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Abstract

The use of Exact Match based Schema Linking001
(EMSL) has become standard in text-to-SQL:002
many state-of-the-art text-to-SQL models em-003
ploy EMSL, and their performance drops signif-004
icantly when the EMSL component is removed.005
In this work, however, we demonstrate that006
EMSL reduces robustness, rendering models007
vulnerable to synonym substitution and typos.008
Instead of relying on EMSL to make up for009
deficiencies in question-schema encoding, we010
show that by utilizing the pre-trained language011
model as the encoder, we can improve the per-012
formance without using EMSL, and thus the013
model is more robust. Our experiments suggest014
that EMSL is not the icing on the cake, but it is015
the one that introduces the vulnerability, and it016
can be replaced by better input encoding.1017

1 Introduction018

Recent years have seen great process on the text-019

to-SQL problem, i.e. translating a natural language020

question into a SQL query (Dong and Lapata,021

2018; Yu et al., 2018b; Zhong et al., 2017; Gan022

et al., 2021; Guo et al., 2019; Bogin et al., 2019;023

Wang et al., 2020), with neural networks having024

become the de facto approach. To achieve good025

performance on text-to-SQL tasks, a neural model026

needs to correlate natural language queries with the027

given database schema, and we call this process028

as schema linking. Previous work often explicitly029

designs a module to perform the schema linking,030

and we name it as Exact Match based Schema Link-031

ing (EMSL) (Guo et al., 2019; Bogin et al., 2019;032

Wang et al., 2020). Specifically:033

• Schema linking is the alignment between034

the entity references in the question and the035

schema columns or tables.036

• A schema linking module is a trainable com-037

ponent that learns to perform schema linking,038

1We will release code upon publication.

based on features that relate word tokens in 039

the question to schema items. 040

• A schema linking feature encodes this rela- 041

tional information; e.g., it can represent the 042

similarity between words in the question and 043

schema items. 044

• Exact match based schema linking (EMSL) 045

is a type of schema linking feature obtained 046

by the exact lexical match between the words 047

in the question and words in schema items. 048

Figure 1 presents an example of schema linking 049

and the exact match based schema linking (EMSL) 050

feature matrix. The method of obtaining schema 051

linking features in previous work mainly relies on 052

this exact lexical matching. Following the work 053

of (Krishnamurthy et al., 2017; Guo et al., 2019; 054

Bogin et al., 2019), EMSL is used in many subse- 055

quent works (Wang et al., 2020; Cai et al., 2021; 056

Xu et al., 2021; Lei et al., 2020; Yu et al., 2021; Shi 057

et al., 2021) and has been shown to be effective. For 058

example, the ablation study in (Guo et al., 2019) 059

shows that removing the schema linking module 060

incurs the most significant performance decrease. 061

Although EMSL has been widely used and helps 062

models obtain the state-of-the-art performance on 063

some text-to-SQL benchmarks (Yu et al., 2018b; 064

Zhong et al., 2017), in this work, we show that 065

EMSL renders models vulnerable to noise in the 066

input, particularly synonym substitution and typos. 067

We then investigate whether text-to-SQL models 068

can preserve good prediction performance with- 069

out EMSL. Previous ablation studies (Guo et al., 070

2019; Wang et al., 2020) claiming the necessity of 071

the schema linking module were conducted with- 072

out pretrained language models (PLMs) such as 073

BERT. In fact, we find that when a pretrained lan- 074

guage model is used, removing EMSL has very 075

little impact on the performance of the model. This 076

observation is consistent for different model ar- 077

chitectures and training schemes, such as RAT- 078
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How many singers do we have

SELECT Count(*) FROM Singer

Question:

SQL:

Schema linking features

How many singers do we have

singer 0 0 1 0 0 0

concert 0 0 0 0 0 0

singer in
concert 0 0 0.33 0 0 0

… …

singer id 0 0 0.5 0 0 0

… …

Schema linking

Schema
tables

Schema
columns

Figure 1: An example of schema linking and exact
match based schema linking (EMSL) feature matrix.

