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Abstract

Routing problems are a class of combinatorial problems with many practical1

applications. Recently, end-to-end deep learning methods have been proposed2

to learn approximate solution heuristics for such problems. In contrast, classical3

dynamic programming (DP) algorithms guarantee optimal solutions, but scale4

badly with the problem size. We propose Deep Policy Dynamic Programming5

(DPDP), which aims to combine the strengths of learned neural heuristics with6

those of DP algorithms. DPDP prioritizes and restricts the DP state space using7

a policy derived from a deep neural network, which is trained to predict edges8

from example solutions. We evaluate our framework on the travelling salesman9

problem (TSP), the vehicle routing problem (VRP) and TSP with time windows10

(TSPTW) and show that the neural policy improves the performance of (restricted)11

DP algorithms, making them competitive to strong alternatives such as LKH, while12

also outperforming most other ‘neural approaches’ for solving TSPs, VRPs and13

TSPTWs with 100 nodes.14

1 Introduction15

Dynamic programming (DP) is a powerful framework for solving optimization problems by solving16

smaller subproblems through the principle of optimality [3]. Famous examples are Dijkstra’s17

algorithm [14] for the shortest route between two locations, and the classic Held-Karp algorithm for18

the travelling salesman problem (TSP) [23, 4]. Despite their long history, dynamic programming19

algorithms for vehicle routing problems (VRPs) have seen limited use in practice, primarily due to20

their bad scaling performance. More recently, a line of research has attempted the use of machine21

learning (especially deep learning) to automatically learn heuristics for solving routing problems22

[57, 5, 41, 29, 7]. While the results are promising, most learned heuristics are not (yet) competitive23

to ‘traditional’ algorithms such as LKH [24] and lack (asymptotic) guarantees on their performance.24

In this paper, we propose Deep Policy Dynamic Programming (DPDP) as a framework for solving25

vehicle routing problems. The key of DPDP is to combine the strengths of deep learning and DP,26

by restricting the DP state space (the search space) using a policy derived from a neural network.27

In Figure 1 it can be seen how the neural network indicates promising parts of the search space28

(through a heatmap over the edges of the graph), which is then used by the DP algorithm to find a29

good solution. DPDP is more powerful than some related ideas [62, 52, 61, 6, 34] as it combines30

supervised training of a large neural network with just a single model evaluation at test time, to enable31

running a large scale guided search using DP. The DP framework is flexible as it can model a variety32

of realistic routing problems with difficult practical constraints [20]. We illustrate this by testing33

DPDP on the TSP, the capacitated VRP and the TSP with (hard) time window constraints (TSPTW).34

In more detail, the starting point of our proposed approach is a restricted dynamic programming35

algorithm [20]. Such an algorithm heuristically reduces the search space by retaining only the B most36
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Figure 1: Heatmap predictions (red) and solutions (colored) by DPDP (VRP depot edges omitted).

promising solutions per iteration. The selection process is very important as it defines the part of the37

DP state space considered and, thus, the quality of the solution found (see Fig. 2). Instead of manually38

defining a selection criterion, DPDP defines it using a (sparse) heatmap of promising route segments39

obtained by pre-processing the problem instance using a (deep) graph neural network (GNN) [26].40

This approach is reminiscent of neural branching policies for branch-and-bound algorithms [19, 40].41

In this work, we thus aim for a ‘neural boost’ of DP algorithms, by using a graph neural network42

for scoring partial solutions. Prior work on ‘neural’ vehicle routing has focused on auto-regressive43

models [57, 5, 13, 29], but they have high computational cost when combined with (any form of)44

search, as the model needs to be evaluated for each partial solution considered. Instead, we use (for45

TSP) and adapt (for VRP and TSPTW) a model to predict a heatmap indicating promising edges [26],46

and define the score of a partial solution as the ‘heat’ of the edges it contains (plus an estimate of the47

‘heat-to-go’ or potential of the solution). As the neural network only needs to be evaluated once for48

each instance, this enables a much larger search (defined by B), making a good trade-off between49

quality and computational cost. Additionally, we can apply a threshold to the heatmap to define a50

sparse graph on which to run the DP algorithm, reducing the runtime by eliminating many solutions.51

Figure 2 illustrates the overall DPDP algorithm. In Section 4, we show that DPDP significantly52

improves over ‘classic’ restricted DP algorithms (with the same B). Additionally, we show that53

DPDP outperformes most other ‘neural’ approaches for TSP, VRP and TSPTW and is competitive54

with the highly-optimized LKH solver [24] for VRP, while achieving similar results much faster for55

TSP and TSPTW. For TSPTW, DPDP also outperforms the best open-source solver we could find56

