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ABSTRACT

Previous works in contrastive learning (CL) mainly focus on pairwise views to
learn the representations by attracting the positive samples and repelling negative
ones. In this work, we understand the CL with a collective point set matching view
and solve this problem with the formulation of inverse optimal transport(IOT),
which is a min-min optimization to learn the features. By varying the relaxation
degree of constraints in inner minimization of IOT, one can naturally get three
different contrastive losses and reveal that InfoNCE is a special case of them,
which shows a new and more generalized understanding view of CL. Besides,
with our soft matching view, a uniformity penalty is also proposed to improve
the representation learning. Experimental results show the effectiveness of our
methods.

1 INTRODUCTION

Unsupervised/self-supervised learning of representation has received increasing attention, whose
frontier is advanced by contrastive learning (CL) (Hu et al., 2021; Grill et al., 2020). In mainstream
CL methods (Chen et al., 2020; Gao et al., 2021), the representation is learned by first identifying
one anchor and then looking for its positive/negative samples, whereby the contrastive loss based
on feature similarity is adopted to discriminate positive and negative pairs. However, the compar-
isons of the positive and negative pairs behave often empirically and the popular contrastive loss
(i.e. InfoNCE) has some disagreements by interpreting with the lower bound of mutual informa-
tion (Tschannen et al., 2019), e.g., maximizing a tighter bound often leads to worse performance for
downstream tasks. The underlying theoretical understanding of CL remains open.

We propose to understand CL with a collective point set matching view, which differs from the
existing pairwise contrasting. As shown in Fig. 1, traditional methods (Chen et al., 2020; He et al.,
2020) focus on improving the similarity for the positive pair and decreasing that for the negative
pairs, which considers only one anchor at a time to compose the positive/negative pair in isolation.
Different from the traditional view, we consider the set of mini-batch samples as a whole and learn
the representations by matching between two point sets as shown in Fig. 1(b), where the point
features in the two sets are learned with different encoders/augmentations from a set of samples, e.g.
the same mini-batch training samples.

With this collective point set matching view, we propose to learn the representations with IOT (Li
et al., 2019; Stuart & Wolfram, 2020), which supervises with empirical matching and aims to learn
the cost matrix instead of the Coupling (i.e. the probability of matching matrix) in OT. In this paper,
for solving the IOT problem, we view it with a min-min problem (as shown in Eq. 8) , where the
outer minimization is to learn the representations by supervising the Coupling calculated in inner
minimization.

Moreover, following previous works (Wang & Isola, 2020; Wang & Liu, 2021) which emphasize
the uniformity for CL, a new penalty term is proposed in this paper based on the Coupling, which
increase the uniformity of matching probabilities among negative pairs. In a nutshell, this paper
contributes in the following aspects:

1) We propose a novel set matching view for contrastive learning, which jointly involves a collection
matching of points, rather than anchor-based pairwise comparison (i.e. positive/negative pairs) as
done in previous CL works.
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(a) pairwise contrasting (b) collective matching

Figure 1: The difference between traditional contrastive learning and our matching
method. (a) In traditional pairwise contrasting protocol, given one anchor z1, mainstream
methods learn to attract the positive samples and repel its negative ones; (b) In our col-
lective matching protocol, we consider the mini-batch features as a whole and learn the
representations by improving the matching between two feature sets from different en-
coders/augmentations with the same mini-batch data.

2) Based on the above perspective, we propose IOT-CL, which contains min-min optimization as
shown in Eq. 8. It can be proved that the object of minimization is a family of new contrastive
loss functions when varying the degree of constraint relaxation in the Coupling set: i) We find the
equivalence between our loss and InfoNCE with a specified Coupling set, which represents a new
interpretation of InfoNCE in addition to the lower bound of mutual information. And with this spec-
ified Coupling set, InfoNCE and softmax cross-entropy loss can achieve theoretical unity under this
matching view. ii) Other two kinds of contrastive losses are proposed by loosening and tightening
the degree of constraint relaxation compared with constraints of infoNCE loss. The former loss has
a closed-form result and the latter one should do the iteration of the Coupling to get the final loss.

3) We give a new understanding of uniformity for CL, that is, the matching probabilities of negative
pairs remain low and even. With this idea, we propose the uniformity penalty on the Coupling.
Experiments show the effectiveness of the penalty term. Source code will be made public available.

