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ABSTRACT

Existing medical reasoning benchmarks for vision-language models primarily focus
on analyzing a patient’s condition based on an image from a single visit. However,
this setting deviates significantly from real-world clinical practice, where doctors
typically refer to a patient’s historical conditions to provide a comprehensive
assessment by tracking their changes over time. In this paper, we introduce
TEMMED-BENCH, a multi-task benchmark designed for analyzing changes in
patients’ conditions between different clinical visits, which challenges large vision-
language models (LVLMs) to reason over temporal medical images. TEMMED-
BENCH consists of a test set comprising three tasks – visual question-answering
(VQA), report generation, and image-pair selection – and a supplementary
knowledge corpus of over 17,000 instances. With TEMMED-BENCH, we conduct
an evaluation of twelve LVLMs, comprising six proprietary and six open-source
models. Our results show that most LVLMs lack the ability to analyze patients’
condition changes over temporal medical images, and a large proportion perform
only at a random-guessing level in the closed-book setting. In contrast, GPT o3,
o4-mini and Claude 3.5 Sonnet demonstrate comparatively decent performance,
though they have yet to reach the desired level. To enhance the tracking of
condition changes, we explore augmenting the input with both retrieved visual and
textual modalities in the medical domain. We also show that multi-modal retrieval
augmentation yields notably higher performance gains than no retrieval and textual
retrieval alone across most models on our benchmark, with the VQA task showing
an average improvement of 2.59%. Overall, we compose a benchmark grounded
on real-world clinical practice, and it reveals LVLMs’ limitations in temporal
medical image reasoning, as well as highlighting the use of multi-modal retrieval
augmentation as a potentially promising direction worth exploring to address this
challenge.

Current ConditionHistorical Condition

Is my [condition] improving over time?

Yes!

Same Patient

Current Condition

What’s the patient’s condition? How does the patient’s condition change?

Sorry, I’m not sure.

Reasoning
75

50

75.8

51.6

24.2

LLaVA-Med

VQA Accuracy

GPT 4.1

57.9

71.2

13.3

Performance ComparisonBenchmark Comparison

Figure 1: An example from TEMMED-BENCH. Previous benchmarks (Johnson et al., 2019; Hu
et al., 2024) mainly focused on analyzing a single-visit image. However, real-world clinical practice
requires doctors to monitor changes in patients’ conditions over time. The previous benchmark in the
rightmost chart is a VQA variant (Xia et al., 2025) of the MIMIC-CXR dataset (Johnson et al., 2019).
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Benchmarks Task Historical
Conditions

Multi-Image
Input

VQA-RAD (Lau et al., 2018) VQA ✗ ✗
SLAKE (Liu et al., 2021) VQA ✗ ✗
PathVQA (He et al., 2020) VQA ✗ ✗
PMC-VQA (Zhang et al., 2024) VQA ✗ ✗
PubMedVision (Chen et al., 2024) VQA ✗ ✗
OmniMedVQA (Hu et al., 2024) VQA ✗ ✗
Harvard-FairVLMed (Luo et al., 2024) Report ✗ ✗
IU-Xray (Demner-Fushman et al., 2015) Report ✗ ✗
CheXpert Plus (Chambon et al., 2024) Report ✗ ✗
MIMIC-CXR (Johnson et al., 2019) VQA + Report ✗ ✗

TEMMED-BENCH (Ours) VQA+Report+Image-pair ✓ ✓

Table 1: Comparison with previous works. TEMMED-BENCH focuses on evaluating LVLMs in
temporal reasoning over multiple medical images. VQA: visual question answering; Report: report
generation; Image-pair: image-pair selection.

1 INTRODUCTION

With the recent developments in Large Vision-Language Models (LVLMs), Medical LVLMs (Med-
LVLMs) have shown promise for diagnostic tasks such as disease detection, therapeutic planning, and
clinical guidance (Li et al., 2023; Chen et al., 2024; Lin et al., 2025). When evaluating Med-LVLMs,
prior benchmarks have suffered from limited modality diversity (Lau et al., 2018; Liu et al., 2021; He
et al., 2020), small scale (Lau et al., 2018; Liu et al., 2021; He et al., 2020; Demner-Fushman et al.,
2015), and restricted task formats (Zhang et al., 2024; Luo et al., 2024). Although some efforts have
mitigated these issues (Hu et al., 2024; Johnson et al., 2019; Chambon et al., 2024), these benchmarks
still share a common limitation: they analyze a patient’s condition based on a single-visit image.
We argue that this limitation prevents the evaluation of Med-LVLMs from capturing real-world
clinical practice, where doctors rely on patients’ medical histories to comprehensively assess current
conditions and track changes over time, as illustrated in Figure 1. This real-world scenario challenges
Med-LVLMs to possess strong reasoning abilities over temporal medical images. Regarding this
point, some of the most recent works have begun to address it (Yu et al., 2025; Mu et al., 2025; Yang
et al., 2025), but they either adopt data sources that have not undergone reliable verification (Yu et al.,
2025) or suffer from limitations in the comprehensiveness of their task design and evaluation (Mu
et al., 2025; Yang et al., 2025).

We introduce TEMMED-BENCH, the first multi-task benchmark that focuses on comprehensively
evaluating the ability of LVLMs to perform temporal reasoning on medical images in both closed-
book and open-book settings. Specifically, each sample in TEMMED-BENCH contains images from
two different clinical visits of the same patient, requiring the model to analyze the changes in the
patient’s condition over time. As summarized in Table 1, TEMMED-BENCH features three primary
highlights. (1) Temporal reasoning focus: Each sample in TEMMED-BENCH includes historical
condition information, which challenges models to analyze changes in patient conditions over time.
(2) Multi-image input: Each sample in TEMMED-BENCH contains multiple images from different
visits as input, emphasizing the need for models to process and reason over multiple images. (3)
Diverse task suite: TEMMED-BENCH comprises three tasks, including VQA, report generation, and
image-pair selection. Additionally, TEMMED-BENCH includes a knowledge corpus with more than
17,000 instances to support retrieval-augmented generation (RAG), each comprising two images and
one corresponding report of condition changes.

We conducted extensive experiments on TEMMED-BENCH to evaluate six proprietary and six open-
source LVLMs. In addition to closed-book evaluation, we also benchmark whether and how LVLMs
benefit from retrieval augmentation on TEMMED-BENCH. Beyond augmenting the input with
retrieved textual information (Tao et al., 2024; Kumar & Marttinen, 2025; Sun et al., 2025; Xia
et al., 2024; 2025), we further explore augmenting the input with both retrieved visual and textual
modalities in the medical domain, which remains unexplored.
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For the closed-book evaluation, experimental results show that most LVLMs lack the ability to analyze
changes in patients’ conditions across temporal medical images. In the VQA task, GPT-4o-mini and
Claude 3.5 Sonnet achieved accuracies of 79.15% and 69.90%, respectively, while most LVLMs
scored below 60%. For the more challenging tasks of report generation and image-pair selection, all
LVLMs underperformed, with the highest average BLEU, ROUGE-L, and METEOR score at 20.67
for report generation and a top accuracy of 39.33% for image-pair selection in a three-option setting.
These results reveal a fundamental gap in current LVLM training, i.e., lack of focus on temporal
image reasoning.

For the retrieval augmentation evaluation, experimental results demonstrate that augmenting input
with both visual and textual information substantially boosts performance for most models compared
to text-only augmentation. Notably, HealthGPT (Lin et al., 2025) exhibits an accuracy improvement
of over 10% in the VQA task when augmented with multi-modal retrieved information. These results
confirm that multi-modal retrieval augmentation provides more relevant medical information by
retrieving images with similar conditions, highlighting its potential for input augmentation in the
medical domain. In addition, we found that while previous benchmarks emphasize pattern recognition
and matching for a single-visit image, which can be easily hacked by directly taking top-1 retrieved
result as the answer, TEMMED-BENCH is more robust to it due to its reasoning attribute. Further
discussion can be found in Appendix C.1.

The main contributions of this paper are as follows: (1) We propose TEMMED-BENCH, the first multi-
task benchmark that focuses on comprehensively evaluating the temporal reasoning ability of LVLMs
in both closed-book and open-book settings. (2) Comprehensive evaluation of mainstream LVLMs
on the three tasks in our benchmark reveals their limitations in temporal reasoning over medical
images. (3) We explore multi-modal RAG for the medical domain, and highlight the effectiveness of
retrieving multi-modal information to boost the performance of Med-LVLMs.

2 TEMMED-BENCH

2.1 BENCHMARK OVERVIEW

Statistic (#) Questions Images Choice

VQA 2,000 2 2
Report 1,000 2 -
Image-pair 862 6 3

Corpus 17,144 2 -

Table 2: Key statistics of TEMMED-BENCH.
VQA: visual question answering; Report: report
generation; Image-pair: image-pair selection.
Corpus: knowledge corpus.

The key statistics of TEMMED-BENCH are shown
in Table 2. TEMMED-BENCH consists of a test set
and a knowledge corpus. The test set comprises
three tasks: visual question answering (VQA),
report generation, and image-pair selection. The
formulations of these tasks are as follows:

VQA: An LVLM M takes a historical image ih,
a current image ic, and a textual question q
describing the condition change as input, and is
required to output a binary answer of "yes" or "no".

