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Abstract

The use of Exact Match based Schema Linking
(EMSL) has become standard in text-to-SQL.:
many state-of-the-art text-to-SQL models em-
ploy EMSL, and their performance drops signif-
icantly when the EMSL component is removed.
In this work, however, we demonstrate that
EMSL reduces robustness, rendering models
vulnerable to synonym substitution and typos.
Instead of relying on EMSL to make up for
deficiencies in question-schema encoding, we
show that by utilizing the pre-trained language
model as the encoder, we can improve the per-
formance without using EMSL, and thus the
model is more robust. Our experiments suggest
that EMSL is not the icing on the cake, but it is
the one that introduces the vulnerability, and it
can be replaced by better input encoding. !

1 Introduction

Recent years have seen great process on the text-
to-SQL problem, i.e. translating a natural language
question into a SQL query (Dong and Lapata,
2018; Yu et al., 2018b; Zhong et al., 2017; Gan
et al., 2021; Guo et al., 2019; Bogin et al., 2019;
Wang et al., 2020), with neural networks having
become the de facto approach. To achieve good
performance on text-to-SQL tasks, a neural model
needs to correlate natural language queries with the
given database schema, and we call this process
as schema linking. Previous work often explicitly
designs a module to perform the schema linking,
and we name it as Exact Match based Schema Link-
ing (EMSL) (Guo et al., 2019; Bogin et al., 2019;
Wang et al., 2020). Specifically:

* Schema linking is the alignment between
the entity references in the question and the
schema columns or tables.

* A schema linking module is a trainable com-
ponent that learns to perform schema linking,

"We will release code upon publication.

based on features that relate word tokens in
the question to schema items.

* A schema linking feature encodes this rela-
tional information; e.g., it can represent the
similarity between words in the question and
schema items.

» Exact match based schema linking (EMSL)
is a type of schema linking feature obtained
by the exact lexical match between the words
in the question and words in schema items.

Figure 1 presents an example of schema linking
and the exact match based schema linking (EMSL)
feature matrix. The method of obtaining schema
linking features in previous work mainly relies on
this exact lexical matching. Following the work
of (Krishnamurthy et al., 2017; Guo et al., 2019;
Bogin et al., 2019), EMSL is used in many subse-
quent works (Wang et al., 2020; Cai et al., 2021;
Xu et al., 2021; Lei et al., 2020; Yu et al., 2021; Shi
etal., 2021) and has been shown to be effective. For
example, the ablation study in (Guo et al., 2019)
shows that removing the schema linking module
incurs the most significant performance decrease.

Although EMSL has been widely used and helps
models obtain the state-of-the-art performance on
some text-to-SQL benchmarks (Yu et al., 2018b;
Zhong et al., 2017), in this work, we show that
EMSL renders models vulnerable to noise in the
input, particularly synonym substitution and typos.
We then investigate whether text-to-SQL models
can preserve good prediction performance with-
out EMSL. Previous ablation studies (Guo et al.,
2019; Wang et al., 2020) claiming the necessity of
the schema linking module were conducted with-
out pretrained language models (PLMs) such as
BERT. In fact, we find that when a pretrained lan-
guage model is used, removing EMSL has very
little impact on the performance of the model. This
observation is consistent for different model ar-
chitectures and training schemes, such as RAT-



Question: How many singers do we have
chema linking
SQL: SELECT Count(+*) FROM Singer
How many singers do we have
singer ) 0 1 0 0 0
Schema concert L] 0 0 0 (] [}
tables singer in 0 0 033 0 0 0
concert
Schema singer id 0 0 0.5 0 0 0
columns {

Figure 1: An example of schema linking and exact
match based schema linking (EMSL) feature matrix.

SQL (Wang et al., 2020), GNN (Bogin et al., 2019),
and GAP (Shi et al., 2021).

We evaluate the models in three settings: the
original Spider benchmark without input noise (Yu
et al., 2018b), synonym substitution (Gan et al.,
2021), and a new typo injection setting introduced
in this work. Results show that the use of a pre-
trained language model can provide the same per-
formance benefit as EMSL, while achieving better
robustness against synonym substitution and typos.
Removing EMSL also allows the model to obtain
better results when training with synonym substi-
tution samples. We also show that MAS (Multi-
Annotation Selection) (Gan et al., 2021), a method
designed to improve model robustness with EMSL,
can also improve models without EMSL. In conclu-
sion, we demonstrate that with pretrained language
models, EMSL is no longer a necessary building
block of text-to-SQL models.