2 BACKGROUND AND RELATED WORKS

2.1 OPTIMAL TRANSPORT AND ENTROPIC REGULARIZAION

Originally introduced by Kantorovitch (Kantorovich, 1942), the discrete Optimal Transport is to
solve a linear program, which is widely used for many classical problems such as matching (Wang
et al., 2013). Specifically, given the cost matrix C, Kantorovich’s OT can read by solving the
Coupling P (i.e. the joint probability matrix):

min
P∈U(a,b)

< C,P >=

n∑
i=1

m∑
j=1

CijPij (1)

where a ∈ Rn and b ∈ Rm are histograms (i.e. probability vectors), and U(a,b) is the set of the
Couplings:

U(a,b) = {P ∈ Rn×m+ |P1m = a,P>1n = b} (2)
which is bounded and defined by n +m equality constraints. When n = m and a = b = 1/n for
every i, j, the OT is equivalent to solve a balanced matching problem, while unbalanced matching
problem can also be formulated with OT by setting n 6= m and a = 1/n,b = 1/m.

A lot of methods (Bertsimas & Tsitsiklis, 1997; Benamou & Brenier, 2000) are proposed to solve
the Kantorovitch OT problem and relaxing with the entropic regularization (Wilson, 1969) is one of
the simple but efficient methods, whose objective reads:

min
P∈U(a,b)

< C,P > −εH(P), (3)

where ε > 0 is the coefficient for entropic regularization H(P). The regularization H(P) can be
specified as

H(P) = −
∑
i,j

Pij(log(Pij)− 1). (4)
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Obviously, the objective in Eq. 3 is an ε-strongly convex function, and thus it can be solved quickly
with iterative methods e.g. the Sinkorn method (Sinkhorn, 1967). If we use this entropic regularized
OT to solve the matching problem, the hard matching problem may convert to soft matching, whose
result is a non-sparse probability matching matrix.

2.2 INVERSE OPTIMAL TRANSPORT

(Discrete) Optimal Transport can always learn the matching with a known cost matrix, however,
remains that the underlying cost criterion is unknown. Different from traditional OT, Inverse Opti-
mal Transport (IOT) (Dupuy et al., 2016; Li et al., 2019; Stuart & Wolfram, 2020) is to infer the
underlying cost matrix that gives rise to an observation on the Coupling. Recently, some works has
focused on this problem. For example, with noisy observations of OT plans, (Stuart & Wolfram,
2020) propose a systematic approach to infer unknown costs and , (Chiu et al., 2022) develops the
mathematical theory of IOT. (Li et al., 2019) emphasize that IOT can not only predict potential fu-
ture matching, but is also able to explain what leads to empirical matching and quantifies the impact
of changes in matching factors. Different from previous IOT which aims to learn the inferred cost,
we find that IOT can further learn the representations, which gives us a new understanding of CL.

2.3 CONTRASTIVE LEARNING

Recently, self-supervised methods based on contrastive learning have drawn increasing attention due
to the excellent performances (Logeswaran & Lee, 2018), which learns the representations without
data labeling. (Wu et al., 2018) first proposes an instance discrimination method and adopts a con-
trastive loss (called NCE loss) to improve the discrimination for positive/negative pairs. CPC (Oord
et al., 2018) learns context-invariant representations and proposes the InfoNCE loss to maximize
the mutual information between different levels of features. Then in this subsection, we focus on
revisiting the following typical contrastive losses to show the differences and generalization for our
matching based methods.

InfoNCE loss. InfoNCE is one of the most widely use loss for contrastive learning introduced in
(Oord et al., 2018). Given two unlabeled data sets {xi}mi=1 and {yj}nj=1 where (xi, yi) is semanti-
cally related, the InfoNCE loss is specified as

L InfoNCE = −
n∑
i=1

log

(
exp(sii/τ)∑

k 6=i exp(sik/τ) + exp(sii/τ)

)
(5)

Here sij is a similarity (e.g. cosine) between the feature zi and z′j , where zi = f(xi) and z′j = g(yj)
with two feature extractor f(·) and g(·) mapping the (augmented) raw samples from raw space (e.g.
image pixel) to the latent space. Previous works (Oord et al., 2018; Zbontar et al., 2021; Tian
et al., 2020) mainly understand the InfoNCE from the perspective of maximizing the lower bound
of mutual information between different levels of features. However, some works disagree with
the lower bound interpretation, which has issues in practice, e.g., maximizing a tighter bound often
leads to worse performance for downstream tasks (Tschannen et al., 2019). Different from the
mutual information perspective, we will give a new interpretation with matching view in this paper.

Alignment and Uniformity. (Wang & Isola, 2020) views the contrastive learning with alignment
and uniformity of feature distributions on the output unit hypersphere, which reads

Lalign =
∑
i

||zi − z′i||22 and Luniform = log
∑
i,j

e2||zi−z
′
j ||

2
2 (6)

where all features {zi} and {z′i} are L2 normalized (i.e. ||zi||2 = ||z′i||2 = 1). Note Luniform is
designed with Gaussian potential kernel, which tries to learn the uniformity among negative pairs.
(Wang & Isola, 2020) tries to learn with Lalign + Luniform for effectively restricting the output space
to the unit hypersphere. In this paper, we give another view for alignment and uniformity, which
improve the two properties with matching probabilities instead of L2 norm.

