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ABSTRACT

Vision Large Language Models (VLLMs) are widely acknowledged to be prone
to hallucinations. Existing research addressing this problem has primarily been
confined to image inputs, with sparse exploration of their video-based counterparts.
Furthermore, current evaluation methods fail to capture nuanced errors in generated
responses, which are often exacerbated by the rich spatiotemporal dynamics of
videos. To address these two limitations, we introduce VIDHAL, a benchmark
specially designed to evaluate video-based hallucinations in VLLMs. VIDHAL
is constructed by bootstrapping video instances across a wide range of common
temporal aspects. A defining feature of our benchmark lies in the careful creation
of captions which represent varying levels of hallucination associated with each
video. To enable fine-grained evaluation, we propose a novel caption ordering task
requiring VLLMs to rank captions by hallucinatory extent. We conduct extensive
experiments on VIDHAL and comprehensively evaluated a broad selection of mod-
els, including both open-source and proprietary ones such as GPT4.1 and Gemini
2.5. Our results uncover significant limitations in existing VLLMs regarding video-
based hallucination generation. Through our benchmark, we aim to inspire further
research on I) holistic understanding of VLLM capabilities, particularly regarding
hallucination, and II) advancing VLLMs to alleviate this problem.

1 INTRODUCTION

Building on the advancements of Large Language Models (LLMs), Vision LLMs (VLLMs) have
recently gained significant attention. Models such as LLaVA (Liu et al., 2023; 2024c) have shown
impressive performance across various visual understanding tasks involving both images and videos.
Despite their potential, VLLMs are notably prone to hallucinations, where generated responses appear
plausible but contradict visual context (Bai et al., 2024; Xu et al., 2024). This problem significantly
compromises the reliability of VLLMs, hindering their practical use in real-world applications.

To tackle this challenge, some methods propose to leverage post-hoc techniques such as contrastive
decoding (Leng et al., 2024; Zhu et al., 2024c; Favero et al., 2024; Zhuang et al., 2024) and attention
calibration (Huang et al., 2024; Ma et al., 2024; Liu et al., 2024f; Yue et al., 2024; Gong et al.,
2024; Zhou et al., 2024a; Xing et al., 2024b). Other efforts have been devoted to the evaluation
of hallucinations in VLLMs. For example, CHAIR (Rohrbach et al., 2018) initially studies object-
based hallucination evaluation with the aid of the image captioning task. Subsequent studies (Li
et al., 2023e; Liu et al., 2024e; Kaul et al., 2024; Ding et al., 2024) instead harness paired 〈positive,
hallucinatory〉 questions to probe such hallucinations. Additionally, MMHalBench (Sun et al., 2024)
and AMBER (Wang et al., 2023) expand beyond object-based evaluations by constructing benchmarks
that cover attribute and relationship hallucinations.

Unlike their image-based counterparts, video hallucinations pose unique challenges primarily due
to the intricate spatiotemporal dynamics of videos (Fu et al., 2024; Liu et al., 2024g; Ning et al.,
2023). In particular, video-specific temporal aspects, such as movement direction and chronological
order of events, are especially concerning for video-based VLLMs. Furthermore, the richness
of video content necessitates a finer-grained understanding, making VLLMs more vulnerable to
nuanced hallucinations. Nonetheless, to the best of our knowledge, video-based hallucinations remain
underexplored in the existing literature.
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To address this research gap, we present VIDHAL, a benchmark specifically designed to evaluate
video-based hallucinations of VLLMs. VIDHAL features videos that comprehensively cover a broad
range of temporal aspects, such as entity actions and sequence of events. Each video is automatically
annotated with multiple captions exhibiting varying levels of aspect-specific hallucinations, capturing
both subtle and significant discrepancies. In addition, we perform detailed human validation to ensure
the robustness and reliability of our annotation process. An additional motivation stems from the
limited metrics for quantifying hallucinations in VLLMs. To capture fine-grained hallucinatory errors
of these models, we propose a unique caption ordering task that requires models to rank captions
by hallucination levels. This consequently leads to a ranking-based NDCG metric and an MCQA
accuracy metric, both are distinct from prior ones and specifically tailored to evaluate nuanced
hallucinations in video-based VLLMs.

VideoLLaMA2 (7B)

VideoLLaMA2 (72B)

LLaVA-NeXT-Video (7B)

LLaVA-NeXT-Video (32B)

Gemini-1.5 Pro

Gemini-1.5 Flash

InternVL2.5 (8B)

InternVL2.5 (26B)

LongVU (7B)

Qwen2.5-VL (7B)

Qwen2.5-VL (32B)

Qwen2.5-VL (72B)

Gemini-2.5 Pro

Gemini-2.5 Flash

GPT-4o

GPT-4.1
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Direction
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Object

0.2 0.4 0.6 0.8

Figure 1: Multiple-Choice Question Answering
(MCQA) performance of representative VLLMs on our
VIDHAL benchmark. (Left) Overall ranking of VLLMs.
(Right) Detailed accuracy results for each temporal as-
pect, where higher scores indicate fewer hallucinations.

Using our VIDHAL dataset, we benchmark thir-
teen VLLMs including both open-sourced and
proprietary models, with abstracted results sum-
marized in Figure 1. Through these exten-
sive experiments, we identify limitations in nu-
anced video understanding among all evaluated
VLLMs. Specifically, our findings reveal that ex-
isting VLLMs struggle to differentiate between
captions with varying levels of hallucination.
This deficiency is particularly evident when eval-
uating video-specific aspects, such as Direction
and Order, as illustrated in Figure 1, indicat-
ing substantial room for improvement in current
video-based VLLMs.

The contributions of this work are three-fold:

• We present VIDHAL, a benchmark dataset dedicated to video-based hallucination evaluation of
VLLMs. Our dataset is distinguished by i) video instances encompassing a diverse range of
temporal concepts and ii) captions with varying hallucination levels1.

• We introduce a novel evaluation task of caption ordering along with two metrics designed to
evaluate fine-grained hallucination generation in existing VLLMs.

• We conduct extensive experiments on VIDHAL with a variety of VLLMs, uncovering limitations in
their fine-grained video reasoning abilities, particularly in their tendency to generate hallucinations.

2 RELATED WORK

Vision Large Language Models. The emergence of powerful LLMs has advanced the development
of VLLMs. Typical methods in this category include LLaVA (Liu et al., 2023), MiniGPT-4 (Zhu
et al., 2024a), InstructBLIP (Dai et al., 2023), and Qwen-VL (Wang et al., 2024a; Bai et al., 2025).
These VLLMs rely on aligning vision encoders with LLMs using connective modules such as Q-
Former (Dai et al., 2023; Zhang et al., 2023; Cheng et al., 2024) or MLPs (Liu et al., 2024c; Su
et al., 2023) with the instruction tuning stage. Recent methods have extended visual inputs from
images to (long) videos, delivering impressive joint spatial-temporal reasoning capabilities. For
instance, VideoLLaMA2 (Cheng et al., 2024) enhances the LLaMA model with video understanding
capabilities through a Spatial-Temporal Convolution (STC) module. LLaVA-NeXT-Video (Liu et al.,
2024d; Zhang et al., 2024) presents an AnyRes approach that enables reasoning with long videos.

Hallucinations in VLLMs. Despite their impressive performance on visual reasoning benchmarks,
current VLLMs remain notoriously susceptible to hallucinations (Jiang et al., 2024; Liu et al., 2024f;
Zhu et al., 2024b; Chen et al., 2024a). A common demonstration is that the generated responses
contain information which is inconsistent with the visual content (Liu et al., 2024b; Yuan et al., 2024;
Xing et al., 2024a). Most approaches address the hallucination problem with post-hoc techniques. For
example, LURE (Zhou et al., 2024c) and Woodpecker (Yin et al., 2023) develop pipelines that assist
VLLMs in revising their responses using expert models. To reduce bias from unimodal and statistical

1Our VIDHAL dataset will be made available to the public.
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Temporal Aspect
Selection

Action

Attribute

Direction

Object

Order

Video Instance
Collection

Video:

Metadata:

Anchor Caption
Generation

Hallucinatory Caption
Generation

Y/N QA

MCQA

Q: Are the clock hands
moving clockwise?
A: Yes.

Q: What is the direction in
which the clock hands are
moving?
A: Clockwise.

You are given one or more
questions targeted at
content of a video...
<Y/N QA>
<MCQA>

Generate an appropriate and
informative single line
caption for the video...
Video Description:

Based on the information
provided, an accurate
description of the video is:

The clock hands are moving
clockwise.

You are tasked with
generating hallucinatory
captions for a video with the
description: The clock hands
are moving clockwise...

