
Under review as a conference paper at ICLR 2023

TOWARDS ROBUST DATASET LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We focus on addressing the problem of learning a robust dataset such that any
classifier naturally trained on the dataset is adversarially robust. Such a dataset
benefits the downstream tasks as natural training is much faster than adversarial
training, and demonstrates that the desired property of robustness is transferable
between models and data. In this work, we propose a principled tri-level opti-
mization to formulate the robust dataset learning problem. We show that, under
an abstraction model that characterizes robust vs. non-robust features, the pro-
posed method provably learns a robust dataset. Extensive experiments on bench-
mark datasets demonstrate the effectiveness of our new algorithm with different
network initializations and architectures.

1 INTRODUCTION

Deep learning models are vulnerable to adversarial examples (Szegedy et al., 2014; Biggio et al.,
2013): an adversary can arbitrarily manipulate the prediction results of deep neural networks with
slight perturbations to the data. Many defense approaches, including heuristic defenses (Papernot
et al., 2016; Xie et al., 2017; Kannan et al., 2018; Liao et al., 2018; Carmon et al., 2019; Mustafa
et al., 2019; Zhang et al., 2019; 2020b; Wu et al., 2020; Dong et al., 2020; Tramer et al., 2020) and
certified defenses (Raghunathan et al., 2018; Wong & Kolter, 2018; Wong et al., 2018; Singh et al.,
2018; Xiao et al., 2018; Gowal et al., 2018; Lecuyer et al., 2019; Croce et al., 2019; Li et al., 2019;
Cohen et al., 2019; Zhang et al., 2020a; Xu et al., 2020; Zhai et al., 2020; Balunović & Vechev,
2020; Zhang et al., 2021), have been developed to protect deep learning models from these threats.
The focus of this paper is on integrating the property of adversarial robustness into a dataset, such
that a robust model (against small perturbation to the original test data) can be obtained through
natural training on the learned dataset.

There are several reasons of studying this problem. 1) Discovered by Ilyas et al. (2019) in their
seminal work, the desirable property of adversarial robustness is transferable between models and
data. We propose a principled approach of robust feature extraction with theoretical guarantees and
improved empirical performance. 2) Expensive computational cost of most existing defenses hin-
ders their applicability to the scenarios of limited computational resources. Although the task of
learning robust dataset might itself be time-consuming, once the one-time task has been outsourced
to Machine Learning as a Service (MLaaS), one can benefit from the robust dataset for fast training
of their own customized robust models, as natural training only requires light computational cost.
3) Distributing a robust dataset is more flexible than distributing a robust model. This is because
loading a robust model requires extensive compatibility among deep learning framework (e.g., Py-
Torch, TensorFlow, MXNet, Keras, etc.), network architecture, and checkpoint. On the other hand,
distributing a robust dataset allows everyone to train a network with their preferred architecture and
deep learning framework for downstream tasks. Moreover, a robust dataset can be small, e.g., of
size only 10% of the original dataset, making it easy to transmit.

However, there are only few works on robust dataset learning. A related but orthogonal research
topic is dataset distillation (Wang et al., 2018; Cazenavette et al., 2022), which aims at reducing the
scale of dataset by distilling knowledge from a large dataset to a small dataset. Despite dataset dis-
tillation has become a popular research topic in machine learning with various applications (Bohdal
et al., 2020; Nguyen et al., 2020; Sucholutsky & Schonlau, 2021; Zhao et al., 2021; Zhao & Bilen,
2021; Nguyen et al., 2021; Cazenavette et al., 2022), how to learn a robust dataset is less explored.
To our best knowledge, the only attempt on building a robust dataset is by Ilyas et al. (2019) on
robust feature extraction. Thus, more theoretical and empirical results are desired for an in-depth
understanding of robust dataset learning.
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Figure 1: Illustration of original and robust images. For MNIST and CIFAR10, the first row rep-
resents the original images, while the second row represents the robust dataset generated by our
algorithm. The rightmost column shows the robust accuracy.

The idea behind our robust dataset learning is to represent a classifier as a function of a dataset, so
that one can treat the dataset as a learnable parameter of the classifier. Throughout the paper, we
name such a classifier the data-parameterized classifier. We formulate robust dataset learning as a
min-max, tri-level optimization problem. We theoretically show the efficiency of our algorithm, and
empirically verify our robust dataset learning algorithm on MNIST, CIFAR10, and TinyImageNet
datasets.

Summary of contributions. Our work tackles the problem of robust dataset learning and advances
the area in the following ways.

• Algorithmically, we formulate robust dataset learning via a tri-level optimization problem,
where we parameterize the model weights by data, find adversarial examples of the model,
and optimize adversarial loss over the data. This learning objective encourages the algo-
rithm to maximize both clean and robust accuracy of the data-parameterized classifier.

• Theoretically, we investigate this tri-level optimization problem under an abstraction model
that characterizes robust vs. non-robust features (Tsipras et al., 2019), where the objective
is to find a dataset that minimizes robust error on the data-parameterized classifier. We
show that while the classifier naturally trained on clean dataset is non-robust, our data-
parameterized classifier (trained on the robust dataset) is provably robust.

• Experimentally, we evaluate the clean and robust accuracy of our algorithm on MNIST,
CIFAR10, and TinyImageNet. We consider baselines for robust dataset learning, which
use datasets generated through adversarial attacks or robust feature extraction (Ilyas et al.,
2019). We show that our algorithm outperforms the baselines by a large margin. For
example, on the CIFAR10 dataset with 0.25 ℓ2 threat model, our method achieves robust
accuracy as high as 59.52% under AutoAttack, beating the state-of-the-art 48.20% in the
same setting by a large margin.

2 RELATED WORKS

Dataset distillation. The ultimate goal of dataset distillation is to reduce training dataset size by
distilling knowledge from the data. Wang et al. (2018) proposed the first dataset distillation algo-
rithm, which expressed the model parameters with the distilled images and optimized the images
using gradient descent method. The subsequent works significantly improved the results by vari-
ous strategies, such as learning soft labels (Sucholutsky & Schonlau, 2021), strengthening learning
signal through gradient matching (Zhao et al., 2021), adopting differentiable Siamese augmentation
(Zhao & Bilen, 2021), optimizing with the neural tangent kernel under infinite-width limit (Nguyen
et al., 2021), and matching training trajectories (Cazenavette et al., 2022). Dataset distillation has
been applied to many machine learning fields, including federated learning (Sucholutsky & Schon-
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lau, 2020; Zhou et al., 2020), privacy-preserving ML (Li et al., 2020), and neural architecture search
Zhao & Bilen (2021).