Hard Negative Sampling (HNSampling). Based on InfoNCE, (Wang & Liu, 2021) gives a more
straightforward hard negative sampling strategy which truncates the gradients with respect to the
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Figure 2: The overview of our approach for CL. The regularized OT is used to analyze and
estimate the (matching) coupling, which is supervised with ground truth for learning the
representations.

uninformative negative samples. The contrastive loss with hard negative sampling is specified as

Lhard = −
n∑
i=1

log

(
exp(sii/τ)∑

k:sik>siα
exp(sik/τ) + exp(sii/τ)

)
(7)

where siα is the upper α quantile of the similarities si,:, which samples the negative pairs with high
similarity ones. It is believed that with the selection of hard negative samples, the learned features
will behave more uniformity. We will compare it with our method for uniformity learning.

3 SET MATCHING FRAMEWORK FOR CONTRASTIVE LEARNING

3.1 FORMULATING CONTRASTIVE LEARNING AS SET MATCHING

In this section, we propose a collective set matching approach for CL (IOT-CL), which studies
contrastive learning by matching two feature point sets {zi}ni=1 and {z′j}mj=1 where zi = f(xi) and
z′j = g(yj). With the cost matrix Cθ ∈ Rn×m+ designed with features {zi}ni=1 and {z′j}mj=1, the
optimization of IOT-CL is defined with two minimization, which reads (the same with the formula
in Sec. 1):

min
θ
KL(P̃|Pθ) where Pθ = arg min

P∈U
< Cθ,P > −εH(P) (8)

whereH(P ) is the entropic regularization as defined in Eq. 4 and U is the set of the couplings based
on the constraints. In the outer minimization, the coupling Pθ is the matching probability matrix
and P̃ is the ground truth. The aim of outer minimization is to supervise the soft matching with
the ground truth to learn the representation. In inner minimization, the soft matching problem is
formulated with the entropic regularized Optimal Transport. Our goal is to solve the coupling Pθ

with the cost matrix Cθ. In addition to setting U = U(a,b) where a = b = 1/n, we can loosen
the constraint relaxation in U as

U(a) = {P ∈ Rn×m+ |P1m = a}, (9)
which only contains half of contraints in U(a,b) and we can also further loosen the relaxation as

U(1) = {P ∈ Rn×m+ |
∑
i,j

Pij = 1} (10)

which only asks the basic probability requirements for the coupling. Thus, by varying the degree of
constraint relaxation, we can get different contrastive losses of IOT-CL. In the following subsections,
we will analyze the contrastive loss by setting U = U(1), U(a) and U = U(a,b) in detail and show
the generality of our contrastive loss.
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Figure 3: Results of couplings Pθ by varying ε with given 64 trained features on CIFAR-10
based on the SimCLR framework(Chen et al., 2020). When ε → 0, Pθ becomes more
’sharp’ for the probability prediction. With the increment of ε, Pθ becomes more uniform
and when ε → +∞, Pθ is approximating to a uniform distribution, which has nothing to do
with the quality of the learned features.

3.2 INFONCE IS A SPECIAL CASE UNDER U(a)

We first perform the analysis of contrastive loss when U = U(a), which can be proven equivalent
to the infoNCE loss. We begin to rewrite the inner minimization for solving the coupling Pθ:

Pθ = arg min
P∈U(a)

< Cθ,P > −εH(P), (11)

which can be easily solved as an analytical form with the Lagrangian method:

Pθ
ij =

exp(−Cθ
ij/ε)

n
∑m
k=1 exp (−Cθ

ij/ε)
(12)

The proof detail is given in Appendix A.1. So the solution of coupling is in the Softmax form under
U(a) for inner minimization. Then in the outer minimization, if we set P̃ii = 1

n for each i and
P̃ij = 0 when i 6= j, we get the contrastive loss under U(a):

LIOT-CL = − 1

n

n∑
i=1

log

(
exp(−Cθ

ii/ε)∑m
j=1 exp(−Cθ

ij/ε))

)
+ Constant (13)

Then we can easily find the equivalence between Eq. 13 and InfoNCE loss in Eq. 5 if we set Cθ
ij =

1 − sij , i.e. Cθ
ij is the cosine distance between the features zi and z′j . It shows we can understand

the InfoNCE with our soft matching view and theoretical results in entropic regularized OT may can
help us analyze the properties for CL.