SQL (Wang et al., 2020), GNN (Bogin et al., 2019),079

and GAP (Shi et al., 2021).080

We evaluate the models in three settings: the081

original Spider benchmark without input noise (Yu082

et al., 2018b), synonym substitution (Gan et al.,083

2021), and a new typo injection setting introduced084

in this work. Results show that the use of a pre-085

trained language model can provide the same per-086

formance benefit as EMSL, while achieving better087

robustness against synonym substitution and typos.088

Removing EMSL also allows the model to obtain089

better results when training with synonym substi-090

tution samples. We also show that MAS (Multi-091

Annotation Selection) (Gan et al., 2021), a method092

designed to improve model robustness with EMSL,093

can also improve models without EMSL. In conclu-094

sion, we demonstrate that with pretrained language095

models, EMSL is no longer a necessary building096

block of text-to-SQL models.097

2 Schema Linking098

Following SQLNet (Xu et al., 2017), most text-099

to-SQL models generate the SQL structure first,100

and then fill in the schema items (Gan et al., 2020).101

Schema linking is needed in this workflow to locate102

the schema items from the question. Prior works103

show that models without schema linking perform104

poorly on text-to-SQL tasks, such as the sequence-105

to-sequence model (Yu et al., 2018b).2106

2.1 Schema Linking Feature107

Figure 1 presents an example of schema linking108

features. The word ‘singers’ in the question ex-109

2Note that prior works often use the phrase schema linking
in different ways; it may refer to the schema linking feature or
module or both, as discussed in Section 1.

actly matches (modulo stemming) the schema ta- 110

ble name ‘singer’, giving feature value 1. It does 111

not match the table ‘concert’, giving value 0; and 112

matches one of the three words in ‘singer in con- 113

cert’, giving value 0.33. This type of schema link- 114

ing feature (EMSL) based on exact lexical match- 115

ing is the most common (Guo et al., 2019; Bogin 116

et al., 2019; Wang et al., 2020; Cai et al., 2021; Xu 117

et al., 2021; Lei et al., 2020; Yu et al., 2021; Shi 118

et al., 2021). Some papers may not mention this ex- 119

act matching explicitly, but it can be found in their 120

published code. Implementation details vary; for 121

example, some works add ConceptNet (Speer and 122

Havasi, 2012) to get more linking features (Guo 123

et al., 2019; Tan et al., 2021). 124

EMSL is often taken to be essential: ablation 125

studies show that removing EMSL causes the 126

biggest performance decline compared to removing 127

other removable modules (Guo et al., 2019; Wang 128

et al., 2020). Wang et al. (2020) consider that the 129

representations produced by vanilla self-attention 130

were insensitive to textual matches even though 131

their initial representations were identical, i.e., the 132

EMSL is needed for textual matches. However, we 133

argue that a well-designed encoder can solve this 134

problem, and note that the feature values in Figure 1 135

are equal to the average dot product results when 136

using lemma one-hot embeddings, which means a 137

proper embedding can replace EMSL. We discuss 138

details in Section 3.3. 139

2.2 Schema Linking Module 140

We believe that a text-to-SQL model with good 141

performance can ignore the schema linking fea- 142

ture, but it must include a schema linking module. 143

At present, the common method of this module 144

is to calculate the similarity score between each 145

question word and schema item. Although the im- 146

plementation details of models are different, they 147

all want the correct schema items to obtain higher 148

similarity scores. 149

One difficulty in calculating the similarity scores 150

is how to use a vector to represent a schema item 151

that contains multiple words. For example, we 152

need a proper vector to represent the singer in con- 153

cert table in Figure 1, so that it has a higher score 154

when calculating similarity with the words singer 155

or concert in a question. If we cannot find such a 156

vector, we need EMSL as the similarity score, e.g., 157

use the 0.33 in Figure 1 to represent the similarity 158

between singer in concert table and word singer in 159
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Model Exact Match Acc
GNN 47.6%
GNN w/o EMSL 24.9%
IRNet 48.5%
IRNet w/o EMSL 40.5%
RATSQL 62.7%
RATSQL w/o EMSL 51.9%

Table 1: Accuracy of three based models ablations on
the development set. EMSL means schema linking fea-
ture based on the exact lexical match. The IRNet results
are copied from the original paper (Guo et al., 2019),
while others are conducted by ourselves.