2 Schema Linking

Following SQLNet (Xu et al., 2017), most text-
to-SQL models generate the SQL structure first,
and then fill in the schema items (Gan et al., 2020).
Schema linking is needed in this workflow to locate
the schema items from the question. Prior works
show that models without schema linking perform
poorly on text-to-SQL tasks, such as the sequence-
to-sequence model (Yu et al., 2018b).2

2.1 Schema Linking Feature

Figure 1 presents an example of schema linking
features. The word ‘singers’ in the question ex-

Note that prior works often use the phrase schema linking
in different ways; it may refer to the schema linking feature or
module or both, as discussed in Section 1.

actly matches (modulo stemming) the schema ta-
ble name ‘singer’, giving feature value 1. It does
not match the table ‘concert’, giving value 0; and
matches one of the three words in ‘singer in con-
cert’, giving value 0.33. This type of schema link-
ing feature (EMSL) based on exact lexical match-
ing is the most common (Guo et al., 2019; Bogin
et al., 2019; Wang et al., 2020; Cai et al., 2021; Xu
et al., 2021; Lei et al., 2020; Yu et al., 2021; Shi
et al., 2021). Some papers may not mention this ex-
act matching explicitly, but it can be found in their
published code. Implementation details vary; for
example, some works add ConceptNet (Speer and
Havasi, 2012) to get more linking features (Guo
et al., 2019; Tan et al., 2021).

EMSL is often taken to be essential: ablation
studies show that removing EMSL causes the
biggest performance decline compared to removing
other removable modules (Guo et al., 2019; Wang
et al., 2020). Wang et al. (2020) consider that the
representations produced by vanilla self-attention
were insensitive to textual matches even though
their initial representations were identical, i.e., the
EMSL is needed for textual matches. However, we
argue that a well-designed encoder can solve this
problem, and note that the feature values in Figure 1
are equal to the average dot product results when
using lemma one-hot embeddings, which means a
proper embedding can replace EMSL. We discuss
details in Section 3.3.

2.2 Schema Linking Module

We believe that a text-to-SQL model with good
performance can ignore the schema linking fea-
ture, but it must include a schema linking module.
At present, the common method of this module
is to calculate the similarity score between each
question word and schema item. Although the im-
plementation details of models are different, they
all want the correct schema items to obtain higher
similarity scores.

One difficulty in calculating the similarity scores
is how to use a vector to represent a schema item
that contains multiple words. For example, we
need a proper vector to represent the singer in con-
cert table in Figure 1, so that it has a higher score
when calculating similarity with the words singer
or concert in a question. If we cannot find such a
vector, we need EMSL as the similarity score, e.g.,
use the 0.33 in Figure 1 to represent the similarity
between singer in concert table and word singer in



Model Exact Match Acc Model Exact Match Acc
GNN 47.6% GNN+BERT 49.3%
GNN w/o EMSL 24.9% GNN+BERT w/o EMSL 47.1%
IRNet 48.5% RATSQL+BERT 69.7%
IRNet w/o EMSL 40.5% RATSQL+BERT w/o EMSL 69.3%
RATSQL 62.7% RATSQL+GAP 71.8%
RATSQL w/o EMSL 51.9% RATSQL+GAP w/o EMSL 71.7%

Table 1: Accuracy of three based models ablations on
the development set. EMSL means schema linking fea-
ture based on the exact lexical match. The IRNet results
are copied from the original paper (Guo et al., 2019),
while others are conducted by ourselves.

the question.

A well-designed model structure can reduce the
need for EMSL. For example, even without EMSL,
RATSQL and IRNet still outperform SyntaxSQL-
Net (Yuetal.,2018a) and SQLNet (Yuet al., 2018b;
Xu et al., 2017). Appropriate auxiliary modules
are also necessary for building schema linking.
Graph neural networks make it easier to encode the
schema structure and construct the correct schema
linking (Wang et al., 2020; Bogin et al., 2019).

3 Case Study

In this section, we conduct an ablation study on
EMSL using different models, including GNN (Bo-
gin et al., 2019), IRNet (Guo et al., 2019), and
RATSQL (Wang et al., 2020). We then conduct a
more detailed examination using RATSQL, which
is the most competitive model architecture.

3.1 Ablation Study on EMSL

Table 1 presents the ablation study results of three
base models. The results of RATSQL here are dif-
ferent from that of (Wang et al., 2020) because
Wang et al. (2020) remove the cell value linking
first and then EMSL. According to the magnitude
of the decline, our results are similar to theirs. Ac-
cording to (Wang et al., 2020; Guo et al., 2019),
they observe the biggest performance degradation
by removing EMSL. Since then, EMSL has be-
come a necessary module for most researchers to
build text-to-SQL models.

We want to challenge this view and carry out
the comparative experiment in Table 2. Comparing
Table 1 and Table 2, it can be found that PLMs
compensate for the function of EMSL, i.e., the
performance in Table 2 is less degraded than that
in Table 1 after removing EMSL.

Table 2: Accuracy of three models with PLM ablations
on the development set. The GAP (Shi et al., 2021) is a
pretrained model based on RoBERTa (Liu et al., 2019)

From another perspective, BERT and its sub-
sequent pretrained language model significantly
improve the performance of models that do not
use EMSL, which explains why some models can
achieve higher performance improvements through
BERT. For example, EditSQL (Zhang et al., 2019)
does not use EMSL, while it obtains the highest
performance improvement by extending BERT, as
shown on the Spider leaderboard 3.