Report Generation: M takes ih, ic, and a textual
task instruction qinst as input, and is required to
output a report that analyzes the changes in condition between these two images.

Image-pair Selection: M is given three image pairs – IA ([ih1, ic1]), IB ([ih2, ic2]), and IC ([ih3,
ic3]) – along with a textual question q, and is required to output the choice of A, B, or C that best
matches the medical statement in q.

Besides, each instance in the knowledge corpus follows the format of an image pair (ih, ic) with its
corresponding condition change report t.

2.2 KEY OBSERVATION & RAW DATA COLLECTION

TEMMED-BENCH is built upon a key observation regarding existing medical report generation
datasets: while these datasets typically assign each report to a single visit, some reports actually
include sentences that describe changes in a patient’s condition, rather than just the condition at that
visit. More specifically, consider the following examples. If a sentence contains phrases such as
"mild atelectasis", "moderate atelectasis", or "severe atelectasis", where the adjectives quantitatively
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Question: Has there been an improvement 
in the patient's interstitial edema?

Answer:
1. The right anterior chest wall pacemaker is unchanged in position. 
2. There is interval improved aeration at the right lung base, with 
persistent bibasilar opacities as well as bilateral pleural effusions. 
3. There is stable mild pulmonary edema.

A. B. C.

Question: Which option best matches the following medical statement: "increased middle lobe consolidation".

Question: Please generate a 
report that analyzes changes 
in the patient's condition.

VQA Report Generation

Answer: Yes

Answer: C

Image-pair Selection

Figure 2: Examples of the three tasks in TEMMED-BENCH. Each question in these tasks is designed
to challenge LVLMs’ ability to analyze condition changes, providing a comprehensive evaluation of
their temporal medical image reasoning ability.

describe the condition, we refer to it as a single-visit description sentence. In contrast, if a sentence
contains phrases such as "persistent atelectasis", "worsening atelectasis", or "atelectasis has improved",
where the adjectives indicate a change in condition, we refer to it as a condition change description
sentence. Obviously, reports with condition change description sentences reflect that the doctor
considered both current and previous conditions, not just information from a single visit.

The raw data for our benchmark are collected from the CheXpert Plus dataset (Chambon et al., 2024).
We first collect reports in which every sentence is a condition change description sentence. For
implementation, we select a set of keywords that are commonly used to describe condition changes,
such as increase, worsen, and stable. We then use regular expressions to identify sentences containing
at least one of these keywords (in any tense) as condition change description sentences. Next, we
collect reports in which every sentence is a condition change description sentence as our target
reports, and retrieve the corresponding frontal view image for each report as the current condition
image. After identifying these target reports, we leverage the patient_report_date_order attribute in
the CheXpert Plus dataset to track the historical visits of the same patient for each report. For each
target report, we consider the most recent prior visit as the most relevant historical reference, and
select the frontal view image from that visit as the historical condition image. In this way, a total of
18,144 instances were collected, each consisting of a pair of images and a report, with each sentence
in the report describing condition changes observed between the images. More details on the data
collection method can be found in Appendix A.1, and further discussion is provided in Appendix C.2.

2.3 TASK DATA COLLECTION

We randomly selected 1,000 instances as the test set and used the remaining instances as the knowledge
corpus. Based on the test set instances, we constructed three tasks: VQA, report generation, and
image-pair selection. Since the raw data has already been formatted for report generation, no
additional processing is required for this task. Examples of the three tasks are shown in Figure 2.

VQA Task Construction As illustrated in § 2.1, our VQA task adopts a binary setting, with "yes"
or "no" as answers. To construct the VQA data, we leverage GPT-4o (OpenAI, 2024) to rephrase
each report into question-answer pairs, following Li et al. (2023); Zhang et al. (2024); Xia et al.
(2024). Specifically, each report is first segmented into individual sentences. Since each sentence
in the reports is a condition change description sentence, it can be rephrased as a question that asks
whether the patient’s condition has changed. Then, all of these sentences are fed into GPT-4o to
create VQA data with "yes" or "no" answers. To balance answer distribution, we prompt GPT-4o to
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generate roughly equal numbers of "yes" and "no" questions. Additionally, each instance is manually
reviewed to ensure that the questions target condition changes and the answers align with the truth in
the report. More details of the construction process and quality control are provided in Appendix A.2.

Image-pair Selection Task Construction Our image-pair selection task adopts a three-option
setting, with "A", "B", or "C" as answers. Unlike conventional multiple-choice question-answering
tasks (Lau et al., 2018; Zhang et al., 2024; Hu et al., 2024), where each question consists of a target
image and several textual options, our image-pair selection task is more vision-centric, with the
options being image pairs, and the model is asked to choose the image pair that best matches a
target medical statement. This task requires the model to analyze three image pairs at a time, which
demands a high level of multi-image processing and reasoning abilities. For the data construction of
this task, we first select a set of keywords that are often used to describe condition changes (KWC),
e.g., persist, improve, and decrease, as well as a set of pathology keywords (KWP ) that frequently
occur in the reports (Chambon et al., 2024), e.g., atelectasis, edema, and effusion. We observe that
most statements describing condition changes in the reports match the following regular expression:

[KWC ](in any tense) + 0 ∼ 4 attributives + [KWP ]

For example, "improving mild cardiogenic edema" and "decrease in left pleural effusion". Using
this regular expression, we can assign multiple condition change statements to each image pair.
Subsequently, for each condition change statement in each image pair, we construct an image-pair
selection sample, where the specific condition change statement serves as the target medical statement
in the question, and the corresponding image pair serves as the correct option. To generate incorrect
options, we randomly sample image pairs with the same pathology but reflect a different condition
change, thereby ensuring that only one option matches the target medical statement. For more details
on the keywords and construction examples, please refer to Appendix A.3.

3 MULTI-MODAL RETRIEVAL AUGMENTATION

3.1 PROBLEM FORMULATION

In the medical domain, medical reports serve as a commonly used knowledge corpus for text-only
retrieval augmentation (Tao et al., 2024; Xia et al., 2024; 2025; Sun et al., 2025). Formally, given
a query tuple Query = (ih, ic, q) composed of a historical image, a current image, and a textual
question, the retriever R retrieves a set of relevant textual medical reports T = [t1, t2, ..., tN ] from a
knowledge corpus C. The LVLM M then takes (Query, T ) as input for answer generation.

In our work, we explore a more challenging yet promising setting of multi-modal retrieval
augmentation. As discussed in § 2, we use the collected image pairs and their condition change
reports as our knowledge corpus. Formally, given a Query, the retriever R returns a set of relevant
medical images and their corresponding reports (Ih, Ic, T ) = [(ih1 , ic1 , t1), (ih2 , ic2 , t2), ...,
(ihN , icN , tN )] from C. M then takes (Query, Ih, Ic, T ) as input and generates the final answer.

3.2 PAIRWISE IMAGE RETRIEVAL

Existing cross-modal retrieval methods typically focus on calculating feature similarity between the
target image and the reports in the knowledge corpus (Tao et al., 2024; Xia et al., 2024; 2025; Sun
et al., 2025). Given an image i and a report t, the similarity score is computed as follows:

Score = Sim(Enci(i),Enct(t)), (1)

where Enci and Enct denote the image and text encoder models, respectively, and Sim denotes
cosine similarity. However, this method does not fit with TEMMED-BENCH, since the reports in
TEMMED-BENCH describe the condition changes between the historical image and the current image.
Therefore, the report feature does not align with a single image, but rather with an image pair.

For retrieval augmentation in TEMMED-BENCH, we aim to retrieve instances whose condition
changes are similar to those of the target images. To retrieve higher-quality data, we propose a
pairwise image retrieval method. Specifically, given a target image pair (ih, ic) and an instance (i∗h,
i∗c , t∗) from the knowledge corpus, the pairwise image similarity score is computed as follows:

Score = Sim(Enci(ih),Enci(i
∗
h)) + Sim(Enci(ic),Enci(i

∗
c)), (2)
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Model Params VQA Report Generation Image Selection
Acc [50] F1 [50] BLEU ROUGE-L METEOR Avg. Acc [33.3]

Open-Source LVLMs

LLaVA-Med * 7B 51.65 35.23 9.85 6.51 7.10 7.82 /

HuatuoGPT-Vision * 7B 53.00 41.65 7.00 6.54 18.30 10.61 33.29

HealthGPT * 14B 46.30 43.49 11.61 9.26 18.70 13.19 33.64

Qwen2.5-VL 7B 59.90 57.60 12.13 10.46 18.34 13.64 33.87

Llama3.2-Vision 11B 45.65 45.48 8.57 7.94 15.77 10.76 33.06

LLaVA-OneVision 7B 63.90 62.12 5.18 6.07 13.10 8.12 32.83

Proprietary LVLMs

Gemini 2.5 Flash / 47.30 47.30 20.23 14.19 22.79 19.07 39.33

Claude 3.5 Sonnet / 69.90 69.49 17.17 14.01 24.91 18.70 33.53

GPT 4o / 51.65 47.16 12.74 12.32 23.46 16.17 32.60

GPT 4.1 / 57.90 57.51 9.81 11.67 22.6 14.69 35.38

GPT o4-mini / 79.15 78.94 20.54 15.75 25.71 20.67 35.03

GPT o3 / 64.40 64.40 16.99 13.71 25.77 18.82 38.05

Table 3: Evaluation results on TEMMED-BENCH in the closed-book setting. Highest and second-
highest scores for each task are highlighted in red and blue , respectively. Models marked with
superscript ∗ indicate medical LVLMs. Square-bracketed subscripts denote random-guess scores.

where the two terms ensure that the historical and current images of the retrieved instance are similar
to their counterparts in the target image pair, respectively, while their joint evaluation ensures that
the condition changes are similar. Then, image pairs with high similarity scores, along with their
corresponding reports, are used as the retrieved instances.

