karpathy/minGPT


Lang Tok 1 CLS 4 CLS ∆% ∆ Mem

en eByte 31 44 42% 0.02
en eChar 29 43 48% 0.02

fr eByte 31 46 48% 0.02
fr eChar 34 47 38% 0.02

ru eByte 26 35 35% 0.02
ru eChar 29 37 28% 0.02

Table 4: Word Prediction Accuracies for different rep-
resentative power (number of prefix CLS tokens) per
word in our end-to-end byte/char-tokenized (Tok) mod-
els. Up to 45% higher prediction scores are available
for a marginal increase in memory (Mem in GBs) of
about 20 MBs. See Section 4.2 for details.

4 Results

4.1 Main Results
Our main results are summarized in Table 3. Next
word prediction accuracies over different datasets
show that given a fixed context window, our end-
to-end tokenized language models perform much
better (up to 300% from 14% to 44% on English)
on all datasets than both the default BPE subwords
as well as the tokenizer-free character and byte
models. This does come at a doubling of GPU
memory requirements, due to the additional word-
level modules in our architecture.

4.2 Representation Power
Here we ablate the representative power available
for word-pooling of character- or byte-level embed-
dings. This hyperparameter is controlled simply by
adding a different (yet fixed) number of prefix CLS
tokens per word before encoding via a transformer.
Table 4 shows the word prediction accuracies and
relative jumps when the number of prefix CLS to-
kens per word is increased from 1 to 4. We notice
a huge jump for every model, with the trade-off in
sequence description length. Note, however, that
the memory usage does not jump by more than 20
MBs. Similarly, the number of parameters also in-
creases (not shown in table) by only 300K (0.7%)
for both eByte and eChar models.

4.3 Predicting Rare Words
One of the primary motivations for subword tok-
enization is their ability to compositionally create
rarer words using other frequently occurring sub-
words. Wolleb et al. (2023) recently show that such
compositionality is a significant contribution to the

Tokenizer Rare Frequent

Subword 0.11 7.20
Byte 0.00 4.36
Char 0.28 9.84

eByte 5.90 42.90
eChar 6.78 44.17

Table 5: Case study: Word Prediction Accuracies for
Russian across tokenizers, stratified by Rare and Fre-
quent words. See Section 4.3 for details.

Tokenizer % Num ↑ EAcc ↑ MdAPE ↓

Subword 20.0 44.8 95.72
Byte 39.9 40.5 99.00
Char 42.8 46.6 92.5

eByte 47.5 49.9 88.37
eChar 46.7 45.6 90.0

Table 6: Number Estimation results on Numeracy
dataset across tokenizers. % Num = the percentage
of times the model predicts a number, over which the
next two metrics are calculated. EAcc = Exponent Ac-
curacy. MdAPE = Median Absolute Percentage Error.
See Section 4.4 for details.

empirical performance gains achieved by subword
models. Hence, we report in Table 5 the word pre-
diction accuracies for rare words (those seen less
than 10 times in the training dataset) as well as
frequent ones (those seen more than 45 times). We
find our end-to-end models outperform by a factor
of 5-7 on frequent words and over 30 times on rare
words!

4.4 Number Estimation

We further evaluate a representative subset of to-
kenizers on WikiConvert number estimation task.
Table 6 again reports that the ability of end-to-end-
tokenized eByte/eChar is far better than both sub-
word as well as Byte/Char models.

[]

5 Efficiency Analysis

Here, we determine the theoretical training and
inference/generation speed-up accessible by com-
pressing words using our end-to-end tokenizer as
opposed to tokenizer-free methods, while also com-
paring against the more efficient subword models.