Robust feature extraction. Ilyas et al. (2019) studied the existence and pervasiveness of adversarial
examples. They theoretically demonstrated that adversarial examples are related to the presence of
non-robust features, which are in fact highly predictive to neural networks, but brittle and imper-
ceptible to humans. They proposed an empirical algorithm to separate the robust and non-robust
features in the data to verify their theoretical results. A by-product of their algorithm is to obtain
a robust model through natural training on the robust features. However, they did not provide a
principled approach for robust dataset learning.

3 LEARNING ROBUST DATASET: A PRINCIPLED APPROACH

In this section, we propose a principled optimization formulation for robust dataset learning.

Problem settings. There are two essential settings for the robust dataset learning problem: 1)
construct a dataset; 2) obtain a robust model with only natural training on the constructed dataset.

Goal. Given a original dataset Xnat, The optimization objective is to find an optimal robust dataset
X rob such that the neural network that is naturally trained on X rob is robust against adversarial
perturbation to the clean test data, where the test data follows the same distribution as Xnat.

Optimization. The idea behind our method is to represent a classifier as a function of a dataset
and to find the optimal dataset such that the classifier is robust against adversarial perturbations.
With this idea, we formulate robust dataset learning as a tri-level optimization problem. Denote
by Xnat := {(xi, yi)}ni=1 the original training data pairs, and by X rob := {(xrob

i , yi)}ni=1 the robust
dataset to be learned. Notice we only optimize the data points {xrob

i }ni=1 and keep the labels {yi}ni=1
unchanged. Step 1). For a given loss L, in the first level we create a data-parameterized classifier
fθ(X rob) through minimizing the loss on X rob, which is initialized by Xnat and updated by gradient
descent; Step 2). In the second level, we calculate the adversarial samples Xadv := {(xadv

i , yi)}ni=1

of Xnat by attacking fθ(X rob); Step 3). In the third level, we search for the optimal X rob which
minimizes the loss of fθ(X rob) on Xadv. With the above steps, our optimization problem is given by

min
X rob

1

n

n∑
i=1

max
xadv
i ∈B(xi,ϵ)

L(fθ(X rob)(x
adv
i ), yi), s.t. θ(X rob) = argmin

θ

1

n

n∑
i=1

L(fθ(xrob
i ), yi), (1)

where fθ stands for a neural network parameterized by θ, and L is a loss function, e.g., the cross
entropy loss or hinge loss.

Efficient algorithm. However, Eq. 1 might be hard to be solved as it is a tri-level optimization
problem. The main difficulty is to find the closed form of the parameterized weight θ({xrob

i }ni=1)
which minimizes the loss w.r.t. {(xrob

i , yi)}ni=1. We consider the second-order Taylor expansion of
the loss L(fθ(xrob

i ), yi) at a predefined θ = θ0 (e.g., a random set of parameters or the parameters
of a naturally trained neural network) for a small t > 0:

L(fθ(xrob
i ), yi) ≈ L(fθ0(xrob

i ), yi) + ⟨θ − θ0,∇θL(fθ(xrob
i ), yi)|θ=θ0⟩+

1

2t
∥θ − θ0∥22,

which implies that

θ({xrob
i }ni=1) = argmin

θ

1

n

n∑
i=1

L(fθ(xrob
i ), yi) ≈ θ0 − t

1

n

n∑
i=1

∇θL(fθ(xrob
i ), yi)|θ=θ0 .

Therefore, we have the following approximation of Eq. 1:

min
X rob

1

n

n∑
i=1

max
xadv
i ∈B(xi,ϵ)

L(fθ(X rob)(x
adv
i ), yi), s.t. θ(X rob) = θ0 − t

1

n

n∑
i=1

∇θL(fθ(xrob
i ), yi)|θ=θ0 .

(2)

To solve the inner maximization problem, we apply PGD-attack (Madry et al., 2017) via repeatedly
using

xadv
i ← ClipB(xnat

i ,ϵ)(x
adv
i + α sign(∇xadv

i
L(fθ(xadv

i ), yi))),
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Algorithm 1: Robust dataset learning.

Input: original training set Xnat; number of training epochs T ; classifier f (with weight θ),
initialized by θ0; learning rate γ of classifier; learning rate β of robust dataset; PGD
steps for generating adversarial example s; PGD steps size α; PGD attack budgets ϵ.

initialize classifier weights θ with θ0, initialize X rob with Xnat;
for 1:T do

for mini-batches (bnat, ybatch) ⊆ Xnat and (brob, ybatch) ⊆ X rob do
step 1. update classifier with robust data:
θ ← θ − γ 1

|brob|
∑

(x,y)∈(brob,ybatch)∇θL(fθ(x), y);
step 2. calculate adversarial examples from original training set via PGD attack:
for each (xnat, y) ∈ (bnat, ybatch), initialize xadv with xnat;
for 1 : s do

generate perturbation through FSGM and clip it within a ball centered at xnat with
radius ϵ: xadv ← ClipB(xnat,ϵ)(x

adv + α sign(∇xadvL(fθ(xadv), y)));
end
step 3. for each xrob ∈ brob, update robust data by minimizing robust error:
xrob ← xrob − β sign( 1

|brob|
∑

(xadv,y)∇xrobL(fθ(xadv), y));
end

end
return robust dataset X rob.

where ϵ is the attack budget, B(xnat
i , ϵ) stands for a ball centered at xnat

i with radius ϵ, and α is the
step size of the PGD-attack. We use gradient descent to optimize the robust dataset:

xrob
i ← xrob

i − β sign(
1

n

n∑
i=1

∇xrob
i
L(fθ({xrob

i }n
i=1)

(xadv
i ), yi)),

where β is the learning rate for the robust data. Notice that since we focus on the image classification
tasks, we apply fast sign gradient method to modify the data. This method can be replaced by other
gradient descent methods for a specific task. The details of our robust learning algorithm is shown
in Algorithm 1.

Difference between our work and Ilyas et al. (2019). Ilyas et al. (2019) formulated the robust
feature extraction problem by finding {(xrob

i , yi)}ni=1 that minimizes ||g(xrob
i )−g(xi)||2, where g is

a robust pre-trained representation model trained by adversarial training, and a proper initialization
of xrob

i is involved to avoid converging to a trivial solution xi. As we will see in Sections 4 and 5,
our new formulation Eq. 1 not only provably extracts the robust feature under a simple abstraction
model, but also enjoys an improved empirical performance on many experiment settings compared
with Ilyas et al. (2019).

4 LEARNING ROBUST DATASET: A GLIMPSE ON AN ABSTRACTION MODEL

In this section, we present a fairly simple theoretical model to analyze the above-mentioned robust
dataset learning problem. Our analysis is structured as follows: In Sec. 4.1, we introduce the prob-
lem settings of the data distribution, classifier, and the optimization objective of the robust dataset
learning problem; In Sec. 4.2, we prove that the optimal classifier trained on clean dataset can be
non-robust; In Sec. 4.3, we demonstrate that our optimization objective leads to a robust dataset. All
proof details can be found in Appendix A.