Modify the direction in the
caption to generate 2 captions
in different levels of
hallucination.

Here are suitable
hallucinatory captions:

Moderate Hallucination:
The clock hands are moving
counter-clockwise.
High Hallucination: The
clock hands are stationary.

Figure 2: Overview of our VIDHAL benchmark construction pipeline. Using direction as an example
from the five selected aspects, we begin by sourcing relevant video instances from existing datasets.
Next, the anchor (positive) caption is generated from the original video metadata. Finally, GPT-4o is
employed to generate hallucinatory captions at varying levels.

priors, contrastive decoding methods, such as VCD (Leng et al., 2024) and M3ID (Favero et al., 2024),
along with attention calibration techniques like OPERA (Huang et al., 2024) are employed to refine
token predictions. Building on the success of reinforcement learning in LLM development (Ouyang
et al., 2022), HA-DPO (Zhao et al., 2023), POVID (Zhou et al., 2024b) and CSR (Zhou et al., 2024d)
adopt this paradigm to fine-tune VLLMs, yielding outputs with fewer hallucinations.

Video Reasoning Benchmarks. The rise of video-based VLLMs has driven the development
of numerous video benchmarks. Notable examples, such as SEEDBench (Li et al., 2023a),
VideoBench (Ning et al., 2023), MVBench (Li et al., 2024b), and VideoMME (Fu et al., 2024),
focus on dynamic events requiring temporal reasoning beyond individual frames. However, these
benchmarks often lack diversity in reasoning tasks and visual concepts. To address this, AutoEval-
Video (Chen et al., 2023) and Perception Test (Patraucean et al., 2023) introduce complex reasoning
tasks such as counterfactual and explanatory reasoning, while TempCompass (Liu et al., 2024g)
expands temporal concept coverage. Several benchmarks (Li et al., 2023e; Wang et al., 2023; Sun
et al., 2024; Kaul et al., 2024; Liu et al., 2024a; Wei et al., 2024; Chen et al., 2024b) have been
constructed to quantify visual hallucinations, primarily targeting object-based hallucinations in im-
ages. HallusionBench (Guan et al., 2024), VideoCon (Bansal et al., 2024), and Vript (Yang et al.,
2024) provides partial coverage of video-based hallucinations, while VidHalluc (Li et al., 2024a)
and VideoHallucer (Wang et al., 2024b) introduces benchmarks for hallucination detection in videos.
However, these benchmarks provide limited coverage of spatio-temporal concepts, focusing on
conventional aspects like actions while neglecting other video-centric elements such as direction.
Additionally, their evaluation strategies primarily follow image-based approaches, which we argue
are less effective in capturing nuanced, video-specific hallucinations.

3 VIDHAL DATASET CONSTRUCTION

We introduce VIDHAL, a unique video-language benchmark designed to evaluate hallucinations of
Video-LLMs in a comprehensive manner. As depicted in Figure 2, VIDHAL comprises of video
instances which span a diverse spectrum of temporal aspects, including previously unexplored aspects
such as directional movement. In contrast to previous studies on video hallucination evaluation (Yang
et al., 2024; Wang et al., 2024b; Li et al., 2024a), VIDHAL incorporates multiple hallucinated captions
per video, enabling the assessment of video hallucinations at multiple levels of granularity.

3.1 TEMPORAL HALLUCINATIONS IN VIDEOS

Hallucinations in VLLMs occur when the model fabricates details in its responses that contradict
the provided visual content. Compared to images, video hallucinations extend beyond static visual
elements to include misperceptions of dynamic changes within scenes. We categorize these temporal
hallucinations into two semantic levels:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Lexical Semantics (L-Sem) captures instances where VLLMs misinterpret words related to temporal
features, including nouns referring to objects or attributes (e.g., misidentifying a color change from
green to red as green to orange) and verbs describing actions (e.g., interpreting “kicking a ball” as
“throwing a ball”).

Clause Semantics (C-Sem) encompasses errors involving event descriptions and their sequences,
where the VLLM incorrectly predicts the order of events occurring in the video. For example, given
sequentially occurring events A and B in a video, the model may perceive B preceding A.

By addressing these two dimensions of video-based hallucinations, VIDHAL offers holistic coverage
over the level of detail in which VLLMs may hallucinate.

3.2 TEMPORAL CONCEPT SELECTION

Prior research on hallucination evaluation for both images (Li et al., 2023e; Wang et al., 2023;
Rohrbach et al., 2018) and videos (Wang et al., 2024b; Yang et al., 2024; Guan et al., 2024) has
predominantly focused on common visual aspects such as action- and object-based hallucinations.
However, video-based hallucinations may involve additional dynamic factors associated with spatio-
temporal patterns, which these studies overlook. In light of this, we propose to focus on the following
five aspects to ensure comprehensive coverage of temporal concepts. Specifically, the first four
aspects address hallucinations based on lexical semantics, while the fifth targets clause semantics.

• Attribute (L-Sem) describes the fine-grained characteristics of objects or subjects in the video. We
additionally categorize this aspect into sub-aspects of Size, Shape, Color, Count and State Change.

• Object (L-Sem) relates to the interactions between objects and entities within the video. We
further delineate this aspect into two fine-grained sub-aspects: Object Recognition, identifying the
objects engaged in interactions, and Interaction Classification which concentrate on how these
objects interact with other objects or subjects.

• Action (L-Sem) refers to the movements and behaviours exhibited by entities.

• Direction (L-Sem) indicates the orientation and movement trajectory of subjects or objects.

• Event Order (C-Sem) represents the correct sequence of events in the video. During our collection,
we retain videos that contain at least three distinct events.

We present an example that illustrates the direction aspect in Figure 2, with additional examples
available in the supplementary material.

3.3 HALLUCINATORY CAPTION GENERATION

Based on the aspects in Section 3.2, we build our benchmark upon four public video understanding
datasets: TempCompass (Liu et al., 2024g), Perception Test (Patraucean et al., 2023), MVBench (Li
et al., 2024b) and AutoEval-Video (Chen et al., 2023). TempCompass and MVBench extensively
cover all five temporal aspects, while Perception Test and AutoEval-Video highlights human-object
interactions and attribute changes, respectively.

Existing hallucination benchmarks (Li et al., 2023e; Wang et al., 2023) rely mostly on binary questions
for evaluation, limiting their efficacy in detecting subtle video hallucinations, such as minor event
inconsistencies. To address this issue, we advocate a novel evaluation protocol incorporating several
carefully annotated captions. Specifically, each video will be annotated with M captions that reflect
varying degrees of hallucination in VLLMs. Given the cost and labor intensity of manual annotation,
we follow existing benchmark studies such as PhD (Liu et al., 2024e) and MVBench (Li et al., 2024b),
opting for automatic caption generation using a carefully designed pipeline illustrated in Figure 2.

Anchor Caption Generation. The video instances in VIDHAL are sourced from various public
datasets, resulting in distinct associated metadata such as long-form captions in AutoEval-Video and
question-answer pairs in MVBench. To ensure structure consistency and information granularity in
the respective dataset description across all instances, we automatically generate an anchor caption
for each video. Specifically, we input the metadata for each video V i into GPT-4o and prompt it to
generate a concise and accurate description yi+ using the provided metadata information.

4
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Dataset
Temporal Aspects Task

Formats
Evaluation

MetricsAction Attribute Direction Object Order

Size Shape Color Count State-Change Recognition Interaction

Vi
de

o
R

ea
so

ni
ng SEEDBench (Li et al., 2023a) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ MCQA Accuracy

VideoBench (Ning et al., 2023) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ MCQA Accuracy
MVBench (Li et al., 2024b) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ MCQA Accuracy

Video-MME (Fu et al., 2024) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ MCQA Accuracy

H
al

lu
ci

na
tio

n
E

va
lu

at
io

n Vript (Yang et al., 2024) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Video Captioning F1 Score
Event Ordering Accuracy

VideoCon (Bansal et al., 2024) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ VL Entailment ROC-AUC
HallusionBench (Guan et al., 2024) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ Y/N QA Accuracy

VIDHAL (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MCQA Accuracy

Caption Ordering NDCG

Table 1: Comparison of our benchmark dataset with existing video-based reasoning and hallucination evaluation
datasets. For datasets with multiple evaluation tasks, only those relevant to hallucination evaluation are included.
VL Entailment denotes the task of video-language entailment, while Event Ordering prompts the model to
determine the chronological sequence of scenes in a video.

