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Abstract

Existing world models for autonomous driving struggle with long-horizon genera-
tion and generalization to challenging scenarios. In this work, we develop a model
using simple design choices, and without additional supervision or sensors, such as
maps, depth, or multiple cameras. We show that our model yields state-of-the-art
performance, despite having only 469M parameters and being trained on 280h of
video data. It particularly stands out in difficult scenarios like turning maneuvers
and urban traffic. We test whether discrete token models possibly have advantages
over continuous models based on flow matching. To this end, we set up a hybrid
tokenizer that is compatible with both approaches and allows for a side-by-side
comparison. Our study concludes in favor of the continuous autoregressive model,
which is less brittle on individual design choices and more powerful than the
model built on discrete tokens. Project page with code, model checkpoints and
visualization can be found here: https://lmb-freiburg.github.io/orbis.github.io

1 Introduction

Intelligent agents operate in complex environments by simulating plausible future states based on
past observations. This capacity for imagination allows them to plan toward long-term goals [22, 4].
Humans naturally acquire this ability through passive observation and minimal interactions, enabling
them to adapt quickly to new and unseen scenarios. Emphasizing the passive observation component
of such world models has become particularly popular for the driving world, since large amounts
of data exists for this domain. It is attractive to circumvent the manual setup of many perception
components by learning the visual representation for decision making via the predictive loss of a
world model.

Recent driving world models [17, 1, 25] built on video diffusion models [6] have made major strides
towards generating detailed content in high definition and at high frame-rates. However, Fig. 2
highlights that these models only work well for few frames, especially in case of maneuvers that
require generating new content, such as turning. Our evaluation, conducted on the generated videos
as well as on the estimated ego-trajectories, reveals substantial limitations in how all public driving
world models capture state transitions – the key feature of a world model – even though the quality of
the generated videos is excellent at first.

While realistic video generation can be a valuable product, it is not the primary objective of world
models. As demonstrated in a number of influential works (e.g. World Models [22], Dreamer [23],
Cosmos [1], VJEPA-2 [2]), their main purpose is representation learning, planning, and policy
learning. The quality of state representations and the accuracy of next-state predictions are therefore
paramount, with decoded videos serving primarily as an indicator, e.g. of whether the model can
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execute a turn stably. Long-horizon prediction serves as a more meaningful measure of how well
the model captures state transitions, while generalization to complex scenarios reflects its ability
to model diverse real-world dynamics. Existing models such as Vista and GEM, though conceived
with planning as possible application, often fail in non-trivial yet routine situations. In this work we
prioritize building a world model with robust state representation and dynamics that handle such
cases effectively.

Consequently, a relevant question is whether world models should rely on continuous-space latents
or use discrete tokens (similar to LLMs)[15, 10, 86] for representing world states. The current trend
for visual generation goes towards diffusion-based (continuous) models [61, 6, 19]. On the other
hand, driving world models based on discrete representations and LLM-like objectives seem to have
the edge in terms of rollout duration [30, 31]. Among these, the proprietary GAIA-1 model showed
no issues with turns and long drives. This observation prompts the question of whether the discrete
paradigm is really superior to the other for long-term generation, and whether the continuous space is
the reason for the observed shortcomings in the current state of the art.
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Figure 1: Comparison of model scale, training
data volume, and FVD performance of various
approaches on the NuPlan-turns dataset. *Driving-
World is trained on the test dataset nuPlan.

To address these questions, we introduce a hy-
brid discrete-continuous tokenizer that is com-
patible with both types of modeling approaches
to be able to compare the two strategies on
the same ground. For the quantized-token
model we developed a frame-wise autoregres-
sive model based on MaskGIT [10], whereas
for the continuous-token model we developed
an autoregressive model based on flow match-
ing [46, 49]. Both models were trained from
scratch. We also put effort into optimizing the
details of the tokenizer. Indeed we find that
many of these details are important for the per-
formance of the model acting on quantized to-
kens. Surprisingly, these details are of little rel-
evance for the continuous modeling approach.
Both our models can handle long roll-outs, but
the continuous approach yields significantly bet-
ter results and sets the state of the art by a large
margin; see Fig. 1.

Unlike many prior approaches, our world model is trained using only raw video data without using any
extra low-level regularization objectives, such as structural consistency or pseudo-depth supervision.
All implicit perception is learned directly from the presented videos. This makes the approach more
scalable and establishes a strong foundation for the development of more controllable models.

We also demonstrate that our model can be modified easily to allow ego-motion control via adaptive
layer normalization [58]. To this end, we evaluate the trajectories produced by our world model also
in ego-motion-control-conditioned settings, where we propose a set of metrics to evaluate realism
and coverage of the requested trajectories.

To summarize, (1) we highlight shortcomings of contemporary driving world models and propose
additional benchmarking metrics to make these shortcomings more explicit. (2) We propose a hybrid
discrete-continuous tokenizer that is compatible with both discrete and continuous prediction losses
and allows us to compare both modeling approaches side-by-side. (3) On its basis, we compare
continuous and discrete prediction losses on a fair common ground and find a clear advantage in
favor of continuous modeling. (4) As demonstrated in Figure 1, the resulting model is much more
economical in terms of training data and model size than existing world models. Using only 280
hours of front camera video data, our 469M parameter flow-matching model Orbis already produces
state-of-the-art performance on long-horizon rollouts with realistic and diverse trajectories. It excels
particularly in challenging driving scenarios.
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2 Related Work

World Models. The ability of world models to do real-world simulation can be useful for policy
learning [59, 26], sample efficient RL [23, 24, 79, 42], and representation learning [89]. Previous
world models have been limited to gaming [24, 23, 21] and other simulated environments [12]. Recent
breakthroughs in video generative modeling [83, 6] have led to future video prediction models - an
essential building block for world models.

Multiple driving world models [75, 77, 44] use BEV (Bird’s-Eye-View) annotations like depth maps,
3D bounding boxes, road maps to generate new scenarios. DriveDreamer [75] incorporated multi-
modal input, such as traffic conditions, text prompts, and driving actions, for future frames and action
generation. Many other works [77, 90, 76] extended this idea to multi-view video generation. Some
recent works [90, 32] also use LLMs and VLMs [47] for spatial reasoning. Although these models
show high quality generation, they rely on heavy external knowledge. Such heavy reliance limits
the model’s ability to generalize to new environments. In this work, we train a generalizable world
model using unannotated front-camera videos and only fine-tune for ego-motion control.