the question.160

A well-designed model structure can reduce the161

need for EMSL. For example, even without EMSL,162

RATSQL and IRNet still outperform SyntaxSQL-163

Net (Yu et al., 2018a) and SQLNet (Yu et al., 2018b;164

Xu et al., 2017). Appropriate auxiliary modules165

are also necessary for building schema linking.166

Graph neural networks make it easier to encode the167

schema structure and construct the correct schema168

linking (Wang et al., 2020; Bogin et al., 2019).169

3 Case Study170

In this section, we conduct an ablation study on171

EMSL using different models, including GNN (Bo-172

gin et al., 2019), IRNet (Guo et al., 2019), and173

RATSQL (Wang et al., 2020). We then conduct a174

more detailed examination using RATSQL, which175

is the most competitive model architecture.176

3.1 Ablation Study on EMSL177

Table 1 presents the ablation study results of three178

base models. The results of RATSQL here are dif-179

ferent from that of (Wang et al., 2020) because180

Wang et al. (2020) remove the cell value linking181

first and then EMSL. According to the magnitude182

of the decline, our results are similar to theirs. Ac-183

cording to (Wang et al., 2020; Guo et al., 2019),184

they observe the biggest performance degradation185

by removing EMSL. Since then, EMSL has be-186

come a necessary module for most researchers to187

build text-to-SQL models.188

We want to challenge this view and carry out189

the comparative experiment in Table 2. Comparing190

Table 1 and Table 2, it can be found that PLMs191

compensate for the function of EMSL, i.e., the192

performance in Table 2 is less degraded than that193

in Table 1 after removing EMSL.194

Model Exact Match Acc
GNN+BERT 49.3%
GNN+BERT w/o EMSL 47.1%
RATSQL+BERT 69.7%
RATSQL+BERT w/o EMSL 69.3%
RATSQL+GAP 71.8%
RATSQL+GAP w/o EMSL 71.7%

Table 2: Accuracy of three models with PLM ablations
on the development set. The GAP (Shi et al., 2021) is a
pretrained model based on RoBERTa (Liu et al., 2019)

From another perspective, BERT and its sub- 195

sequent pretrained language model significantly 196

improve the performance of models that do not 197

use EMSL, which explains why some models can 198

achieve higher performance improvements through 199

BERT. For example, EditSQL (Zhang et al., 2019) 200

does not use EMSL, while it obtains the highest 201

performance improvement by extending BERT, as 202

shown on the Spider leaderboard 3. 203

3.2 BERT vs GLOVE 204

The base RATSQL uses GLOVE (Pennington et al., 205

2014) for word embedding. There are two main 206

reasons why BERT (Devlin et al., 2019) is better 207

than GLOVE at schema linking. The first reason is 208

that BERT can better deal with out-of-vocabulary 209

words. BERT converts these words into subwords, 210

so BERT makes sure different word is represented 211

by a unique vector. However, GLOVE cannot han- 212

dle out of vocabulary words. Researchers generally 213

replace them with a custom unknown (UNK) word 214

vector. Suppose there are multiple words outside 215

the GLOVE vocabulary in one schema. In that 216

case, it is equivalent to multiple schema items be- 217

ing annotated as UNK, which will cause the model 218

without EMSL to be unable to distinguish different 219

schema items due to the same word vector. 220

The second reason is that GLOVE is not as good 221

as BERT in the face of schema items containing 222

multi-words. As opposed to static embeddings pro- 223

vided by GLOVE, BERT provides dynamic lexical 224

representations generated by analyzing the context. 225

Take the bandmate id column in the Spider dataset 226

as an example. The cosine of the vectors for the 227

two words bandmate and id in GLOVE is negative, 228

which means if we sum these two vectors together 229

to represent the bandmate id column, the sum vec- 230

tor will inevitably lose some information. The word 231

vector output by BERT is calculated based on the 232

3https://yale-lily.github.io/spider
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v0      v1       v2        v3      v4      v5

How many singers do we have

Question Encoder

v6 v7 v8

Table   Encoder

singer concert singer in concert

VHow Vmany Vsinger …… Vhave Vsinger Vconcert Vsinger Vin Vconcert Vname …

How many singer do we have   singer   concert   singer in concert    name   ….

Encoder

v6 v7
AVG

v8

Column   Encoder

……

v…

v0 v1 v2 v5

Original RATSQL Encoder:

Our Modified RATSQL Encoder:

name

v9

v9V3-4 V…

Figure 2: The original RATSQL encoder structure and our modified version.