Hallucinatory Caption Generation. After obtaining the positive caption for each video instance,
we augment the dataset with M − 1 additional captions containing hallucinated content. For a
given video instance V i, we construct a set Yi

− = {yi,1− , · · · , yi,M−1
− } containing captions with

different levels of hallucination based on the temporal concepts associated with it. Specifically, yi,k−
exhibits heavier hallucination than yi,j− for caption hallucination degree j < k. We leverage GPT-4o
to generate Yi

− by combining the anchor caption yi+ and prompting it to create yi,1− , · · · , yi,M−1
−

progressively in increasing levels of hallucination. The set of captions associated with V i is then
defined as Yi ← {yi+}

⋃
Yi
− consisting of both the anchor and hallucinatory captions.

3.4 DATASET STATISTICS AND HUMAN VALIDATION
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Figure 3: Human agreement on hallucination levels in
the VIDHAL dataset. (Left) Distribution of agreement
ratios per video sample. (Right) Average agreement ratio
for each aspect, with an overall average of 87%.

Using our automatic annotation pipeline, our
VIDHAL benchmark consists of a total of 1,000
video instances each tagged with M = 3 cap-
tions. As shown in Table 1, our VIDHAL
dataset stands out from other video understand-
ing (Li et al., 2023a; Ning et al., 2023; Li et al.,
2024b; Fu et al., 2024) and hallucination bench-
marks (Guan et al., 2024; Liu & Wan, 2023) in
terms of two dimensions: I) VIDHAL encom-
passes a diverse range of video-centric temporal
aspects; and II) We introduce a novel caption
ordering task along with two tailored metrics to
capture subtle hallucinations previously ignored by paired questions.

To ensure the reliability of the generated captions, we randomly selected 100 examples for human
validation, with each sample labeled by 15 annotators on average. Our human validation process
focuses on verifying that the order of hallucinatory captions generated by our pipeline aligns with
human judgment. Figure 3 reflects an overall agreement rate of 87%, indicating consistency with
human preferences across all temporal aspects.

4 VIDHAL EVALUATION PROTOCOL

To address the limitations of binary question-based benchmarks, we propose two evaluation tasks:
multiple-choice question answering and a novel caption ordering task, detailed in Section 4.1. We also
develop corresponding metrics to comprehensively measure hallucinations in video-based VLLMs,
elaborated further in Section 4.2.

4.1 EVALUATION TASKS

Multiple-Choice Question Answering (MCQA) assesses the model’s spatiotemporal understanding
in a coarse-grained manner. Specifically, the VLLM is provided with a video V i and its corresponding
set of captions Yi as answer options and instructed to select the most appropriate caption for the video.

5
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Caption Ordering evaluates a model’s visual reasoning from a nuanced granularity, instructing
VLLMs to order the provided captions based on their hallucination level. Through pairwise compar-
isons across all captions, this task identifies cases where the model struggles to distinguish varying
levels of hallucination severity beyond anchor-hallucination distinctions.

A B

B C

A C

Which of the
two captions
describes the
video more
accurately?

Order Parsing
B

A

C

In
cr

ea
si

ng
H

al
lu

ci
na

tio
n 

Le
ve

l

Figure 4: Visual illustration of relative caption ordering
task in VIDHAL.

Specifically, we design two caption ordering sub-
tasks. The first, naive caption ordering, requires
VLLMs to rank all captions at once. However,
this sub-task can confuse several VLLMs due
to its inherently challenging nature and the in-
ferior instruction-following capabilities of some
models. As a complement, we propose an addi-
tional sub-task, relative caption ordering, which
decomposes the prior task into multiple paired
caption ordering tasks. Since each paired order-
ing task is answered in isolation, the VLLM may produce a non-transitive, cyclic ranking. To
circumvent this, we query the model with consecutive caption pairs, prompting the final pair only
if multiple orderings are possible. For instance, given captions A, B, and C, if the model predicts
A ≺ B and B ≺ C, the overall order A ≺ B ≺ C can be directly inferred. However, if it instead
ranks B ≺ A , as shown in Figure 4, we additionally include a third comparison between A and C to
resolve any ambiguity in determining in the final order.

Notably, our relative caption ordering task is more challenging than previous binary questions. This
complexity arises from certain paired questions in VIDHAL where both options are hallucinatory,
making them harder to distinguish as opposed to 〈positive, hallucinatory〉 pairs.

4.2 EVALUATION METRICS

Notations For a particular video instance V i, we define the ground truth caption order for V i to be
Yi
∗ = (yi+, y

i,1
− , · · · , yi,M−1

− ). Further let the jth element in this ordering be indexed as Yi,j
∗ .

MCQA We employ the standard accuracy metric:

Accuracy =
1

N

N∑
i=1

I
[
RMCQA(V

i,Yi) = yi+
]
, (1)

where N is the number of video instances, I denotes the indicator function, and RMCQA(V
i,Yi)

represents the best matched caption from Yi for V i as predicted by a VLLM.

Caption Ranking Inspired by metrics from the information retrieval domain (Gao et al., 2023), we
adapt the well-established Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen,
2002) for hallucination assessment in VIDHAL. Unlike previous metrics like POPE (Li et al., 2023e),
our metric awards partial credit for correctly ordered caption pairs even when the optimal ranking is
not achieved. As such, we expect the metric to effectively capture and distinguish both subtle and
severe hallucinations generated by video-based VLLMs. Formally, we define our adapted NDCG
metric as follows:

NDCG =
1

N

N∑
i=1

DCGi − rDCGi

iDCGi − rDCGi
, (2)

where DCGi is formulated as:

DCGi =

M∑
j=1

r
(
ŷi,j ,Yi

∗
)

log(j + 1)
, (3)

and ŷi,j represents jth caption in the ranked order predicted by the VLLM. The perfect ordering is
achieved when ŷi,1 = yi+ and {ŷi,j = yi,j−1

− }j=2→M . To evaluate predicted caption orders relative
to this ideal sequence, a relevance function r

(
ŷi,j ,Yi

∗
)

is designed to assign higher scores to ŷi,j

with lower hallucinatory extent.

r(ŷi,j ,Yi
∗) = M + 1− pos(ŷi,j ,Yi

∗), (4)

6
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Model Vision Encoder LLM #Params #Frames Accuracy NDCG
Naive Relative

Baseline
Random - - - - 0.326 0.505 0.480

Open-Sourced Models
VideoChat EVA-CLIP-G Vicuna 7B 8 0.381 0.475 0.488
LLaMA-VID EVA-CLIP-G Vicuna 7B 1fps 0.358 0.486 0.521
VideoChat2 (Vicuna) UMT-L Vicuna 7B 16 0.426 0.486 0.577
VideoChat2 (Mistral) UMT-L Mistral 7B 16 0.443 0.503 0.475
VideoChat2 (Phi) UMT-L Phi3 3.8B 16 0.514 0.626 0.612
mPLUG-Owl3 SigLIP/SO400M Qwen2 7B 16 0.596 0.641 0.707
LLaVA-NeXT-Video (7B) SigLIP/SO400M Vicuna 7B 32 0.509 0.518 0.620
LLaVA-NeXT-Video (32B) SigLIP/SO400M Qwen1.5 32B 32 0.663 0.641 0.747
VideoLLaMA2 (7B) CLIP ViT-L/14 Mistral 7B 8 0.541 0.564 0.622
VideoLLaMA2 (72B) CLIP ViT-L/14 Qwen2 72B 8 0.647 0.787 0.760
MiniCPM-V 2.6 SigLIP/SO400M Qwen2 7B 1fps 0.377 0.530 0.523
LongVU SigLIP/SO400M Qwen2 7B 1fps 0.795 0.453 0.846
InternVL2.5 (8B) InternViT-300M (V2.5) InternLM2.5 7B 16 0.773 0.475 0.827
InternVL2.5 (26B) InternViT-6B (V2.5) InternLM2.5 20B 16 0.742 0.498 0.775
Qwen2.5-VL (7B) Qwen2.5-ViT Qwen2.5 7B 1fps 0.76 0.825 0.826
Qwen2.5-VL (32B) Qwen2.5-ViT Qwen2.5 32B 1fps 0.732 0.811 0.800
Qwen2.5-VL (72B) Qwen2.5-ViT Qwen2.5 72B 1fps 0.74 0.807 0.793

Proprietary Models
GPT-4o - - - 1fps 0.772 0.840 0.826
GPT-4.1 - - - 1fps 0.777 0.845 0.834
Gemini-1.5 (Flash) - - - 1fps 0.657 0.738 0.745
Gemini-1.5 (Pro) - - - 1fps 0.671 0.765 0.753
Gemini-2.5 (Flash) - - - 1fps 0.814 0.875 0.860
Gemini-2.5 (Pro) - - - 1fps 0.814 0.876 0.861

Table 2: Benchmark performance of VLLMs on our VIDHAL dataset. #Params refers to the number of
parameters of the base LLM used. The best performance for each task is highlighted in bold for open-sourced
models, and underlined for closed-sourced models.