4.1 PROBLEM SETTINGS

Setting. We consider the data distribution commonly used in prior works (Tsipras et al., 2019; Ilyas
et al., 2019), where the instance x = (x1, ..., xd+1) ∼ D and the label y follow:

y ∼ Uniform{−1, 1}, x1 ∼
{

y, with probability p;

−y, with probability 1− p,
xi ∼ N (µy, 1), i = 2, 3, ..., d+1,

(3)
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where N (µ, σ2) is a Gaussian distribution with mean µ = o(1) and variance σ2. It consists of
strongly-correlated (to the label) feature x1 and weakly-correlated features x2, ..., xd+1 (as µ is
selected small enough). The strongly-correlated feature is robust against Θ(1) perturbations but the
weakly-correlated features are not. Thus, a naturally trained classifier on this distribution is non-
robust as it puts heavy weights on non-robust features. Besides, it is easy to achieve high natural
accuracy on this data distribution. For example, we can set µ = Θ(1/

√
d) such that a simple

classifier, e.g., sign(x2), can achieve at least 99% natural accuracy. The probability p quantifies
the correlation between the feature x1 and the label y. We can set p to be moderately large, i.e.,
p = 0.97. We note that the same data distribution was used to demonstrate the trade-off between
robustness and accuracy (Tsipras et al., 2019) and to provide a clean abstraction of robust and non-
robust features (Ilyas et al., 2019). In this paper, we use the same distribution to show a separation
between natural training on the clean dataset and on the robust dataset returned by our algorithm.

We model the natural training by a soft SVM loss (a.k.a. the hinge loss) of a linear classifier:

min
w
L(w;D) := E(x∼D,y)[max{0, 1− ywTx}] + λ||w||22, (4)

where w = (w1, ..., wd+1) is the weight vector and λ > 0 is a regularization parameter. For a
given distribution D′, the data-parameterized classifier (w.r.t. D′) is given by sign(wT

D′x), where
wD′ := argminw L(w;D′) is the optimal weight of the SVM w.r.t. D′.

Goal. Our goal is to create a robust data distribution1 D′, such that wD′ is robust. We formulate this
problem via our proposed tri-level optimization framework Eq. 1, where the algorithm is supposed
to find D′ that minimizes the adversarial loss w.r.t. the weight wD′ and the worst-case perturbation
δ. In particular, we define our robust dataset learning problem as

min
D′

max
||δ||∞≤ϵ

E(x,y)[max{0, 1− ywT
D′(x+ δ)}] +λ||wD′ ||22, s.t. wD′ := argmin

w
L(w;D′), (5)

where the inner maximization max||δ||∞≤ϵ E(x,y)[max{0, 1 − ywT
D′(x + δ)}] + λ||wD′ ||22 is the

adversarial loss that applies ℓ∞ perturbation with budget ϵ to attack wD′ , and the outer minimization
optimizes the adversarial loss w.r.t. D′. Intuitively, the optimal solution of this min-max problem
implies a robust data distribution.

4.2 NATURAL TRAINING ON THE CLEAN DATASET IS NON-ROBUST

As a comparison, we begin by showing that the optimal classifier of Eq. 4 is non-robust.

We consider the robustness of classifiers under ℓ∞ adversarial perturbations with attack budget ϵ,
which means that an adversary can modify each feature by at most a value of ±ϵ. Note that the first
feature of x (Eq. 3) is strongly correlated with the label, and the rest d features are only weakly
correlated with the label. We prove that both strongly and weakly-correlated features contribute to
the prediction in the optimal classifier, while the effect of the weakly-correlated features dominates
the strongly-correlated one, i.e., the weight of SVM on the weakly-correlated features is larger
than the weight on the strongly-correlated feature. Under ℓ∞-perturbations with ϵ = Θ(1/

√
d),

the positive effect of weakly-correlated features will be overridden by the perturbation, i.e., the
weakly-correlated features hurt the prediction under attacks. For example, if ϵ = 2µ, the weakly-
correlated features will be shifted to be anti-correlated features by the adversary, i.e., (N (µy, 1) →
N (−µy, 1)). As the weakly-correlated features dominate the prediction of the optimal classifier,
the classifier will predict opposite labels under such perturbations. In the following theorem, we
formally state the above discussion.

We start with calculating the strongest ℓ∞ adversarial perturbations of the SVM classifier.
Lemma 1. For arbitrary w, the optimal δ of the maximization problem

max
||δ||∞≤ϵ

E(x,y)[max{0, 1− ywT (x+ δ)}] + λ||w||22

is given by δ = −ϵ sign(yw).

1We study the popular error in this section, where the problem of robust dataset learning reduces to the
problem of robust data distribution learning.
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This lemma provides a closed form of strongest ℓ∞ adversarial perturbations of the SVM classifier.
It’s easy to verify this lemma via Holder’s inequality −ywT δ ≤ ||w||1||δ||∞ = ϵ||w||1. Thus
E(x,y)[max{0, 1−ywT (x+δ)}] ≤ E(x,y)[max{0, 1−ywTx+ϵ||w||1}]. Taking δ = −ϵ sign(yw),
we can reach this maximum.

Theorem 1. If µ ≥ 4√
d

and p ≤ 0.975, the optimal classifier w∗ = (w∗
1 , ..., w

∗
d+1) of Eq. 4

achieves more than 99% natural accuracy but less than 1% robust accuracy with ℓ∞-perturbation
of size ϵ ≥ 2µ.

This theorem states that the optimal classifier naturally trained on x has low accuracy under
Θ(1/

√
d) ℓ∞-attacks, which indicates achieving robustness on this dataset is non-trivial.

4.3 NATURAL TRAINING ON THE DATASET OF OUR ALGORITHM IS ROBUST

In this part, we will show that the optimal dataset of our min-max optimization Eq. 5 can lead to a
robust classifier against Θ(1) ℓ∞-perturbations.

According to Lemma 1, the inner maximization problem has a closed form solution

max
||δ||∞≤ϵ

E(x,y)[max{0, 1− ywT
D′(x+ δ)}] = E(x,y)[max{0, 1− ywT

D′x+ ϵ||wD′ ||1}].

Thus, we only need to solve the minimization problem

min
D′

E(x,y)[max{0, 1− ywT
D′x+ ϵ||wD′ ||1}] + λ||wD′ ||22. (6)

However, it is computationally intractable to find the optimal distribution D′ directly, as we cannot
represent wD′ with D′ explicitly. Instead, we try to find the necessary and sufficient conditions of
wD′ that minimizes Eq. 6. We show the existence of distributions such that the related wD′ satisfies
the conditions.

Theorem 2. Let

D∗ = argmin
D′

E(x,y)[max{0, 1− ywT
D′x+ ϵ||wD′ ||1}] + λ||wD′ ||22.