Dataset En Fr Ru Ru (rare) Ru (freq) Numeracy [3]

Metric Next Word Prediction Accuracy EAcc↑ MdAPE↓

Subword 14.37 41.20 8.31 0.11 7.20 44.8 95.7
Byte 13.69 17.39 12.76 0.00 4.36 40.5 99.0
Char 13.68 16.95 10.01 0.28 9.84 46.6 92.5

eByte 44.17 46.44 35.00 5.90 42.90 49.9 88.4
eChar 42.94 47.06 37.15 6.78 44.17 45.6 90.0

5.1 Training Speed-up
Assume M total memory budget available (say,
in GBs) and a context window of T characters
per batch. Also assume the tokenizer-free model
(henceforth referred to as base/baseline) is a de-
coder transformer with L layers and D dimensions.
The memory footprint would most significantly de-
pend on the number of activations stored 7 which
can be estimated as M = LDBT 2 where B is the
batch size. Given a fixed memory budget of M and
required context size of T characters, we can find
our optimal batch size as:

B =
M

LDT 2

Assuming the training corpus comprises of N
characters, the number of training iterations re-
quired is:

X =
N

BT
=

NDLT

M

Next, for subwords, a similar batch size can be
estimated as:

B′ =
M

LDT 2/s2

where s is the number of characters per subword
(roughly 2.8 for our three languages). Substituting
to find the number of training steps:

X ′ =
N

B′T
=

NDLT

Ms2

The training speed-up of a subword model is there-
fore estimated to be X/X ′ = s2 = 7.8x.

Finally, we calculate the analogous number of
training steps required for one epoch of our end-
to-end character-tokenized model. We assume L/4
word-encoder layers, L primary LM (word level)
layers, and L/4 word-decoder layers for simplicity

7The other components such as parameter variables and
backpropagated gradients can be approximated away.

(this is our default setup in this paper). Let B′′ be
the optimal batch size that we wish to calculate and
c be the average number of characters per word
(roughly 5.5 for English). Note that we retain T
characters as our context window, therefore the
average number of words per batch sequence will
be T/c. The memory footprint of activations would
then be (LDB′′Tc)/4 for the word encoder (and
same for word decoder) and (LDB′′T 2)/(c2) for
the primary (word level) language model.

This leads to the optimal batch size:

B′′ =
M

LDT (c/2 + T/c2)

and the number of training steps to be:

X ′′ =
N

B′′T
=

NDL

M
(c/2 + T/c2)

Finally, we estimate our proposed speedup in
total training time as

X/X ′′ =
T

c/2 + T/c2

Plugging in c = 5.5 as a conservative number of
characters per word8 and T = 192 context window
length, we get a 6.8x speed-up in training steps,
which is only marginally less than the subword
speed-up (7.8x) relative to character level langauge
model.

5.2 Generation Speed-up
Another unique advantage of our end-to-end tok-
enized model is in generation, which is also par-
allelized per word. A character/byte model must
generate one token at a time, then feed the predicted
token back into the input and run the forward loop
again for autoregressively generating the next. As-
suming the L layers of a decoder take t seconds
for the forward iteration of GPT-like decoder, the
generation speed for such a character based model
will be 1/t characters per second.

8Real values: En 5.5, Fr 5.2, Ru 6.4.



Method Citation Compress? Generate? Learnt? Word level?

GPT Radford et al. (2018) Lookup Yes No Yes
ByT5 Xue et al. (2022) None Yes No No

MANTa Godey et al. (2022) Segment Yes Yes No
RetVec Bursztein et al. (2023) Conv. No Yes Yes
FastText Bojanowski et al. (2017) Conv. No Yes Yes
ELMo Peters et al. (2018) Conv. No Yes Yes
CharBERT El Boukkouri et al. (2020) Conv. No Yes Yes
CharFormer Tay et al. (2021) Conv. No Yes No
LOBEF-nCF Sreedhar et al. (2022) None Yes Yes No
LOBEF-WSF Sreedhar et al. (2022) None Yes Yes Yes
CANINE Clark et al. (2022) Conv. Yes Yes No
MegaByte Yu et al. (2023) Dense Yes Yes No

Ours Attn. Yes Yes Yes

Table 7: Literature Review of existing tokenization methods along several dimensions. Compress? Is the input
string chunked into bigger units? Generate? Whether or not the model can generate new unseen tokens? Learnt?
Is the tokenization learnt end-to-end with other parameters? Word Boundary? Is the word boundary considered or
treated as just another token? Conv: Convolution. Attn: Attention.

Subword models benefit from having tokens that
are longer (roughly 2.8 characters/subword for the
three languages we consider), therefore they can
generate at a speed of 2.8/t characters per second.