where pos(ŷi,j ,Yi
∗) denotes the position of ŷi,j in Yi

∗. Finally, DCGi is normalized to a range of
[0, 1] using iDCGi and rDCGi, with a score of 1 indicating perfect alignment of the predicted order
with Yi

∗. Specifically, these terms represent the maximum and minimum DCGi scores obtained from
the optimal ordering Yi

∗ and its reverse, respectively,

iDCGi =

M∑
j=1

r
(
Yi,j
∗ ,Yi

∗

)
log(j + 1)

, rDCGi =

M∑
j=1

r
(
Yi,M−j
∗ ,Yi

∗

)
log(j + 1)

. (5)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Models. We evaluated twenty-three VLLMs from thirteen different model families, including ten
open-source models: VideoChat (Li et al., 2023d), LLaMA-VID (Li et al., 2024c), VideoChat2 (Li
et al., 2024b), mPLUG-Owl3 (Ye et al., 2024), LLaVA-NeXT-Video (Zhang et al., 2024), Vide-
oLLaMA2 (Cheng et al., 2024), MiniCPM-V (Yao et al., 2024), LongVU (Shen et al., 2024),
InternVL2.5 (Chen et al., 2024c) and Qwen2.5-VL (Bai et al., 2025), and two proprietary models:
GPT-4o (OpenAI, 2023), GPT-4.1 and Gemini (Reid et al., 2024; Comanici et al., 2025). These
models represent a wide variety of architectural designs and training paradigms. Additionally, we
included a random baseline that selects and ranks candidate options randomly.

Implementation Details. All experiments were conducted using four NVIDIA A100 40GB GPUs and
inference APIs. The input captions in Yi were randomized using a fixed, predefined randomization
seed across experiments. We adhered to the inference and model hyperparameters outlined in the
respective original models, and employed greedy decoding during generation for a fair comparison.

5.2 OVERALL RESULTS

Benchmark Results. We present the overall results of representative VLLMs in Table 2 across
both MCQA and caption ordering tasks. We make three key observations from this table:
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Competitive Performance of Open-Source Models. Open-source VLLMs achieve performance com-
parable to proprietary models, particularly on MCQA and relative caption ordering tasks. Notably,
LongVU achieves the highest performance among open-source models and surpasses strong propri-
etary models such as GPT-4o, GPT-4.1, and Gemini-1.5 on these tasks.

Parameter Scale vs. Performance. Among open-source VLLMs, smaller variants (e.g., 7B param-
eter models) outperform their larger counterparts within the same model family, as observed with
InternVL2.5 and Qwen2.5-VL. This suggests that simply increasing model capacity may provide
limited benefits for reducing video-based hallucinations in current VLLM development.

Impact of Architecture Design. Model families that achieve high scores across both tasks often
incorporate design efforts specifically targeting visual understanding, such as dynamic resolution scal-
ing (InternVL2.5, Qwen2.5-VL) and temporal reduction techniques (LongVU). These findings may
suggest that specialized architectural innovations are key factors in mitigating temporal hallucinations.

Action

Direction

Order

Attribute

Object

0.2 0.4 0.6 0.8 1

Action

Direction

Order

Attribute

Object

0.2 0.4 0.6 0.8 1

VideoLLaMA2 (7B) VideoLLaMA2 (72B) LLaVA-NeXT-Video (7B)
LLaVA-NeXT-Video (32B) InternVL2.5 (8B) InternVL2.5 (26B)
LongVU (7B) Qwen2.5-VL (7B) Qwen2.5-VL (72B)
Gemini-2.5 Pro Gemini-2.5 Flash GPT-4o
GPT-4.1 Average

Figure 5: Aspect-specific NDCG scores for the (Left)
naive and (Right) relative caption ordering.

Aspect-aware Results. Figure 5 highlights
the fine-grained, aspect-specific performance of
the notable VLLMs. Notably, VLLMs demon-
strate substantially stronger results on the Action
and Object aspects compared to others. This
can likely be attributed to current visual instruc-
tion tuning datasets predominantly emphasizing
object-centric recognition and coarse-grained
activity classification, potentially encouraging
strong reliance on image-based priors when gen-
erating predictions. In contrast, these models
tend to underperform on temporally nuanced as-
pects such as direction and event order, which
are inherently unique to the video modality.

LLaVA-NeXT-Video (7B) Gemini-1.5 Flash InternVL2.5 (8B) Qwen2.5-VL (72B)

0.2

0.4

0.6

0.8

1Color

Shape

Size

State Change

Count

0.2 0.4 0.6 0.8 1

VideoLLaMA2 (7B) VideoLLaMA2 (72B) LLaVA-NeXT-Video (7B)
LLaVA-NeXT-Video (32B) Gemini-1.5 Pro Gemini-1.5 Flash
InternVL2.5 (8B) InternVL2.5 (26B) LongVU (7B)
Qwen2.5-VL (7B) Qwen2.5-VL (32B) Qwen2.5-VL (72B)
Gemini-2.5 Pro Gemini-2.5 Flash GPT-4o
GPT-4.1 Average

Object Recognition
Object Interaction

Figure 6: NDCG scores for Attribute (Left) and Object
(Right) sub-aspects in caption ordering.

We further analyzed the distribution of results
for the relative caption ranking task across sub-
aspects of the Attribute and Object aspects in
Figure 6. While VLLMs generally maintain con-
sistent performance across Attribute sub-aspects,
their effectiveness declines slightly when rea-
soning about Count and Color, suggesting that
reasoning over such fine-grained visual proper-
ties remains challenging for VLLMs. For the
Object aspect, several models performed signif-
icantly worse in Interaction Classification than
in Object Recognition, highlighting the need to
better model object interactions to bridge the
gap between recognition and understanding.

5.3 ABLATION STUDIES

Hallucination Differentiation Sensitivity. We investigate the tendency of VLLMs to favor captions
with higher hallucination over those with lower degree in the relative caption ranking task. For two
captions with different hallucination levels j, k where j > k, we introduce the following metric to
quantify such hallucination misalignment cases:

HMj→k =
1

N

N∑
i=1

I
[
Yi,j
∗ ≺ Yi,k

∗
]
. (6)

which reflects the proportion of cases in which the VLLM selects the caption with a higher
level of hallucination j over k. Specifically, we examine three key cases: when the most hal-
lucinatory caption is chosen over both the lower-hallucination and anchor captions, and when
the lower-hallucination caption is selected over the anchor caption. These cases are repre-
sented by HM3→1, HM3→2, and HM2→1, respectively, with results presented in Figure 7.
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0.1 0.2 0.3 0.4 0.5

MiniCPM-V (8B)

LLaVA-NeXT-Video (7B)

VideoLLaMA2 (7B)

LLaVA-NeXT-Video (32B)

InternVL2.5 (26B)

VideoLLaMA2 (72B)

Qwen2.5-VL (72B)

Qwen2.5-VL (32B)

GPT-4o

InternVL2.5 (8B)

Qwen2.5-VL (7B)

GPT-4.1

LongVU (7B) HM 3→1 
HM 3→2 
HM 2→1 

 Random

1.89x Lower 

4.24x Lower 

Figure 7: Hallucination misalignment (HM) scores on
VIDHAL, with Random representing HM scores from
the random baseline.

Our findings show that advanced VLLMs, such
as VideoLLaMA2 (72B), GPT-4.1 and Qwen2.5-
VL models can generally distinguish positive
captions from severely hallucinated ones, re-
flected by their low HM3→1 scores in Figure 7.
However, two key observations emerge from our
experiments: First, most VLLMs struggle to dif-
ferentiate the lower hallucinatory caption from
the anchor, as evidenced by the gap between
HM3→1 and HM2→1. Second, all models ex-
hibit high HM3→2 scores, indicating difficulty
in distinguishing between two hallucinatory captions with varying degrees. These results suggest
gaps in nuanced video reasoning may contribute to hallucinatory behavior in VLLMs, a challenge
not addressed by existing 〈positive, hallucinatory〉-based evaluation methods. (Li et al., 2023e; Wang
et al., 2024b; Guan et al., 2024).

VideoLLaMA2
(7B)

LLaVA-NeXT-
Video (32B)

VideoLLaMA2
(72B)

0.2

0.4

0.6

0.8

1

VideoLLaMA2
(7B)

LLaVA-NeXT-
Video (32B)

VideoLLaMA2
(72B)

Correct
Incorrect
Overall

Complete Reliance

Figure 8: Overlapping ratios of model predictions under
single-frame and full-video inputs for correct, incorrect
and overall predictions in the (Left) naive and (Right)
relative caption ordering tasks. Complete Reliance indi-
cates that the VLLM always produces the same response
for both video and single frames.