In contrast to the VQA and report generation tasks, the implementation of retrieval augmentation
for the image-pair selection task requires some special handling. For more details, please refer to
Appendix B.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate 12 popular LVLMs on TEMMED-BENCH, comprising 6 proprietary and 6 open-source
models. Among the open-source models, 3 are medical LVLMs.

• Proprietary models: GPT o3 (OpenAI, 2025b), GPT o4-mini (OpenAI, 2025b), GPT
4.1 (OpenAI, 2025a), GPT 4o (OpenAI, 2024), Claude 3.5 Sonnet (Anthropic, 2024), and
Gemini 2.5 Flash (Google, 2025).

• Open-source models: LLaVA-Med (7B) (Li et al., 2023), HuatuoGPT-Vision (7B) (Chen et al.,
2024), HealthGPT (14B) (Lin et al., 2025), Qwen2.5-VL (7B) (Team, 2025), Llama3.2-Vision
(11B) (Meta AI, 2024), and LLaVA-OneVision (7B) (Li et al., 2024).

Evaluation Setup For VQA, we use accuracy and F1 score as metrics. For report generation,
following Jing et al. (2018) and Xia et al. (2025), we use BLEU (Papineni et al., 2002), ROUGE-
L (Lin, 2004), and METEOR (Banerjee & Lavie, 2005). For image-pair selection, accuracy is used.
Detailed evaluation prompts for closed-book and RAG scenarios can be found in Appendix B.1.

4.2 MAIN RESULTS

The evaluation results in the closed-book setting are shown in Table 3. Our TEMMED-BENCH clearly
reveals the limitations of current LVLMs in temporal medical image reasoning. Most LVLMs perform
at around the random guess level in the VQA and image-pair selection tasks, and achieve relatively
low average scores in the report generation task. Moreover, the results highlight several noteworthy
observations which we further discuss below. Additional analysis can be found in Appendix C.3.
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Model VQA Report Generation Image Selection
Acc F1 BLEU ROUGE-L METEOR Avg. Acc

Open-Source LVLMs

LLaVA-Med * 51.65 35.23 9.85 6.51 7.10 7.82 /
+ Text-only RAG 54.45+2.80 41.71+6.48 17.51 13.35 17.76 16.21+8.39 /
+ Multi-Modal RAG 56.00+4.35 44.70+9.47 12.70 10.74 17.16 13.53+5.71 /

HuatuoGPT-Vision * 53.00 41.65 7.00 6.54 18.30 10.61 33.29
+ Text-only RAG 59.50+6.50 52.50+10.85 8.12 7.53 20.63 12.09+1.48 -
+ Multi-Modal RAG 61.75+8.75 56.73+15.08 9.50 9.07 21.81 13.46+2.85 32.02-1.27

HealthGPT * 46.30 43.49 11.61 9.26 18.70 13.19 33.64
+ Text-only RAG 59.05+12.75 57.13+13.64 13.46 10.50 20.68 14.88+1.69 -
+ Multi-Modal RAG 69.90+23.60 68.71+25.22 14.96 11.46 20.42 15.61+2.42 33.53-0.11

Qwen2.5-VL 59.90 57.60 12.13 10.46 18.34 13.64 33.87
+ Text-only RAG 63.15+3.25 60.26+2.66 12.80 12.33 22.12 15.75+2.11 -
+ Multi-Modal RAG 65.35+5.45 63.03+5.43 13.26 12.43 21.69 15.79+2.15 35.15+1.28

Llama3.2-Vision 45.65 45.48 8.57 7.94 15.77 10.76 33.06
+ Text-only RAG 63.05+17.40 58.76+13.28 12.46 10.86 20.13 14.48+3.72 -
+ Multi-Modal RAG 64.10+18.45 60.52+15.04 14.26 12.37 21.45 16.03+5.27 35.15+2.09

LLaVA-OneVision 63.90 62.12 5.18 6.07 13.10 8.12 32.83
+ Text-only RAG 78.25+14.35 78.21+16.09 9.30 9.12 19.81 12.74+4.63 -
+ Multi-Modal RAG 78.65+14.75 78.35+16.23 11.36 10.15 20.27 13.93+5.81 33.64+0.81

Proprietary LVLMs

Gemini 2.5 Flash 47.30 47.30 20.23 14.19 22.79 19.07 39.33
+ Text-only RAG 49.95+2.65 49.20+1.90 22.88 17.27 22.98 21.04+1.97 -
+ Multi-Modal RAG 51.40+4.10 50.54+3.24 23.49 21.48 23.17 22.71+3.64 40.26+0.93

Claude 3.5 Sonnet 69.90 69.49 17.17 14.01 24.91 18.70 33.53
+ Text-only RAG 66.25-3.65 65.50-3.99 20.58 16.73 27.27 21.53+2.83 -
+ Multi-Modal RAG 74.15+4.25 73.95+4.46 22.35 17.83 26.44 22.21+3.51 37.35+3.82

GPT 4o 51.65 47.16 12.74 12.32 23.46 16.17 32.60
+ Text-only RAG 60.10+8.45 59.57+12.41 21.06 17.17 26.74 21.66+5.48 -
+ Multi-Modal RAG 64.85+13.20 64.42+17.26 23.79 19.14 26.80 23.24+7.07 34.69+2.09

GPT 4.1 57.90 57.51 9.81 11.67 22.6 14.69 35.38
+ Text-only RAG 58.50+0.60 58.30+0.79 17.07 15.57 27.48 20.04+5.35 -
+ Multi-Modal RAG 58.60+0.70 58.55+1.04 19.03 16.56 28.07 21.22+6.53 33.87-1.51

GPT o4-mini 79.15 78.94 20.54 15.75 25.71 20.67 35.03
+ Text-only RAG 81.80+2.65 81.78+2.84 24.77 19.42 27.99 24.06+3.39 -
+ Multi-Modal RAG 77.80-1.35 77.69-1.25 24.30 19.06 26.46 23.27+2.61 34.69-0.34

GPT o3 64.40 64.40 16.99 13.71 25.77 18.82 38.05
+ Text-only RAG 66.65+2.25 66.60+2.20 18.89 15.33 26.84 20.35+1.53 -
+ Multi-Modal RAG 65.65+1.25 65.60+1.20 18.72 15.20 27.16 20.44+1.61 39.56+1.51

Table 4: Evaluation results on TEMMED-BENCH with text-only and multi-modal retrieval
augmentation (using top-1 retrieval). The highest and second-highest scores for each model in
each task are highlighted in red and blue , respectively. Relative performance changes compared to
the closed-book setting are shown as subscripts, with red indicating gains and blue indicating drops.

Importance of Reasoning Ability Among these results, the reasoning model GPT o4-mini achieves
outstanding performance. It achieves the highest performance in both VQA and report generation
tasks, with its VQA accuracy surpassing that of the second-highest model by 10%, and also shows
relatively high performance in the image-pair selection task. These results suggest that, for TEMMED-
BENCH, advanced image reasoning is a key capability for effectively addressing these tasks. Given
that changes in medical image features across different visits are often subtle, our findings further
underscore the importance of fine-grained visual reasoning in this context.

Comparison between Proprietary and Open-Source LVLMs By comparing the performance of
proprietary and open-source LVLMs on TEMMED-BENCH, we observed that proprietary LVLMs
consistently achieve the best results across all tasks. Notably, in report generation, all proprietary
LVLMs outperform the best open-source models, likely due to their superior language organization.
For the VQA task, some open-source LVLMs achieve comparable performance to several proprietary
models, with LLaVA-OneVision reaching 63.9% accuracy and Qwen2.5-VL achieving 59.9%.
However, there is still a gap compared to GPT o4-mini and Claude 3.5 Sonnet.

Degradation of Medical LVLMs To our surprise, among open-source models, medical LVLMs do
not show better performance compared to general-domain LVLMs, with the report generation task
and image-pair selection task achieving nearly the same performance on average, and even worse
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Retrieval Method Acc F1

Text-only RAG

Image-to-Text 58.90 56.77
Image-to-Image 58.15 55.95
Pairwise Image 59.05 57.13

Multi-Modal RAG

Image-to-Text 65.75 64.19
Image-to-Image 68.45 67.17
Pairwise Image 69.90 68.71

Table 5: Ablation study. We evaluate the
performance of HealthGPT with different re-
trieval methods, including image-to-text, image-
to-image, and pairwise image retrieval. The
pairwise image retrieval method demonstrates
the best performance among these methods.