If 1 > ϵ ≥ µ , then wD∗ := (w
(1)
D∗ , ..., w

(d+1)
D∗ ) must satisfy w

(1)
D∗ > 0 and w

(2)
D∗ = w

(3)
D∗ = ... =

w
(d+1)
D∗ = 0.

This theorem states a necessary condition of the optimal dataset from Eq. 5. The robust dataset
should suffice that the data-parameterized classifier (naturally trained on the dataset) is independent
of the weak-correlated features x2, ..., xd+1. Thus, the data-parameterized classifier should be more
robust than vanilla classifier trained on original dataset.

Theorem 3. The optimal SVM w.r.t. the robust datasetD∗ has clean and robust accuracy≥ p under
ℓ∞-perturbation (with budget less than 1) on the original dataset. An optimal solution of D∗ is
given by

y ∼ Uniform{−1, 1}, x1 ∼
{

y, with probability p;

−y, with probability 1− p,
xi = 1, i = 2, 3, ..., d+ 1.

According to Theorem 2, the weight of the optimal SVM learned from D∗ should satisfy w
(2)
D∗ =

w
(3)
D∗ = ... = w

(d+1)
D∗ = 0. Thus the clean and robust accuracy are only related to the first feature

of x. It is easy to see the natural accuracy is equal to the probability that sign(x1) = y, which is p.
Besides, when the perturbation budget ϵ < 1, the adversary does not change the sign of x1. Thus
the robust accuracy is also p.

Compared to the original distribution D (Eq. 3), the robust distribution D∗ keeps the strongly-
correlated feature x1 unchanged and modifies the weakly-correlated features x2, ..., xd+1 to uncor-
related features (a constant). In this way the optimal SVM trained on the robust distribution will not
assign weights on the uncorrelated features, because they do not contribute to the predictions. Thus,
the resulting classifier is relatively robust, as it depends only on the strongly-correlated feature.
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Table 1: Experimental results of robust dataset learning on MNIST, CIFAR10 and TinyImageNet,
where we naturally train classifiers on the datasets created by different methods. Numbers with ∗
refer to the experimental results reported by the original work.

MNIST

Robust acc (%) / Natural acc (%) 0.1 (ℓ∞) 0.2 (ℓ∞) 1.0 (ℓ2) 2.0 (ℓ2)
Natural dataset 71.73/98.10 8.28/98.10 79.14/98.10 21.28/98.10
Adv. data of natural classifier 84.17/97.41 19.40/94.71 86.81/97.85 26.58/95.80
Adv. data of robust classifier 76.70/97.93 11.79/97.50 79.67/97.58 24.21/97.83
Robust dataset (ours) 93.53/98.69 52.36/97.29 91.60/98.76 48.40/98.25

CIFAR10

Robust acc (%) / Natural acc (%) 2/255 (ℓ∞) 4/255 (ℓ∞) 0.25 (ℓ2) 0.5 (ℓ2)
Natural dataset 6.28/93.23 0.02/93.23 9.85/93.23 0.04/93.23
Adv. data of natural classifier 48.21/84.66 17.86/80.48 47.05/81.83 21.33/81.14
Adv. data of robust classifier 10.51/86.06 0.21/85.83 11.68/88.70 0.39/86.64
Ilyas et al. (2019) 36.36/77.53 14.56/78.61 48.20*/85.40* 21.85*/85.40*
Robust dataset (ours) 54.74/87.19 26.79/85.55 59.52/86.59 27.35/85.10

TinyImageNet

Robust acc (%) / Natural acc (%) 2/255 (ℓ∞) 4/255 (ℓ∞) 0.25 (ℓ2) 0.5 (ℓ2)
Natural dataset 0.34/70.94 0.16/70.94 4.55/70.94 0.52/70.94
Adv. data of natural classifier 12.96/65.22 5.10/65.13 29.97/65.98 9.36/64.14
Robust dataset (ours) 25.43/60.02 18.42/60.36 39.55/61.13 25.48/60.92

Extension to general data distributions. We now show that our theorems hold for a more general
distribution. Consider the case where the instance x and the label y follow the distribution below:

y ∼ Uniform{−1, 1}, x1 ∼
{

y, with probability p;

−y, with probability 1− p,
xi ∼ Di, i = 2, 3, ..., d+ 1,

whereDi are symmetric distributions with mean µi ≤ 1. We prove that the parameterized SVM with
the optimal robust dataset D∗ achieves at least p clean and robust accuracy under ℓ∞-perturbation
(with budget less than 1). The details can be found in Sec. A.4.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments to demonstrate the effectiveness of our al-
gorithm on MNIST (LeCun, 1998), CIFAR10 (Krizhevsky et al., 2009), and TinyImageNet (Deng
et al., 2009).

5.1 ROBUSTNESS

In this part, we compare the performance of our (robust) data-parameterized model with models
obtained from several baseline methods under ℓ2 and ℓ∞ attacks. We use the state-of-the-art attack
method—Autoattack (Croce & Hein, 2020) for evaluating the adversarial robustness of models.

Baseline. Ilyas et al. (2019) is the only work related to robust dataset learning. We include this work
as one of the baseline for CIFAR10.2 Besides, motivated by adversarial training, we create two other
baselines. In adversarial training, we utilize adversarial examples to improve robustness, so we take
the adversarial data generated from both natural (see Adv. data of natural classifier in Table 1) and
robust pre-trained classifiers (see Adv. data of robust classifier in Table 1) as two baseline robust
datasets. In order to make a fair comparison, we require all robust datasets to have the same size.

Pre-train settings. In data pre-procession phase, we randomly cropped the image to 28×28 for
MNIST, 32×32 for CIFAR10, and 64×64 for TinyImageNet with 4 pixes padding. Then we apply
random horizontal flip to the images and normalize them with mean 0.1307 and variance 0.3081.
During training, we use SGD (Bottou, 2010) with learning rate 0.01, momentum 0.9, weight decay
5e-4, and cosine learning rate decay to fine tune the pre-train models. For the robust pre-train
model we train TRADES (Zhang et al., 2019) with 0.2 ℓ∞ perturbations for MNIST and 4/255 ℓ∞
perturbations for CIFAR 10.

2Ilyas et al. (2019) released a robust dataset on CIFAR10 but did not release the code for generating these
images. See https://github.com/MadryLab/constructed-datasets. In this work, we use the
numbers reported in their work for comparison.
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Figure 2: The process (from left to right) on how natural training on adversarial examples of a robust
classifier leads to a non-robust model. The green line is the robust classifier used to generate adver-
sarial examples, and the red line is the new classifier naturally trained on the adversarial examples
of a robust classifier. “Nat X1” and “Nat X2” stand for natural data of class 1 and 2, respectively,
and “Adv X1” and “Adv X2” are their adversarial counterparts. From the 4th plot we can see that
the new classifier is non-robust.