Image Prior Reliance. Previous research
shows that VLLMs often rely on image pri-
ors for reasoning (Lei et al., 2023; Buch et al.,
2022), overlooking key spatiotemporal features.
This is exemplified by dominant influence of a
few frames on response generation. To examine
how this bias affects video-based hallucinations,
we used a video summarization algorithm (Son
et al., 2024) to extract the most salient frame vi

from V i. We then generated VLLM responses
on VIDHAL using vi instead of V i as visual
input. The effect of image priors is evaluated
by identifying overlapping instances where re-
sponses from V i and vi remain consistent across
both correct and incorrect orderings. As shown
in Figure 8, results reveal that VLLMs heavily rely on image priors. This is especially pronounced in
smaller models such as VideoLLaMA2 (7B).

6 CONCLUSION

Summary. In this work, we introduce the VIDHAL benchmark to address gaps in the video-based
hallucination evaluation of VLLMs. VIDHAL features video instances spanning five temporal aspects.
Additionally, we propose a novel caption ordering evaluation task to probe the fine-grained video
understanding capabilities of VLLMs. We conduct extensive experiments on VIDHAL through the
evaluation of twenty-three VLLMs, exposing their limitations in unexpected hallucination generation.
Our empirical results shed light on several promising directions for future work: e.g., incorporating a
broader range of temporal features during pretraining and mitigating single-frame priors to enhance
temporal reasoning. These advancements will help to address the hallucination problem in video-
based VLLMs, enhancing their robustness for real-world video understanding applications.

Limitations. We acknowledge that the VIDHAL evaluation suite relies on synthetic captions generated
by GPT-4o, which may contain biases inherently present in the model. We note that this design
choice is consistent with prior research, as several established language-only and vision-language
benchmarks similarly use GPT-4o for dataset construction (Liu et al., 2024e; Li et al., 2024a;b;
2023a;c) or response evaluation (Guan et al., 2024; Sun et al., 2024; Liu et al., 2024a). To reduce over-
alignment to GPT-4o’s preferences, we incorporate additional strong LLMs, including Gemini-1.5
(Reid et al., 2024) and LLaMA2 (70B) (Touvron et al., 2023) to assess and filter generated captions.
We further conduct a final step of manual verification and editing to address residual misalignments
not captured by automated filtering. While these measures enhance annotation robustness, fully
eliminating LLM-induced biases in synthetic caption generation remains an open challenge.
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Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan
Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy
Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Heyward,
Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik, Ankita
Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu, Grace
Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-Juen
Chen, Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Leichner,
Haichuan Yang, Zelda Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin Chen,
Praynaa Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios Vytiniotis,

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jieru Mei, and Mu Cai. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities. CoRR, abs/2507.06261, 2025.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning. In Advances in Neural Information Processing Systems,
2023.

Peng Ding, Jingyu Wu, Jun Kuang, Dan Ma, Xuezhi Cao, Xunliang Cai, Shi Chen, Jiajun Chen, and
Shujian Huang. Hallu-pi: Evaluating hallucination in multi-modal large language models within
perturbed inputs. CoRR, abs/2408.01355, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
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APPENDIX

A USE OF LARGE LANGUAGE MODELS

Large language models were utilized in this work solely for two specific purposes: enhancing the
coherence and style of the written manuscript, and generating dataset annotations using GPT-4o with
methodologies detailed in both the main paper and appendix following established practices from
prior benchmark studies. All other research components, such as experimental design and analysis,
were conducted without involving LLMs.

B BENCHMARK CONSTRUCTION DETAILS
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Figure 9: Distribution of visual instances in VIDHAL by (Left) public dataset source, categorized by
the five temporal aspects, and (Right) temporal aspects and their sub-aspects.
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Figure 10: Distribution of (Left) correct answer
options for the MCQA task and (Right) optimal
option orders for the caption ordering task.

Figure 9 presents the distribution of visual in-
stances in VIDHAL by public dataset sources
and temporal aspects. Additionally, Figure 10
further shows the distribution of ground truth an-
swers for the MCQA and caption ordering tasks.
One can observe that both temporal aspects and
ground truth options are uniformly distributed
across our benchmark. The distribution of video
caption lengths and video durations is also pre-
sented in Figure 11.

B.2 DATASET DEVELOPMENT PIPELINE

Visual Instance Selection To ensure a rich
coverage of temporal aspects and visual diver-
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Figure 11: Distribution of (Left) caption lengths with an average of 11.2 words, and (Right) duration
of videos in VIDHAL with an average of 15.8s.
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Object Recognition [Object]:
What object does the person use to hit other objects?
What ingredients did the person put in the bowl or on the plate?
Which object was removed by the person from the tabletop?
What geometric shapes did the person put on the table?
What objects did the person hit?
What is the order of the letters on the table at the end?
What letters did the person type on the computer in order?
Distractor Action [Action]:
What is the person preparing?
Motion [Action]:
What happens with the object after being placed on the slanted plane?
What happened once the person removed an object from the tabletop?

Action Recognition [Action]:
What object does the person use to hit other objects?
What objects did the person hit?
What is the person preparing?
Which statement describes better the actions done by the person?
Sequencing [Event Order]:
What letters did the person show in order?
What is the order of the letters at the end?",
In what order did the person put the objects in the backpack?
What is the order of the letters on the table at the end?

Figure 12: Specific skills and corresponding questions from the Perception Test dataset chosen for
VIDHAL instance selection, with the matched aspects indicated in brackets.

sity, we methodically selected video instances from four public datasets: TempCompass Liu et al.
(2024g), Perception Test Patraucean et al. (2023), MVBench Li et al. (2024b), and AutoEval
Video Chen et al. (2023). Given the unique characteristics of each dataset, we outline the spe-
cific guidelines adopted for each dataset below:

• TempCompass encompasses five temporal aspects: Action, Speed, Direction, Event Order, and
Attribute Change. As most of these aspects align with those chosen to construct VIDHAL, we
retain all video instances except those related to speed. TempCompass includes four evaluation
tasks: MCQA, Yes/No QA, caption matching, and caption generation. Given the conciseness of
captions in the latter two tasks, their information can often be subsumed within the more detailed
QA-based annotations. Therefore, we focus exclusively on MCQA and Yes/No QA annotations to
create an informative anchor caption.

• Perception Test spans various skill and reasoning domains to thoroughly evaluate VLLMs’
perception and understanding abilities. Our inspection of these evaluation dimensions re-
veals alignment between the semantics, physics, and memory skill areas, as well as de-
scriptive and explanatory reasoning dimensions, with the temporal aspects of action, or-
der, and event order. Accordingly, we limit our video selection in Perception Test to
these specific pillars. Additionally, we review the question templates adopted in these ar-
eas and select video instances with question-answer pairs that support VIDHAL’s evaluation
objectives. The specific skills and associated questions chosen are detailed in Figure 12.

• MVBench includes twenty video understanding tasks with question-answer pairs designed to
challenge the reasoning capabilities of VLLMs. Similar to the Perception Test, we identify the tasks
relevant to the temporal aspects in VIDHAL and focus on collecting videos belonging from these
tasks. The specific tasks for each aspect are presented in Figure13. We observe that MVBench
contains repeated use of certain scenarios across tasks, indicated by similar question templates. To
enhance caption diversity and minimize redundancy, we limit the number of examples for each
unique scenario. The collected instances cover all five temporal aspects of VIDHAL.

• AutoEval-Video evaluates open-ended response generation in VLLMs through questions with
detailed answers across nine skill dimensions. We focus on instances related to the state transition
area, specifically assessing changes in object and entity attributes. For each instance, we retain the
only answers to associated questions as they act as informative, long-form captions for the video.

Action: Action Sequence, Fine-Grained Action and Fine-Grained Pose
Direction: Moving Direction.
Object: Object Interaction, Object Existence.
Attribute: Moving Attribute, Moving Count.
Order: Action Sequence

Figure 13: Evaluation tasks in MVBench aligned
with temporal aspects in VIDHAL, categorized by
aspect.

Incorrect Anchor Captions A minority of
videos contain anchor captions misaligned
with their content, often due to noisy metadata.
Such discrepancies subsequently lead to
undesirable hallucinatory captions. To remove
such instances, we use BLIP2 Li et al. (2023b)
to calculate frame-text matching scores across
all video frames, selecting the maximum score
as the representative video-text alignment score.
Examples with incorrect anchor captions typically achieve low alignment scores, which are discarded
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You are a chatbot tasked with generating hallucinatory captions for a video given the input ground truth caption provided. Your objective is to modify
the <aspect> present in the provided caption to generate 2 incorrect captions of different levels of hallucination. <aspect_definition>. The extent
of hallucination of each caption is measured on a scale of 1 to 3 in increasing levels of hallucination, with 1 denoting no hallucinations present and 3
denoting a large extent of hallucination. A description of the extent of hallucination represented by each score is given as follows:

1. The caption contains no hallucination. The caption that representing this score is the ground truth caption.
2. The caption includes moderate hallucination, describing an event that is different from the ground truth, yet possible given the context of the video
3. The caption contains high hallucination, describing an event that is realistic, but typically unlikely to happen given context reflected by the original
caption.