context, so although adjacent words may be unre-233

lated in word meaning, their word vectors will still234

be highly correlated. We provide more discussion235

in Appendix A.236

3.3 RATSQL Encoder237

The text-to-SQL encoder is part of the schema link-238

ing module. As discussed in Section 2.2, we ex-239

pect that the correct schema item vectors obtained240

from the encoder are as close to the question vector241

as possible. The SQL cares about which schema242

item to use instead of the words in the schema243

item. Therefore, unlike keeping every question244

word vector, only one vector is used to present245

the schema item even if it contains multiple words.246

Since both the encoder mechanics and content style247

are different between question and schema, RAT-248

SQL uses different encoders to encode the question249

and schema separately, as shown in the upper part250

of Figure 2. These three encoders are based on251

biLSTM and have similar structure and size.252

We believe that the shortcoming of the origi-253

nal RATSQL design is the use of three encoders.254

For example, in the initial state, the parameters of255

the three encoders are different. Therefore, even256

though the word ‘singers’ appears in the question,257

the vector v6 initially generated by the table en-258

coder is probably irrelevant to all vectors output by259

the sentence encoder. It does not matter when us-260

ing EMSL for both training and evaluation because261

we can link the v6 to v2 through EMSL. However,262

when without EMSL, it requires the v6 from the263

table encoder must close to the vectors from the264

question encoder, which is more challenging to 265

train than using only one encoder, as shown in the 266

lower part of Figure 2. Since the output of our mod- 267

ification is the same as the original, it can be easily 268

replaced and connected to the subsequent modules. 269

In the lower part of Figure 2, our modification is 270

inspired by several text-to-SQL models with BERT, 271

including RATSQL+BERT (Wang et al., 2020; Guo 272

et al., 2019; Zhang et al., 2019). In our modifica- 273

tion, RATSQL uses only the BERT encoder instead 274

of the three encoders. We believe using three en- 275

coders is one of the main reasons why the base 276

RATSQL performance significantly drops when re- 277

moving EMSL. For the convenience of discussion, 278

we named our modified RATSQL as RATSQLO, 279

where O means one encoder. 280

RATSQLO uses only one encoder whose struc- 281

ture and size are the same as the original question 282

encoder. For the schema item representation, RAT- 283

SQL takes the hidden state after all the words of the 284

entire schema item are encoded, while RATSQLO 285

takes the average of all word encodings. The advan- 286

tage of the RATSQLO is that v6, v8, and v2 initially 287

have a certain similarity, which benefits the schema 288

linking in both single and multi words. Besides, 289

RATSQLO deal with words outside the GLOVE vo- 290

cabulary better than RATSQL. Supposing that the 291

word concert and stadium are outside the GLOVE 292

vocabulary, the v7 and v9 output from RATSQL ta- 293

ble encoder will be the same since their inputs are 294

the same UNK vector. However, the RATSQLO en- 295

coder (BiLSTM) output different vectors for v7 and 296

v9 because the contents before and after the word 297
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concert and stadium are different. In this way, even298