Regularization Coefficient ε. With the equivalence between InfoNCE and our loss in Eq. 13, we
can also find that the temperature τ in InfoNCE exactly equals to the regularization coefficient ε (i.e.
τ = ε). This finding is new and interesting to our best knowledge. Specially, when τ → 0, (Wang
& Liu, 2021) proves that the InfoNCE will be converted to triplet loss:

Ltriplet = lim
τ→0
LInfoNCE = lim

τ→0

1

τ

∑
i

max[simax − sii, 0] (14)

where simax is the maximum of {si,:} with the anchor feature zi. In our matching understandings,
ε→ 0 means the hard matching without entropic regularization. In this view, it satisfies the matching
requirement by making sii be the largest in the set {si,:}. On the other hand, when ε → ∞, the
coupling will become more uniform as shown in Fig. 3. However, the uniformity for negative pairs
is what we need to learn instead of conversion results with a very large ε. Thus too large ε is not
conducive to the uniformity learning.

Balanced Matching in the Same Space. In addition to memory bank based methods, it is also
popular to select the negative samples within the same mini-batch samples and augmentations e.g.
InvaSpread (Ye et al., 2019) and SimCLR (Chen et al., 2020). Specifically, they randomly sample
a mini-batch of N examples and learn the representations on pairs of augmented examples derived
from the same mini-batch, resulting in 2N data points. They do not sample negative examples
explicitly from memory bank. Instead, given a positive pair, they treat the other 2(N−1)augmented
examples within a mini-batch as negative examples.
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Figure 4: Comparison of the coupling by varying the degree of constraint relaxation.

In the view of matching, the two collective point sets are the same within 2N data points and in this
case, the matching is balanced one defined in the same space as shown in Fig. 6(b). Specifically,
with features {zi}Ni=1 and {z′j}Nj=1, we can reset the features as z̃2k−1 = zk and z̃2k = z′k when
k = 1, 2, . . . , N . The new cosine similarity is specified as s̃ij = z̃i · z̃j/(||z̃i|| · ||z̃j ||). In this
SimCLR case, the cost matrix Cθ and ground truth P̃ read

Cθ
ij =

{
+∞, i = j

1− s̃ij , else.
and P̃ij =


1

n
, (i, j) ∈ S,

0, else.
(15)

where S is self-supervised set for positive pairs with S = S1 ∪ S2. Here S1 and S2 are specified as

S1 = {(i, j)|i = 2k, j = 2k − 1, k = 1, . . . , N}
S2 = {(i, j)|i = 2k − 1, j = 2k, k = 1, . . . , N} (16)

When i = j, we set Cθ
ij → +∞, which means matching itself is not available for every sample.

Then we can get that exp(−Cθ
ii/ε)→ 0. For the contrastive loss:

LIOT-CL = − 1

2N

∑
(i,j)∈S

log

(
exp(−Cθ

ii/ε)∑2N
s=1 1i6=s exp(−Cθ

is/ε))

)
(17)

which is exactly the contrastive loss in SimCLR (Chen et al., 2020). Thus SimCLR can be in-
terpreted with balanced matching view as shown in Fig. 6(b). For unbalanced matching case, we
discuss it in Appendix C with the MoCo framework.

3.3 NEW CONTRASTIVE LOSSES UNDER U(1) AND U(a,b)

As shown above, our IOT-CL loss can be viewed as InfoNCE under U = U(a). In this subsection,
we give the results of contrastive loss when U = U(1) and U(a,b). Fig. 4 shows the difference of
calculating operations for the coupling.

Contrastive Loss under U(1). To propose the new contrastive loss, we first loosen the constraint
relaxation by setting U = U(1). Then we can get the coupling matrix Pθ as

Pθ
ij =

exp(−Cθ
ij/ε)∑n

t=1

∑m
s=1 exp(−Cθ

ts/ε))
(18)

Different from the coupling in Eq. 12 under U(a), this new coupling matrix is symmetric if Cθ is a
symmetric matrix. Then we can get the loss under U(1) as

LIOT-CL = − 1

n

n∑
i=1

log

(
exp(−Cθ

ii/ε)∑n
t=1

∑m
s=1 exp(−Cθ

ts/ε))

)
(19)
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The proof of Eq. 18 and Eq. 19 are in Appendix A.2. The main difference between above loss and
InfoNCE is that Pθ

ij is only determined by the i−th row of cost matrix Cθ, while the above coupling
cares all the values in cost matrix.

Contrastive Loss under U(a,b). Next we propose another new loss for IOT-CL by tightening the
constraint relaxation (i.e. fulfilling full constraints of matching in U ). Similarly in Sec. C, we first
solve the inner minimization in Eq. 8. As discussed in (Cuturi, 2013), the closed-form coupling
may not exist, which differs from the Couplings under U(1) and U(a). By setting(

Pθ
)0

= exp (−Cθ/ε) (20)

we adopt the popular Sinkhorn algorithm (Adams & Zemel, 2011; Cuturi, 2013; Wang et al., 2019)
to approximate the optima:(

Pθ
)k

temp =
1

n

(
Pθ
)k−1 � ((Pθ

)k−1
1m×m

)
(21)(

Pθ
)k

=
1

m

(
Pθ
)k

temp �
((

1n×nPθ
)k

temp

)
(22)

where�means element-wise division, and 1m×m and 1n×n are the matrices whose elements are all
ones. Exactly the Sinkhorn algorithm works iteratively by taking 1/n weighted row normalization
of Eq. 21 and 1/m weighted column normalization of Eq. 22 alternatively.