The generated hallucinated captions should follow the guidelines below.

Guidelines:
1. Focus only on modifying the temporal aspect provided in the instruction. Do not change any other temporal aspect associated with objects or subjects in
the video.
2. Keep your modifications brief but coherent. Your generated captions should be of similar length to the original caption.
3. Ensure that your generated captions depict realistic and believable scenarios even as they deviate from the original context. For example, avoid creating
fictitious scenarios such as "Person flying on a broomstick" and "Monkey painting a picture".
4. You may rephrase the provided caption to maintain consistent sentence structure across all captions. However, make sure the factual content of the ground
truth caption remains unchanged.
5. Each generated hallucinatory caption should be of the form <score> : <caption>, <score> takes a value from the hallucination scale defined and
<caption> represents your provided hallucinatory caption.
6. No two generated <caption> should share the same <score>, and each caption should take on a unique level of hallucination from 2 to 3.

Here are some examples of how hallucinatory captions are expected to be constructed.

<in_context_examples>

Now, generate hallucinatory captions for the following video description.

Original Caption:
<anchor_caption>
Hallucinated Captions:

Figure 15: Prompt for generating aspect-specific hallucinatory captions based on anchor captions and
in-context examples.

as noisy instances.

LLM-based Caption Generation We utilize GPT-4o’s OpenAI (2023) text processing and gen-
eration capabilities to generate an anchor caption for each selected video, based on metadata from
its original public dataset source. This metadata includes QA-based annotations for TempCompass,
Perception Test, and MVBench, along with long-form answers for AutoEval-Video. The anchor
caption is subsequently used as input for GPT-4o to generate corresponding hallucinatory captions.

To ensure the generated hallucinatory captions meet high-quality standards, we em-
ploy a detailed prompt adopting the following strategies to guide GPT-4o’s output:

You are given a long caption describing the content of a video. Your
task is to provide a summarised and concise version of this caption.
Ensure that you keep all essential detail in the original caption.

<metadata>

Video description:

Figure 14: Prompts used for generating the anchor
caption from long-form captions.

• Aspect-specific definitions which outline the
characteristics of each aspect to be varied,
prompting GPT-4o to modify anchor captions
accordingly.

• Caption construction guidelines that define
the structure, format, and hallucination levels
required for the generated captions.

• In-context examples to illustrate the desired
form of each hallucinatory caption for each
aspect.

The prompts for generating anchor and hallucinatory captions are shown in Figures 14 to 17a,
respectively, with definitions for each aspect are provided in Figure 16. Aspect-specific in-context
examples are detailed in Figures 17b to 21. Separate in-context examples are provided for each
Attribute subaspect of Shape, Size, Color, Count, and State Change to account for their distinct
natures.
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Caption Quality Scoring To identify video instances with the high quality generated captions, we
utilize powerful LLMs to evaluate the quality of generated captions. The captions are assessed is
based on three specific criteria:

• Realism determines whether generated scenarios are plausible.

• Ordering Quality evaluates whether the hallucination level ordering is appropriate.

• Relevance ensures that deviations from the anchor caption align with the designated aspect.

Binary questions are used to evaluate captions for each criterion, assigning a score of 1 for positive
responses, i.e., ”yes”, and 0 otherwise. The scores for each criterion are averaged across all models

Action: Actions refer to observable movements or activities performed by entities that may involve interaction with objects or the environment in the video.
Direction: Direction refers to the course or path along which objects or subjects move in the video.
Order: Order refers to the sequential arrangement of events that occur in the video.
Object: Objects refer to inanimate, physical entities or items present within the video.
State: State refers to the condition or status of an object or subject, indicating its current properties, position or the phase of action the subject is taking or
phase of process the object is undergoing.
Count: Count refers to the frequency of an action being performed or an event occurring. It may also refer to the number of objects or subjects involved in
an event or interaction.
Color: Color refers to the hue or shade of an object or subject.
Shape: Shape refers to the form or outline of an object or subject.
Size: Size refers to the dimensions or magnitude of an object or subject.

Figure 16: Definitions incorporated into the prompt for generating hallucinatory captions for each
aspect, with separate definitions provided for each sub-aspect in the Attribute aspect.

You are given one or more questions targeted at content of a video
and their corresponding answers. You are tasked with generating an
appropriate and informative single line caption for the video using
this information given to you. Ensure that you restrict yourself to
only information present in the question-answer pairs provided. If
the answers to the questions provide various types of information,
concentrate on the color related to the subjects and objects in the
video in your caption. Focus on providing clear and concise
descriptions without using overly elaborate language.

<metadata>

Video description:

(a) Prompt used for generating the anchor caption from
QA-based annotations.

Original Caption:
1 : A red bucket of liquid goes from empty to half full.
Hallucinated Captions:
2 : A red bucket of liquid goes from empty to completely full.
3 : A red bucket of liquid goes from completely full to empty.

Original Caption:
1 : The light in the room is slowly dimming.
Hallucinated Captions:
2 : The light in the room slowly dims, then brightens again.
3 : The light in the room is slowly getting brighter.

Original Caption:
1 : The sky changes from clear to partly cloudy.
Hallucinated Captions:
2 : The sky changes from clear to completely overcast.
3 : The sky changes from partly cloudy to clear.

(b) In-context examples for the State sub-aspect under
the Attribute aspect.

Figure 17: (Left) Prompts used for generating the anchor caption, and (Right) in-context examples
for the State sub-aspect.

Original Caption:
1 : A boy inflates the balloon, which grows vertically.
Hallucinated Captions:
2 : A boy inflates the balloon, which grows horizontally.
3 : A boy deflates the balloon, which shrinks horizontally.

Original Caption:
1 : The bag expands in height as items are being placed inside.
Hallucinated Captions:
2 : The bag expands in width as items are being placed inside.
3 : The bag shrinks in height as items are being placed inside.

Original Caption:
1 : The size of the puddle of water is increasing.
Hallucinated Captions:
2 : The size of the puddle of water is decreasing.
3 : The size of the puddle of water remains unchanged.

Original Caption:
1 : A circle shaped block is placed in a wooden box.
Hallucinated Captions:
2 : A square shaped block is placed in a wooden box.
3 : A star shaped block is placed in a wooden box.

Original Caption:
1 : Cubes are transforming into cylinders.
Hallucinated Captions:
2 : Cubes are transforming into cones.
3 : Cubes are transforming into spheres.

Original Caption:
1 : The clouds form a fluffy circle in the sky.
Hallucinated Captions:
2 : The clouds form a fluffy square in the sky.
3 : The clouds form a fluffy triangle in the sky.

Figure 18: In-context examples for the Size (Left) and Shape (Right) sub-aspects.
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Original Caption:
1 : A leaf with holes turns green to red.
Hallucinated Captions:
2 : A leaf with holes turns from green to orange.
3 : A leaf with holes turns from yellow to orange.

Original Caption:
1 : A yellow ball bounces on the ground, and lands in the pool.
Hallucinated Captions:
2 : A red ball bounces on the ground, and lands in the pool.
3 : A blue ball bounces on the ground, and lands in the pool.

Original Caption:
1 : A stationary purple cup appears at the beginning of the video.
Hallucinated Captions:
2 : A stationary blue cup appears at the beginning of the video.
3 : A stationary green cup appears at the beginning of the video.

Original Caption:
1 : The man wearing a jacket performed three backflips.
Hallucinated Captions:
2 : The man wearing a jacket performed four backflips.
3 : The man wearing a jacket performed five backflips.

Original Caption:
1 : Four birds perched on the wire.
Hallucinated Captions:
2 : Five birds perched on the wire.
3 : Six birds perched on the wire.

Original Caption:
1 : One car drove down the road.
Hallucinated Captions:
2 : Two cars drove down the road.
3 : Three cars drove down the road.

Figure 19: In-context examples for the Color (Left) and Count (Right) sub-aspects.

Original Caption:
1 : The man hits another object with a bat.
Hallucinated Captions:
2 : The man hits another object with a racket.
3 : The man hits another object with a broom.

Original Caption:
1 : The ball bounces down the slanted plane.
Hallucinated Captions:
2 : The ball rolls down the slanted plane.
3 : The ball zigzags down the slanted plane.