if there are multiple UNK words, the RATSQLO299

encoding vector will be different.300

4 Experiment301

4.1 Generating Typos302

To evaluate robustness against typos, we randomly303

insert a letter into the correct schema annotation304

word. (This is enough to break EMSL, so we do305

not also modify the question words). We generated306

three typo development sets, named Spider-T1 to307

Spider-T3. The typos in Spider-T1 are generated by308

randomly inserting a letter at any position except309

the end. In contrast, Spider-T2 appends a random310

letter at the end of the schema annotation words.311

We examine these separately: the BERT tokenizer312

may be able to split Spider-T2 typos into a correct313

word and a suffix, but is less likely to split the314

Spider-T1 typos well. We convert every schema315

annotation word in Spider-T1 and T2 to typos when316

word length is greater than five letters; typos are317

generally more likely to occur in longer words, and318

words with more than five letters account for about319

40% of the dataset. Spider-T3 is then the same320

as Spider-T1, but only converts the most frequent321

schema item words to typos. While Spider-T1 and322

T2 simulate the impact of large numbers of typos323

in extreme cases, Spider-T3 evaluates the impact324

of a more realistic, smaller number of typos. Other325

typos are possible, e.g. by deleting and swapping326

letters; we discuss these in Appendix B.327

4.2 Experimental Setup328

We evaluate the previous state-of-the-art models329

on Spider (Yu et al., 2018b), Spider-T, and Spider-330

Syn (Gan et al., 2021) datasets. All experiments331

were performed on a machine with an Intel i5 9600332

3.1GHz processor and a 24GB RTX3090 GPU.333

Since the Spider test set is not publicly accessi-334

ble and Spider-Syn and Spider-T do not contain335

test sets, our evaluation is based on the develop-336

ment sets. The Spider-Syn benchmark contains337

three development sets: Spider-Syn, ADVBERT,338

and ADVGLOVE, for evaluating model robustness339

against synonym substitution. Therefore, we have340

the following evaluation sets:341

• Spider: The original Spider development set342

with 1,034 examples.343

• Spider-T1, T2 and T3: Three typo develop-344

ment sets with 1,034 examples respectively, dis-345

cussed in Section 4.1.346

• Spider-Syn: The human-curated development 347

set built upon Spider, for evaluating synonym 348

substitution in real-world question paraphrases. 349

• ADVBERT: The set of adversarial examples gen- 350

erated by BERT-Attack (Li et al., 2020). 351

• ADVGLOVE: The set of adversarial examples 352

generated using the nearest GLOVE word vector 353

(Pennington et al., 2014; Mrkšić et al., 2016). 354

Our evaluation is based on the exact match met- 355

ric defined in the original Spider benchmark. This 356

metric measures whether the syntax tree of the pre- 357

dicted query without condition values is the same 358

as that of the gold query. Our experiment setting 359

is consistent with the ablation study in Section 3.1. 360

Following the case study in Section 3, we evaluate 361

different variants of the RATSQL model: 362

• RATSQL: The base RATSQL+GLOVE model 363

trained on Spider using EMSL in training and 364

evaluation (Wang et al., 2020). 365

• RATSQLO: Our modified RATSQL+GLOVE 366

model trained on Spider using EMSL in training 367

and evaluation, discussed in Section 3.3. 368

• RATSQLB: The RATSQL+BERT model trained 369

on Spider using EMSL in training and evalua- 370

tion. (Note that RATSQLO+BERT is just RAT- 371

SQL+BERT: using BERT means that the BERT 372

encoder will replace all encoders in Figure 2). 373

• RATSQLBS: RATSQL+BERT trained on 374

Spider-Syn using EMSL (Gan et al., 2021). 375

• RATSQLG: RATSQL+GAP trained on Spider 376

using EMSL (Shi et al., 2021). 377

• w/o EMSL: Models do not use EMSL in training 378

and evaluation, consistent with Tables 1 and 2. 379

• ManualMAS (Gan et al., 2021): Schema anno- 380

tations include synonyms used in Spider-Syn. 381

• AutoMAS (Gan et al., 2021): Schema annota- 382

tions include synonyms generated according to 383

the nearest GLOVE word vector. 384

4.3 Evaluation on Spider 385

Table 4 presents the exact matching accuracy of 386

models trained on the Spider training set. It is 387

clear that our RATSQLO significantly improves 388

the without-EMSL performance. Tables 4 and 2 389

illustrate that the EMSL can be replaced by better 390

encoding. The performance of RATSQL is slightly 391

better than that of RATSQLO, because Guo et al. 392

(2019) conducted 100 time hyperparameter search 393

to optimize the RATSQL while we did not do that. 394

Therefore, when we modify the model structure, it 395

may cause a slight performance degradation. 396
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Number of errors Number of example with errors
Approach Multi words Single word UNK word Multi words Single word UNK word
RATSQL 118 57 13 112 (10.8%) 54 (5.2%) 12 (1.2%)
RATSQL w/o EMSL 178 107 33 170 (16.4%) 93 (9.0%) 30 (2.9%)
RATSQLO 136 51 11 125 (12.1%) 50 (4.8%) 11 (1.1%)
RATSQLO w/o EMSL 152 63 15 141 (13.6%) 59 (5.7%) 14 (1.4%)
RATSQLB 55 38 - 53 (5.1%) 37 (3.6%) -
RATSQLB w/o EMSL 65 34 - 65 (6.3%) 34 (3.3%) -

Table 3: Statistics of the types of error column predictions of different models evaluated on the Spider development
set (the larger the number, the worse).

Model Spider
RATSQL 62.7%
RATSQL w/o EMSL 51.9%
RATSQLO 62.2%
RATSQLO w/o EMSL 58.4%

Table 4: Accuracy of two RATSQL models ablations on
the development set.