Recent driving world models [36, 82, 17, 1, 25, 30, 66] trained predominantly on raw driving video
data have shown the ability to simulate realistic future scenes in unseen environments. DriveGAN [36],
among the first works to train on real-world driving data, showed realistic future generation with
ego-motion and environment controllability. GAIA-1 [30] further enhanced the quality of future
prediction and added controllability through text, in addition to action input. Diffusion-based world
models [17, 25] fine-tuned general-purpose pre-trained video generation models like SVD [6] to
produce future video predictions at high resolution and high frame rate. Driving world models -
Vista [17] and GEM [25] demonstrate high-quality rollouts up to 15 seconds. DrivingWorld [31]
further enables longer and more coherent rollouts.

Generative models based on vector-quantized tokens like autoregressive [81, 38] and masked genera-
tive models [87, 48, 20], have also demonstrated strong performance in video generation due to their
strong capability in modeling dynamics and representation learning. For world modeling, Genie [7]
and GAIA-1 [30] have demonstrated generalized world modeling capabilities with interactive control
and long-horizon rollouts respectively. We also observe that quantized driving world model can
perform long-horizon generation.

Latent Representation Learning. VAEs [60] and VQVAEs [73, 15] are foundational autoencoding
techniques for learning latent representations used in training latent world models. VAEs produce the
continuous latents, commonly used in diffusion [91, 6] and flow matching [66, 61, 33] generative
models. VQ-VAE produces discrete (quantized) latent codes for LLM-style autoregressive [15, 37]
and masked generative modeling [87, 7]. Following VQGAN work [15], ideas such as product
quantization [43, 62, 3], residual quantization [41], multi-scale residuals [70, 53], spectral decompo-
sition [16, 45, 1] have been introduced for image and video generation. Some works also propose
hybrid tokenizers [69] that unify the tokenizer model for both discrete and continuous generative
models.

3 Challenges Faced by Contemporary Driving World Models

Prior works perform well in straight-road driving scenarios but show significantly higher failure rates
when faced with difficult maneuvers. For example, in turning events, as rollouts extend over longer
horizons, the content generated by these works tends to run out of distribution, producing blurred
frames. The degradation of visual semantics and details causes the ego-vehicle to stop prematurely,
as the model cannot recover from poorly generated new context. This can be seen in Figure 2, where
Vista [17] comes to a halt before 10 seconds. Most of these limitations can be reflected using video
quality metrics like FVD [71] computed on several time windows, as shown in Section 5.3.

We found that these models also show unrealistic ego-vehicle behaviors, such as lateral sliding or
jitter artifacts. This could be due to the strong priors inherited from general-purposed pre-trained
video generation models. Such artifacts can be seen in the trajectories produced by these models, as
shown in Fig. 2.

These are not well captured by standard metrics like FVD or JEDi, whose reliance on pretrained
human-action or general purpose encoders limits sensitivity to driving dynamics and ego-motion.

3



60 40 20 0

0

10

20

30

40

50

60

70

Estimated trajectories

Vista

GEM

Orbis

Original

2s

5s

10s

0 20 40 60

0

20

40

60

80
Vista

GEM

Orbis

Original

2s

5s

10s

Context 
(real)

2s 5s 10s

V
is

ta
O

u
rs

O
u

rs
G

E
M

Figure 2: Limitations of state-of-the-art video generation models on turning events. Left: The
trajectories estimated from the generated videos show that previous approaches either stop prematurely
or drift into an unnatural path. Right: The quality of the corresponding generated frames degrades
over time, as the models struggle to generate the scenery. In contrast, our method tracks the original
trajectory curvature and speed more closely, and can generate novel content beyond the unseen
horizon. Videos for a larger set of randomly sampled context frames are linked in the Appendix.

This calls for more targeted evaluations. To bridge this gap, we propose a distribution-level trajectory-
based evaluation, detailed in Section 5.2.2, that directly quantifies realism and coverage of generated
driving behavior compared to a curated dataset of turning events. We evaluate and compare the
generated trajectories for Vista, GEM, and our approach, and find the results to confirm our qualitative
observations and show the shortcomings of the existing methods.

4 Compatible Discrete and Continuous Prediction Models

The above shortcomings all appear in conjunction with approaches based on video diffusion. This
modeling approach could be a potential cause of these methods’ failure. To enable a fair comparison
between discrete and continuous latent world models, we design a hybrid image tokenizer that supports
both objectives and allows us to evaluate directly which objective better handles the challenges of
long-horizon prediction in a simple and controlled setting. Our study is conducted using two efficient
formulations: flow matching for continuous models and masked generative modeling for discrete
models.

4.1 Hybrid Image Tokenizer

Preliminary. Given an image I ∈ RH×W×3, the encoder E produces a latent x = E(I) ∈
RH′×W ′×d, where d is latent channel dimension. The latent x is then quantized to the closest
codebook entry, resulting in q = Q(x) ∈ RH′×W ′×d, using a codebook C ∈ RK×d with k entries.
The tokenizer is trained using the VQGAN [15] objective.

Our design. Building upon recent works [43, 85, 88], we design a custom hybrid tokenizer, suitable
for both discrete and continuous predictive video modeling. VQ-VAEs [73] typically optimize latent
representation learning for pixel-level reconstruction. Prior works show that these representations
typically lack desirable properties such as semantic structure [43].To address these limitations, we
adopt a factorized token design [3], using separate encoders Es and Ed to produce semantic tokens
xs and detail tokens xd, respectively. The former are obtained via additional distillation from
DINOv2 [55] as shown in the Figure 3. Each output is quantized independently using separate
codebooks Cs and Cd, yielding qs = Qs(xs) and qd = Qd(xd). We convert the tokenizer into a
hybrid model by fine-tuning it with a 50% probability of bypassing the VQ bottleneck during training.
This simple modification allows a single tokenizer to support both discrete and continuous latent
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Figure 3: Image Tokenizer: The tokenizer provides two semantic and detail representation. These
two representations are concatenated and fed into the image decoder and later to the world model.
During training the decoder receive continuous or discrete tokens randomly in the fine-tuning phase.
World Model: To generate the next frame, the model receives either sampled Gaussian noise or fully
masked tokens as the target frame, along with encoded context frames. The model progressively
denoise or unmask the target frame. This iterative sampling process is repeated to generate target
frame. Inference Rollout: During inference, the world model autoregressively generates next frame.
This process repeats for the desired number of frames in the rollout sequence.

representations. The final continuous representation is x = (xs;xd) and the corresponding quantized
representation is q = (qs;qd). The decoder reconstructs the image from the final representation.