Original Caption:
1 : A person puts two rectangles and one circle into the bag.
Hallucinated Captions:
2 : A person puts a rectangle, a square and a circle into the bag.
3 : A person puts two squares and a circle into the bag.

Original Caption:
1 : A person puts a bottle in the bag. Then, he puts a book in the bag. Lastly, he puts
a pencil case into the bag.
Hallucinated Captions:
2 : A person puts a book in the bag. Then, he puts a bottle in the bag. Lastly, he puts
a pencil case into the bag.
3 : A person puts a pencil case in the bag. Then, he puts a book in the bag. Lastly, he
puts a bottle into the bag.

Original Caption:
1 : A man writes letters in the following order: A, V, T, Y.
Hallucinated Captions:
2 : A man writes letters in the following order: A, Y, T, V.
3 : A man writes letters in the following order: Y, T, V, A.

Original Caption:
1 : A woman with white coat places a book on the table. She takes two vials of
liquid and mixes them together.
Hallucinated Captions:
2 : A woman with white coat places a book on the table. She takes off her coat.
Then, she takes two vials of liquid and mixes them together.
3 : A woman with white coat takes two vials of liquid and mixes them together. She
then places a book on the table.

Figure 20: In-context examples for the Object (Left) and Event-Order (Right) aspects.

Original Caption:
1 : The people are cooking in the video.
Hallucinated Captions:
2 : The people are chopping in the video.
3 : The people are washing in the video.

Original Caption:
1 : A car is driving down the road.
Hallucinated Captions:
2 : A car is reversing down the road.
3 : A car is being repaired along the road.

Original Caption:
1 : A dog is digging a hole near the tree.
Hallucinated Captions:
2 : A dog is scratching the tree.
3 : A dog is barking at the tree

Original Caption:
1 : An eagle is flying from left to right diagonally upwards.
Hallucinated Captions:
2 : An eagle is flying from left to right horizontally.
3 : An eagle is flying from left to right diagonally downwards.

Original Caption:
1 : The car drives forward and makes a right turn.
Hallucinated Captions:
2 : The car drives forward and continues driving straight.
3 : The car drives forward and makes a left turn.

Original Caption:
1 : The ball on the table rolls away from the camera.
Hallucinated Captions:
2 : The ball on the table rolls from left to right.
3 : The ball on the table rolls towards the camera.

Figure 21: In-context examples for the Action (Left) and Direction (Right) aspects.

and prompts, and then summed across all criteria to produce a final quality assessment score for the
generated captions of a video instance.

We evaluate each set of captions using three LLMs: GPT-4o, Gemini-1.5 Flash Reid et al. (2024), and
LLaMA3 (70B) Dubey et al. (2024) along with three variants for each binary question. This ensemble
of both models and prompts enhances the robustness of our evaluation.. Figures 22 and 23 provide
details of the criterion-specific quality assessment queries and the prompt templates employed for
each LLM. We select the top 1,000 examples with the highest quality assessment scores to construct
VIDHAL.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

GPT-4o & Gemini-1.5 Flash:
You are provided with a ground truth description of a video, and 2 other captions that contain hallucinations in the aspect of <aspect>. The hallucinated
captions are displayed in increasing order of hallucination, where the first caption contains the least amount of hallucinated elements and the last caption
having significant hallucination. You are tasked with answering a question regarding the quality of the hallucinated captions. Provide your answer as
detailed in the question, without further explanation of your answer.

Ground truth caption:
<anchor_caption>

Hallucinated captions:
<hallucinatory_captions>

Question:
<quality_assessment_question>

Answer:

LLaMA3 (70B):
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are provided with a ground truth description of a video, and 2 other captions that contain hallucinations in the aspect of <aspect>. The hallucinated
captions are displayed in increasing order of hallucination, where the first caption contains the least amount of hallucinated elements and the last caption
having significant hallucination. You are tasked with answering a question regarding the quality of the hallucinated captions. Provide your answer as
detailed in
the question, without further explanation of your answer.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Ground truth caption:
<anchor_caption>

Hallucinated captions:
<hallucinatory_captions>

Question:
<quality_assessment_question>

Answer:
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

Figure 22: Prompt template for evaluating the quality of generated captions for the GPT-4o, Gemini-
1.5 Flash, and LLaMA3 (70B) models.

Realism:
1. Is the scenario presented in caption <option> realistic? Provide your answer only as a single "yes" or "no".
2. Is the event in caption <option> believable? Provide your answer only as a single "yes" or "no".
3. Is the setting present in caption <option> plausible? Provide your answer only as a single "yes" or "no".

Order Quality:
1. Which caption better matches the ground truth description: Caption <option_A> or <option_B>? Provide your answer only as a single number
(<option_A> or <option_B>)
2. Which caption aligns more closely with the ground truth description: Caption <option_A> or <option_B>? Provide your answer only as a single
number (<option_A> or <option_B>)
3. Which caption is more faithful to the ground truth description: Caption <option_A> or <option_B>? Provide your answer only as a single number
(<option_A> or <option_B>)

Relevance:
1. Does hallucinated caption <option> differ from the ground truth caption only in the <aspect>? Provide your answer only as a single "yes" or "no".
2. Is the only difference between hallucinated caption <option> and the ground truth caption the <aspect>? Provide your answer only as a single "yes"
or "no".
3. Did hallucinated caption <option> change the ground truth caption only with respect to the <aspect>? Provide your answer only as a single "yes" or
"no".

Figure 23: Question prompts for evaluating caption quality based on the three assessment criteria.
Prompts with the placeholder <option> are applied individually to the anchor and hallucinatory
captions. For question associated with order quality, <option A> and <option B> are replaced
with the corresponding hallucinatory caption options shown to the LLMs.
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C: Person in white vest
performs six sit-ups.

A: Person in white vest
performs three sit-ups.

B: Person in white vest
performs four sit-ups.

Attribute

A: Glacier breaking and
falling into water.

B: Glacier rapidly
melting and falling into

water.
C: Glacier slowly

forming from still water.
A: The traffic lights are
changing from red to

green.

B: The traffic lights are
changing from red to

yellow.

C: The traffic lights are
changing from green to

red.

Object

C: Person eats a salad
with tomato, salad

leaves, and cucumber.

A: Person prepares a
salad with tomato, salad
leaves, and cucumber.

B: Person serves a
salad with tomato, salad
leaves, and cucumber.

A: Person removing a
diary from the tabletop.

B: Person removing a
parcel from the tabletop.

C: Person removing a
towel from the tabletop.

A: Person puts down a
towel.

B: Person puts down a
bedsheet.

C: Person puts down a
pillow.

Action

C: Person demonstrates
a spinning kick.

A: Person demonstrates
a side kick.

B: Person demonstrates
a front kick.

C: The man is juggling
arrows in an archery

activity.

A: The man is shooting
an arrow in an archery

activity.

B: The man is adjusting
the bow in an archery

activity.
A: A dog is driving a car. B: A dog is sitting in a

car.
C: A dog is washing a

car.

Direction

C: A red cylinder moves
up and to the right.

A: A red cylinder moves
down and to the left.

B: A red cylinder moves
down and to the right.

C: The light is rotating
upwards.

A: The light is rotating
clockwise.

B: The light is rotating
counterclockwise.

A: A puppy is walking
out of a wigwam.

B: A puppy is walking
into the wigwam.

C: A puppy is walking to
the side the wigwam.

Event Order

C: Person throws the
pillow, sits on the couch
and opens the laptop.

A: Person sits on the
couch, opens the laptop
and throws the pillow.

B: Person sits on the
couch, throws the pillow
and opens the laptop.

C: Dolphins get fed fish,
swim to the shore and

emerges from the water.

A: Dolphins swim to the
shore, emerges from the
water and get fed fish.

B: Dolphins emerge
from the water, swim to
shore and get fed fish.

A: The person puts a
hoodie, book, laptop,
and pen in the bag.

B: The person puts a
book, hoodie, laptop,
and pen in the bag.

C: The person puts a
pen, laptop, hoodie, and

book in the bag.

Figure 24: Qualitative examples of video instances and their corresponding generated captions in the
VIDHAL Benchmark, across the five temporal aspects.

B.3 ADDITIONAL DATASET EXAMPLES

We provide additional qualitative examples of video instances and their corresponding captions in
Figure 24 for each of the five temporal aspects.