Evaluation. During the evaluation, we fine-tune a natural pre-trained classifier with the given (ro-
bust) dataset and evaluate the model with adversarial attacks. For MNIST and CIFAR-10, we use
Autoattack (Croce & Hein, 2020) with various budgets to evaluate the robustness of the models
on the test set. Since Autoattack is computationally expensive on TinyImageNet, we evaluate our
algorithm with the same set of budgets using PGD-10 attack instead.3

Experiment setup. We use a CNN which has two convolutional layers, followed by two fully-
connected layers for MNIST. We apply ResNet-18 for CIFAR10 and TinyImageNet. The output size
of the last layer is the number of classes of each dataset. In our robust dataset learning algorithm
(Algorithm 1), we set θ0 to be the weights of the naturally pre-trained classifier. During training,
we use PGD-20 to generate adversarial samples for MNIST and PGD-10 for the other two datasets.
The step size of PGD attack is selected as ϵ/10. Besides, we set the learning rate of the classifier
to γ = 0.01 and the learning rate of the robust dataset to β = 0.5/255. For the baseline methods,
the datasets are generated using PGD attacks on natural and robust pre-train models (See Adv. data
of natural and robust classifier in Table 1). To generate robust pre-train models, we train TRADES
(Zhang et al., 2019) using the corresponding budgets. During evaluation phase, we use SGD with
learning rate 0.01, momentum 0.9, and weight decay 5e-4, to fine tune the same pre-trained model
on all datasets.

Result analysis. Table 1 illustrates the experimental results on the three datasets. Compared to the
baseline methods, the classifier naturally trained on our robust dataset achieves nearly 10% increase
on the robust accuracy on all tasks and attacks. We also notice that the classifier trained on the
adversarial examples of robust classifier suffers from poor robust accuracy. We provide a simple
example (Fig. 2) to show that natural training on adversarial examples of a robust classifier may lead
to a non-robust model.

Why do we not compare with adversarial training? There are two reasons: 1) while the output
of adversarial training is a classifier, in the robust dataset learning task, the input of our evaluation
benchmark is a dataset on which we would natually train a classifier. Therefore, adversarial training
does not fit our evaluation benchmark. Instead, we modify adversarial training as another baseline
“adversarial data of robust classifier” in Table 1. 2) We remark that our work is not aiming to set
a new SOTA benchmark for adversarial defense, but rather to design a time-efficient method that
benefits scenarios with limited computational resources. For example, learning a robust CIFAR10
dataset takes around 2 hours on a NVIDIA RTX A5000 GPU; fine tuning a pre-trained classifier on
our robust dataset takes at most 10 minutes. However, adversarial training, e.g., PGD Adversarial
Training (Madry et al., 2017), TRADES (Zhang et al., 2019), takes more than one day on the same
GPU.

5.2 ABLATION STUDY

In this part, we conduct ablation experiments to study the effect of dataset size and the transferability
of our robust dataset to different initialization and architectures. The robust dataset learning settings
and evaluation methods are the same as in Sec. 5.1.

3Additional results of TinyImageNet using Autoattack can be found in Appendix B.
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Table 2: Experiments with different size of robust dataset on MNIST, CIFAR10, and TinyImageNet,
where we naturally train classifiers on the datasets created by different methods.

Robust acc (%) / Natural acc (%) Threat model Natural dataset Robust dataset (ours)
10% size 20% size 100% size

MNIST 0.2 (ℓ∞) 8.28/98.10 25.65/96.11 41.87/96.83 52.36/97.29
2.0 (ℓ2) 21.28/98.10 34.47/96.75 40.21/97.59 48.40/98.25

CIFAR10 2/255 (ℓ∞) 6.28/93.23 37.69/83.26 43.87/86.10 54.74/87.19
0.25 (ℓ2) 9.85/93.23 42.61/81.50 45.54/82.80 59.52/86.59

TinyImageNet 2/255 (ℓ∞) 0.34/70.94 15.64/60.58 17.75/60.35 25.43/60.02
0.25 (ℓ2) 4.55/70.94 24.38/63.42 26.71/62.71 39.55/61.13
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Figure 3: Experiments of transferability of our robust dataset. Top: Different initialization of the
same CNN model on MNIST. We fine tune two pre-trained CNN models (initialization 1 and ini-
tialization 2) on the robust MNIST dataset generated by a third initialization. Bottom: Different
architectures on CIFAR10. We fine tune one ResNet-34 and one ResNet-50 models on the robust
CIFAR10 generated by ResNet-18.

Dataset size. We study the effect of different robust dataset size, where the robust dataset size is
constrained to only 10% and 20% of the original dataset. We evaluate the robustness of classifiers
under several adversarial budges for MNIST, CIFAR10 and TinyImageNet. The results are shown
in Table 2. We find that even if trained with 10% of the size of the original dataset, the resulting
classifier can still achieve 42.61% robust accuracy on CIFAR10 and 24.38% robust accuracy on
TinyImageNet.

Different network initializations. We evaluate the transferability of our robust dataset by using
different network initializations. In our experiments, we apply the same CNN with different ini-
tializations to evaluate the classifier trained with MNIST robust dataset under 0.2 ℓ∞ and 2.0 ℓ2
Autoattacks. In Fig. 3 Top, we see that our robust dataset effectively improves the robustness of the
classifier with different network initializations.

Different network architectures. We also investigate the case where the naturally trained network
during testing has a different architecture from that we use to learn the robust dataset. In the ex-
periments, we use our robust dataset to fine-tune ResNet-34 and ResNet-50 pre-trained models. We
evaluate the adversarial robustness under 2/255 ℓ∞ and 0.25 ℓ2 Autoattack. In Fig. 3 Bottom, we
see that our robust dataset enjoys descent transferability across different network architectures.

6 CONCLUSION

In this work, we propose a principle, tri-level optimization algorithm to solve the robust dataset
learning problem. We theoretically prove the guarantee of our algorithm on an abstraction model,
and empirically verify its effectiveness and efficiency on three popular image classification datasets.
Our proposed algorithm provides a principled way to integrate the property of adversarial robustness
into a dataset. The evaluation results of the method imply various real-world applications under
scenarios with limited computational resources.
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ETHICS STATEMENT

We did not see obvious negative ethical impacts in our work. Our work provides a time-efficient
method to improve adversarial robustness of neural networks, which has potential positive effect on
the safety of AI.

REPRODUCIBILITY

In Sec. 5, we include the details of our model structures, training hyperparameters, and evaluation
methods. We also share our code in supplementary materials.
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Mislav Balunović and Martin Vechev. Adversarial training and provable defenses: Bridging the gap.
In 8th International Conference on Learning Representations (ICLR 2020)(virtual). International
Conference on Learning Representations, 2020.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Nedim Srndic, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 387–402,
2013.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels
instead of images. arXiv preprint arXiv:2006.08572, 2020.
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A ADDITIONAL PROOFS

Lemma 2. The optimal solution w∗ = (w∗
1 , ..., w

∗
d+1) of our optimization problem Eq. 4 must

satisfy w2 = ... = wd+1 and sign(wi) ≥ 0, i ∈ [d+ 1].