By iterating Eq. 21 and Eq. 22 for k = 1, 2 . . . ,K, we can get the coupling results. Exactly when
K = 1, the intermediate matrix

(
Pθ
)1

temp equals the coupling under U(a), which has the loosen

relaxation for constraints. And when K → ∞,
(
Pθ
)K

will converge to optimal solution under
U(a,b). Thus increasing the value of K is exactly tightening the constraint relaxation in U . Be-
sides, this Sinkhorn operation is fully differentiable because only element-wise division and matrix
multiplication are used in iterations. Thus it can be efficiently implemented by PyTorch’s automatic
differentiation functions. Finally, we can get the contrastive loss under U(a,b)

LIOT-CL =

m∑
i=1

n∑
j=1

P̃ij log
(
Pθ
ij

)K
(23)

with a proper iterative number K and the ground truth P̃.

3.4 ENHANCING UNIFORMITY FOR IOT-CL

Following the works (Wang & Isola, 2020; Wang & Liu, 2021) emphasizing alignment and uni-
formity on the hypersphere for CL, we can rethink these two key properties from the matching
perspective. The alignment requires similar samples to have similar features (Wang & Isola, 2020),
which must have a high probability for matching. While uniformity prefers a uniform distribution
for features on the unit hypersphere (Wang & Isola, 2020), which can be understood as uniformly
matching among negative pairs. Thus with the coupling Pθ, the alignment and uniformity loss with
matching view can be specified as

min
θ
LIOT-CL + λpKL(Q̄

θ|Pθ) (24)

where λp is the uniformity penalty coefficient and Q̄ reads:

Q̄θ
ij =

 Pθ
ij , i = j,

mean
i 6=j

Pθ
ij , i 6= j, .

(25)

The first term in Eq. 24 represents the matching alignment, which increases the probability of pos-
itive pair matching, while the first term is for increasing the uniformity, where Q̄ij is the mean of
matching probability for negative pairs when i 6= j. We let Pθ approximate to Qθ by using KL
divergence, which decreases the volatility as well as uniformity.
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(a) Without pnalty (b) With penalty (c) Matching results with penalty

Figure 5: (a) and (b) are T-SNE visualizations of the embedding distribution without and
with uniformity penalty on the coupling for studying the uniformity on CIFAR-10. (c) is the
matching result based on the uniformity penalty on coupling Pθ. In detail, Given 5 original
images of CIFAR-10 and their augmented images, we can get matching visualization under
SimCLR framework. The thickness of the lines is proportional to the element value in Pθ.
Color has no particular meaning but for visual effects

Table 1: ACC results (%) of IOT-CL (without uniformity penalty) evaluated by linear networks
when varying the relaxation of constraints in U with 100/200 epoch training. Here U is set
to U(1), U(a) , and U(a,b) (using Sinkhorn Algorithm with K = 1, 2, 4, 8 instead) to get
different degrees of constraint relaxation for contrastive loss.

Method CIFAR-10 CIFAR-100 SVHN
100 epochs 200 epochs 100 epochs 200 epochs 100 epochs 200 epochs

U(1) 81.75 84.43 51.60 55.63 85.11 87.12
U(a) 81.31 84.62 52.85 56.04 84.53 87.08
K = 1 81.79 84.55 51.88 56.14 85.22 87.14
K = 2 81.77 84.80 51.57 55.98 84.76 86.95
K = 4 81.68 84.50 51.32 55.72 85.03 86.66
K = 8 81.54 84.48 51.50 55.59 84.95 86.87

4 EXPERIMENTS

4.1 PROTOCOL

Pretraining. We conduct experiments on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2011) and ImageNet-100 (Deng et al., 2009). The label selection of ImageNet-
100 is in line with (Wang & Liu, 2021). In the pretraining stage, resnet18 (He et al., 2016) is adopted
as the backbone on CIFAR-10, CIFAR-100, and SVHN. The resnet50 (He et al., 2016) is used as
the backbone on ImageNet-100. Besides, the augmentations follow (Chen et al., 2020) with random
color distortions, random Gaussian blur, and random cropping followed by resizing back to the orig-
inal size. For model architecture, we mainly follow the framework of SimCLR (Chen et al., 2020),
which uses an encoder network and a projector head to maximize agreement for different contrastive
losses. We train all models with Adam (Kingma & Ba, 2014) for 200 epochs by 3e-4 learning rate
with a mini-batch size of 256. Besides, the temperature τ is set to 0.5 for softmax based methods.