Multi-Modal
Text-only

Closed-Book

A
cc

u
ra

cy
 (%

)

HealthGPT

Top-k

Figure 3: Results of top-1 to top-5 retrieval
augmentation HealthGPT. The orange line
indicates multi-modal retrieval augmentation,
while the blue line indicates text-only retrieval
augmentation. The red square shows model
performance without retrieval augmentation.

performance on the VQA task. A similar observation was also reported by Hu et al. (2024). Such
findings reflect the lack of robustness and generalizability of current medical LVLMs, and reveals that
prevailing medical knowledge fine-tuning schemes often erode the broad reasoning abilities inherited
from general-domain pre-training. This underscores the need to develop adaptation frameworks that
preserve general reasoning capabilities while reliably incorporating domain expertise.

4.3 MAIN RESULTS WITH RETRIEVAL-AUGMENTATION

The evaluation results in Table 4 demonstrate that multi-modal retrieval augmentation generally yields
greater performance improvements across most models compared to text-only retrieval augmentation.
Notably, compared to their text-only counterparts, HealthGPT, Claude 3.5 Sonnet, and GPT-4o
demonstrate substantial gains in the multi-modal setting, with increases in VQA accuracy of 10.85%,
7.90%, and 4.75%, and improvements in report generation average score of 0.73, 0.68, and 1.59,
respectively. Additional noteworthy observations are as follows.

Comparison between Open-Source and Proprietary LVLMs with Retrieval Augmentation.
We noticed that open-source LVLMs exhibit a notably high performance gain in the VQA task after
using retrieval augmentation. Specifically, HealthGPT, Llama3.2-Vision and LLaVA-OneVision
show an increase of 23.60%, 18.45%, and 14.75% in VQA accuracy under multi-modal retrieval
augmentation, respectively, compared to the closed-book setting. This makes some open-source
LVLMs perform competitively with proprietary LVLMs in VQA. However, the performance of
open-source LVLMs in the report generation and image-pair selection tasks still lags behind that of
proprietary LVLMs, indicating that proprietary LVLMs still have an advantage in tasks requiring
advanced language organization skills and strong multi-image processing capabilities.

Challenges of Leveraging Retrieved Information in the Image-pair Selection Task Although
most LVLMs exhibit significant performance gains with retrieval augmentation, the improvement is
less pronounced in the image-pair selection task, with several LVLMs even exhibiting a decrease in
performance. We argue that this highlights the unique challenges of leveraging retrieved information
in this specific task. Unlike the other two tasks, which involve only a single target image pair
and require the model merely to compare the retrieved information with that pair to determine
its usefulness, the image-pair selection task involves three target pairs. Consequently, the model
must align the retrieved information with three separate pairs, splitting its attention and reconciling
potentially conflicting cues, which substantially amplifies retrieval noise. The relatively complicated
logic for retrieval augmentation in this setting underscores the need for advanced methods to improve
LVLMs’ ability to utilize retrieved information in such multifaceted scenarios.
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4.4 ANALYSIS OF MULTI-MODAL RETRIEVAL AUGMENTATION

To further investigate the optimal settings for multi-modal retrieval augmentation, we use HealthGPT
on the VQA task as an illustrative case. Additional experiments on proprietary model GPT 4o are
presented in Appendix C.4.

Ablation Study on Retrieval Methods Table 5 presents the ablation studies comparing the
proposed pairwise image retrieval method with conventional image-to-text and image-to-image
retrieval methods. Given a target image pair (ih, ic) and an instance from the knowledge corpus
(i∗h, i∗c , t∗), the image-to-text retrieval computes the similarity score between ic and t∗, whereas
the image-to-image retrieval computes the similarity score between ic and i∗c . Results indicate that
pairwise image retrieval achieved the highest performance, primarily due to two factors. First, for
image-to-text retrieval, the report feature in TEMMED-BENCH does not correspond to a single image,
as the report describes condition changes between two images. Consequently, directly calculating the
feature similarity between the report and a single image introduces bias. Second, image-to-image
retrieval relies solely on the similarity of current-visit images, ensuring similarity in current conditions
between the target and retrieved instances, but does not guarantee similarity in condition changes.
Therefore, in TEMMED-BENCH, only by considering both historical and current images during
retrieval and ensuring similarity in both, can retrieved instances reflect similar condition changes.

Impact of Top-k Retrieval Augmentation To further analyze the impact of varying top-k retrievals
on augmentation performance, we conducted experiments to evaluate the performance of LVLMs
under top-1 to top-5 retrieval augmentation settings, as shown in Figure 3. Notably, multi-modal
retrieval augmentation consistently outperforms text-only retrieval augmentation across top-1 to top-5
settings, further confirming the effectiveness of incorporating multi-modal retrieved information in
enhancing LVLM performance in the medical domain.

5 RELATED WORK

5.1 MEDICAL VISION-LANGUAGE BENCHMARKS

Medical Vision-Language Models (Med-LVLMs) have recently shown great promise in medical
diagnostics, prompting interest in developing more advanced models (Li et al., 2023; Chen et al.,
2024; Lin et al., 2025). For their evaluation, early benchmarks such as VQA-RAD (Lau et al., 2018),
SLAKE (Liu et al., 2021), and PathVQA (He et al., 2020) focused on visual question-answering
(VQA) but are limited by modality diversity and dataset size. More recent efforts (Zhang et al., 2024;
Chen et al., 2024; Hu et al., 2024) have introduced larger VQA datasets with varied modalities. In
addition, some studies (Luo et al., 2024; Bustos et al., 2020; Demner-Fushman et al., 2015; Chambon
et al., 2024; Johnson et al., 2019) have built benchmarks for the report generation task, which present
greater challenges for models in terms of long-form language generation, going beyond simple,
short-sentence responses (Jing et al., 2018; Chen et al., 2020). However, these benchmarks all
focus on analyzing a patient’s condition based on a single-visit image. Some of the most recent
works have begun to focus on LVLMs’ ability to reason over multiple images (Yu et al., 2025; Mu
et al., 2025; Yang et al., 2025), but they either rely on data sources that have not undergone reliable
verification (Yu et al., 2025) or suffer from limitations in the comprehensiveness of their task design
and evaluation (Mu et al., 2025; Yang et al., 2025). In contrast, TEMMED-BENCH provides a more
comprehensive evaluation of LVLMs’ ability to reason over temporal medical images.

5.2 MULTI-MODAL RETRIEVAL AUGMENTATION

Retrieval-Augmented Generation (RAG) has been proposed as an effective approach to address the
inherent limitations of language models (Lewis et al., 2020). In the general domain, multi-modal
knowledge retrieval has been widely studied to enhance generative models (Chen et al., 2022; Liu
et al., 2023; Zhao et al., 2023; Yasunaga et al., 2023; Cui et al., 2024; Sharifymoghaddam et al.,
2025). Recent benchmarks designed to evaluate multi-modal retrieval augmentation (Hu et al., 2025;
Liu et al., 2025) further highlight the value of visual information retrieval for vision-centric tasks.
However, in the medical domain, existing works mainly focus on performing retrieval augmentation
using text-only information (Tao et al., 2024; Kumar & Marttinen, 2025; Sun et al., 2025; Xia
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et al., 2024; 2025). Whether multi-modal retrieval augmentation is useful in this domain remains
unexplored. Our work addresses this gap.

6 CONCLUSION

In this work, we introduce TEMMED-BENCH, a benchmark specifically designed to evaluate LVLMs’
ability to reason over temporal medical images, by letting LVLMs track changes in patients’ conditions
between different clinical visits. We extend our benchmark to three tasks and release a knowledge
corpus with over 17,000 instances. Through the evaluation of six proprietary and six open-source
LVLMs, our findings highlight the limitations of current LVLMs in performing temporal reasoning
with medical images. Furthermore, we investigate and validate the potential of multi-modal retrieval
augmentation in the medical domain, emphasizing the efficacy of leveraging multi-modal information
retrieval to enhance the performance of Med-LVLMs. Our work provides an evaluation that better
reflects real-world clinical practice, guiding Med-LVLM development toward actual clinical needs.

ETHICS STATEMENT

We used LLMs to assist in improving grammar, clarity, and wording in parts of this work. We also
used LLMs to generate data only by perturbing or converting existing text, and all LLM outputs were
human-checked. The models were not used to create new data. Therefore, these uses do not raise
trustworthiness concerns. Apart from the above, all ideas, analyses, and conclusions were developed
solely by the authors.
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A DATA COLLECTION DETAILS

A.1 RAW DATA COLLECTION

For raw data collection, we select a set of keywords commonly used to describe condition changes
and then apply regular expressions to identify sentences that contain at least one of these keywords
(in any tense) as condition change description sentences.

Figure 4: Keywords distribution.

The selected keywords are: ["stable", "unchange", "change", "persist", "increase", "decrease",
"improve", "worsen", "thicken", "thin", "progress", "deteriorate", "reduce", "resolve", "exacerbate"].
The distribution of keywords in the collected instances is shown in Figure 4.