3.2 BERT vs GLOVE

The base RATSQL uses GLOVE (Pennington et al.,
2014) for word embedding. There are two main
reasons why BERT (Devlin et al., 2019) is better
than GLOVE at schema linking. The first reason is
that BERT can better deal with out-of-vocabulary
words. BERT converts these words into subwords,
so BERT makes sure different word is represented
by a unique vector. However, GLOVE cannot han-
dle out of vocabulary words. Researchers generally
replace them with a custom unknown (UNK) word
vector. Suppose there are multiple words outside
the GLOVE vocabulary in one schema. In that
case, it is equivalent to multiple schema items be-
ing annotated as UNK, which will cause the model
without EMSL to be unable to distinguish different
schema items due to the same word vector.

The second reason is that GLOVE is not as good
as BERT in the face of schema items containing
multi-words. As opposed to static embeddings pro-
vided by GLOVE, BERT provides dynamic lexical
representations generated by analyzing the context.
Take the bandmate id column in the Spider dataset
as an example. The cosine of the vectors for the
two words bandmate and id in GLOVE is negative,
which means if we sum these two vectors together
to represent the bandmate id column, the sum vec-
tor will inevitably lose some information. The word
vector output by BERT is calculated based on the

3https: //yale-lily.github.io/spider
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Figure 2: The original RATSQL encoder structure and our modified version.

context, so although adjacent words may be unre-
lated in word meaning, their word vectors will still
be highly correlated. We provide more discussion
in Appendix A.

3.3 RATSQL Encoder

The text-to-SQL encoder is part of the schema link-
ing module. As discussed in Section 2.2, we ex-
pect that the correct schema item vectors obtained
from the encoder are as close to the question vector
as possible. The SQL cares about which schema
item to use instead of the words in the schema
item. Therefore, unlike keeping every question
word vector, only one vector is used to present
the schema item even if it contains multiple words.
Since both the encoder mechanics and content style
are different between question and schema, RAT-
SQL uses different encoders to encode the question
and schema separately, as shown in the upper part
of Figure 2. These three encoders are based on
biLSTM and have similar structure and size.

We believe that the shortcoming of the origi-
nal RATSQL design is the use of three encoders.
For example, in the initial state, the parameters of
the three encoders are different. Therefore, even
though the word ‘singers’ appears in the question,
the vector vg initially generated by the table en-
coder is probably irrelevant to all vectors output by
the sentence encoder. It does not matter when us-
ing EMSL for both training and evaluation because
we can link the vg to vy through EMSL. However,
when without EMSL, it requires the vg from the
table encoder must close to the vectors from the

question encoder, which is more challenging to
train than using only one encoder, as shown in the
lower part of Figure 2. Since the output of our mod-
ification is the same as the original, it can be easily
replaced and connected to the subsequent modules.

In the lower part of Figure 2, our modification is
inspired by several text-to-SQL models with BERT,
including RATSQL+BERT (Wang et al., 2020; Guo
et al., 2019; Zhang et al., 2019). In our modifica-
tion, RATSQL uses only the BERT encoder instead
of the three encoders. We believe using three en-
coders is one of the main reasons why the base
RATSQL performance significantly drops when re-
moving EMSL. For the convenience of discussion,
we named our modified RATSQL as RATSQL,
where O means one encoder.

RATSQL uses only one encoder whose struc-
ture and size are the same as the original question
encoder. For the schema item representation, RAT-
SQL takes the hidden state after all the words of the
entire schema item are encoded, while RATSQL o
takes the average of all word encodings. The advan-
tage of the RATSQL is that vg, vg, and v initially
have a certain similarity, which benefits the schema
linking in both single and multi words. Besides,
RATSQL deal with words outside the GLOVE vo-
cabulary better than RATSQL. Supposing that the
word concert and stadium are outside the GLOVE
vocabulary, the v7 and vg output from RATSQL ta-
ble encoder will be the same since their inputs are
the same UNK vector. However, the RATSQL en-
coder (BiLSTM) output different vectors for v and
vg because the contents before and after the word



concert and stadium are different. In this way, even
if there are multiple UNK words, the RATSQLo
encoding vector will be different.