Evaluation. With all convolutional layers frozen, we first validate the performance of the pretrained
models on linear classification. Specifically, we train the linear layer for 100 epochs with 256
mini-batch sizes. Besides, in our experiments, we also adopt the accuracy of a k-nearest neighbors
classifier (k-NN, k = 5 here) as the evaluation. The advantage of this classifier is that it does not
require additional parameters, which is applicable without training.

Baselines. In addition to the contrastive losses discussed in Sec. 2.3 (i.e. InfoNCE (Oord et al.,
2018), HNSamping (Wang & Liu, 2021), and Lalign + Luniform (Wang & Isola, 2020)), we compare
our losses of IOT-CL with triplet loss (Schroff et al., 2015) and the loss proposed in InvaSpread (Ye
et al., 2019). The triplet loss exactly can be understand a special case of InfoNCE when the tem-
perature τ → 0, while the loss in InvaSpread is exactly similair with the perturbation loss of graph
matching (Wang et al., 2019), which learns the probability of positive/negative pairs with Bernoulli
distribution.
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Table 2: Accuracy (%) of uniformity penalty evaluated by Linear network (Lin.) and k-NN
method for CIFAR-10, CIFAR-100 and SVHN based on 100 epochs training.

Method CIFAR-10 CIFAR-100 SVHN
Lin. k-NN Lin. k-NN Lin. k-NN

Triplet (Schroff et al., 2015) 70.97 64.83 40.58 30.75 71.62 53.57
InvaSpread (Ye et al., 2019) 81.51 77.21 51.15 39.74 85.34 73.43
InfoNCE (Oord et al., 2018) 81.31 77.01 52.85 40.26 84.53 73.09

Lalign + Luniform (Wang & Isola, 2020) 82.84 79.03 55.02 45.13 89.71 83.76
HNSampling (Wang & Liu, 2021) 82.50 79.28 54.20 42.53 87.49 77.94

IOT-CL(K=1 with penalty) 84.18 80.19 56.88 46.60 90.98 84.16

Table 3: Ablation study (evaluated by linear network) on CIFAR-10 with different uniformity
coefficients. We test the contrastive loss under U(a,b) by setting K = 1, 2.

λp value 0.5 1 1.5 2 2.5 3 3.5
K = 1 82.06 82.41 83.11 82.97 83.01 82.95 82.98
K = 2 82.14 82.61 82.83 82.86 82.78 83.33 83.20

Table 4: ACC results (%) evaluated by Linear network (Lin.) and k-NN method for
ImangeNet-100 based on 100 epochs training.

Method Network ACC of Lin. ACC of k-NN
InfoNCE (Oord et al., 2018) ResNet50 64.49 49.47

Lalign + Luniform (Wang & Isola, 2020) ResNet50 68.02 56.12
HNSampling (Wang & Liu, 2021) ResNet50 64.06 47.94

IOT-CL ResNet50 68.18 54.81

4.2 MAIN RESULTS

Impact of Constraint Relaxation. Table 1 shows the ACC results evaluated by liner network on
CIFAR-10. By varying the degree of constant relaxation, we can find that the loosest (i.e. U = U(1))
or the tightest (i.e. K = 8 in this experiment) may not be the best of both. With the limited training
epoch, finding proper relaxation can be an important thing. From Table 1, we find that loosening
relaxation may be more suitable for smaller epoch numbers, while tight relaxation may be better for
large epoch numbers.

Results with Uniformity Penalty on Coupling. Fig. 5 shows the embedding distribution on
CIFAR-10 without penalty (i.e. the loss of IOT-CL with K = 1), with Gaussian Potential Kernal
penalty (Lalign + Luniform (Wang & Isola, 2020)) and with our penalty on the Coupling (i.e. Eq. 24).
The embedding is based on the logits of linear classification network. We can find a similar per-
formance between ours and the work in (Wang & Isola, 2020), and outperform the results without
penalty. Table 2 shows the results for CIFAR-10, CIFAR-100, and SVHN based on the SimCLR
framework. At first, we can find the uniformity penalty can improve the performance both in Linear
classification (Lin.) and K-NN. Specifically, compared with InfoNCE and its variants, the accuracy
performances increase with a large value in all of the datasets for our method (i.e. IOT-CL(K = 1
under U(a,b)) with uniformity penalty on coupling). Thus, compared with state of art methods, we
can find our method outperforms in most cases.