A.2 VQA DATA CONSTRUCTION

Construction Process To construct VQA data, we use GPT-4o to rephrase each sentence in our
selected reports into a question-answer pair. The following is the prompt for this process, with
{ANSWER} set to Yes for half of the data and No for the other half. Table 6 shows an example of
how a report is converted into multiple VQA items.

Prompts for VQA Data Construction

You are a professional medical expert. I will provide you with a sentence from a medical
report. Please generate a question with the answer ’{ANSWER}’ based on the provided
sentence.

The question should focus on the content that indicates a change in the patient’s condition.
The subject of the question should be the medical image or the patient, not the report. Please
include only the question and answer in your response.

Below are the given sentence: {SENTENCES}
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Report:
1. Lines and tubes unchanged. 2. Stable pulmonary edema. 3. Small, slightly decreased
aeration of the right lung. 4. Increased right pleural effusion is possible. 5. Increased
thickening of the left parietal pleura, consistent with increased effusion, possibly loculated.

Sentences:
[sentence 1] Lines and tubes unchanged.

[sentence 2] Stable pulmonary edema.

[sentence 3] Small, slightly decreased aeration of the right lung.

[sentence 4] Increased right pleural effusion is possible.

[sentence 5] Increased thickening of the left parietal pleura, consistent with increased
effusion, possibly loculated.

Question-Answer Pair:
[QA 1]
Q: Were there any changes in the placement of lines and tubes? | A: No.

[QA 2]
Q: Is the pulmonary edema in the patient stable? | A: Yes.

[QA 3]
Q: Has the aeration of the right lung increased? | A: No.

[QA 4]
Q: Has the right pleural effusion decreased? | A: No.

[QA 5]
Q: Have the medical images revealed an increased thickening of the left parietal pleura? |
A: Yes.

Table 6: An example of VQA data construction

Quality Control As our dataset for the VQA task is constructed using AI tools, we perform human
evaluation to ensure its quality. For each question-answer pair, we manually assess whether the
question targets a condition change and whether the answer is consistent with the ground truth
described in the report. We find that nearly all answers are consistent with the report. However,
214 out of 2,000 questions (10.7%) do not target a condition change. We manually correct these
question-answer pairs.

A.3 IMAGE-PAIR SELECTION DATA CONSTRUCTION

For image-pair selection data construction, the keywords for describing condition changes (KWC)
and the pathology keywords (KWP ) are listed in Table 7. The selection of KWP is based on the
frequently occurring pathology labels in the reports (Chambon et al., 2024).

Figure 5 shows an example of how to construct data for the image-pair selection task. We use regular
expressions to associate medical statements with each image pair. The incorrect options are selected
from image pairs with the same pathology but different changes in condition.
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Regular Expression: [KWC ](in any tense) + 0 ∼ 4 attributives + [KWP ]

KWC : ["stable", "unchange", "persist", "increase", "decrease", "improve", "worsen",
"thicken", "thin", "progress", "deteriorate", "reduce", "resolve", "exacerbate"]

KWP : ["atelectasis", "cardiomegaly", "consolidation", "edema", "cardiomediastinum",
"fracture", "lesion", "opacity", "effusion", "pneumonia", "pneumothorax"]

Table 7: Keyword selection for image-pair selection data construction

Figure 5: An example of image-pair selection data construction

B EXPERIMENT SETTING DETAILS

B.1 EVALUATION PROMPTS

The following are the evaluation prompts for TEMMED-BENCH, where <image> denotes the image
placeholder.

Prompts for VQA Task (Closed-book)

Last visit image: <image>

Current visit image: <image>

You are a professional radiologist. You are provided with two X-ray images from the same
patient. The first image is from the last visit, and the second image is from the current visit.

I will ask you a question about the change in condition between the last and current visit
of this patient. Please answer the question based on the two images and choose from the
following two options: [Yes, No]. Please only include your final choice of ’Yes’ or ’No’ in
your response.

Question: {VQA_QUESTION}
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Prompts for VQA Task (Text-only RAG)

You are a professional radiologist. You are provided with a reference X-ray image report:

Report: {RAG_REPORT}

Please learn how to track changes in the patient’s condition based on this example.

Now, you are given two new X-ray images from another patient:

Last visit image: <image>

Current visit image: <image>

The first new image is from the last visit, and the second new image is from the current visit. I
will ask you a question about the change in condition between the last and current visit of this
patient. Note that the diagnostic information from the reference report should not be directly
used for diagnosis but only as a reference for comparison.

Please answer the question based on the two new images and choose from the following two
options: [Yes, No]. Please only include your final choice of ’Yes’ or ’No’ in your response.

Question: {VQA_QUESTION}

Prompts for VQA Task (Multi-Modal RAG)

You are a professional radiologist. You are provided with two reference X-ray images from
the same patient, along with the corresponding report for the current visit image:

Last visit image: <image>

Current visit image: <image>

Report for the current visit image: {RAG_REPORT}

Please learn how to analyze X-ray images and track changes in the patient’s condition based
on this example.

Now, you are given two new X-ray images from another patient:

Last visit image: <image>

Current visit image: <image>

The first new image is from the last visit, and the second new image is from the current visit.
I will ask you a question about the change in condition between the last and current visit of
this patient. Note that the diagnostic information from the reference images and report should
not be directly used for diagnosis but only as a reference for comparison.

Please answer the question based on the two new images and choose from the following two
options: [Yes, No]. Please only include your final choice of ’Yes’ or ’No’ in your response.

Question: {VQA_QUESTION}

Prompts for Report Generation Task (Closed-book)

Last visit image: <image>

Current visit image: <image>

You are a professional radiologist. You are provided with two X-ray images from the same
patient. The first image is from the last visit, and the second image is from the current visit.

Please generate a report for the current visit image. You should consider the last visit image to
analyze the changes in the patient’s condition in your report. Please only include the content
of the report in your response.
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Prompts for Report Generation Task (Text-only RAG)

You are a professional radiologist. You are provided with a reference X-ray image report:

Report: {RAG_REPORT}

Please learn how to track changes in the patient’s condition and generate reports based on this
example.

Now, you are given two new X-ray images from another patient:

Last visit image: <image>

Current visit image: <image>

The first new image is from the last visit, and the second new image is from the current visit.
Please generate a report for the new current visit image. You should consider the new last
visit image to analyze the changes in the patient’s condition in your report.

Note that the diagnostic information from the reference report should not be directly used
for diagnosis but only as a reference for comparison. Please only include the content of the
report in your response.

Prompts for Report Generation Task (Multi-Modal RAG)

You are a professional radiologist. You are provided with two reference X-ray images from
the same patient, along with the corresponding report for the current visit image:

Last visit image: <image>

Current visit image: <image>

Report for the current visit image: {RAG_REPORT}

Please learn how to analyze X-ray images, track changes in the patient’s condition, and
generate reports based on this example.

Now, you are given two new X-ray images from another patient:

Last visit image: <image>

Current visit image: <image>

The first new image is from the last visit, and the second new image is from the current visit.
Please generate a report for the new current visit image. You should consider the new last
visit image to analyze the changes in the patient’s condition in your report.

Note that the diagnostic information from the reference images and report should not be
directly used for diagnosis but only as a reference for comparison. Please only include the
content of the report in your response.
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Prompts for Image-pair Selection Task (Closed-book)

A:

Last visit image: <image>

Current visit image: <image>

B:

Last visit image: <image>

Current visit image: <image>

C:

Last visit image: <image>

Current visit image: <image>

You are a professional radiologist. You are provided with three pairs of X-ray images. Each
pair contains two X-ray images from the same patient. The first image in each pair is from
the last visit, and the second one is from the current visit. Your task is to choose one of the
options, based on the condition change from the last to the current visit, that best matches the
following medical statement: ’{MEDICAL_STATEMENT}’.

Please provide your answer by selecting the corresponding letter from the given choices.
Please provide your final answer in the format: ’My answer is [option]’ at the end of your
response.
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Prompts for Image-pair Selection Task (Multi-Modal RAG)

You are a professional radiologist. You are provided with two reference X-ray images from
the same patient, along with the corresponding report:

Last visit image: <image>

Current visit image: <image>

Report: {RAG_REPORT}

Please learn how to analyze X-ray images and track changes in the patient’s condition based
on this example.

Now, you are provided with three pairs of X-ray images:

A:

Last visit image: <image>

Current visit image: <image>

B:

Last visit image: <image>

Current visit image: <image>

C:

Last visit image: <image>

Current visit image: <image>

Each pair contains two X-ray images from the same patient. The first image in each pair is
from the last visit, and the second one is from the current visit. Your task is to choose one of
the options, based on the condition change from the last to the current visit, that best matches
the following medical statement: ’{MEDICAL_STATEMENT}’.

Please provide your answer by selecting the corresponding letter from the given choices.
Please provide your final answer in the format: ’My answer is [option]’ at the end of your
response.