4 Experiment

4.1 Generating Typos

To evaluate robustness against typos, we randomly
insert a letter into the correct schema annotation
word. (This is enough to break EMSL, so we do
not also modify the question words). We generated
three typo development sets, named Spider-T1 to
Spider-T3. The typos in Spider-T1 are generated by
randomly inserting a letter at any position except
the end. In contrast, Spider-T2 appends a random
letter at the end of the schema annotation words.
We examine these separately: the BERT tokenizer
may be able to split Spider-T2 typos into a correct
word and a suffix, but is less likely to split the
Spider-T1 typos well. We convert every schema
annotation word in Spider-T1 and T2 to typos when
word length is greater than five letters; typos are
generally more likely to occur in longer words, and
words with more than five letters account for about
40% of the dataset. Spider-T3 is then the same
as Spider-T1, but only converts the most frequent
schema item words to typos. While Spider-T1 and
T2 simulate the impact of large numbers of typos
in extreme cases, Spider-T3 evaluates the impact
of a more realistic, smaller number of typos. Other
typos are possible, e.g. by deleting and swapping
letters; we discuss these in Appendix B.

4.2 Experimental Setup

We evaluate the previous state-of-the-art models
on Spider (Yu et al., 2018b), Spider-T, and Spider-
Syn (Gan et al., 2021) datasets. All experiments
were performed on a machine with an Intel i5 9600
3.1GHz processor and a 24GB RTX3090 GPU.
Since the Spider test set is not publicly accessi-
ble and Spider-Syn and Spider-T do not contain
test sets, our evaluation is based on the develop-
ment sets. The Spider-Syn benchmark contains
three development sets: Spider-Syn, ADVBERT,
and ADV gy ovE, for evaluating model robustness
against synonym substitution. Therefore, we have
the following evaluation sets:
* Spider: The original Spider development set
with 1,034 examples.
* Spider-T1, T2 and T3: Three typo develop-
ment sets with 1,034 examples respectively, dis-
cussed in Section 4.1.

¢ Spider-Syn: The human-curated development
set built upon Spider, for evaluating synonym
substitution in real-world question paraphrases.

* ADVgEgRrT: The set of adversarial examples gen-
erated by BERT-Attack (Li et al., 2020).

* ADV¢grove: The set of adversarial examples
generated using the nearest GLOVE word vector
(Pennington et al., 2014; Mrksi¢ et al., 2016).
Our evaluation is based on the exact match met-

ric defined in the original Spider benchmark. This

metric measures whether the syntax tree of the pre-
dicted query without condition values is the same
as that of the gold query. Our experiment setting

is consistent with the ablation study in Section 3.1.

Following the case study in Section 3, we evaluate

different variants of the RATSQL model:

¢ RATSQL: The base RATSQL+GLOVE model
trained on Spider using EMSL in training and
evaluation (Wang et al., 2020).

* RATSQL: Our modified RATSQL+GLOVE
model trained on Spider using EMSL in training
and evaluation, discussed in Section 3.3.

* RATSQLg: The RATSQL+BERT model trained
on Spider using EMSL in training and evalua-
tion. (Note that RATSQLo+BERT is just RAT-
SQL+BERT: using BERT means that the BERT
encoder will replace all encoders in Figure 2).

* RATSQLps: RATSQLA4BERT trained on
Spider-Syn using EMSL (Gan et al., 2021).

* RATSQLG: RATSQL+GAP trained on Spider
using EMSL (Shi et al., 2021).

* w/o EMSL: Models do not use EMSL in training
and evaluation, consistent with Tables 1 and 2.

¢ ManualMAS (Gan et al., 2021): Schema anno-
tations include synonyms used in Spider-Syn.

¢ AutoMAS (Gan et al., 2021): Schema annota-
tions include synonyms generated according to
the nearest GLOVE word vector.

4.3 Evaluation on Spider

Table 4 presents the exact matching accuracy of
models trained on the Spider training set. It is
clear that our RATSQL( significantly improves
the without-EMSL performance. Tables 4 and 2
illustrate that the EMSL can be replaced by better
encoding. The performance of RATSQL is slightly
better than that of RATSQL, because Guo et al.
(2019) conducted 100 time hyperparameter search
to optimize the RATSQL while we did not do that.
Therefore, when we modify the model structure, it
may cause a slight performance degradation.



Number of errors Number of example with errors
Approach Multi words Single word UNK word | Multi words Single word UNK word
RATSQL 118 57 13 112 (10.8%) 54 (5.2%) 12 (1.2%)
RATSQL w/o EMSL 178 107 33 170 (16.4%) 93 (9.0%) 30 (2.9%)
RATSQLo 136 51 11 125 (12.1%) 50 (4.8%) 11 (1.1%)
RATSQLo w/o EMSL 152 63 15 141 (13.6%) 59 (5.7%) 14 (1.4%)
RATSQLp 55 38 - 53 (5.1%) 37 (3.6%) -
RATSQL g w/o EMSL 65 34 65 (6.3%) 34 (3.3%) -

Table 3: Statistics of the types of error column predictions of different models evaluated on the Spider development

set (the larger the number, the worse).

Model Spider
RATSQL 62.7%
RATSQL w/o EMSL 51.9%
RATSQLo 62.2%
RATSQLp w/o EMSL 58.4%

Table 4: Accuracy of two RATSQL models ablations on
the development set.