Besides, as shown in Fig. 5, we can find that by adding uniformity penalty based on the loss of
IOT-CL, the representation of features will be clearer and features between different classes will be
more separated. Table 3 shows the sensitivity for uniformity penalty by varying λp with running 100
epochs. We can find that the performance of the downstream task is insensitive to λ with different
K. Besides, to the litmit of the paper length, other experiments are presented in Appendix. Besides,
we test the results based on MoCo to show the generalization of our methods in Appendix C.

Experiments on Imagenet-100 We further test our model on ImangeNet-100 and using Resnet50
as backbone. The pretraining protocol is given in Sec. 4.1. As shown in Table 4, we can find our
model with with uniformity penalty can greatly improve the performance in this larger experiments.

5 CONCLUSION
In this paper, we have presented a set matching-based framework to interpret the contrastive loss
widely used in (self-supervised) representation learning. Under this framework, we develop a family
of new loss functions and apply optimal transport techniques to contrastive learning. In particular,
the existing popular loss e.g. InfoNCE can be viewed as a special case. New space for improvement
has been shown in our designed new algorithms, and experimental results on public datasets verify
the effectiveness of our models.
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A LAGRANGIAN FOR REGULARIZED OT

A.1 LAGRANGIAN UNDER U(a)

Now we show the collective matching framework for contrastive Learning with the simplified con-
straints:

U(a) = {P ∈ Rn×m+ |P1m = a} (26)

where a = 1/m and 1m is the m-dimensional column vector whose elements are all ones. With the
objective of the regularized OT:

Pθ = arg min
P∈U(a)

< Cθ,P > −εH(P), (27)
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We introduce the dual variable f ∈ Rn. The Lagrangian of the above equation is:

L(P, f) =< Cθ,P > −εH(P)−
n∑
i=1

fi ·

 m∑
j=1

Pij −
1

n

 (28)

The first order conditions then yield by:

∂L(P, f)

∂Pij
= Cθ

ij + ε logPij − fi = 0 (29)

Thus we have Pij = e(fi−C
θ
ij)/ε for every i and j, for optimal P coupling to the regularized problem.

Due to
∑
j Pij = 1/n for every i, we can calculate the Lagrangian parameter fi and the solution of

the coupling is given by:

Pij =
exp (−Cθ

ij/ε)

n
∑m
t=1 exp (−Cθ

it/ε)
(30)

Then in outer minimization, if we set P̃ii = 1
n for each i and P̃ij = 0 when i 6= j, we get the

contrastive loss under U(a)

LIOT-CL = − 1

n

n∑
i=1

log

(
exp(−Cθ

ii/ε)∑m
j=1 exp(−Cθ

ij/ε))

)
+ Constant (31)

We have therefore got the loss of IOT-CL under U(a).

A.2 LAGRANGIAN UNDER U(1)

If the relaxation in U is further loosen by setting U = U(1):

Ũ(1) = {P ∈ Rn×m
+ |

∑
i,j

P = 1}

The objective in inner optimization can be specified as

Pθ = arg min
P∈U(1)

< Cθ,P > −εH(P), (32)

Introducing dual variable λ ∈ R, the Lagrangian of the above equation reads:

L(P, λ) =< Cθ,P > −εH(P)− λ(
∑
i,j

Pij − 1) (33)

First order conditions then yield by:

∂L(P, λ)

∂Pij
= Cθ

ij + ε logPij − λ = 0 (34)

which result, for an optimal P coupling to the regularized problem, in the expression Pij =

e(λ−Cij)/ε. Due to
∑
ij Pij = 1, we can calculate the λ and the solution Coulping can be wri-

iten as

Pij =
exp (−Cθ

ij/ε)∑
st exp (−Cθ

st/ε)
(35)

Then in outer minimization, if we set P̃ii = 1
n for each i and P̃ij = 0 when i 6= j, we get the

contrastive loss under U(1):

LIOT-CL = − 1

n

n∑
i=1

log

(
exp(−Cθ

ii/ε)∑n
t=1

∑m
s=1 exp(−Cθ

ts/ε))

)
(36)

We have therefore got the loss of IOT-CL under U(1).
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B ALGORITHM

With SimCLR structure, the algorithm of Sinkhorn is shown in Algorithm 1.

Algorithm 1: Sinkhorn Algorithm for IOT-CL

1 feature similarity matrix Sim i.e.−Cθ; the iterative number N for Sinkhorn Surrogate for
similarity based on Sinkhorn

2 Sinkhorn (Sim, N ):
3 #Let the diag of Sim tend to −∞, i.e. make self-matching case unavailable
4 eye = torch.eye(Sim.shape[0])
5 diags = -100 * eye * Sim; 100 is large enough
6 off diags = (1-eye) * Sim;
7 Sim = diags + off diags;
8 Sinkhorn iterations
9 texp = torch.exp(Sim); Initialization of Pθ

10 for i = 1, . . . , N do
11 texp = torch.div(texp, torch.sum(texp, dim=0)).T; row normalization
12 texp = torch.div(texp, torch.sum(texp, dim=0)).T; column normalization
13 end
14 return Similarity Surrogate: torch.log(texp)

C UNBALANCED MATCHING FOR CL.