B.2 RETRIEVAL AUGMENTATION FOR THE IMAGE-PAIR SELECTION TASK

For the image-pair selection task, the input format differs significantly from the other two tasks: there
are three target image-pairs rather than one, and it is unknown which pair is the correct answer. This
setting prevents us from using image features to retrieve instances that match the medical statement
in the question. Therefore, we adopt a text-to-text retrieval approach. Specifically, we represent the
medical statement in the question and each report in the knowledge corpus using their corresponding
TF-IDF embeddings. The relevance score between the medical statement med_s and each report t
is then computed as follows:

Score = Sim(TF-IDF(med_s),TF-IDF(t)), (3)

where TF-IDF denotes TF-IDF embedding function, and Sim denotes cosine similarity. The retrieved
report, along with its corresponding historical image and current image, is then used as a retrieved
instance.

Additionally, We argue that, in the image-pair selection task, text-only retrieval augmentation is
not meaningful. In this setting, there are three target image-pairs, and the retrieved report simply
describes a condition similar to that in the medical statement of the question. Without the images
corresponding to the retrieved report, this report merely restates the information already present in
the medical statement. As a result, the model cannot effectively make use of the retrieved report.
Only when the corresponding images are provided can the model compare each target image-pair
with the retrieved image-pair, thereby making meaningful use of the retrieved report.
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C ADDITIONAL DISCUSSION

C.1 DISCUSSION ON THE TOP-1 RETRIEVAL HACK

Benchmarks Model Report Gerneration

BLEU ROUGE-L METEOR Avg.

IU-Xray MMed-RAG 31.38 25.59 32.43 29.80
Top-1 Retrieval Hack 31.61 26.68 31.79 30.03

MIMIC-CXR MMed-RAG 23.25 12.34 20.47 18.69
Top-1 Retrieval Hack 26.16 19.99 25.28 23.81

TEMMED-BENCH (Ours) HealthGPT (fine-tuned) 25.34 27.45 26.45 26.41
Top-1 Retrieval Hack 24.24 22.11 24.15 23.50

Table 8: Evaluation results of top-1 retrieval hack. For each benchmark, the higher score is highlighted
in red , and the lower score is highlighted in blue .

The evaluation results of the top-1 retrieval hack are shown in Table 8. We report the score for
the top-1 retrieval hack, where the top-1 retrieved report is used directly as the answer. We also
evaluate the performance of the model, which has already been fine-tuned on each benchmark, in the
text-only retrieval augmentation setting. For the IU-Xray (Demner-Fushman et al., 2015) and MIMIC-
CXR (Johnson et al., 2019) benchmarks, we use the RAG-based model MMed-RAG (Xia et al.,
2025), while for TEMMED-BENCH, we fine-tune HealthGPT (Lin et al., 2025) on our knowledge
corpus and use it for experiments.

Experimental results indicate that, on IU-Xray and MIMIC-CXR, simply taking the top-1 retrieved
report as the answer even outperforms the fine-tuned models in the retrieval-augmented setting.
However, TEMMED-BENCH is more robust to this hack. We argue that this is because previous
benchmarks are conducted in a single-visit image analysis setting, which place more emphasis on
pattern recognition and matching. Therefore, the demand for reasoning based on retrieved information
to arrive at the answer is not high. In contrast, TEMMED-BENCH, due to its emphasis on reasoning,
encourages models to leverage the retrieved information to perform reasoning over images, rather
than simply copying or rephrasing the retrieved information, making it more robust to this hack.

C.2 DISCUSSION ON THE DATA COLLECTION

Right Input Random Historical Image Random Current Image
Acc F1 Acc F1 Acc F1

79.15 78.94 59.20-19.95 58.74-20.20 54.15-25.00 53.97-24.97

Table 9: Evaluation results of GPT o4-mini under the random historical image and random current
image settings. Relative performance changes compared to the right input setting are shown as
subscripts, with blue indicating drops.

To ensure the effectiveness of our data collection method, we conduct two additional experiments.
Given the strong performance of GPT o4-mini on the VQA task, we select this setting as our baseline.
Specifically, in the Random Historical Image experiment, we replace the historical image in each
data sample with a random image; in the Random Current Image experiment, we replace the current
image in each data sample with a random image.

As shown in Table 9, experimental results demonstrate that either replacing the historical image or
replacing the current image leads to a significant decrease in performance. The model’s performance
drops to less than 60%, which is close to the level of random guessing. This indicates that both the
collected historical and current images are essential for the model to achieve optimal performance,
suggesting that our data collection method is effective.
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Retrieval Method HealthGPT GPT 4o
Acc F1 Acc F1

Text-only RAG
Image-to-Text 58.90 56.77 57.90 57.46
Image-to-Image 58.15 55.95 60.05 59.54
Pairwise Image 59.05 57.13 60.10 59.57

Multi-Modal RAG
Image-to-Text 65.75 64.19 61.60 61.09
Image-to-Image 68.45 67.17 64.35 63.81
Pairwise Image 69.90 68.71 64.85 64.42

Table 10: Ablation study on GPT 4o and HealthGPT. The pairwise image retrieval method
demonstrates the best performance on both models.
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Figure 6: Results of top-1 to top-5 retrieval augmentation on HealthGPT (left) and GPT 4o (right).
The orange line indicates multi-modal retrieval augmentation, while the blue line indicates text-only
retrieval augmentation. The red square shows model performance without retrieval augmentation.

C.3 DISCUSSION ON MODEL PERFORMANCE

Low F1 Scores of LVLMs in the Closed-Book Setting For the evaluation results shown in Table 3,
We noticed that the F1 score of LLaVA-Med is much lower than 50%, being only 35.23%. This is
because LLaVA-Med tends to consistently output "Yes" when it is unable to answer a question, rather
than randomly guessing between "Yes" and "No". As a result, the model’s output exhibits a highly
imbalanced class distribution, which leads to the low F1 score.

Performance Gains of LVLMs with Retrieval Augmentation Based on the retrieval augmentation
results in Table 4, we noticed that, for the VQA task, the performance gains of some open-source
LVLMs are greater than those of proprietary LVLMs. Take HealthGPT and GPT-4o as examples.
Although HealthGPT performs worse than GPT-4o under the closed-book setting, after adding Multi-
Modal RAG, HealthGPT achieves 69.90% accuracy, even outperforming GPT-4o’s 64.85% accuracy.
We believe that this may be attributable to the limited ability of most LVLMs to analyze condition
changes, whereas proprietary LVLMs tend to rely more on their own knowledge when incorporating
retrieved information.

We evaluated the performance of the models when answering questions based solely on the retrieved
information. More specifically, we prompted the models to answer the questions based only on the
retrieved information without being given target images. We found that when they fully trust the
retrieved information, HealthGPT and GPT-4o achieve 68.40% and 69.55% accuracy, respectively.
These results indicate that GPT-4o refuses to trust the retrieved information for part of the questions
in Multi-Modal RAG experiment, and since its own knowledge is limited in analyzing condition
changes, this reliance on its own knowledge redirects GPT-4o to the wrong answer. In contrast,
HealthGPT tends to rely more on the retrieved knowledge, leading to relatively higher performance.
This observation further underscores the need to enhance LVLMs’ capacity to analyze changes in the
patients’ conditions and to make informed judgments on whether to trust retrieved information or to
rely on their own knowledge.
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C.4 ADDITIONAL ANALYSIS OF MULTI-MODAL RETRIEVAL AUGMENTATION

Ablation Study on Retrieval Methods Table 10 presents ablation studies of different retrieval
methods for two models. The results indicate that pairwise image retrieval achieves the highest
performance on both the proprietary model GPT-4o and the open-source model HealthGPT.

Impact of Top-k Retrieval Augmentation Figure 6 shows the performance of GPT-4o and
HealthGPT across top-1 to top-5 retrieval augmentation settings. For both models, multi-modal
retrieval augmentation consistently outperforms text-only retrieval augmentation. Furthermore, by
comparing the performance improvement from top-1 to top-5, we observe that GPT-4o demonstrates
a significantly higher increase in accuracy (6.6%) compared to HealthGPT (2.37%). These results
suggest that LVLMs with superior multi-image processing capabilities derive greater benefits from
an increased number of retrieved instances, underscoring the importance of enhancing multi-image
processing ability to fully leverage multi-modal retrieved information.

C.5 LONG-TERM DIFFICULTY OF TEMMED-BENCH

Model Params VQA Report Generation Image Selection

Acc [50] F1 [50] BLEU ROUGE-L METEOR Avg. Acc [33.3]

Proprietary LVLMs

Gemini 2.5 Pro / 50.35 49.70 22.42 17.31 27.83 22.52 40.02

Claude Sonnet 4.5 / 66.10 65.90 9.93 11.22 21.64 14.26 33.64

GPT 5.1 / 59.35 59.35 16.03 14.41 28.51 19.65 41.58

Table 11: Additional evaluation on three of the latest SOTA proprietary LVLMs.

To further assess the long-term difficulty of TEMMED-BENCH, we conducted an additional evaluation
on three of the latest SOTA proprietary LVLMs, Gemini 2.5 Pro, Claude Sonnet 4.5, and GPT 5.1,
as shown in Table 11. These results indicate that even the most advanced LVLMs still struggle on
TEMMED-BENCH, confirming that it remains substantially challenging and leaves ample headroom
for future LVLMs.