Error Analysis Table 3 presents the error type
statistics in the error column prediction. We count
the prediction errors of single words, multiple
words, and words outside the GLOVE vocabulary
(UNK word) when the predicted SQL structure is
correct. As BERT does not share GLOVE’s vocab-
ulary limitations, the UNK entry for RATSQLg
is empty. Random initialization means that model
results after each training may vary slightly, so we
only focus on the more salient features.

Although the results of RATSQL and RATSQLo
are similar, RATSQL consistently outperforms
RATSQL in three error types when EMSL is re-
moved; this supports the view we discuss in Sec-
tion 3.3. More importantly, the single-word per-
formance of RATSQL without EMSL is close
to that of RATSQL and RATSQL. As discussed
in Section 3.2, the representation ability on multi-
word of GLOVE is worse than that of BERT. The
results support this view where the performance of
RATSQL© and RATSQL on multi-word is worse
than that on single-word. When replacing the
GLOVE with BERT, due to the improvement of its
multi-word representation ability, the performance
of RATSQL g with and without EMSL are close in
single and multiple words. From the right side of
Table 3, it can also be found that the BERT brings
around 5% absolute improvement on multi-word,
while that on single-word is only 2%.

4.4 Robustness Evaluation

Typo Results Table 5 presents the robustness
evaluation results on several datasets. For typos,
GLOVE will treat them as UNK words, so the
RATSQL and RATSQL cannot obtain good per-
formance on Spider-T1 and T2 due to too many
UNK words. The RATSQL without EMSL sig-
nificantly outperforms the RATSQL without EMSL
in Spider-T3, which is another evidence that the
RATSQL is better in handling UNK words. After
using PLMs, the performance on typos has been
significantly improved, especially on Spider-T2.
Spider-T3 contains only a few typos, i.e., it is close
to the Spider to some extent. Thus, the T3 result
characteristics are close to Spider, i.e., their per-
formance gap between with and without EMSL is
close. With the increase of typos, the performance
gap will be expanded, where the model+PLM with-
out EMSL will be better.

Synonym Substitution Results Gan et al. (2021)
propose three development sets for evaluating the
robustness of text-to-SQL models against synonym
substitution, including: Spider-Syn, ADVBERT,
and ADVgiovg. Table 5 shows that mod-
els without EMSL consistently outperform those
with EMSL when evaluated against Spider-Syn,
ADVGLOVE and ADVBERT- When using PLMS,
RATSQL 5 and RATSQL without EMSL show
a huge performance improvement on these three
development sets with only a tiny performance
loss on Spider. RATSQL without EMSL consis-
tently outperforms RATSQL without EMSL, which
means a reasonable design can reduce reliance on
EMSL. Unlike other models, the RATSQL gg with-
out EMSL outperforms that with EMSL in all eval-
uation sets. We discuss this in Section 4.5.

MAS Results Gan et al. (2021) also propose a
MAS method to improve the robustness of text-to-
SQL models. MAS provides multiple annotations



Approach Spider | Spider-T1 Spider-T2 Spider-T3 | Spider-Syn ADVgrove ADVBgrT
RATSQL 62.9% 23.9% 26.4% 51.2% 33.9% 30.9% 37.1%
RATSQL w/o EMSL 51.9% 20.8% 21.7% 44.1% 39.1% 38.1% 40.9%
RATSQLo 62.2% 22.8% 25.7% 51.6% 32.1% 32.7% 36.3%
RATSQLo w/o EMSL 58.4% 20.8% 23.3% 51.5% 42.6 % 38.6% 43.8%
RATSQLp 69.7 % 30.9% 54.8% 63.2% 48.2% 38.0% 48.8%
RATSQL g w/o EMSL 69.3% 32.3% 66.2% 63.0% 52.7% 45.4% 54.3%
RATSQLgg 68.1% 33.6% 58.1% 62.7% 58.0% 47.7% 55.7%
RATSQL s w/o EMSL | 69.7% 38.1% 66.4% 65.0% 60.4% 51.0% 58.8%
RATSQL 71.8% 48.1% 64.6% 68.0% 54.6% 46.6% 54.8%
RATSQL w/o EMSL 71.7% 53.4% 67.6% 68.6% 58.7 % 49.4% 57.3%

Table 5: Exact match accuracy on original (Spider), typos (Spider-T1 to T3), and synonym substitution (Spider-Syn,

ADVgrove, and ADVgggrr) development sets.