In memory bank based methods such as MoCo (He et al., 2020), negative samples are selected from
the stored sample features. In this case, the matching is usually unbalanced. Specifically, assume
that {zi}ni=1 and {z′j}nj=1 are features extracted by encoder f and momentum encoder g from the
same mini-batch samples, while {z′j}mj=n+1 are features extracted by g from the memory bank. Then
we can get two feature sets {zi}ni=1 and {z′j}mj=1 wherem is usually much larger than n. We can find
the unbalanced matching for the memory bank based methods as shown in Fig. 6(a). Since MoCo
select the negative samples in the memory bank, which contains the features of previous mini-bath
data instead of the same mini-batch samples, the cost matrix is designed as

Cθ
ij =

{
+∞, i 6= j and 1 ≤ j ≤ n
1− sij , else

(37)

where sij is a similarity (e.g. cosine) between feature zi and z′j . Here Cθ
ij → +∞ implies

exp(−Cθ
ij/ε) → 0, which means that Pθ

ij → 0 and the features zi and z′j will not be matched.

(a) Unbalanced Matching (b) Balanced Matching in one Space

Figure 6: Interpreting MoCo and SimCLR by point set matching. (a) the left part is extracted
by f , while the right is extracted by the moment encoder g. In MoCo, in addition to the
representations from minibatch (brown points), representations from moment queue are
also in the right part, which is an unbalanced matching problem in our matching view (n <
m); (b) the space is extracted by f (note f = g in SimCLR) with two augmentations.
Viewing the SimCLR framework from our perspective, the matching is not simply between
two different sets but a balanced matching in the same space, and the feature points try to
match their neighborhood with minimal total cost.
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Table 5: ACC results (%) evaluated by Linear network (Lin.) and k-NN method for CIFAR-
10and CIFAR-100 based on 100 epochs training. We mainly follow the MoCo framework in
this case.

Method CIFAR-10 CIFAR-100
Lin. k-NN Lin. k-NN

InfoNCE (Oord et al., 2018) 72.11 61.66 47.71 28.23
Lalign + Luniform (Wang & Isola, 2020) 74.77 65.92 49.48 30.87

HNSampling (Wang & Liu, 2021) 72.18 60.73 47.88 28.06
IOT-CL (ours) 73.28 61.97 48.21 29.64

The condition i 6= j and 1 ≤ j ≤ n represents that (zi, z′j) are negative pair from the same mini-
batch, which is not adopt as negative pair in memory based methods.

With the cost matrix Cθ, the ground truth can be simply set as P̃ii = 1
n for i = 1, . . . , n and

P̃ij = 0 when i 6= j. Then we can find that our IOT-CL does not contradict the memory bank based
frameworks e.g. MoCo, which can be interpreted from our perspective as shown in Fig. 6(a).

Experiments under MoCo-based framework In addition to the SimCLR framework, we also test
the loss of our model in Memory based framework (i.e. MoCo), which can be understood as an
unbalanced matching in this paper. For the pretraining stage, all models are trained with SGD for
100 epochs by 0.03 learning rate with batch size being 128, the momentum and weight decay of SGD
are 0.9 and 1e− 4 respectively. And the temperature τ is set to 0.07 for softmax based methods. We
set the size of memory bank to 4096. The feature dimension is 128 and the momentum of updating
the key encoder is 0.999. For Linear evaluation, we train for 100 epoch still with SGD except that
the learning rate is 30 and weight decay is set to 0. Batch size for linear evaluation is 256. As shown
in Table 5, We can find that the model with our loss works efficiently in MoCo-based framework.

D CONNECTING TO SOFTMAX CROSS-ENTROPY LOSS WITH IOT.

We can also view the classification under our collective matching perspective based on entropic
regularized OT. In this case, assume that the feature zi = f(xi) can be the logit vector for sample
xi and yi is the corresponding one-hot label for m − classification with n samples in a mini-batch.
Then by defining Cθ

ij = c− zi · yj where c is large enough, we can get the loss

L =
1

n

n∑
i=1

m∑
j=1

yij log
e−zijyij∑m
k=1 e

−zikyik
(38)

where yij ∈ {0, 1} and zij are the j dimension values of one-hot label yi and logit vector zi. The
above loss is exactly the softmax cross-entropy loss, which verifies that the classification problem
can also be viewed as a (soft) matching problem. Besides, InfoNCE and softmax cross-entropy loss
can achieve theoretical unity under this matching view with aid of regularized OT.
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