C.6 DATA CONSTRUCTION AND HUMAN VALIDATION IN TEMMED-BENCH

To clearly discuss the faithfulness and validity of the annotations in our benchmark, we clarify below
how our data construction pipeline is deliberately designed to minimize the need for additional expert
re-labeling, while still maintaining high clinical fidelity.

Report generation task For the report generation task, we directly select radiology reports from
the CheXpert Plus dataset in which every sentence is a condition change description sentence, without
generating new clinical findings. These reports are authored and validated in routine clinical workflow
by radiologists, and our pipeline only selects those in which every sentence describes a change in the
patient’s condition across visits, without modifying their content. Thus, the correctness of the target
reports is inherited from the original dataset, and no extra expert re-annotation is introduced by our
benchmark.

VQA task For the VQA task, we construct QA pairs by rephrasing each condition-change sentence
in the target reports into a binary question whose answer is "yes" or "no". Concretely, we prompt an
LLM to perform a purely syntactic transformation from the original sentence to a question, keeping
the underlying clinical statement unchanged. For example, the sentence "Stable pulmonary edema" is
converted into "Is the pulmonary edema in the patient stable?" with answer "Yes". This operation
does not require any medical knowledge beyond preserving the meaning of the original sentence.
Thanks to this data construction pipeline, human review of the data is quite simple and requires only
very basic medical knowledge, such as familiarity with a limited number of diseases in the dataset.
The human reviewer only needs to ensure that each question indeed targets the described change in
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condition and that the answer is consistent with the corresponding sentence in the original report.
This human review process for the 2,000 VQA examples was carried out over a two-week period by
a single person who had prior knowledge of the diseases covered in the dataset.

Image-pair selection task For the image-pair selection task, we deliberately avoid using LLMs to
interpret reports. Instead, we design regular-expression patterns over a fixed set of change-keywords
and pathology terms, tailored to the highly standardized wording of radiology reports. During
development, we manually reviewed around 100 reports extracted by our patterns and confirmed
that all of them contained the intended target condition change (precision = 100%). This pattern-
based construction gives us a deterministic mapping from the report text to the label, avoiding the
additional uncertainty that LLM-based interpretation would introduce and thereby reducing the need
for radiologist re-verification.

C.7 ROBUSTNESS OF THE REGULAR EXPRESSION-BASED EXTRACTION PROCEDURE

We provide below a clear discussion of the design of our regular-expression-based extraction
procedure and its robustness.

Variability of clinical language in chest X-ray reports Our regular expressions are designed
based on a broad empirical examination of the clinical language used in chest X-ray reports in the
CheXpert dataset. In practice, we found that these reports are written in a highly standardized,
template-like style, with a small and constrained set of adjectives used to describe temporal evolution
(e.g., stable, unchanged, improved, worsened, resolved). Prior work has also documented that
radiology reporting is often highly standardized and relies on a controlled lexicon rather than open-
ended narrative descriptions (Bosmans et al., 2012; Johnson et al., 2019; Yates et al., 2021). This
constrained reporting style makes a compact set of regular expressions an effective and reliable
extraction approach in this specific setting.

High-precision focus of the regular expression design We adopt a regular expression-based
approach primarily to guarantee that the extracted cases indeed contain the target condition changes,
rather than to exhaustively capture all possible cases of that condition. In other words, our design
prioritizes high precision over high recall. During development, we manually reviewed around
100 reports extracted by our patterns and confirmed that all of them contained the intended target
condition change (precision = 100%).

C.8 DATA SPLITTING AND THE POTENTIAL INFLATION OF RAG GAINS

In TEMMED-BENCH, the data split is performed at the instance level. As a result, cases from the
same patient may appear in both the test set and the knowledge corpus. We would like to note that, in
real-world clinical practice, it is reasonable to include records from other visits of the same patient
in the retrieval pool, and it is often desirable to retrieve a patient’s other visits to help interpret the
current condition. Our benchmark design intentionally follows this realistic medical RAG scenario.

One concern about this split method is that, if patient overlap exists between the test set and the
knowledge corpus, there might be near-duplicate visits from the same patient and the RAG gains
might be inflated. To directly address this concern about possible inflation, we conducted additional
analyses and ablations.

1. How often does same-patient retrieval occur?
In the VQA test set (2,000 cases), we find that only 185 cases (9̃.2%) have a top-1 retrieved instance
from the same patient as the target case.

2. What happens if we forbid same-patient retrieval?
We re-evaluated two representative models, HealthGPT and GPT-4o, by excluding all same-patient
instances from the retrieval pool. The results are shown in Table 12.

The absolute changes for HealthGPT are around 0.3% in accuracy and 0.7% in F1. GPT-4o shows the
same trend, with even smaller differences when instances from the same patient are excluded. These
results indicate that allowing same-patient data in the retrieval pool does not materially inflate the
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Retrieval Setting
HealthGPT GPT 4o

Text-only RAG Multi-Modal RAG Text-only RAG Multi-Modal RAG

Acc / F1 Acc / F1 Acc / F1 Acc / F1

Same-patient allowed 59.05 / 57.13 69.90 / 68.71 60.10 / 59.57 64.85 / 64.42

Same-patient excluded 58.85-0.2 / 56.83-0.3 69.25-0.65 / 67.99-0.72 60.05-0.05 / 59.52-0.05 64.60-0.25 / 64.21-0.21

Table 12: Experiments on RAG performance after forbidding same-patient retrieval.

RAG gains reported in our benchmark. A key reason is that TEMMED-BENCH focuses on condition
changes rather than single-visit pattern matching: even if the retrieved image pair comes from the
same patient and the absolute conditions of these images are likely to be similar, the condition changes
are not guaranteed to be similar. Therefore, based on these results and this analysis, the concern
that retrieving instances from the same patients would inflate the RAG gains does not appear to be
supported in our benchmark.

C.9 CASE ANALYSIS

Case Analysis (VQA)

Current visit imageLast visit image

• Question: Does the medical image show any change in the bibasilar opacities?

• Ground Truth Answer: No

• LVLMs Answer:
(✓) No: [GPT o4-mini] [GPT o3]

(✗) Yes: [GPT 4.1] [GPT 4.1] [GPT 4o] [Claude 3.5 Sonnet] [Gemini 2.5 Flash] [LLaVA-
OneVision] [Llama3.2-Vision] [Qwen2.5-VL] [HealthGPT] [HuatuoGPT-Vision] [LLaVA-
Med]

• Analysis:
For this VQA case, most models tend to respond "Yes", and only two advanced proprietary
models answer it correctly. One possible reason is that the two CXRs differ in exposure,
contrast, rotation, and inspiration level. These factors slightly alter the brightness at the lung
bases, creating the illusion that the bibasilar opacities have changed, even though they are
clinically stable. In addition, there are clear interval changes in other structures (e.g., lines and
hardware), so the model "sees" change and answers "Yes" instead of restricting its judgment
strictly to the bibasilar opacities.
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Case Analysis (Report Generation)