4.2 Latent Space World Model

We formulate our world model as a next-frame autoregressive model for both discrete and continuous
objectives, as demonstrated in Figure 3. The model receives the context frames x0:N−1 and a target
frame xτ=1

N , initialized by noise or a complete mask. The model predicts the next frame xτ=0
N

iteratively over multiple M denoising or unmasking steps. During inference rollouts, the model
updates its context by appending the most recently generated frame xτ=0

N , discarding the earliest
context frame x0 of the previous inference step. This sliding-window process is repeated for each
next-frame generation to get long-horizon predictions in the latent space (Figure 3). For visualization,
each generated latent is decoded into an image using the tokenizer decoder.

In this work, we consider the flow matching [46, 49, 14] objective for the continuous world model
and the masked generative modeling objective [10, 87] for the discrete world model.

4.2.1 Flow Matching

We follow the flow matching (FM) objective introduced by Lipman [46]: we define a forward
trajectory from the data distribution to a standard normal distribution via linear interpolation:

xτ = (1− τ)x+ τϵ, τ ∈ [0, 1], ϵ ∼ N (0, I) (1)
To use the flow matching objective for next frame prediction, the corrupted target frame xτ

N is
conditioned on previous frames x0:N−1. The model predicts v(xτ

N ;x0:N−1), the velocity that would
take xτ

N towards the Gaussian prior. We train the model with the following objective as:

L = Eτ∼[0,1], ϵ∼N (0,I)

[
||v(xτ

N ;x0:N−1)− (ϵ− xN )||2
]
, (2)

At inference time, we sample a noise vector as the new target frame and iteratively transform it
towards the data manifold. At each iteration the model calculates the velocity conditioned on context
frames and update the target frame as:

xτ−δτ
N = xτ

N − δτ · v(xτ
N ;x0:N−1) (3)
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where δτ is the step size used to update the target frame at time step τ . After integrating from τ = 1
to τ = 0, the resulting latent x0

N is the generated next frame in latent space.

4.2.2 Masked Generative Model

In the discrete setting, we extend masked generative modeling (MGM), following the MaskGIT
objective [10], from image generation to next-frame prediction. The encoded latents of image frames
are represented using discrete tokens q.

During training, we apply a binary mask M ∈ {0, 1}H′×W ′
to the target frame qN , resulting in

the masked frame qM
N = qN ◦M+ [MASK] ◦ (1−M), where [MASK] is a learned special token.

The masking ratio for the whole frame is sampled uniformly from 0% to 100% using a predefined
scheduler. The MGM model takes as input the concatenated sequence of context frames and the
noised target frame (q0:N−1;q

M
N ), and is trained to predict all the token IDs of the target frame. The

training objective is a standard cross-entropy loss, defined as follows:

LCE = EM

[
−
∑
i

log pθ

(
q
(i)
N | q0:N−1,q

M
N

)]
, (4)

where i indexes over all token positions in the target frame qN . The model receives discrete token
indices from the tokenizer, which discards any pairwise similarity structure among latent tokens.
Following [67], to reintroduce this structure, we utilize the similarities between quantized code
vectors in the VQ codebooks as an extra regularizer to improve the training objective. At inference,
given a fully masked target frame and the context frames (q0:N−1), the model iteratively predicts and
replaces masked tokens. We follow, the confidence-based sampling [10] heuristics for unmasking the
target frame.

4.2.3 Conditioning with Ego-motion

To verify that our model is capable of action control, we implement the option for additional condition
signals via adaptive layer normalization [58]. We embed steering angle and speed with a two-layer
MLP, and add them to the other condition signals.

5 Experiments

5.1 Experiment Details

Table 1: Overview of the training
datasets used for the world model.

Total Used Frames
Name (h) (h) (M)

OpenDV 1747 158 5.67
BDD100K 1000 112 4.02

Total 2747 280 9.69

Datasets. To train our world model, we use subsets of
videos from the BDD100K [84] and OpenDV [82] datasets.
As shown in Table 1, we select a limited number of hours
from each dataset and extract frames at 10 Hz. In total,
we use 280 hours of video data from a combined available
total of 2747 hours. For BDD100K, we select the day-
clear subset of the training set. From OpenDV we exclude
night drives via a brightness filter and uneventful ones
by the presence of certain words in the original video
titles (see Appendix). We then subsample by selecting
evenly spaced 30-second clips. To train the tokenizer we
additionally select images from Honda HAD [35], Honda
HDD [63], ONCE [54], NuScenes [8], and NuPlan [9] to
make the dataset diverse. Our dataset primarily consists of daylight scenarios.

Tokenizer details. For the tokenizer, we employ a Transformer-based encoder and a CNN-based
decoder. Our tokenizer consists of 234 M parameters and uses two ViT [11] encoders initialized with
MAE [27] weights, for the two factorized tokens. To address codebook under-utilization issues, we
incorporate L2-normalized codes [85], low-latent dimension [85] and entropy penalty [88]. For further
improvement, we fine-tune the model with implicit regularization as proposed in EQ-VAE [39].
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Latent world model details. Both continuous and discrete models follow a factorized spatial-
temporal (ST) transformer architecture [80]. For high-resolution experiments, we replace the spatial
block with a Swin [50] transformer block for scalability.

For the FM model, we use DiT [56] with ST transformer blocks (STDiT), where a per-frame causal
attention mask is applied to the time-attention layers. To improve generalization and frame generation
quality, we drop all context frames 50% of the time. When context frames are present, we augment
them with noise 50% of the time, similar to prior work [72, 18, 28]. In order to sample the next frame,
we use ODE sampler and take 30 steps. For the MGM model, we also add context noise to improve
robustness towards context noise, especially for long-rollouts: we replace 10% of the frames and 10%
of the overall tokens with a mask token.

Masked generative models often exhibit flickering artifacts caused by inconsistent predictions across
the temporal dimension. We train a lightweight 30M-parameter temporal refinement module to
smoothen spatial flickering artifacts. It is U-Net architecture [65], trained using a flow-matching
objective. This module operates purely as a post-processing step, on single frames, and does not
interfere with the world model. More details are included in the Appendix C.3.

Training details. Our higher resolution model operates at 512 × 288 and small-scale model at
256× 256. Tokenizer compresses the image spatially by 16×. We train latent models with a context
of 5 frames sampled at 5Hz. All small-scale models for ablation studies are trained on only the
BDD100K subset for one day on 32× A100 GPUs. The higher resolution model is trained for 10
epochs over 5 days on 72× A100 GPUs.