Approach Spider Spider-Syn ADVGLOVE ADVBERT
RATSQLp + ManualMAS 67.4% 62.6% 34.2% 44.5%
RATSQL g + ManualMAS w/o EMSL  68.6% 58.9% 43.6 % 53.1%
RATSQL g + AutoMAS 68.7% 56.0% 61.2% 52.5%
RATSQLp + AutoMAS w/o EMSL 68.9 % 55.3% 62.1% 54.7%
RATSQLpgs + ManualMAS 65.6% 59.5% 46.9% 51.7%
RATSQL g + ManualMAS w/o EMSL  68.7% 61.7% 50.3% 58.8%
RATSQLpgs + AutoMAS 66.8% 57.5% 61.0% 55.7%
RATSQLpgs + AutoMAS w/o EMSL 69.2% 59.4% 63.2% 59.0%

Table 6: Evaluation on the combination of MAS with RATSQL 5 and RATSQL ¢ respectively.

to repair the breaking of EMSL due to synonym
substitutions. Although we advocate not relying on
EMSL, MAS can still improve the performance of
models without EMSL, as shown in Table 6. Com-
paring the data in Table 5 and Table 6, Manual-
MAS improves the performance of RATSQL 5 and
RATSQL pg with and without EMSL on Spider-
Syn development set since the ManualMAS pro-
vide synonym annotations appearing in the Spider-
Syn. In the same way, AutoMAS has also improved
their performance on ADVgLove. Experimental
results show that although MAS is designed to re-
pair EMSL, it is still effective for models without
EMSL. Besides, based on MAS, the overall per-
formance of the model without EMSL is still bet-
ter than that with EMSL. In general, even though
EMSL is not used, a reasonable annotation is still
essential to the text-to-SQL problem.

4.5 Discussion

The text-to-SQL model can quickly locate the cor-
rect schema items through EMSL, but this ad-
vantage will cause the models to not work prop-
erly when EMSL fails. To better understand
the impact of EMSL on text-to-SQL models, we

present the question-table attention * extracted
from RATSQL p with and without EMSL in Fig-
ure 3. In the first example, we can see that the align-
ment score between table singer and question word
singer is the biggest, while we can not observe a
clear connection between other tables and question
word singer. However, when removing the EMSL
in the second example, the alignment score be-
tween table singer and question word singer drop
clearly, and the connection between other tables
and question word singer becomes clear. It can be
seen that under other conditions unchanged, only
removing EMSL has a considerable impact on the
model trained with EMSL.

The third example is extracted from RATSQL g
without EMSL. Different from the RATSQL 5 with
EMSL, the singer table has a high alignment score
not only with the word singer but also with the
whole sentence. Since the loss function only cal-
culates whether the output schema items are cor-
rect, the model does not care which question word
the correct schema item is linked to. Therefore,
the attention of the RATSQL 5 without EMSL is

*Tt is named m2t_align_mat in the code: https:

//github.com/microsoft/rat-sql/blob/master/
ratsql/models/spider/spider_enc_modules.py
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Ex 1: RATSQL+BERT, trained with EMSL, run with EMSL:
how how how how how how
many many many many many many

have have
? 2 2 2 2
[stadium] ———\ [stadium] 4m [stadium] [stadium] [stadium] 'stadium’]
[singer] [singer] singer] singer]
[concert] ['concert] [concert] ['concert] [concert] A [concert] 4m

have

Ex 2: RATSQL+BERT, trained with EMSL, run without EMSL:
how how how how how how
many. many many many many. many

have have have have have have
9 2

% ¥ 1t )
[stadium’] M [stadium] 4m [stadium’] ['stadium’] ['stadium’] [stadium’]
[singer] [singer] [singer] [singer]

[concer 1] [concert] [concert] ['concert] [concert]

Figure 3: Examples of the question-table attention. The
darker the color, the greater the attention score. The
first two examples are extracted from RATSQL 5, while
the last one is from RATSQL g without EMSL. Each
attention subgraph represents the attention between only
one table schema and other words.

quite different from that with EMSL. The signifi-
cant difference of the trained models may be one
of the reasons why the overall performance of
RATSQL g without EMSL is better than that with
EMSL. Because the training data in RATSQL g
contain many synonym substitution examples, and
these examples do not have EMSL features, it re-
quires the model to find a balance between states
shown in examples 1 and 3 of Figure 3, which
increases the difficulty of training.

5 Related Work

Schema Linking According to the review (Gan
et al., 2020), schema linking is widely used in
recent text-to-SQL models. In addition to dis-
cussing schema linking in the paper as part of the
model (Guo et al., 2019; Bogin et al., 2019; Wang
et al., 2020; Chen et al., 2020; Cao et al., 2021),
some works focus on the schema linking. Lei et al.
(2020) demonstrate that more accurate schema link-
ing conclusively leads to better text-to-SQL parsing
performance. To support further schema linking
studies, Lei et al. (2020) and Taniguchi et al. (2021)
invest human resources to annotate schema linking
corpus, respectively. Guo et al. (2019) and Wang
et al. (2020) conducted an ablation study on EMSL,
respectively, and the results show that removing the
EMSL would lead to the greatest decrease in model
performance. These studies have influenced many
follow-up works to use EMSL (Cai et al., 2021; Xu

et al., 2021; Lei et al., 2020; Yu et al., 2021; Shi
et al., 2021). Our work found that once the model
uses EMSL, it seems to become reliant on it and
found that PLM can replace EMSL and make the
model more robust.