Error Analysis Table 3 presents the error type397

statistics in the error column prediction. We count398

the prediction errors of single words, multiple399

words, and words outside the GLOVE vocabulary400

(UNK word) when the predicted SQL structure is401

correct. As BERT does not share GLOVE’s vocab-402

ulary limitations, the UNK entry for RATSQLB403

is empty. Random initialization means that model404

results after each training may vary slightly, so we405

only focus on the more salient features.406

Although the results of RATSQL and RATSQLO407

are similar, RATSQLO consistently outperforms408

RATSQL in three error types when EMSL is re-409

moved; this supports the view we discuss in Sec-410

tion 3.3. More importantly, the single-word per-411

formance of RATSQLO without EMSL is close412

to that of RATSQL and RATSQLO. As discussed413

in Section 3.2, the representation ability on multi-414

word of GLOVE is worse than that of BERT. The415

results support this view where the performance of416

RATSQLO and RATSQL on multi-word is worse417

than that on single-word. When replacing the418

GLOVE with BERT, due to the improvement of its419

multi-word representation ability, the performance420

of RATSQLB with and without EMSL are close in421

single and multiple words. From the right side of422

Table 3, it can also be found that the BERT brings423

around 5% absolute improvement on multi-word,424

while that on single-word is only 2%.425

4.4 Robustness Evaluation 426

Typo Results Table 5 presents the robustness 427

evaluation results on several datasets. For typos, 428

GLOVE will treat them as UNK words, so the 429

RATSQL and RATSQLO cannot obtain good per- 430

formance on Spider-T1 and T2 due to too many 431

UNK words. The RATSQLO without EMSL sig- 432

nificantly outperforms the RATSQL without EMSL 433

in Spider-T3, which is another evidence that the 434

RATSQLO is better in handling UNK words. After 435

using PLMs, the performance on typos has been 436

significantly improved, especially on Spider-T2. 437

Spider-T3 contains only a few typos, i.e., it is close 438

to the Spider to some extent. Thus, the T3 result 439

characteristics are close to Spider, i.e., their per- 440

formance gap between with and without EMSL is 441

close. With the increase of typos, the performance 442

gap will be expanded, where the model+PLM with- 443

out EMSL will be better. 444

Synonym Substitution Results Gan et al. (2021) 445

propose three development sets for evaluating the 446

robustness of text-to-SQL models against synonym 447

substitution, including: Spider-Syn, ADVBERT, 448

and ADVGLOVE. Table 5 shows that mod- 449

els without EMSL consistently outperform those 450

with EMSL when evaluated against Spider-Syn, 451

ADVGLOVE and ADVBERT. When using PLMs, 452

RATSQLB and RATSQLG without EMSL show 453

a huge performance improvement on these three 454

development sets with only a tiny performance 455

loss on Spider. RATSQLO without EMSL consis- 456

tently outperforms RATSQL without EMSL, which 457

means a reasonable design can reduce reliance on 458

EMSL. Unlike other models, the RATSQLBS with- 459

out EMSL outperforms that with EMSL in all eval- 460

uation sets. We discuss this in Section 4.5. 461

MAS Results Gan et al. (2021) also propose a 462

MAS method to improve the robustness of text-to- 463

SQL models. MAS provides multiple annotations 464
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Approach Spider Spider-T1 Spider-T2 Spider-T3 Spider-Syn ADVGLOVE ADVBERT

RATSQL 62.9% 23.9% 26.4% 51.2% 33.9% 30.9% 37.1%
RATSQL w/o EMSL 51.9% 20.8% 21.7% 44.1% 39.1% 38.1% 40.9%
RATSQLO 62.2% 22.8% 25.7% 51.6% 32.1% 32.7% 36.3%
RATSQLO w/o EMSL 58.4% 20.8% 23.3% 51.5% 42.6% 38.6% 43.8%
RATSQLB 69.7% 30.9% 54.8% 63.2% 48.2% 38.0% 48.8%
RATSQLB w/o EMSL 69.3% 32.3% 66.2% 63.0% 52.7% 45.4% 54.3%
RATSQLBS 68.1% 33.6% 58.1% 62.7% 58.0% 47.7% 55.7%
RATSQLBS w/o EMSL 69.7% 38.1% 66.4% 65.0% 60.4% 51.0% 58.8%
RATSQLG 71.8% 48.1% 64.6% 68.0% 54.6% 46.6% 54.8%
RATSQLG w/o EMSL 71.7% 53.4% 67.6% 68.6% 58.7% 49.4% 57.3%

Table 5: Exact match accuracy on original (Spider), typos (Spider-T1 to T3), and synonym substitution (Spider-Syn,
ADVGLOVE, and ADVBERT) development sets.