Current visit imageLast visit image

• Ground Truth Report:
1. Single frontal view of the chest demonstrates unchanged positioning of right ij central
venous catheter.
2. Cardiomediastinal silhouette unchanged in size and configuration, with atherosclerotic
calcifications at the arch.
3. Unchanged small/moderate sized left greater than right pleural effusions. Unchanged mild
pulmonary edema. Unchanged slight linear opacity in the left midlung zone and retrocardiac
left base, likely representing atelectasis.
• [1] [LLaVA-Med]:
The report for the current visit image should include an analysis of the changes in the patient’s
condition since the last visit. This may involve comparing the current image to the last visit
image, identifying any new or worsening findings, and providing recommendations for further
evaluation or treatment based on the observed changes.
• [2] [HuatuoGPT-Vision]:
The current visit chest X-ray image demonstrates several notable findings when compared
to the last visit. The most significant change is an increase in opacification within both lung
fields, suggesting progression of pulmonary infiltrates or edema.
1. Bilateral Pulmonary Opacities: There are diffuse bilateral hazy and patchy areas seen
throughout both lungs on this semi-upright view. These opacities appear more extensive than
those observed in the previous radiograph.
2. Possible Progression of Infiltrates/Edema: Compared with the prior study, there seems to
be a worsening pattern of these abnormalities which could indicate ongoing inflammatory
processes such as pneumonia, acute respiratory distress syndrome (ARDS), or other causes
leading to increased fluid accumulation in alveolar spaces.
3. Cardiac Silhouette: While not clearly delineated due to overlying opacities, it appears that
cardiac size remains stable without obvious signs of cardiomegaly at first glance; however,
further evaluation may be necessary given the presence of widespread pulmonary changes.
4. Mediastinal Structures: No overt mediastinal shift or abnormal widening noted here either
now or previously based upon available views.
5. Bones & Soft Tissues: Visible bony structures including ribs and clavicles show no new
fractures or lytic lesions since the last examination. Soft tissues also do not reveal any
remarkable pathology between visits.
In summary, while maintaining vigilance regarding potential underlying conditions causing
progressive pulmonary infiltration or edema, clinical correlation with patient symptoms like
dyspnea, cough production, fever history, etc., would aid significantly in refining differential
diagnoses and guiding appropriate management strategies. Further investigations might
include laboratory tests, CT scans, bronchoscopy depending on suspicion raised by these
imaging findings. Close monitoring and follow-up studies will likely be required considering
the apparent deterioration from the last visit’s condition.
• [3] [HealthGPT]:
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The current chest X-ray shows significant improvement compared to the previous image. The
bilateral infiltrates have resolved, indicating a positive response to treatment. The lung fields
are clear, and there are no signs of consolidation or pleural effusion. The heart size remains
within normal limits, and the mediastinal structures are unremarkable. The bony structures,
including the ribs and vertebrae, show no acute abnormalities. Overall, the patient’s condition
appears to have improved significantly.
• [4] [Qwen2.5-VL]:
The current chest x-ray shows no significant changes compared to the last visit. The heart
size, lung fields, and mediastinal structures appear stable. There is no evidence of new or
worsening pleural effusion, pneumothorax, or consolidation. The metallic foreign body in the
right thoracic region remains unchanged in position. The patient’s overall lung parenchyma
appears clear without any new infiltrates or opacities. No acute changes are noted in the bony
structures. The patient’s condition seems stable based on this imaging.
• [5] [Llama3.2-Vision]:
The current X-ray image reveals a significant change in the patient’s condition compared to
the last visit. The lungs appear more opaque, indicating an increase in lung density, which
may be due to fluid accumulation or inflammation. The heart size has increased, suggesting
potential cardiac enlargement or fluid overload. The diaphragm appears elevated, which
could be related to the increased lung density or other underlying conditions. The pleural
spaces are clear, but there is a notable increase in the size of the pleural effusion on the left
side, indicating fluid accumulation in the pleural space. The mediastinum appears normal,
and there are no signs of pneumothorax or pneumomediastinum. The bones appear normal,
with no fractures or other abnormalities noted. Overall, the current X-ray image suggests
that the patient’s condition has worsened, with possible fluid accumulation in the lungs and
pleural space, and potential cardiac enlargement. Further evaluation and diagnostic tests are
recommended to determine the underlying cause of these changes.
• [6] [LLaVA-OneVision]:
Based on the provided images, I observe several notable differences between the last visit and
the current visit X-ray:
1. **Sternotomy Wound Closure**: In the current visit image, there is a visible surgical
closure of the sternotomy wound, which appears to be intact and without signs of dehiscence
or infection.
2. **Central Line**: The central line present in the last visit image is no longer visible in the
current visit image, suggesting it has been removed.
3. **Pacemaker Lead**: The pacemaker lead that was partially visible in the last visit image
is now fully visible and appears to be in place without any signs of migration or dislodgement.
4. **Ribs and Spine Alignment**: The ribs and spine appear to be aligned correctly in both
images, with no obvious fractures or misalignments.
5. **Heart Size and Shape**: The heart size and shape seem consistent between the two
images, without any apparent enlargement or abnormality.
6. **Lung Fields**: The lung fields are clear in both images, with no signs of consolidation,
pneumothorax, or other abnormalities.
7. **Diaphragm**: The diaphragm is intact and shows no free air or fluid levels.
8. **Soft Tissue**: There are no visible soft tissue masses or abnormalities in the chest wall
or neck region.
In summary, the current visit X-ray shows a stable condition with no new acute findings
compared to the last visit. The surgical closure of the sternotomy wound, removal of the
central line, and the position of the pacemaker lead are all within expected parameters for
post-operative care.
• [7] [Gemini 2.5 Flash]:
Compared to the prior radiograph, there is interval worsening of bilateral airspace opacities,
now with a diffuse pattern. This is consistent with worsening pulmonary edema or ARDS.
The endotracheal tube tip remains approximately 3 cm above the carina. The nasogastric tube
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tip is in the stomach. The right internal jugular central venous catheter tip is in the superior
vena cava. The sternal wires and epicardial pacing wires remain in stable position. There is
no pneumothorax or large pleural effusion.
• [8] [Claude 3.5 Sonnet]:
1. Stable appearance of a left-sided Port-a-Cath with catheter tip appropriately positioned in
the superior vena cava.
2. No significant interval changes in the bilateral pulmonary parenchyma compared to prior
study.
3. No evidence of pneumothorax or pleural effusion.
4. Heart size and mediastinal contours remain stable.
5. Multiple monitoring leads and EKG electrodes noted on the chest wall.
• [9] [GPT 4o]:
1. There is interval placement of additional medical devices since the prior study, with no
evidence of malpositioning noted. All devices, including previously placed lines, remain
appropriately positioned.
2. Persistent cardiomegaly with no interval resolution observed.
3. The previously noted pulmonary opacities remain visible in the current study, with
no significant interval changes to suggest worsening or resolution. No new opacities are
identified.
4. Mild interval progression of pleural effusion bilaterally, more pronounced on the right side.
5. No evidence of new pneumothorax or significant interval change in the aeration of observed
lung fields.
Comparison with the prior study suggests a stable to mildly worsened condition, particularly
with slight progression of pleural effusion. Continued monitoring is advised.
• [10] [GPT 4.1]:
1. **Stable cardiomediastinal silhouette** compared to the previous study. No significant
interval change in cardiac or mediastinal contours.
2. **Persistent bilateral interstitial and alveolar opacities** are noted, with no significant
interval worsening or improvement. These findings are compatible with ongoing pulmonary
edema or infiltrative process.
3. **Stable position of previously seen sternal wires and prosthetic devices**. No new
hardware or acute postsurgical complications identified.
4. **No evidence of new pneumothorax or large pleural effusion** compared to the prior
exam.
5. **Lines and tubes** remain appropriately positioned.
6. **No acute bony abnormalities**.
Overall, there is no significant interval change in the radiographic findings compared to the
previous study. Continued clinical correlation is recommended.
• [11] [GPT o4-mini]:
1. Interval slight progression of bilateral airspace opacities, most conspicuous in the left lower
lung field, compatible with worsening pulmonary edema/ARDS or evolving pneumonia.
2. Endotracheal tube tip lies low, at approximately the T5–T6 level (near the carina);
recommend withdrawal by 1–2 cm to optimize position.
3. Central venous and orogastric/NG tubes remain appropriately positioned and unchanged.
4. No new pneumothorax. Small bilateral pleural effusions persist without significant change.
5. Cardiomediastinal silhouette and osseous structures are stable.
• [12] [GPT o3]:
1. Since the prior study there is interval increase in basilar and perihilar parenchymal opacities
with new-to-moderate bilateral pleural effusions (left > right). Findings most likely reflect
progression of pulmonary edema and/or superimposed pneumonia; correlate clinically.
2. Heart size, mediastinal contours and postoperative sternotomy wires are unchanged.
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3. Indwelling hardware and vascular lines remain in stable and satisfactory positions.
4. No evidence of pneumothorax or acute bony abnormality.
• Analysis:
For this report generation case, most models failed to accurately identify the conditions that
should be included in the report. For open-source LVLMs, although they can generate long
answers, most of the content does not target the key conditions that real clinicians want to
analyze and is therefore useless. For proprietary LVLMs, some models successfully identified
the desired conditions (as shown in blue), but many findings in the ground-truth report were
still not covered. This indicates that enabling LVLMs to accurately identify the clinically
relevant conditions that warrant analysis in real-world clinical scenarios remains a major
challenge and deserves further investigation.

Case Analysis (Image-pair Selection)

A

B

C

Current visit imageLast visit image

• Question: Your task is to choose one of the options, based on the condition change from
the last to the current visit, that best matches the following medical statement: ’unchanged
basilar atelectasis’.

• Ground Truth Answer: C

• LVLMs Answer:
(✗) A: [GPT o4-mini] [Gemini 2.5 Flash] [Qwen2.5-VL]

(✗) B: [GPT 4o] [LLaVA-OneVision] [HealthGPT] [HuatuoGPT-Vision]

(✓) C: [GPT o3] [GPT 4.1] [Claude 3.5 Sonnet] [Llama3.2-Vision]

• Analysis:
For this image-pair selection case, only four LVLMs answered correctly. Considering the low
accuracy among all the LVLMs we evaluated on this task, we believe that the main bottleneck
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in their performance is still their limited ability to process multiple images. We highlight
enhancing LVLMs’ multi-image processing ability in the medical domain as an important
direction for boosting model performance in real-world clinical scenarios.

C.10 LIMITATIONS AND FUTURE DIRECTIONS

Limited modality diversity TEMMED-BENCH is currently constructed solely from chest X-ray
data, which constrains its direct applicability to other modalities such as CT, MRI, or ultrasound. Our
design goal is to isolate temporal medical image reasoning in a modality-agnostic way, and chest
X-ray offers large-scale longitudinal studies with reports that explicitly describe interval changes,
making it a practical starting point. Extending our benchmark to additional imaging modalities will
require access to suitably curated longitudinal datasets and is an important direction for future work.

Two-timepoint temporal setting TEMMED-BENCH focuses on temporal reasoning between two
visits, rather than full longitudinal trajectories with three or more time points. While this two-
timepoint formulation already captures a core component of temporal reasoning, it does not fully
reflect more complex clinical scenarios involving longer follow-up sequences. Developing sequence-
level benchmarks with richer longitudinal trajectories is a key avenue worth exploring in the future.
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