With a very coarse assumption, our end-to-end
character model with L/4 word-encoder layers and
L decoder layers (ignore the L/4 word-decoder
layers for now) will require 5t/4 seconds to gener-
ate the representation of one word at a time. The
next step can then be parallelized (with trade-off in
memory consumption) to both autoregressively go
on generating the next word representation in an-
other 5t/4 seconds, as well as autoregressively gen-
erating one character at a time using this predicted
word representation. This word-level decoder that
emits characters currently has L/4 layers so a crude
assumption would mean t/4 seconds per character.
Therefore, at steady state, the word-decoder will
take 5.5t/4 seconds to generate the average 5.5
characters per word, while the next word will be
ready for decoding simultaneously in just 5t/4 sec-
onds. Thus, the generation speed is 4/t characters
per second, i.e. roughly 50% better than subwords
and four times as fast as tokenizer-free models.

6 Related Work

Some recent work has challenged the subword tok-
enization schemes. Table 7 highlights the different
kinds of tokenizations existing in prior work and
positions our work uniquely among them.

Character/Byte-level ByT5 (Xue et al., 2022),
CANINE (Clark et al., 2022), and SubChar (Si
et al., 2021) propose using very small fixed-length
units such as characters, bytes, or glyph strokes in-
stead of dynamic-length subwords or words. This
often comes at the expense of larger sequence
lengths and more compute requirements, especially
for a transformer architecture which typically has
a complexity of O(n2) in number of input tokens.

Beyond word level CodeBPE (Chirkova and
Troshin, 2022) and Multi Word Expressions (Ku-
mar and Thawani, 2022; Zaninello and Birch, 2020;
Rikters and Bojar, 2017) show promise in yet larger
tokens that cross word boundaries, e.g., a vocab-
ulary with single tokens for the strings “for i in
range” or “New York City” respectively.

Visual segmentation Yet another line of work
(Rust et al., 2022; Salesky et al., 2021) renders
text as images before feeding them to CNNs, do-
ing away with tokenization altogether and showing
gains in robustness to spelling or printing errors.

Learnt subword segmentation Finally, some
methods (Mofijul Islam et al., 2022; Kaushal and
Mahowald, 2022; Pinter et al., 2021; Tay et al.,
2021; Provilkov et al., 2020; Wang et al., 2021)
parameterize the process of tokenization by pooling
character n-grams or randomly choosing one of the
many ways to segment a given word.



A recent preprint on machine translation by
Sreedhar et al. (2022) proposes a method called
WSF, perhaps closest to ours, except that they only
use the word boundary fusion at encoder stage. Our
independent analysis focuses on language model-
ing instead and also generates text in parallel using
end-to-end attention based tokenization.

7 Conclusion

Subword tokenization is efficient but too rigid and
deterministic. Character/Byte-level models on the
other hand are too expressive, which leads to inef-
ficient training and inference. We propose a word-
boundary-informed tokenizer that efficiently and
robustly performs language modeling in a hierar-
chical, end-to-end, learned model. We show that
it outperforms by over 300% both extremes: sub-
words and character/byte models. We also analyze
its trade-offs in training and inference efficiency.
Despite its many flaws including reliance on a word
boundary signal and moderate efficiency as well as
moderate expressiveness, we expect this prelimi-
nary study to pose an interesting trade-off tokeniza-
tion for truly end-to-end language modeling.

Our code is released on Github.

8 Limitations

We repeatedly highlight our work’s limitations
throughout the paper: our proposed end-to-end to-
kenization is neither faster than subwords nor as
expressive as character/byte-level models. Instead,
we propose it as a reasonable trade-off between the
two extremes.

We also do not cast a wide net on many down-
stream tasks like machine translation or question
answering, hence lack a comparison with other
models like CharFormer, CANINE, and Local Byte
Fusion. We instead focus solely on the intrinsic
metrics of language modeling, across multiple lan-
guages as well as on number estimation.

Our choice of languages is limited by availability
of high quality ‘natural language’ corpora, unlike
the internet-scale language modeling data which
we observed are filled with examples of long strings
like URLs and unsegmented strings. We do not
use preprocessing pipelines (except simple punc-
tuation cleanup) to avoid confounding results with
the choice of such heuristics. This unfortunately
prevents us from experimenting with other high
resource languages like Chinese and Japanese, cor-
pora of which do not implicitly have a whitespace

boundary signal.
To summarize, we concede that our proposed

end-to-end models are not yet ready for adoption
at scale with large language models trained on raw
internet data. However, we expect our analyses
to encourage insightful conversation in the com-
munity about (1) the spectrum between subwords
and character/byte models, as well as on (2) the
role of word boundary as a meaningful signal in
tokenization and language modeling.