C HUMAN VALIDATION DETAILS

C.1 HUMAN VALIDATION PROCESS

As varying hallucination levels are a distinctive feature of our benchmark, we prioritize validating the
robustness of caption ordering produced by our annotation pipeline. Each anchor caption is derived
from the original video metadata, making it the most accurate reflection of the video content. Our
primary objective is to ensure that the ordering of hallucinatory captions aligns with human judgment.
To achieve this, human annotators are shown the video instance along with both hallucinatory captions
and are tasked with selecting the caption that better aligns with the video content, as illustrated in
Figure 25. Each video instance is reviewed by multiple annotators, with the final human-aligned
order determined through a majority vote and compared with our automatically generated order.

C.2 MISALIGNED INSTANCES

Table 3 lists video instances that fail to meet the majority agreement threshold established by our
annotation process. We additionally provide the corresponding human agreement scores for each
instance.

D EVALUATION PIPELINE DETAILS

D.1 MODEL AND INFERENCE HYPERPARAMETERS

We provide additional details on the inference and generation settings used across all evaluated
models in Table 4, as well as hyperparameters specific to LlaVA-NeXT-Video models in Table 5.
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Video Instance Verification Question

There are no stationary metal
objects at the start of the video

There is one stationary metal
object at the start of the video

There are two stationary metal
objects at the start of the video

Human RespondentQuestion:

Options:

There is one stationary metal
object at the start of the video

There are two stationary metal
objects at the start of the video

Captions:

B:

A:

Which of the two captions shown
below better describes the content
of the video?

Option B

Automatic Pipeline

Option B

In
cr

ea
si

ng
H

al
lu

ci
na

tio
n 

Le
ve

l

Video:Video:

Figure 25: Pipeline for validating the quality of generated caption orders in VidHal. For each
instance, human annotators are provided with the video and its associated hallucinatory captions.
The annotators then select the caption that best aligns with the video content. The selected response
is subsequently checked for consistency with the caption with lower hallucination according to our
annotation process.

Video ID Agreement Score

action 55 0.429
action 88 0
action 90 0.308
action 118 0.200
action 153 0.250
order 60 0.500
order 109 0.154
attribute 90 0.400
attribute 180 0.071
attribute 192 0.188
object 25 0.375
object 170 0
direction 188 0.400

Table 3: Instances where generated caption orders diverge from human preference in quality checks.
The agreement score reflects the proportion of respondents who chose our annotated order.

Hyperparameter Value
Data Processing
Video Sampling Rate (FPS) 30
Generation
do sample False
temperature 0.0
repetition penalty 1.0
max new tokens 128
Computation
Precision FP16

Table 4: Hyperparameter configuration used in VIDHAL evaluation across all models.
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Hyperparameter LLaVA-NeXT-Video (7B) LLaVA-NeXT-Video (32B)
mm spatial pool mode average average
mm newline position no token grid
mm pooling position after after

Table 5: Model-specific hyperparameters for LLaVA-NeXT-Video models.

You are provided with a video and a set of several captions. Your task is to watch the video provided carefully, and select the caption that best describes the
video. Provide your answer only as a single letter representing the option whose caption that best describes the video, without any explanation.

Watch the video provided, and choose the option whose caption describes the video most accurately.

A. <caption_A>
B. <caption_B>

Figure 26: Prompt template for the MCQA and relative caption ordering evaluation tasks.

Watch the video provided, and rank the captions below in order from the most accurate to the least accurate in describing the video. Provide your response
only as a sequence of comma separated option letters matching the corresponding captions. Do not give any additional explanation for your answer.

For example, if option B contains the caption that best describes the video, option A contains the caption that describes the video second best and option C
contains the caption that describes the video least accurately, provide your response as: B, A, C.

A. <caption_A>
B. <caption_B>
C. <caption_C>

Figure 27: Prompt template for the naive caption ordering evaluation task.

D.2 EVALUATION TASK PROMPTS

Figures 26 and 27 present the prompts used for the MCQA and naive caption ordering tasks,
respectively. The same prompt used for both the MCQA task and the paired questions in the
relative caption ordering task. Our manual inspection of these instances reveals that these videos
often feature visually complex content, making them challenging even for human annotators.

D.3 RELATIVE ORDER PARSING

Prompting the VLLM to predict the order of captions based on their hallucinatory level in the relative
caption ordering task involves asking a series of paired questions derived from different caption
combinations. However, providing the model with all possible pairs at once may result in cyclic and
non-transitive orderings. To address this, we present each caption pair to the VLLM in a systematically
selected sequence, beginning with two paired questions. The final paired question is presented to the
model to resolve inconsistencies if the multiple possible orderings can be derived from the responses
to the first two paired questions. The responses across all paired questions presented to the VLLM is
then parsed according to the workflow illustrated in Figure 28.

E ADDITIONAL EXPERIMENTS

E.1 INPUT ORDER SENSITIVITY

To assess the robustness of VLLM responses to the order of displayed captions, we conducted
additional experiments by evaluating three VLLMs using a fixed static display order across all
instances. We repeated this process across all different permutations of input caption order, presenting
the results of these models in Figure 29. We observe that the performance of these VLLMs is highly
sensitive to the order in which captions are displayed, reflected by their varying results across different
order permutations. This instability intensifies with smaller model sizes, with VideoLLaMA2 (7B)
showing the highest variance in evaluation results and VideoLLaMA2 (72B) the lowest. Our findings
suggest that VLLMs may be particularly vulnerable to input caption order, potentially confounding
their performance.
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Figure 28: Decision tree for determining the final caption order based on VLLM responses to paired
questions in the relative caption ordering evaluation task.

MCQA Naive CO Relative CO

0.2

0.4

0.6

0.8

1

LLaVA-NeXT-Video (32B)
VideoLLaMA2 (7B)
VideoLLaMA2 (72B)

Figure 29: Distribution of results of VLLMs across varied input caption orders for the three evaluation
tasks.

E.2 NAIVE CAPTION ORDERING RESPONSE QUALITY

To analyze VLLMs’ ability to handle naive caption ordering tasks, which possess unique task
structures compared to conventional video understanding tasks, we employ two quantitative metrics.
Regurgitation Rate (RR) captures the model’s propensity to consistently generate identical responses
regardless of input, defined as the maximum proportion of instances in VIDHAL where a specific
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caption order is predicted across all possible orderings. Invalid Response Rate (IRR) measures the
proportion of responses that fail to provide valid caption orders for the naive ordering task. Figure 30
presents IRR and RR scores for all evaluated models, revealing two key observations. First, many
models exhibit high IRR scores, frequently outputting incomplete caption orders (e.g., generating
only a single option). Second, despite formulating responses with correct structure, many VLLMs
produce identical caption orders regardless of the input video V i, as reflected by high RR scores, a
behavior observed even in models performing well on MCQA and relative caption ordering tasks,
such as InternVL2.5.
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Figure 30: (Top) Invalid response rates across all models. VLLMs with no invalid responses are
grouped under Others. (Bottom) Regurgitation rates of VLLMs on VIDHAL. Random and Dataset
Statistic indicate the regurgitation rates of the random baseline and ground truth answers, respectively.
For both metrics, a lower value indicates better model performance.

E.3 IMAGE PRIOR RELIANCE - ABLATION STUDY ON VIDEO SUMMARIZATION ALGORITHM

We conduct additional single-frame bias experiments using uniform and motion-based sampling
strategies with varying clip lengths (1, 2, and 4 frames), with results presented in Tables 6 and 7. The
overlap ratios demonstrate consistency across all three video summarization methods (saliency-based,
uniform, and motion-based sampling) for extracting frames vi. In particular, single-frame outputs
substantially overlap with full-video inputs regardless of the summarization algorithm employed.
These additional results confirm that our single-frame bias study is robust across different frame
selection methods, with VLLMs relying on single-frame information for over half of the queries in
VIDHAL.
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1 Frame 2 Frames 4 Frames

Model C I O C I O C I O
VideoLLaMA2 (7B) 0.674 0.708 0.700 0.781 0.798 0.794 0.846 0.829 0.833
LLaVA-NeXT-Video (32B) 0.680 0.570 0.620 0.735 0.649 0.688 0.831 0.706 0.763

Table 6: Overlapping ratios of model predictions under single-frame and full-video inputs for
(C)orrect, (I)ncorrect and (O)verall predictions using uniformly sampled frames vi, across multiple
frame sampling rates.

1 Frame 2 Frames 4 Frames

Model C I O C I O C I O
VideoLLaMA2 (7B) 0.521 0.495 0.515 0.558 0.507 0.519 0.670 0.653 0.657
LLaVA-NeXT-Video (32B) 0.634 0.550 0.558 0.658 0.546 0.597 0.675 0.563 0.614

Table 7: Overlapping ratios of model predictions under single-frame and full-video inputs for
(C)orrect, (I)ncorrect and (O)verall predictions using motion-based sampled frames vi, across multiple
frame sampling rates.
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