5.2 Evaluation

5.2.1 Video Generation Quality

We evaluate the quality of the generated videos using FVD [71] and JEDi [52], and we use FID to
assess tokenizer reconstruction quality. For comparing with the baselines, we show FVD and JEDi
on nuPlan [9] and Waymo [68] datasets with 800 and 400 samples respectively. To evaluate the
models in challenging scenarios, we curate a dedicated validation set of turning events (nuPlan-turns),
consisting of 400 samples, selected from the nuPlan validation set where the initial yaw rate is at least
0.12 rad/s (∼1 std). FVD results on nuPlan and nuPlan-turns are not comparable, since nuPlan is a
much more diverse dataset compared to the specialized nuPlan-turns dataset. All evaluation datasets
constitute unseen testing domains for our model and for the baselines, except for DrivingWorld,
which contains nuPlan as part of the training dataset. We choose nuPlan over the similar nuScenes
due to the latter’s irregular sampling rate, which adds an unnecessary confounding factor to the
evaluation. Additionally, we evaluate our model using Video Quality Assessment (VQA) metrics
including PSNR, SSIM and DOVER[78], see Appendix D.2.

5.2.2 Trajectory Quality

Table 2: Quality of estimated 10s tra-
jectories for Vista, GEM, and our model,
evaluated on turning events from nuPlan.

Frechet ADE
Model Prec. Rec. Prec. Rec.

Vista 0.39 0.45 0.25 0.48
GEM 0.33 0.54 0.27 0.47
Ours 0.47 0.56 0.41 0.51

To evaluate the realism and coverage of generated videos
in a manner well suited to driving scenes, where the re-
alism of ego motion and driving behavior is critical, we
propose distribution-level, trajectory-based precision and
recall metrics. To this end, we map both real and gener-
ated videos to pose sequences using the inverse dynamics
model VGGT [74], and evaluate realism and coverage
via precision–recall following [40], where the number of
nearest neighbors within the distribution determines the
distance threshold. To measure distances over the tra-
jectory sets, we use discrete Fréchet distance [13] and
Average Displacement Error (ADE) [57], both within the
distributions of real and generated trajectories and across
them (see Appendix D.1 for full definitions). The latter is a stricter metric, as the former is agnostic
to velocity differences between trajectories.

We compare the quality of generated trajectories for Vista, GEM, and our approach in (Table 2).
The results show the limitations of existing models in capturing the underlying distribution of ego
motion and driving behavior. All approaches perform worse in terms of ADE, indicating difficulty
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Table 3: SOTA results: FVD and JEDi over 6 seconds rollouts@ 5Hz. Numbers of baselines were
computed using their official checkpoints. Lower is better. *DrivingWorld (DW) is trained on the test
dataset nuPlan and uses ego-motion control as an extra input. Video samples available in Appendix.

FVD↓ JEDi↓
Model nuPlan Waymo nuPlan nuPlan Waymo nuPlan

turns turns

Cosmos [1] 291.80 278.19 248.39 0.55 0.31 0.50
Vista [17] 323.37 422.58 413.61 0.37 0.44 0.54
GEM [25] 431.69 291.84 357.25 0.42 0.35 0.31
DW* [31] 298.97 N/A 334.89 1.33 N/A 1.50

Orbis (ours) 134.06 167.57 239.20 0.14 0.33 0.16

in maintaining realistic speeds. Moreover, we achieve the best precision-recall on Fréchet distance,
indicating that our predicted trajectories more closely follow the ground-truth paths compared to
competing baselines.

5.3 Results

Comparison to SOTA. We compare our method against the state-of-the-art video world models for
autonomous driving: Vista [17], GEM [25], DrivingWorld (DW) [31], and the more general-purpose
Cosmos [1] in its autoregressive Predict1-4B version. We focus our comparison on steering-free
unconditional generation, i.e. with previous visual observations as sole conditioning, with the
exception of DrivingWorld which requires the past trajectory. We use a context size of five frames for
Vista and DrivingWorld, one for GEM and nine for Cosmos – as per their respective designs. The
input control for DrivingWorld is implemented for nuPlan’s data format.
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Figure 4: Video quality (FVD) over consecu-
tive 4s time windows on nuPlan-turns. The x
axis shows the starting time of the evaluated
time window.

Results are shown in the Table 3, for a prediction
horizon of 6 seconds at 5hz. The qualitative results
for 20s are shown in Figure 5 (more are included
in Appendix). Our method outperforms other driv-
ing world models on all three benchmarks and both
metrics, except for Cosmos on Waymo according
to the JEDi metric. We further compare results for
long-horizon video prediction, shown in Figure 4 on
nuPlan-turns dataset. For each method, FVD is com-
puted over the entire predicted video in a windowed
manner, where each window contains 20 frames sam-
pled at 5hz. Results show that Orbis based on flow
matching outperforms all baselines and maintains sta-
ble performance over long-horizon prediction of up
to 20 seconds. The discrete counterpart Orbis-MG
based on MaskGIT, shows suboptimal performance
for shorter horizons but scales well over long hori-
zons, surpassing all previous works for the last two
windows. As discussed earlier, previous works perform well in short horizons but struggle with
long-horizon predictions. GEM has higher FVD scores for short-horizon due to its single-frame
conditioning design but performs relatively better on long-horizon predictions (more details in the
Appendix E).

Ego-motion Control and Evaluation As a proof-of-concept for ego-motion control, we fine-tune
a copy of Orbis model for two epochs on 75h of nuPlan videos and IMU data. Following previous
literature [17, 25, 31], we evaluate the resulting model by computing the ADE [57] between true and
generated trajectories, estimated with VGGT. We compare the ADE of the same model with and
without steering on 400 5s long nuPlan validation sequences in Table 5. Better trajectory tracking
under ego-motion conditioning indicates some degree of controllability – though in a preliminary
setting. Indeed, conditioning capabilities for related models are well documented [56, 4].
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Table 4: Tokenizer ablation. rFID is computed on 10k
BDD100k images. FVD on 200 sequences of 60 frames.

DINO TF Vocab rFID ↓ FVD ↓ FVD ↓
Size Orbis-MG Orbis

✗ ✗ 4096 9.33 1331.28 240.34
✓ ✗ 4096 12.17 1214.34 248.79
✓ ✓ 2×4096 9.10 533.28 246.11

Table 5: Ego-motion control: ef-
fect on the average error between
real and generated trajectories.