Approach Spider Spider-Syn ADVGLOVE ADVBERT

RATSQLB + ManualMAS 67.4% 62.6% 34.2% 44.5%
RATSQLB + ManualMAS w/o EMSL 68.6% 58.9% 43.6% 53.1%
RATSQLB + AutoMAS 68.7% 56.0% 61.2% 52.5%
RATSQLB + AutoMAS w/o EMSL 68.9% 55.3% 62.1% 54.7%
RATSQLBS + ManualMAS 65.6% 59.5% 46.9% 51.7%
RATSQLBS + ManualMAS w/o EMSL 68.7% 61.7% 50.3% 58.8%
RATSQLBS + AutoMAS 66.8% 57.5% 61.0% 55.7%
RATSQLBS + AutoMAS w/o EMSL 69.2% 59.4% 63.2% 59.0%

Table 6: Evaluation on the combination of MAS with RATSQLB and RATSQLBS respectively.

to repair the breaking of EMSL due to synonym465

substitutions. Although we advocate not relying on466

EMSL, MAS can still improve the performance of467

models without EMSL, as shown in Table 6. Com-468

paring the data in Table 5 and Table 6, Manual-469

MAS improves the performance of RATSQLB and470

RATSQLBS with and without EMSL on Spider-471

Syn development set since the ManualMAS pro-472

vide synonym annotations appearing in the Spider-473

Syn. In the same way, AutoMAS has also improved474

their performance on ADVGLOVE. Experimental475

results show that although MAS is designed to re-476

pair EMSL, it is still effective for models without477

EMSL. Besides, based on MAS, the overall per-478

formance of the model without EMSL is still bet-479

ter than that with EMSL. In general, even though480

EMSL is not used, a reasonable annotation is still481

essential to the text-to-SQL problem.482

4.5 Discussion483

The text-to-SQL model can quickly locate the cor-484

rect schema items through EMSL, but this ad-485

vantage will cause the models to not work prop-486

erly when EMSL fails. To better understand487

the impact of EMSL on text-to-SQL models, we488

present the question-table attention 4 extracted 489

from RATSQLB with and without EMSL in Fig- 490

ure 3. In the first example, we can see that the align- 491

ment score between table singer and question word 492

singer is the biggest, while we can not observe a 493

clear connection between other tables and question 494

word singer. However, when removing the EMSL 495

in the second example, the alignment score be- 496

tween table singer and question word singer drop 497

clearly, and the connection between other tables 498

and question word singer becomes clear. It can be 499

seen that under other conditions unchanged, only 500

removing EMSL has a considerable impact on the 501

model trained with EMSL. 502

The third example is extracted from RATSQLB 503

without EMSL. Different from the RATSQLB with 504

EMSL, the singer table has a high alignment score 505

not only with the word singer but also with the 506

whole sentence. Since the loss function only cal- 507

culates whether the output schema items are cor- 508

rect, the model does not care which question word 509

the correct schema item is linked to. Therefore, 510

the attention of the RATSQLB without EMSL is 511

4It is named m2t_align_mat in the code: https:
//github.com/microsoft/rat-sql/blob/master/
ratsql/models/spider/spider_enc_modules.py
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Ex 2: RATSQL+BERT, trained with EMSL, run without EMSL:

Ex 1: RATSQL+BERT, trained with EMSL, run with EMSL:

Ex 3: RATSQL+BERT, trained without EMSL, run without EMSL:

Figure 3: Examples of the question-table attention. The
darker the color, the greater the attention score. The
first two examples are extracted from RATSQLB , while
the last one is from RATSQLB without EMSL. Each
attention subgraph represents the attention between only
one table schema and other words.