Robustness of Text-to-SQL  Existing works on
improving the robustness of the text-to-SQL model
are mainly through adversarial training, data aug-
mentation, and repairing EMSL. Xiong and Sun
(2019) and Radhakrishnan et al. (2020) propose
data augmentation techniques for improving the
generalization in cross-domain text-to-SQL and in
search-style questions resepctivly. However, these
approaches only supports SQL queries executed on
a single table, e.g., WikiSQL. Zeng et al. (2020)
introduce a Spideryry,, dataset that includes orig-
inal Spider (Yu et al., 2018b) examples and some
untranslatable questions examples. Spideryry,,
can be used to evaluate whether the text-to-SQL
model can distinguish the untranslatable NL ques-
tion. Huang et al. (2021) provide the empirical
study on the robustness of semantic parsers in the
presence of adversarial attacks, but this work fo-
cuses on single-domain. Gan et al. (2021) investi-
gate the robustness against synonym substitution
for cross-domain text-to-SQL translation and found
that synonym substitution would break the EMSL
leading a significant drop in performance. To solve
this problem, Gan et al. (2021) proposed the MAS
method to repair the broken EMSL. Following
(Gan et al., 2021), our work found that the EMSL
can be replaced by better encoding, and models
without EMSL has better generalization ability.

6 Conclusion

In this work, we demonstrate that with the presence
of pretrained language models, EMSL is no longer
a necessary building block to ensure a high perfor-
mance on text-to-SQL benchmarks. Specifically,
we evaluate the robustness of text-to-SQL models
with and without EMSL against synonym substi-
tution and typos. We observe that when EMSL is
used, models become overly reliant on it, making
them vulnerable to attacks that break the exact-
match assumptions of EMSL. On the other hand,
models without EMSL are more robust than those
with EMSL, and the use of pretrained language
models further show that they can replace the role
of EMSL without compromising the performance
on clean data. Therefore, we argue for the use of
PLMs instead of EMSL for text-to-SQL tasks.



References

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019.
Representing schema structure with graph neural net-
works for text-to-SQL parsing. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4560—4565, Florence, Italy.
Association for Computational Linguistics.

Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng Hao.
2021. Sadga: Structure-aware dual graph aggrega-
tion network for text-to-sql.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. LGESQL: Line graph
enhanced text-to-SQL model with mixed local and
non-local relations. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2541-2555, Online. Association
for Computational Linguistics.

Sanxing Chen, Aidan San, Xiaodong Liu, and Yangfeng
Ji. 2020. A tale of two linkings: Dynamically gat-
ing between schema linking and structural linking
for text-to-SQL parsing. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 2900-2912, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-Fine De-
coding for Neural Semantic Parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731-742, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R. Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021. Towards robustness of text-
to-SQL models against synonym substitution. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2505—
2515, Online. Association for Computational Lin-
guistics.

Yujian Gan, Matthew Purver, and John R. Woodward.
2020. A review of cross-domain text-to-SQL mod-
els. In Proceedings of the Ist Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint

Conference on Natural Language Processing: Stu-
dent Research Workshop, pages 108—115, Suzhou,
China. Association for Computational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-

Guang Lou, Ting Liu, and Dongmei Zhang. 2019.
Towards Complex Text-to-SQL in Cross-Domain
Database with Intermediate Representation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4524—
4535, Florence, Italy. Association for Computational
Linguistics.

Shuo Huang, Zhuang Li, Lizhen Qu, and Lei Pan. 2021.

On robustness of neural semantic parsers.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-

ner. 2017. Neural Semantic Parsing with Type Con-
straints for Semi-Structured Tables. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 1516-1526,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Wengiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,

Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.
Re-examining the Role of Schema Linking in Text-
to-SQL. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6943-6954, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,

and Xipeng Qiu. 2020. BERT-ATTACK: Adversarial
Attack Against BERT Using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193-6202, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-

dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Nikola Mrksi¢, Diarmuid O Séaghdha, Blaise Thomson,

Milica Gasié, Lina M. Rojas-Barahona, Pei-Hao Su,
David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016. Counter-fitting word vectors to linguistic con-
straints. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 142—-148, San Diego, California. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher

Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532—1543, Doha, Qatar.
Association for Computational Linguistics.