Model ADE ↓
Unconditional 5.20
+ ego-motion 2.40

Context Frames
1s 5s 10s 15s2s 3s 4s 20s

Figure 5: Qualitative results of the Orbis model over 20-sec rollouts (zoom-in for details). Videos
and more samples available on the webpage.

Effect of tokenizer design. For the discrete model, adding DINO distillation to the image tokenizer,
similar to GAIA-1 [30], leads to lower FVD, as shown in Table 4. However, the key factor to enable
long-horizon prediction for the discrete model is token factorization. Usage of DINO distillation even
leads to a worse rFID (reconstruction FID). However, token factorization annihilates this difference.
Interestingly, while the factorized tokenizer with DINO distillation is very important for the discrete
model, the continuous model is robust to these design changes, showing no large change in FVD.
These experiments were conducted in the small-scale setting.

Shortcomings of discrete space modeling. Despite being capable of relatively long rollouts, the
videos produced by Orbis-MG on average stop earlier than its flow matching counterpart, and their
duration is very sensitive to the sampling heuristics. We investigated this phenomenon and found
that at each location, the model’s classifier chooses the exact same token as the last context frame
approximately 45% of the times (this number is 29% for original encoded frames). This is likely
because in the discrete space content copying is an obvious and most rewarding choice. While this
phenomenon can be mitigated with regularization like context augmentation and a token-similarity
based loss, it does not get fully resolved. Additionally, the discrete model fails to capture small
motions of objects which is crucial for driving scenarios - thereby limiting the expressivity of the
world model.

Table 6: FVD scores for Orbis-MG and Orbis-FM
model with different architectures. The FVD is
over 60 generated frames of BDD val set.

Model Architecture 12 steps 30 steps

Orbis-MG ST 533.3 571.7
(discrete) DiT 769.0 981.3

CDiT 1552.3 1718.9

Orbis-FM ST 360.9 246.0
(conti.) DiT 345.4 274.2

CDiT 410.2 246.1

Consistency over architectures and sampling
budgets. To assess the generality of our find-
ings, we evaluate Orbis-FM and MG using three
Transformer architectures – DiT [56], STDiT
(our default), and CDiT [5], and with different
sampling budgets. All models were trained for
one day on 32 A100 GPUs in a small-scale set-
ting, and FVD scores were computed on 200
generated BDD validation videos (60 frames at
5 fps). As shown in Table 6, Orbis-FM consis-
tently outperforms Orbis-MG across all archi-
tectures and inference settings (12 and 30 steps).
Orbis-FM shows greater consistency across ar-
chitectures than Orbis-MG. The ST architecture
shows the best results for both models, with
Orbis-FM (ST, 30 steps) achieving the best per-
formance overall.
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6 Discussion

We investigated an important shortcoming of contemporary driving world models: their struggle
with the generation of new content, which makes long roll-outs, turning maneuvers, and realistic
trajectories impossible. We introduced an evaluation benchmark and metrics to quantify these
problems and tested the hypothesis that modeling in continuous space is the cause of this problem.
We found that this is not the case. Based on a side-by-side comparison with a fully compatible hybrid
tokenizer, we obtained two driving world models that both provide long roll-outs. However, the
continuous model based on flow matching performs much better and sets the new state of the art.
The resulting world model has only 469M parameters and was trained on only 280 hours of raw
video data. This is significantly less than existing models. At the same time, the approach is perfectly
scalable. In contrast to many other recent approaches, it only requires raw video data for training.
While we were limited on computing resources for scaling the model ourselves, we expect further
improvements when scaling the model parameters, the hours of observed data, the image resolution,
and the context length.

Limitations: While our investigation showed that world models built in continuous space are
advantageous over models built in a quantized token space, we were not able to uncover the reason
why the much larger public video diffusion models fail on long roll-outs. One of the possible reason
for this could be that these models are typically (but not always) derived from a pretrained Stable
Video Diffusion model. This could introduce biases in the representation, which are problematic for
learning relevant state transitions and generating long roll-outs for driving case. We will analyze this
in more detail as future work.

Apart from this analytic question, our world model has still several limitations, many of which can
probably be mitigated by scaling the model along multiple axes. Detailed content, such as traffic
lights and street signs, are not yet generated reliably. The traffic actors do not always follow the
traffic rules. While our model shows a good diversity when running multiple roll-outs with the same
context, the generated trajectories do not seem to represent the true probability distribution. While
we showed that conditioning modality can be added flexibly to the model, we did not yet investigate
the effectiveness of our model on downstream tasks, such as short-term decision making or planning.

Societal Impact: In this work, we contributed to the building of world models – a technology, which
may enable more reliable and cost-efficient autonomous driving and may play a key role in interactive
robotics. In its present state, the research is still in its infancy and results that will affect society will
still require a few years.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract summarizes the problem tackled in this paper and our contri-
butions. The introduction further explains the motivation of the paper and lists down the
contributions and findings of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clearly discuss the limitations and open questions of the work in Section 6
of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: NA
Justification: All formulation used in the paper are referenced and the empirical perfor-
mances are reported in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clarify all details about the experiments, required to reproduce the results.
Some details are included in the main manuscript and others are included in the Appendix.
Additionally, we open-sourced our model and code to the community.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets used in this work are publicly available. We have open-sourced
the model checkpoints and code. Additionally, we provide clear and detailed instructions,
required to reproduce the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The choice of hyperparameters and experiment details are clearly mentioned
either in the main script or appendix. Full code is available publicly.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: As training of latent world models is quite expensive, we are not able to train
each model over multiple random seeds. The models in this work are trained on large
datasets and evaluated on multiple evaluation sets.

Guidelines:

• The answer NA means that the paper does not include experiments.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details of compute resources used for the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We Do not violate any code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: At the end of Section 6, we discuss the social impact of our work. We discuss
how this work can contribute to building reliable and cost-efficient autonomous driving
systems.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: NA
Justification: The studied topic of research is still in its very early stage of development.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We clearly cite all works, including papers and code repositories, used in this
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We released our code and it is well documented such that readers can reproduce
the results or use provided checkpoints to get the same results as we provided in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve any study or usage of LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Video Rollouts

We include qualitative examples in video form, embedded in the https://lmb-freiburg.github.
io/orbis.github.io/ page. We have divided the qualitative examples into sections.

A.1 Comparison with the state-of-the-art

Here we show videos generated by our method beside those generated by the baseline approaches
(Vista [17], GEM [25], DrivingWorld [31], Cosmos [1]), for the same initial condition frames. We
include videos generated by our method for both continuous (FM) and discrete (MG) version.