9 Acknowledgements

This work was funded by the Defense Ad-
vanced Research Projects Agency with award
N660011924033. The authors acknowledge the
Center for Advanced Research Computing (CARC)
at the University of Southern California for provid-
ing computing resources that have contributed to
the research results reported within this publication.
We also thank Google for their generous support.
We appreciate the anonymous reviewers at EMNLP
2023 for helping us refine this paper.

References
Taylor Berg-Kirkpatrick and Daniel Spokoyny. 2020.

An empirical investigation of contextualized number
prediction. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4754–4764, Online. Association for
Computational Linguistics.

Benedikt Boecking, Naoto Usuyama, Shruthi Bannur,
Daniel C Castro, Anton Schwaighofer, Stephanie Hy-
land, Maria Wetscherek, Tristan Naumann, Aditya
Nori, Javier Alvarez-Valle, et al. 2022. Making
the most of text semantics to improve biomedical
vision–language processing. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Is-
rael, October 23–27, 2022, Proceedings, Part XXXVI,
pages 1–21. Springer.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the associa-
tion for computational linguistics, 5:135–146.

Elie Bursztein, Marina Zhang, Owen Vallis, Xinyu Jia,
and Alexey Kurakin. 2023. Retvec: Resilient and
efficient text vectorizer.

Oralie Cattan, Christophe Servan, and Sophie Rosset.
2021. On the Usability of Transformers-based mod-
els for a French Question-Answering task. In Recent
Advances in Natural Language Processing (RANLP),
Varna, Bulgaria.

Nadezhda Chirkova and Sergey Troshin. 2022.
Codebpe: Investigating subtokenization options for

https://github.com/avi-jit/eTok
https://carc.usc.edu
https://www.aclweb.org/anthology/2020.emnlp-main.385
https://www.aclweb.org/anthology/2020.emnlp-main.385
http://arxiv.org/abs/2302.09207
http://arxiv.org/abs/2302.09207
https://hal.archives-ouvertes.fr/hal-03336060
https://hal.archives-ouvertes.fr/hal-03336060


large language model pretraining on source code. In
Deep Learning for Code Workshop.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Pavel Efimov, Andrey Chertok, Leonid Boytsov, and
Pavel Braslavski. 2020. Sberquad – russian reading
comprehension dataset: Description and analysis. In
Experimental IR Meets Multilinguality, Multimodal-
ity, and Interaction, pages 3–15. Springer Interna-
tional Publishing.

Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne,
Hiroshi Noji, Pierre Zweigenbaum, and Jun’ichi Tsu-
jii. 2020. CharacterBERT: Reconciling ELMo and
BERT for word-level open-vocabulary representa-
tions from characters. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 6903–6915, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Nathan Godey, Roman Castagné, Éric de la Clergerie,
and Benoît Sagot. 2022. MANTa: Efficient gradient-
based tokenization for end-to-end robust language
modeling. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 2859–
2870, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Ayush Kaushal and Kyle Mahowald. 2022. What do
tokens know about their characters and how do they
know it? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2487–2507, Seattle, United States.
Association for Computational Linguistics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Dipesh Kumar and Avijit Thawani. 2022. BPE beyond
word boundary: How NOT to use multi word expres-
sions in neural machine translation. In Proceedings
of the Third Workshop on Insights from Negative
Results in NLP, pages 172–179, Dublin, Ireland. As-
sociation for Computational Linguistics.

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja,
Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. 2021.
Between words and characters: A brief history of
open-vocabulary modeling and tokenization in nlp.
arXiv preprint arXiv:2112.10508.