Karthik Radhakrishnan, Arvind Srikantan, and Xi Vic-

toria Lin. 2020. ColloQL: Robust Cross-Domain
Text-to-SQL Over Search Queries.


https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
http://arxiv.org/abs/2111.00653
http://arxiv.org/abs/2111.00653
http://arxiv.org/abs/2111.00653
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2020.coling-main.260
https://doi.org/10.18653/v1/2020.coling-main.260
https://doi.org/10.18653/v1/2020.coling-main.260
https://doi.org/10.18653/v1/2020.coling-main.260
https://doi.org/10.18653/v1/2020.coling-main.260
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://aclanthology.org/2020.aacl-srw.16
https://aclanthology.org/2020.aacl-srw.16
https://aclanthology.org/2020.aacl-srw.16
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
http://arxiv.org/abs/2102.01563
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/N16-1018
https://doi.org/10.18653/v1/N16-1018
https://doi.org/10.18653/v1/N16-1018
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/2010.09927
http://arxiv.org/abs/2010.09927
http://arxiv.org/abs/2010.09927

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira dos
Santos, and Bing Xiang. 2021. Learning contextual
representations for semantic parsing with generation-
augmented pre-training. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(15):13806—
13814.

Robyn Speer and Catherine Havasi. 2012. Representing
General Relational Knowledge in ConceptNet 5. In
Proceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC’12),
pages 3679-3686, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Sinan Tan, Mengmeng Ge, Di Guo, Huaping Liu, and
Fuchun Sun. 2021. Knowledge-based embodied
question answering.

Yasufumi Taniguchi, Hiroki Nakayama, Kubo Takahiro,
and Jun Suzuki. 2021. An investigation between
schema linking and text-to-sql performance.

Jesse Vig. 2019. A multiscale visualization of attention
in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37-42,
Florence, Italy. Association for Computational Lin-
guistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 75677578, Online. Association
for Computational Linguistics.

Hongvu Xiong and Ruixiao Sun. 2019. Transferable
Natural Language Interface to Structured Queries
Aided by Adversarial Generation. In 2019 IEEE 13th
International Conference on Semantic Computing
(ICSC), pages 255-262. IEEE.

Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi
Tang, Chenyang Huang, Jackie Chi Kit Cheung, Si-
mon J.D. Prince, and Yanshuai Cao. 2021. Opti-
mizing deeper transformers on small datasets. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2089—
2102, Online. Association for Computational Lin-
guistics.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQL-
Net: Generating Structured Queries From Natural
Language Without Reinforcement Learning. Mathe-
matics of Computation, 22(103):651.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radeyv,
Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing.

10

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev. 2018a.
SyntaxSQLNet: Syntax tree networks for complex
and cross-domain text-to-SQL task. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1653—-1663, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018b. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Jichuan Zeng, Xi Victoria Lin, Steven C.H. Hoi, Richard
Socher, Caiming Xiong, Michael Lyu, and Irwin
King. 2020. Photon: A Robust Cross-Domain Text-
to-SQL System. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 204-214,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric Xue,
Xi Victoria Lin, Tianze Shi, Caiming Xiong, Richard
Socher, and Dragomir Radev. 2019. Editing-based
SQL query generation for cross-domain context-
dependent questions. pages 5338-5349.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating Structured Queries from
Natural Language using Reinforcement Learning.
CoRR, abs/1709.0.

A Visual Example of BERT Head

Unlike GLOVE, which gives static word vectors,
BERT based on the attention mechanism makes
adjacent word vectors in a sentence have a certain
similarity. Figure 4, generated by the bertviz (Vig,
2019), presents the BERT head view of attention
patterns in the one transformer layer where the
word bandmate clearly links to the word id.

B More Typos

Besides generating typos by inserting a letter, we
also generate typos by deleting a letter and swap-
ping the letter position, named the generated devel-
opment set Spider-T4 and Spider-T5, respectively.
Like Spider-T1 and T2, here we only convert the
words whose length is greater than five letters to ty-
pos. Table 7 presents the exact match accuracy on
Spider-T4 and Spider-T5 development sets. Since
PLM handles typos in Spider-T4 and TS5 similar to
Spider-T1, their evaluation results are also similar.
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]

Figure 4: The BERT head view of attention patterns of
word bandmate and id in the one transformer layer.

Approach Spider-T4 Spider-T5
RATSQL 29.0% 28.6%
RATSQL w/o EMSL 32.8% 30.1%
RATSQLp 27.6% 26.5%
RATSQLp w/o EMSL 34.5% 31.2%
RATSQLp 34.9% 32.6%
RATSQL 5 w/o EMSL 38.8% 35.0%
RATSQLgg 35.6% 32.6%
RATSQLpBgs w/o EMSL 40.3% 38.2%
RATSQL 46.7% 46.8%
RATSQL; w/o EMSL 50.6 % 50.7 %

Table 7: Exact match accuracy on Spider-T4 and Spider-
T5 development sets.

Besides, we observe that the results of models us-
ing GLOVE in Spider-T4 are the best, followed by
in TS, then in T2, and finally in T1. To understand
this phenomenon, we found that although the num-
ber of generated typos is the same among these
datasets, Spider-T1 has the most GLOVE UNK
words, followed by T2, then TS5, and T4 contains
the least UNK words. It can be seen that in the case
of fewer UNK words, the model+GLOVE can gen-
erate better encoding so that the model+GLOVE
without EMSL surpasses that with EMSL in Spider-
T4 and T5.
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