These videos showcase the superiority of our model in dealing with content generation after turning
events. Orbis (FM) can generate more realistic scenes and objects than its discrete (MG) counterpart.
Moreover, in the fifth scene our model is the only one to halt at a stop sign, generating the passing of
a pedestrian and a car.

Along the generated videos, we display the estimated trajectories for Orbis, Vista, and GEM. These
show the unrealistic ego-motion that the SVD-based methods produce in some cases. Trajectories are
estimated using the VGGT model [74].

A.2 Performance in different scenarios

Here we show our videos generated by our model on straight drives, turns, and urban scenes.
Moreover, we show how our model can generate diverse videos when starting from the same initial
condition frames.

A.3 Randomly sampled videos

Here we show randomly sampled videos, all generated by our model, for nuPlan, Waymo, and
BDD100K. The first two are out-of-domain, whereas the last is in-domain w.r.t. the model’s training
data.

Even though our approach can generate videos from out-of-domain condition frames, its rollouts stop
more often on nuPlan and Waymo samples, compared to BDD100K.

B Dataset Details

B.1 OpenDV

We filter the training videos from OpenDV by brightness and by video title. We discard all videos
containing any of the following words in their original title: night, scenic, interstate, nature,
desert, park, walking. We then discard all videos with an average pixel value below 90 in a [0,
255] range, in order to keep consistency with the selected BDD100K subset.

From the resulting 1337 videos we then discard the first and last 60 seconds (to avoid text and other
overlays) and extract a total of 19398 30-second long clips.

B.2 Validation Sets

Here we describe how we obtained the validation sets used in the paper. We will release the annotation
files needed to reproduce the validation sets.

B.2.1 nuPlan

For this benchmark, we use the validation set of nuPlan [9], at its original sampling rate of 10Hz. We
select the validation samples by ensuring a distance of 8 seconds between their starting frames and a
length of at least 20 seconds worth of real frames available for evaluation.
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The total resulting samples are 5878. Due to the computational cost of generating videos for all
approaches we evaluate on the first 800 samples.

B.2.2 nuPlan-turns

For this benchmark, we use the validation set of nuPlan [9]. We select the starting frames of the
validation samples based on three criteria:

• a distance of at least 3 seconds between consecutive samples,

• at least 40 seconds worth of real frames available for evaluation,

• an initial yaw rate of at least 0.12 rad/s, equivalent to approximately 1 standard deviation.

We evaluate on 400 of the resulting 416 samples.

B.2.3 Waymo

This benchmark is based on the validation set of the Waymo Open Datset [68], at its original sampling
rate of 10Hz.

We select the validation samples by ensuring a distance of 2 seconds between their starting frames
and a length of at least 15 seconds worth of real frames available for evaluation. We use 400 of the
resulting 406 samples selected with these criteria.

C Model Details

C.1 Latent world model: Training details

Both continuous and discrete models follow a spatial-temporal Transformer architecture. ST-
Transformer blocks [80] have interleaved spatial and temporal attention layers. For high-resolution
experiments, we replace the spatial block with a Swin Transformer [50], leveraging windowed atten-
tion for efficiency. Our transformer architecture consists of 24 ST-blocks with a hidden dimensionality
of 768, split across 16 attention heads. We train models with a context of 5 frames sampled at 5Hz,
using the AdamW [51] optimizer with a learning rate of 5× 10−5.

C.2 Flow matching

We modify the DiT [56] to a STDiT architecture by decomposing temporal and spatial attention. As
shown in Table 7, the STDiT not only achieves a better FVD but also the frame quality, measured by
FID, degrades more slowly over time.

We compute the standard deviation of the training set’s encoded representations and normalize each
frame by dividing by this value, ensuring unit variance across inputs [64]. This normalization occurs
for detail and semantic tokens independently. To improve generalization and frame generation quality,
we drop context frames 50% of the time. This number reduces to 10% after 5 epochs of training.
When context frames are present, we augment them with noise 50% of the time, similar to prior
work [72, 18, 28]. In order to sample the next frame, we use ODE sampler and take 30 steps [46].

Table 7: Comparison of DiT and STDiT performance. Metrics are computed over 200 sequences,
each consisting of 120 generated frames, using the BDD100K dataset.

Name FVD ↓ FID ↓ frame 30 FID ↓ frame 60 FID ↓ frame 90 FID ↓ frame 120

DiT 287.03 81.46 91.06 98.45 101.91
STDiT 273.69 77.98 85.53 89.99 89.80

C.3 Masked generative modeling

Here, we explain the extra regularizer which is added to improve the training process of the discrete
model.
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Table 8: Overview of the objectives used in three training phases of the hybrid image tokenizer.
λD = 2.0, λEQ = 0.25, λG = 0.1.

.

Total Trainable Train Mode Objectives #Epochs

Phase-1 Full model discrete-only Lrec + LV Q + Lper + λDLDINO 12
Phase-2 Full model discrete + cont. Phase-1 + λEQLEQ 3
Phase-3 Decoder-only discrete + cont. Lrec + Lper + λGLGAN 5

Since, the model takes discrete token indices as input from the tokenizer, it discards any pairwise
similarity structure of the latent tokens. To reintroduce this structure, we utilize the similarity matrix
S ∈ RK×K over the K codebook vectors and let si = Si be the ith row corresponding to the
ground-truth token index i. Formally, letting ui ∈ RK be the model’s output logits for target token
with index i, we define

poi =
eui/T∑
j e

uj/T
, pti =

esi/T
′∑

j e
sj/T ′ (5)

where T and T ′ are temperature hyperparameters and pti is treated as soft-target for the model output.
The objective is to minimize the KL-divergence between poi and pti as

LKD = T T ′
H′W ′∑
i=1

DKL

(
pti ∥ poi

)
. (6)

This is similar to knowledge distillation objective [29], which aims to enrich relational information
by using soft-targets instead of hard one-hot labels and are known to improve data efficiency and
generalization. The overall model training objective is L = LCE + λLKL.

We use T = 2, T ′ = 0.2 and λ = 0.5 for our experiments.