Md Mofijul Islam, Gustavo Aguilar, Pragaash Pon-
nusamy, Clint Solomon Mathialagan, Chengyuan Ma,
and Chenlei Guo. 2022. A vocabulary-free multilin-
gual neural tokenizer for end-to-end task learning.
In Proceedings of the 7th Workshop on Representa-
tion Learning for NLP, pages 91–99, Dublin, Ireland.
Association for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Yuval Pinter, Amanda Stent, Mark Dredze, and Jacob
Eisenstein. 2021. Learning to look inside: Augment-
ing token-based encoders with character-level infor-
mation.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. arXiv e-prints,
page arXiv:1606.05250.

Matı̄ss Rikters and Ondřej Bojar. 2017. Paying attention
to multi-word expressions in neural machine transla-
tion. In Proceedings of Machine Translation Summit
XVI: Research Track, pages 86–95, Nagoya Japan.

Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Eliz-
abeth Salesky, Miryam de Lhoneux, and Desmond
Elliott. 2022. Language modelling with pixels.

Elizabeth Salesky, David Etter, and Matt Post. 2021.
Robust open-vocabulary translation from visual text
representations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 7235–7252, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725.

Chenglei Si, Zhengyan Zhang, Yingfa Chen, Fanchao
Qi, Xiaozhi Wang, Zhiyuan Liu, and Maosong Sun.
2021. Shuowen-jiezi: Linguistically informed to-
kenizers for chinese language model pretraining.
arXiv preprint arXiv:2106.00400.

https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1007/978-3-030-58219-7_1
https://doi.org/10.1007/978-3-030-58219-7_1
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://aclanthology.org/2022.findings-emnlp.207
https://aclanthology.org/2022.findings-emnlp.207
https://aclanthology.org/2022.findings-emnlp.207
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/2022.naacl-main.179
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/2022.insights-1.24
https://doi.org/10.18653/v1/2022.insights-1.24
https://doi.org/10.18653/v1/2022.insights-1.24
https://doi.org/10.18653/v1/2022.repl4nlp-1.10
https://doi.org/10.18653/v1/2022.repl4nlp-1.10
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2108.00391
http://arxiv.org/abs/2108.00391
http://arxiv.org/abs/2108.00391
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://aclanthology.org/2017.mtsummit-papers.7
https://aclanthology.org/2017.mtsummit-papers.7
https://aclanthology.org/2017.mtsummit-papers.7
http://arxiv.org/abs/2207.06991
https://doi.org/10.18653/v1/2021.emnlp-main.576
https://doi.org/10.18653/v1/2021.emnlp-main.576


Makesh Narsimhan Sreedhar, Xiangpeng Wan, Yu-Jie
Cheng, and Junjie Hu. 2022. Local byte fusion for
neural machine translation. ArXiv, abs/2205.11490.

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2021.
Charformer: Fast character transformers via gradient-
based subword tokenization. In International Con-
ference on Learning Representations.

Avijit Thawani, Jay Pujara, and Filip Ilievski. 2021a.
Numeracy enhances the literacy of language models.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6960–6967, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro
Szekely. 2021b. Representing numbers in NLP: a
survey and a vision. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–656, Online. As-
sociation for Computational Linguistics.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know num-
bers? probing numeracy in embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5307–5315, Hong
Kong, China. Association for Computational Linguis-
tics.

Xinyi Wang, Sebastian Ruder, and Graham Neubig.
2021. Multi-view subword regularization. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
473–482, Online. Association for Computational Lin-
guistics.

Benoist Wolleb, Romain Silvestri, Giorgos Vernikos,
Ljiljana Dolamic, and Andrei Popescu-Belis. 2023.
Assessing the importance of frequency versus com-
positionality for subword-based tokenization in nmt.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

Lili Yu, Dániel Simig, Colin Flaherty, Armen
Aghajanyan, Luke Zettlemoyer, and Mike Lewis.

2023. Megabyte: Predicting million-byte se-
quences with multiscale transformers. arXiv preprint
arXiv:2305.07185.

Andrea Zaninello and Alexandra Birch. 2020. Multi-
word expression aware neural machine translation. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 3816–3825, Marseille,
France. European Language Resources Association.

https://doi.org/10.18653/v1/2021.emnlp-main.557
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/2021.naacl-main.40
http://arxiv.org/abs/2306.01393
http://arxiv.org/abs/2306.01393
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://aclanthology.org/2020.lrec-1.471
https://aclanthology.org/2020.lrec-1.471