Proof. We prove this lemma by contradiction, assume w.l.o.g. the optimal solution w∗ =
(w∗

1 , ..., w
∗
d+1) satisfying w∗

2 ̸= w∗
3 , we can let w′ = (w∗

1 , w
∗
3 , w

∗
2 , w

∗
4 , ..., w

∗
d+1). In this case,

we have yw∗Tx = yw′Tx because both w∗
2x2 + w∗

3x3 and w∗
2x3 + w∗

3x2 follow N ((w∗
2 +

w∗
3)µy,w

∗2
2 + w∗2

3 ). So we have L(w′;D) = L(w∗;D). Moreover, since the margin term
E(x,y)[max{0, 1 − ywTx}] is convex in w, by Jensen’s inequality, averaging w∗ and w′ will not
increase the value of that margin term. On the other hand, ||w

∗+w′

2 ||22 < ||w∗||22 as 2(w
∗
2+w∗

3

2 )2 <

w∗2
2 + w∗2

3 when w∗
2 ̸= w∗

3 . Thus L(w
∗+w′

2 ;D) < L(w∗;D), which yields contradiction. Anal-
ogously, if there exists i, such that sign(w∗

i ) < 0, let w′ = (w∗
1 , ...,−w∗

i , ..., w
∗
d+1), we have

||w′||22 = ||w∗||22 and E(x,y)[max{0, 1 − yw′Tx}] ≤ E(x,y)[max{0, 1 − yw∗Tx}], which yields
another contradiction.

Lemma 3. If µ ≥ 4√
d

and p ≤ 0.975, the optimal solution w∗ = (w∗
1 , ..., w

∗
d+1) of our optimization

problem Eq. 4 must satisfy w∗
1 <
√
dw∗

2 .

Proof. Assume for the sake of contradiction that w∗
1 ≥
√
dw∗

2 . By Lemma 2 we have w∗
2 = ... =

w∗
d+1. Assume w.l.o.g. ||w∗||2 = 1, we have w∗

2 ≤ 1√
2d

. Then, with probability at least 1 − p,
the first feature predicts the wrong label and without enough weight, the remaining features cannot
compensate for it. Concretely,

E[max(0, 1− yw∗Tx)] ≥ (1− p)E[max(0, 1 + w∗
1 − w∗

2

d+1∑
i=2

N (µ, 1))]

≥ (1− p)E[max(0, 1 +
√
dw∗

2 − w∗
2N (dµ, d))]

≥ (1− p)E[max(0, 1 + 1/
√
2−N (

√
d

2
µ,

1

2
))].

(7)

We will now show that a solution w′ = (w′
1, ..., w

′
d+1) that assigns zero weight on the first feature

(w′
2 = ... = w′

d+1 = 1√
d

and w′
1 = 0), achieves a better loss.

E[max(0, 1− yw′Tx)] = E[max(0, 1−N (
√
dµ, 1))]. (8)

By the optimality of w∗ we must have

E[max(0, 1−N (
√
dµ, 1))] ≥ (1− p)E[max(0, 1 + 1/

√
2−N (

√
d

2
µ,

1

2
))],

which yields p ≥ 1 − E[max(0,1−N (
√
dµ,1))]

E[max(0,1+1/
√
2−N (

√
d
2µ,

1
2 ))]
≥ 1 − E[max(0,1−N (4,1))]

E[max(0,1+1/
√
2−N (2

√
2, 12 ))]

> 0.975,

which contradicts to the condition that p ≤ 0.975.

A.1 PROOF OF THEOREM 1

Proof. Part 1. We show that the optimal classifier can achieve high natural accuracy. By Lemma 2
and Lemma 3 we have w∗

2 = ... = w∗
d+1, sign(w∗

i ) ≥ 0, i ∈ [d + 1], and w∗
1 ≤
√
dw∗

2 . Consider

w∗Tx = w∗
1x1 + w∗

2

∑d+1
i=2 N (µy, 1) = w∗

2N (
w∗

1

w∗
2
x1 + dµy, d), because ϵ ≥ 2µ and µ ≥ 4√

d
, the
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probability that x is correctly classified is

Pr(sign(w∗Tx) = sign(y)) = pPr(N (
w∗

1

w∗
2

+ dµ, d) > 0)

+ (1− p) Pr(N (−w∗
1

w∗
2

+ dµ, d) > 0)

≥ pPr(N (µd, d) > 0) + (1− p) Pr(N (µ−
√
d, d) > 0)

≥ pPr(N (4
√
d, d) > 0) + (1− p) Pr(N (3

√
d, d) > 0)

= pPr(N (4, 1) > 0) + (1− p) Pr(N (3, 1) > 0)

≥ Pr(N (3, 1) > 0)

≥ 0.9986.

(9)

Thus the natural accuracy of the optimal classifier w∗ is greater than 99%.

Part 2. We show that the optimal classifier achieve low robust accuracy. Firstly, according to
Lemma 1, the perturbed distribution x+ δ is given by

y ∼ {−1, 1}, x1 ∼
{

y(1− ϵ), with probability p;

−y(1 + ϵ), with probability 1− p,
xi ∼ N ((µ− ϵ)y, 1), i ≥ 2. (10)

By Lemma 2 and Lemma 3, we have w∗
2 = ... = w∗

d+1, sign(w∗
i ) ≥ 0, i ∈ [d+1], and w∗

1 ≤
√
dw∗

2 .

Consider w∗T (x+δ) = w∗
1x1+w∗

2

∑d+1
i=2 N ((µ− ϵ)y, 1) = w∗

2N (
w∗

1

w∗
2
x1+d(µ− ϵ)y, d). Because

ϵ ≥ 2µ and µ ≥ 4√
d

, the probability that x+ δ is correctly classified is

Pr(sign(w∗Tx) = sign(y)) = pPr(N (
w∗

1

w∗
2

+ d(µ− ϵ), d) > 0)

+ (1− p) Pr(N (−w∗
1

w∗
2

+ d(µ− ϵ), d) > 0)

≤ pPr(N (
√
d− µd, d) > 0) + (1− p) Pr(N (−µd, d) > 0)

≤ pPr(N (−3
√
d, d) > 0) + (1− p) Pr(N (−4

√
d, d) > 0)

= pPr(N (−3, 1) > 0) + (1− p) Pr(N (−4, 1) > 0)

≤ Pr(N (−3, 1) > 0)

≤ 0.00135.

(11)

Thus the robust accuracy of the optimal classifier w∗ is less than 0.2%.