Refinement module. The discrete masked generative model struggles to maintain temporal coher-
ence across the full spatial extent of each frame. While it captures important temporal connections
to keep the motion of objects consistent across frames and often predicts token with correct seman-
tic property, it predicts tokens with inconsistent appearance. This is likely due to the limitations
of heuristic-based unmasking scheme. These inconsistencies result in flickering artifacts, which
degrades the quality of the video. These artifacts negatively impacts FVD performance, especially
for long-horizon prediction, where the corrupted predictions are reused as context. To remedy these
artifacts and compare FVD fairly with continuous baselines, we introduce a small video refinement
model comprising of 30 M parameters. This refinement module is only a post-processing unit and
does not affect the world model learning. It follows a U-Net architecture with 12 3D-convolutional
layers and operates in the latent space. It takes four predicted frame latents from the world model as
input and outputs the refined continuous latents.

It is trained directly on the tokenizer encoder output, where it predicts clean continuous latents from
the corrupted quantized tokens from the tokenizer. To simulate noise, 20% of the quantized tokens
are replaced with randomly picked top-1000 tokens based on the similarity matrix. Ground-truth
continuous latents from the hybrid image tokenizer serve as training targets. The model is trained
with a flow-matching objective to denoise corrupted latents. At inference, refinement is applied in
a sliding-window manner over 4 frame latents, sliding one frame at a time. Only the last predicted
frame latent is retained and updated. We use ODE sampler and take only 1 step. The refined latents
are decoded by the tokenizer to produce the final image frame.

C.4 Tokenizer training details

We initialize the VIT-Base encoder with pretrained MAE weights. Both encoder branches combined
consists of 171.6 M parameters. The CNN-based decoder architecture is based on VQGAN [15]
tokenizer and consists of 44.8 M parameters. We use 16-dim latents, each for semantic and detail
codebooks. For the final model, we train the quantized version of the image tokenizer with codebook
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size of 16384 for each codebook. The model training has three phases. First phase is similar to
VQGAN training, but without the adversarial loss [1]. In the second phase, we fine-tune with scale-
equivariance regularization [39]. We only fine-tune the decoder in the third phase with the adversarial
loss. Three phases in total comprise of 20 epochs of training. Phase-2 and Phase-3 are trained with a
mix of discrete and continuous latents (includes VQ for discrete) to enable corresponding types of
world modeling, as shown in Fig. 3 of the main manuscript. In the mixed fine-tuning phases, 50%
mini-batches are trained with discrete latents and 50% with continuous latents. Hyperparameters
and objective details of three phases are included in Table 8. Lrec refers to L1 reconstruction loss,
Lper refers to perceptual loss, LEQ refers to scale-equivariance regularization loss, LGAN refers to
the adversarial loss and LV Q refers to the vector-quantization objectives including codebook and
commitment losses.

The model is trained with a mix of 7 datasets comprising of 2.49 M images. OpenDV dataset accounts
for around 90% of the dataset. The split across all datasets included for tokenizer training is shown in
Table. 9. We select only daylight images for the dataset.

Table 9: Tokenizer dataset overview.
Name Frames

OpenDV [82] 2.26 M
BDD100K [84] 158.6 K
Honda HAD [35] 5.1 K
ONCE [54] 14 K
Honda HDD [63] 5 K
NuScenes [8] 3 K
NuPlan [9] 47.4 K

Total 2.49 M

D Evaluation Metrics

D.1 Trajectory evaluation metrics

To evaluate the distributional fidelity of generated trajectories, we use two primary metrics: pointwise
error and curve similarity. These metrics serve as distance measures to evaluate distributional fidelity
and coverage using precision–recall [40] in the driving trajectory space relevant to world model
evaluation. Specifically, we represent a driving trajectory as a sequence of extrinsic transformation
matrices T = (T1, . . . ,TT ), where each Tt comprises a rotation (orientation) Rt ∈ SO(3) and a
translation (position) pt ∈ R3, arranged as Tt = [Rt,pt;0, 1]. For computing the ADE and Fréchet
distances, we consider only the planar positions pt ∈ R2. Other parameters within Tt, such as the
rotation Rt, can additionally be utilized to assess realism aspects like turning behavior and orientation
evolution over time.

Average Displacement Error (ADE). Given a predicted trajectory τ̂ = (p̂1, . . . , p̂T )) and a ground-
truth trajectory τ = (p1, . . . ,pT ), with positions p̂t,pt ∈ R2, the ADE is defined as the average
Euclidean distance between corresponding points:

ADE(τ̂ , τ) =
1

T

T∑
t=1

∥p̂t − pt∥2.

This metric quantifies pointwise deviations and is sensitive to minor spatial misalignments.

Discrete Fréchet Distance. The discrete Fréchet distance assesses the alignment cost between two
trajectories while preserving their temporal ordering:

FD(τ̂ , τ) = min
α,β

max
i=1,...,m

∥p̂α(i) − pβ(i)∥2,

where α, β are non-decreasing mappings from trajectory indices to points. This metric emphasizes
structural similarity and penalizes shape mismatches more robustly than ADE.
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Precision and Recall in Trajectory Embedding Space. To evaluate the distributional alignment
between real and generated trajectories, we utilize the precision–recall framework [40]. We first map
videos into the trajectory space using an inverse dynamics model (VGGT [74]). Let R = {ri}Ni=1 and
G = {gj}Mj=1 denote the planar positions trajectories of real and generated trajectories, respectively.
For each real trajectory ri, define the threshold δRi as the distance to its k-th nearest neighbor in the
real trajectory space R \ {ri}. Conversely, for each generated trajectory gi, define δGj as the distance
to its k-th nearest neighbor in the generated trajectory space G \ {gj}. Precision and recall for a
distance metric d(·, ·) (e.g., Fréchet) are then defined as:

Precision =
1

M

M∑
j=1

1
[
∃ ri ∈ R s.t. d(gj , ri) < δRi

]
, (7)

Recall =
1

N

N∑
i=1

1
[
∃gj ∈ G s.t. d(ri,gj) < δGj

]
, (8)

This adaptive, density-aware thresholding enables reliable evaluation of both fidelity (precision) and
coverage (recall), offering a realistic reflection of how well the generated trajectories capture the
diversity and structure of real-world driving behavior.

D.2 VQA evaluation metrics.

PSNR and SSIM. As shown in the Table 10, we computed average PSNR and SSIM metrics
over two shifted video windows of 10 frames (i.e. 2 seconds at 5fps) over 400 generated videos on
nuPlan-turns evaluation benchmark. We resize generated videos of all methods to same resolution for
a fair comparison. We observe that Orbis model performs marginally better than other methods over
the first window. However, all methods converge to similarly low numbers in the second window.

Table 10: VQA metrics: PSNR and SSIM on windowed video of 10 frames over 400 generated
videos on nuPlan-turns.