quite different from that with EMSL. The signifi-512

cant difference of the trained models may be one513

of the reasons why the overall performance of514

RATSQLBS without EMSL is better than that with515

EMSL. Because the training data in RATSQLBS516

contain many synonym substitution examples, and517

these examples do not have EMSL features, it re-518

quires the model to find a balance between states519

shown in examples 1 and 3 of Figure 3, which520

increases the difficulty of training.521

5 Related Work522

Schema Linking According to the review (Gan523

et al., 2020), schema linking is widely used in524

recent text-to-SQL models. In addition to dis-525

cussing schema linking in the paper as part of the526

model (Guo et al., 2019; Bogin et al., 2019; Wang527

et al., 2020; Chen et al., 2020; Cao et al., 2021),528

some works focus on the schema linking. Lei et al.529

(2020) demonstrate that more accurate schema link-530

ing conclusively leads to better text-to-SQL parsing531

performance. To support further schema linking532

studies, Lei et al. (2020) and Taniguchi et al. (2021)533

invest human resources to annotate schema linking534

corpus, respectively. Guo et al. (2019) and Wang535

et al. (2020) conducted an ablation study on EMSL,536

respectively, and the results show that removing the537

EMSL would lead to the greatest decrease in model538

performance. These studies have influenced many539

follow-up works to use EMSL (Cai et al., 2021; Xu540

et al., 2021; Lei et al., 2020; Yu et al., 2021; Shi 541

et al., 2021). Our work found that once the model 542

uses EMSL, it seems to become reliant on it and 543

found that PLM can replace EMSL and make the 544

model more robust. 545

Robustness of Text-to-SQL Existing works on 546

improving the robustness of the text-to-SQL model 547

are mainly through adversarial training, data aug- 548

mentation, and repairing EMSL. Xiong and Sun 549

(2019) and Radhakrishnan et al. (2020) propose 550

data augmentation techniques for improving the 551

generalization in cross-domain text-to-SQL and in 552

search-style questions resepctivly. However, these 553

approaches only supports SQL queries executed on 554

a single table, e.g., WikiSQL. Zeng et al. (2020) 555

introduce a SpiderUTran dataset that includes orig- 556

inal Spider (Yu et al., 2018b) examples and some 557

untranslatable questions examples. SpiderUTran 558

can be used to evaluate whether the text-to-SQL 559

model can distinguish the untranslatable NL ques- 560

tion. Huang et al. (2021) provide the empirical 561

study on the robustness of semantic parsers in the 562

presence of adversarial attacks, but this work fo- 563

cuses on single-domain. Gan et al. (2021) investi- 564

gate the robustness against synonym substitution 565

for cross-domain text-to-SQL translation and found 566

that synonym substitution would break the EMSL 567

leading a significant drop in performance. To solve 568

this problem, Gan et al. (2021) proposed the MAS 569

method to repair the broken EMSL. Following 570

(Gan et al., 2021), our work found that the EMSL 571

can be replaced by better encoding, and models 572

without EMSL has better generalization ability. 573

6 Conclusion 574

In this work, we demonstrate that with the presence 575

of pretrained language models, EMSL is no longer 576

a necessary building block to ensure a high perfor- 577

mance on text-to-SQL benchmarks. Specifically, 578

we evaluate the robustness of text-to-SQL models 579

with and without EMSL against synonym substi- 580

tution and typos. We observe that when EMSL is 581

used, models become overly reliant on it, making 582

them vulnerable to attacks that break the exact- 583

match assumptions of EMSL. On the other hand, 584

models without EMSL are more robust than those 585

with EMSL, and the use of pretrained language 586

models further show that they can replace the role 587

of EMSL without compromising the performance 588

on clean data. Therefore, we argue for the use of 589

PLMs instead of EMSL for text-to-SQL tasks. 590
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A Visual Example of BERT Head 795

Unlike GLOVE, which gives static word vectors, 796

BERT based on the attention mechanism makes 797

adjacent word vectors in a sentence have a certain 798

similarity. Figure 4, generated by the bertviz (Vig, 799

2019), presents the BERT head view of attention 800

patterns in the one transformer layer where the 801

word bandmate clearly links to the word id. 802

B More Typos 803

Besides generating typos by inserting a letter, we 804

also generate typos by deleting a letter and swap- 805

ping the letter position, named the generated devel- 806

opment set Spider-T4 and Spider-T5, respectively. 807

Like Spider-T1 and T2, here we only convert the 808

words whose length is greater than five letters to ty- 809

pos. Table 7 presents the exact match accuracy on 810

Spider-T4 and Spider-T5 development sets. Since 811

PLM handles typos in Spider-T4 and T5 similar to 812

Spider-T1, their evaluation results are also similar. 813
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Figure 4: The BERT head view of attention patterns of
word bandmate and id in the one transformer layer.

Approach Spider-T4 Spider-T5
RATSQL 29.0% 28.6%
RATSQL w/o EMSL 32.8% 30.1%
RATSQLO 27.6% 26.5%
RATSQLO w/o EMSL 34.5% 31.2%
RATSQLB 34.9% 32.6%
RATSQLB w/o EMSL 38.8% 35.0%
RATSQLBS 35.6% 32.6%
RATSQLBS w/o EMSL 40.3% 38.2%
RATSQLG 46.7% 46.8%
RATSQLG w/o EMSL 50.6% 50.7%

Table 7: Exact match accuracy on Spider-T4 and Spider-
T5 development sets.

Besides, we observe that the results of models us-814

ing GLOVE in Spider-T4 are the best, followed by815

in T5, then in T2, and finally in T1. To understand816

this phenomenon, we found that although the num-817

ber of generated typos is the same among these818

datasets, Spider-T1 has the most GLOVE UNK819

words, followed by T2, then T5, and T4 contains820

the least UNK words. It can be seen that in the case821

of fewer UNK words, the model+GLOVE can gen-822

erate better encoding so that the model+GLOVE823

without EMSL surpasses that with EMSL in Spider-824

T4 and T5.825
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