A.2 PROOF OF THEOREM 2

Proof. The optimal D∗ should make 1− ywT
D∗x+ ϵ||wD∗ ||1 and ||wD∗ ||22 as small as possible.

1− ywT
D∗x+ ϵ||wD∗ ||1 = 1− yw

(1)
D∗x1 + ϵ|w(1)

D∗ |+
d+1∑
i=2

(ϵ|w(i)
D∗ | − yw

(i)
D∗xi), (12)

as xi ∼ N (µy, 1), i ≥ 2, we have
∑d+1

i=2 (ϵ|w
(i)
D∗ | − yw

(i)
D∗xi) ∼ N (

∑d+1
i=2 (ϵ|w

(i)
D∗ | −

µyw
(i)
D∗),

∑d+1
i=2 w

(i)2
D∗ ).

Denote by LD′ := E(x,y)[max{0, 1 − ywT
D′x + ϵ||wD′ ||1}. Assume there exist w(i)

D∗ ̸= 0, i ≥ 2,
we will show there exists D0 such that wD0

:= (w
(1)
D∗ , 0, ..., 0) and

LD0 + λ||wD0 ||22 < LD∗ + λ||wD∗ ||22. (13)

Step 1: We will show if wD0
:= (w

(1)
D∗ , 0, ..., 0),

LD0
+ λ||wD0

||22 < LD∗ + λ||wD∗ ||22.
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Firstly, it is easy to observe that λ||wD0
||22 < λ||wD∗ ||22. Then we focus on the term LD0

and LD′ .

Denote by A = 1 − yw
(1)
D∗x1 + ϵ|w(1)

D∗ |, µ′ =
∑d+1

i=2 (ϵ|w
(i)
D∗ | − µyw

(i)
D∗), σ′2 =

∑d+1
i=2 w

(i)2
D∗ , and

z =
∑d+1

i=2 (ϵ|w
(i)
D∗ | − yw

(i)
D∗xi) ∼ N (µ′, σ′2). Then by Eq. 23 we have

1− ywT
D∗x+ ϵ||wD∗ ||1 = A+ z,

and thus we can simplify LD0 ,LD∗ as below:

LD0
= E(x,y)[max{0, 1−ywT

D0
x+ϵ||wD0

||1}] = Ex1,y[max{0, 1−yw(1)
D∗x1+ϵ|w(1)

D∗ |}] = Ex1,y[AIA≥0]
(14)

LD∗ = E(x,y)[max{0, 1− ywT
D∗x+ ϵ||wD∗ ||1}] = Ex,y[(A+ z)IA+z≥0] (15)

Consider LD∗ = Ex,y[(A+ z)IA+z≥0],

LD∗ = Ex,y[(A+ z)IA+z≥0] ≥ Ez,x1,y[(A+ z)IA+z≥0IA≥0]

= Ex1,y[IA≥0Ez[(A+ z)Iz≥−A]]

= Ex1,y[AIA≥0Ez[Iz≥−A] + IA≥0Ez[zIz≥−A]]

= Ex1,y[AIA≥0]− Ex1,y[AIA≥0Ez[Iz<−A]] + Ex1,y[IA≥0Ez[zIz≥−A]]
(16)

Now we consider Ez[zIz≥−A], as z ∼ N (µ′, σ′2), we have z−µ′

σ′ ∼ N (0, 1) and

Ez[zIz≥−A] = Ez[zIµ′≥z≥−A] + Ez[zI2µ′+A≥z≥µ′ ] + Ez[zIz≥2µ′+A]

= Es∼N (0,1)[(σ
′s+ µ′)I

0≥s≥−A+µ′
σ′

] + Es∼N (0,1)[(σ
′s+ µ′)IA+µ′

σ′ ≥s≥0
] + Ez[zIz≥2µ′+A]

= 2µ′Es∼N (0,1)[I0≥s≥−A+µ′
σ′

] + Ez[zIz≥2µ′+A]

(17)

since ϵ > µ, we have

µ′ =

d+1∑
i=2

(ϵ|w(i)
D∗ | − µyw

(i)
D∗) ≥

d+1∑
i=2

(ϵ− µ)|w(i)
D∗ | > 0

Thus

Ez[zIz≥−A] = 2µ′Es∼N (0,1)[I0≥s≥−A+µ′
σ′

] + Ez[zIz≥2µ′+A]

> Ez[zIz≥2µ′+A]

> (2µ′ +A)Ez[Iz≥2µ′+A]

> AEz[Iz≥2µ′+A]

= AEz[Iz≤−A]

(18)

Plug Eq. 18 into Eq. 16 we have

LD∗ = Ex,y[(A+ z)IA+z≥0] ≥ Ex1,y[AIA≥0]− Ex1,y[AIA≥0Ez[Iz<−A]] + Ex1,y[IA≥0Ez[zIz≥−A]]

> Ex1,y[AIA≥0]− Ex1,y[AIA≥0Ez[Iz<−A]] + Ex1,y[AIA≥0Ez[Iz≤−A]]

= Ex1,y[AIA≥0]

= LD0 .
(19)

Step 2: We will show the existence of distribution D0 such that wD0
:= (w

(1)
D∗ , 0, ..., 0), we can set

x2 = x3 = ... = xd+1 = 1 in D0 and x1 = 1

w
(1)

D∗
y such that w(1)

D0
= w

(1)
D∗ and w

(i)
D0

= 0, i ≥ 2.

Combining Step 1 and 2 yields contradiction.
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A.3 PROOF OF THEOREM 3

Proof. According to Theorem 2, the weight of the optimal SVM learned from D∗ should satisfy
w

(2)
D∗ = w

(3)
D∗ = ... = w

(d+1)
D∗ = 0. Thus the clean and robust accuracy are only related to the first

feature of x. It is easy to see the natural accuracy is equal to the probability that sign(x1) = y,
which is p. Besides, when the perturbation budget ϵ < 1, the adversary does not change the sign of
x1. Thus the robust accuracy is also p.

A.4 ADVANCED THEORETICAL ANALYSIS ON A GENERAL DATASET

Consider dataset distribution (x, y) ∈ R(d+1)×1 follow the distribution below:

y ∼ {−1, 1}, x1 ∼
{

y, with prob p;

−y, with prob 1− p,
xi ∼ Di, i ≥ 2, (20)

where Di are symmetric distributions with mean µi ≤ 1.
Lemma 4. The sum of independent symmetric distributions is also symmetric.

Proof. Based on the fact (which is easy to prove) that a random variable is symmetric if and only
if its characteristic function is real-valued. The characteristic function of the sum of independent
symmetric distributions is given by the multiplication of the characteristic function of independent
symmetric distributions, which is also real-valued. Thus the sum of independent symmetric distri-
butions is also symmetric.