PSNR SSIM
Model frames 0-9 frames 10-19 frames 0-9 frames 10-19

Cosmos 17.29 13.38 0.47 0.38
GEM 14.85 13.73 0.42 0.41
Vista 15.04 13.70 0.44 0.42
DW 17.67 14.70 0.44 0.38
Orbis 18.72 14.75 0.52 0.42

DOVER. We evaluated the models on the DOVER [78] score, which is also used in the data
curation/filtering pipeline of Cosmos. In the Table 11, we report a comparison of the DOVER scores
on the nuPlan Turns dataset, computed over 17s long videos. We include both the results for the full
Cosmos pipeline (including the extra 7B-parameters diffusion refiner, "Cosmos+ref"), and for the
pure Cosmos world model with a non-generative decoder.

Table 11: Blind VQA DOVER metric on 400 generated videos of 17s on nuPlan-turns.
Method DOVER↑
Cosmos 19.94
Cosmos+refinement 28.99
GEM 19.76
Vista 21.14
DW 21.92
Orbis 21.34

28



D.3 FVD evaluation.

We compute FVD is three formats to evaluate both short and long-horizon predictions. We compute
short-horizon prediction over the first 6 seconds of predicted video. Results of short-horizon are
shown in Table 2 in the main manuscript and Table 12 in the Appendix. Long-horizon FVD is
evaluated in two ways: cumulative and chunked. In cumulative FVD evaluation, FVD is computed on
increasing video lengths starting from 4 seconds, up to 16 seconds. Results for cumulative-FVD on
nuPlan-turns dataset are shown in Fig. 6a in the Appendix. Chunked-FVD is computed on consecutive
4 seconds windows taken at different starting timestamps, shown in Fig. 4 in the main manuscript
and Fig. 6b in the Appendix on nuPlan-turns and nuPlan evaluation sets respectively.
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(a) Video quality (FVD) over accumulated 4s time
windows on nuPlan-turns. The x axis shows the video
clip duration in seconds.
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Figure 6: (a) Cumulative FVD on nuPlan turns on 400 samples and (b) Chunked FVD on nuPlan
standard evaluation set on 800 samples.

Table 12: FVD over 6 seconds at original frame rate of different baseline methods. Lower FVD is
better. *DrivingWorld (DW) is trained on the test dataset nuPlan and uses ego-motion control as an
extra input.

Model fps nuPlan Waymo nuPlan
turns

Cosmos [1] 10 210.56 249.08 244.80
Vista [17] 10 289.95 351.42 353.27
GEM [25] 10 348.36 218.61 318.73
DW* [31] 5 298.97 N/A 334.89

Orbis (ours) 5 132.25 180.54 231.88

FVD at original frame rate. Originally, the previously published models were trained and evaluated
with different frame rates. The main manuscript evaluated all models at 5hz for a fair comparison,
skipping alternative frames if the prediction frame rate is 10hz. Here, we also include FVD scores at
original prediction frame rates over 6 seconds rollouts, shown in Table 12. The models evaluated at
10hz achieve lower FVD scores than their 5hz counterparts. Despite FVD’s sensitivity to frame rate,
our model at 5hz still outperforms prior approaches evaluated at higher frame rates.

Cumulative FVD on nuPlan-turns. Figure 6a shows results for cumulative-FVD scores on the
nuPlan-turns evaluation set. Our proposed model consistently outperforms other baselines, showing a
strong scalable behavior as the prediction window extends.
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Chunked FVD on nuPlan. We also evaluate chunked FVD on nuPlan evaluation set using 800
samples, shown in Fig. 6b. Our model consistently outperforms all baseline across all video windows.
Cosmos performs relatively well on early prediction windows but degrades very quickly over later
windows. In contrast, GEM performs worse in early windows, but extends well for later windows.
We observe GEM suffers in the early prediction windows likely due to its single frame context, which
causes it to deviate from the ground truth trajectory earlier than other baselines. However, GEM
generates better content in later windows, outperforming other baselines over extended predictions.
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Figure 7: Effect of refinement module in masked generative modeling (orbis-MG model). Video
quality (FVD) over consecutive 4s time windows on nuPlan-turns. The x axis shows the starting time
of the evaluated time window.

Effect of refinement module. The refinement module is design to reduce flickering artifacts caused
by imprecise decoding of frames in masked generated modeling. We find that refinement module is
effective for long-horizon predictions, where the context is usually corrupted. However, the module
has a detrimental effect on short-horizon performance. Fig. 7 shows FVD on nuPlan-turns in a
windowed (chunked) evaluation, with and without the usage of refinement module. We observe that
the refinement module shows improvement for long-horizon prediction, especially longer than 6
seconds.

Inference speed and memory requirements. Table 13 compares the average times (fps) needed to
generate a frame, and the required GPU memory. Orbis has the best throughput compared to all other
methods. This advantage can be attributed to the smaller size of the Orbis model. By parallelizing
Orbis’ computation in batches we can achieve an higher throughput. GEM and Vista are based on the
same architecture but use different sampling protocols trading off FPS and VRAM.

We also compare the inference speed of our discrete Orbis-MG model and the continuous Orbis-FM
model. We also report the GPU (VRAM) memory requirements for both methods during inference.
Orbis-MG shows better inference speed compared to the Orbis-FM model. However, since Orbis-FM
achieves significantly better video generation performance, it remains the default choice despite the
speed advantage of the discrete model.

Table 13: Comparison of inference speed and VRAM memory requirements of different models.
Method FPS↑ VRAM (GB) ↓
Cosmos 0.18 29
Vista 0.58 86
GEM 0.44 45
DW 0.25 10
Orbis-FM (ours) 0.70 24
Orbis-MG (ours) 0.85 21

30


	Introduction
	Related Work
	Challenges Faced by Contemporary Driving World Models
	Compatible Discrete and Continuous Prediction Models
	Hybrid Image Tokenizer
	Latent Space World Model
	Flow Matching 
	Masked Generative Model 
	Conditioning with Ego-motion


	Experiments
	Experiment Details
	Evaluation
	Video Generation Quality
	Trajectory Quality

	Results

	Discussion
	Video Rollouts
	Comparison with the state-of-the-art
	Performance in different scenarios
	Randomly sampled videos

	Dataset Details
	OpenDV
	Validation Sets
	nuPlan
	nuPlan-turns
	Waymo


	Model Details
	Latent world model: Training details
	Flow matching
	Masked generative modeling
	Tokenizer training details

	Evaluation Metrics
	Trajectory evaluation metrics
	VQA evaluation metrics.
	FVD evaluation.

	More results