Following the settings in the above section we have the lemma below
Lemma 5. Our minmax optimization problem is

min
D′

max
||δ||∞≤ϵ

E(x,y)[max{0, 1− ywT
D′(x+ δ)}] = min

D′
E(x,y)[max{0, 1− ywT

D′x+ ϵ||wD′ ||1}]

(21)

Let
D∗ = argmin

D′
E(x,y)[max{0, 1− ywT

D′x+ ϵ||wD′ ||1}], (22)

if 1 > ϵ ≥ maxi≥2 µi , then wD∗ := (w
(1)
D∗ , ..., w

(d+1)
D∗ ) must satisfy w

(2)
D∗ = w

(3)
D∗ = ... = w

(d+1)
D∗ =

0

Proof. The optimal D∗ should make 1− ywT
D∗x+ ϵ||wD∗ ||1 as small as possible.

1− ywT
D∗x+ ϵ||wD∗ ||1 = 1− yw

(1)
D∗x1 + ϵ|w(1)

D∗ |+
d+1∑
i=2

(ϵ|w(i)
D∗ | − yw

(i)
D∗xi), (23)

as xi ∼ N (µy, 1), i ≥ 2, we have
∑d+1

i=2 (ϵ|w
(i)
D∗ | − yw

(i)
D∗xi) ∼ N (

∑d+1
i=2 (ϵ|w

(i)
D∗ | −

µyw
(i)
D∗),

∑d+1
i=2 w

(i)2
D∗ ).

Assume there exist w(i)
D∗ ̸= 0, i ≥ 2, we will show there exists D0 such that wD0

:= (w
(1)
D∗ , 0, ..., 0)

and

LD0
:= E(x,y)[max{0, 1−ywT

D0
x+ϵ||wD0

||1} < E(x,y)[max{0, 1−ywT
D∗x+ϵ||wD∗ ||1}] =: LD∗

Step 1: We will show if wD0
:= (w

(1)
D∗ , 0, ..., 0),

LD0
< LD∗ .

Denote by A = 1 − yw
(1)
D∗x1 + ϵ|w(1)

D∗ |, µ′ =
∑d+1

i=2 (ϵ|w
(i)
D∗ | − µyw

(i)
D∗), and z =

∑d+1
i=2 (ϵ|w

(i)
D∗ | −

yw
(i)
D∗xi) ∼ S, by Lemma 4 we know S is symmetric with mean µ′. Then by Eq. 23 we have

1− ywT
D∗x+ ϵ||wD∗ ||1 = A+ z,

16
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and thus we can simplify LD0
,LD∗ as below:

LD0
= E(x,y)[max{0, 1−ywT

D0
x+ϵ||wD0

||1}] = Ex1,y[max{0, 1−yw(1)
D∗x1+ϵ|w(1)

D∗ |}] = Ex1,y[AIA≥0],
(24)

LD∗ = E(x,y)[max{0, 1− ywT
D∗x+ ϵ||wD∗ ||1}] = Ex,y[(A+ z)IA+z≥0]. (25)

Consider LD∗ = Ex,y[(A+ z)IA+z≥0],

LD∗ = Ex,y[(A+ z)IA+z≥0] ≥ Ez,x1,y[(A+ z)IA+z≥0IA≥0]

= Ex1,y[IA≥0Ez[(A+ z)Iz≥−A]]

= Ex1,y[AIA≥0Ez[Iz≥−A] + IA≥0Ez[zIz≥−A]]

= Ex1,y[AIA≥0]− Ex1,y[AIA≥0Ez[Iz<−A]] + Ex1,y[IA≥0Ez[zIz≥−A]]
(26)

Now we consider Ez[zIz≥−A], as z ∼ S and S is symmetric with µ′. We have S − µ′ is symmetric
with 0 and
Ez[zIz≥−A] = Ez[zIµ′≥z≥−A] + Ez[zI2µ′+A≥z≥µ′ ] + Ez[zIz≥2µ′+A]

= Es∼S−µ′ [(s+ µ′)I0≥s≥−A−µ′ ] + Es∼S−µ′ [(s+ µ′)IA+µ′≥s≥0] + Ez[zIz≥2µ′+A]

= 2µ′Es∼S−µ′ [I0≥s≥−A−µ′ ] + Ez[zIz≥2µ′+A]

= 2µ′Ez[Iµ′≥z≥−A] + Ez[zIz≥2µ′+A].
(27)

Since ϵ > µ, we have

µ′ =

d+1∑
i=2

(ϵ|w(i)
D∗ | − µyw

(i)
D∗) ≥

d+1∑
i=2

(ϵ− µ)|w(i)
D∗ | > 0.

Thus
Ez[zIz≥−A] = 2µ′Ez[Iµ′≥z≥−A] + Ez[zIz≥2µ′+A]

> Ez[zIz≥2µ′+A]

> (2µ′ +A)Ez[Iz≥2µ′+A]

> AEz[Iz≥2µ′+A]

= AEz[Iz≤−A].

(28)

Plugging Eq. 28 into Eq. 26, we have

LD∗ = Ex,y[(A+ z)IA+z≥0] ≥ Ex1,y[AIA≥0]− Ex1,y[AIA≥0Ez[Iz<−A]] + Ex1,y[IA≥0Ez[zIz≥−A]]

> Ex1,y[AIA≥0]− Ex1,y[AIA≥0Ez[Iz<−A]] + Ex1,y[AIA≥0Ez[Iz≤−A]]

= Ex1,y[AIA≥0]

= LD0 .
(29)

Step 2: We will show the existence of distribution D0 such that wD0
:= (w

(1)
D∗ , 0, ..., 0), we can set

x2 = x3 = ... = xd+1 = 1 in D0 and x1 = 1

w
(1)

D∗
y such that w(1)

D0
= w

(1)
D∗ and w

(i)
D0

= 0, i ≥ 2.

Combining Step 1 and 2 yields contradiction.

Lemma 6. The optimal SVM learned from D∗ have at least p clean and robust accuracy (with ℓ∞
budget less than 1) on the original dataset.

Proof. According to Lemma 5, the weight of the optimal SVM learned from D∗ should satisfy
w

(2)
D∗ = w

(3)
D∗ = ... = w

(d+1)
D∗ = 0. Thus the clean and robust accuracy are only related to the first

feature of x. It is easy to see the natural accuracy is equal to the probability that sign(x1) = y,
which is p. Besides, when the perturbation budget ϵ < 1, the adversary does not change the sign of
x1. Thus the robust accuracy is also p.
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B ADDITIONAL EXPERIMENT RESULTS

Table 3: TinyImagenet results (Under AutoAttack)

Robust acc / Natural acc 2/255 (ℓ∞) 0.25 (ℓ2)
Natural dataset 0.01/70.94 1.6/70.94
Adv. data of natural classifier 7.35/61.66 25.06/65.29
Robust dataset (ours) 15.71/61.60 34.72/62.91
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