[10], illustrating the power of DPDP to handle difficult hard constraints (time windows).57
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Figure 2: Deep Policy Dynamic Programming for the TSP. A GNN creates a (sparse) heatmap
indicating promising edges, after which a tour is constructed using forward dynamic programming.
In each step, at most B solutions are expanded according to the heatmap policy, restricting the size of
the search space. Partial solutions are dominated by shorter (lower cost) solutions with the same DP
state: the same nodes visited (marked grey) and current node (indicated by dashed rectangles).
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2 Related work58

DP has a long history as an exact solution method for routing problems [31, 50], e.g. for the TSP59

with time windows [15] and precedence constraints [39], but typically limited to small problems only,60

due to the curse of dimensionality. Restricted DP (with heuristic policies) has been used to address,61

e.g., the time dependent TSP [37], and has been generalized into a flexible framework for VRPs with62

different types of practical constraints [20]. DP approaches have also been shown to be useful in63

settings with difficult practical issues such as time-dependent travel times and driving regulations [28]64

or stochastic demands [42]. For a thorough investigation of modelling choices of DP for routing (and65

scheduling), see [53]. For sparse graphs, alternative, but less flexible, formulations can be used [8].66

Despite the flexibility, constructive DP methods have not gained much popularity compared to67

heuristic search approaches such as Ruin and Recreate [47], Adaptive Large Neighborhood Search68

[46], LKH [24] or FILO [1]. While highly effective, these methods are limited in their flexibility as69

special operators need to be engineered for different types of problems. While restricted DP was70

shown to have superior performance on realistic VRPs with many constraints [20], the performance71

gap of around 10% for standard (benchmark) VRPs (with time windows) is too large to popularize72

the restricted dynamic programming approach. We argue that the missing ingredient for restricted73

dynamic programming is the availability of a strong but computationally cheap policy for selecting74

which solutions should be considered, which is the motivation behind DPDP.75

In the machine learning community, recent advances have significantly improved deep neural networks76

(DNNs) to perform tasks such as image classification and machine translation [32]. After the first77

deep learning model was trained (using example solutions) to construct TSP tours [57], many78

improvements have been proposed, e.g. different training strategies such as reinforcement learning79

(RL) [5, 27, 12, 30] and model architectures, which enabled the same idea to be used for other80

routing problems [41, 29, 13, 45, 16, 60]. Most constructive neural methods are auto-regressive,81

evaluating the model many times to predict one node at the time, but other works have considered82

predicting a ‘heatmap’ of promising edges at once [43, 26, 17], which allows a tour to be constructed83

(using sampling or beam search) without further evaluating the model. An alternative direction is84

‘learning to search’, where a neural network is used to guide a search procedure such as local search85

[7, 35, 18, 59, 25]. Some works have attempted scaling to larger instances beyond 100 nodes, which86

remains challenging [36, 17]. The combination of machine learning with DP has been proposed in87

limited settings [62, 52, 61]. Most related to our approach, a DP algorithm for TSPTW, guided by an88

RL agent, was implemented using an existing solver [6] and a neural network predicting edges has89

been combined with tree search [34] and local search for maximum independent set (MIS). For a90

wider view on machine learning for routing problems and combinatorial optimization, see [38, 54].91

3 Deep Policy Dynamic Programming92

DPDP uses an existing graph neural network [26] (which we modify for VRP and TSPTW) to predict93

a heatmap of promising edges, which is used to derive the policy for scoring partial solutions in94

the DP algorithm. The DP algorithm starts with a beam of a single initial (empty) solution. It then95

proceeds by iterating the following steps: (1) all solutions on the beam are expanded, (2) dominated96

solutions are removed for each DP state, (3) the B best solutions according to the scoring policy97

define the beam for the next iteration. These steps are illustrated in Fig. 2. The objective function is98

used to select the best solution from the final beam. The resulting algorithm is a beam search over the99

DP state space (which is not a ‘standard beam search’ over the solution space!) and we call B the100

beam size. DPDP is asymptotically optimal as using B = n · 2n for a TSP with n nodes guarantees101

optimal results, but choosing smaller B allows to trade performance for computational cost.102

DPDP is a generic framework that can be applied to different problems, by defining the following103

ingredients: (1) the state variables to track while constructing solutions, (2) the initial solution,104

(3) feasible actions to expand solutions, (4) rules to define dominated solutions and (5) a scoring105

policy for selecting the B solutions to keep. A solution is always (uniquely) defined as a sequence of106

actions, which allows the DP algorithm to construct the final solution by backtracking. In the next107

sections, we define these ingredients for the TSP, VRP and TSPTW.108
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3.1 Travelling Salesman Problem109

We implement DPDP for Euclidean TSPs with n nodes on a (sparse) graph, where the cost for edge110

(i, j) is given by cij , the Euclidean distance between the coordinates of nodes i and j.111

For each partial solution, defined by a sequence of actions a, the state variables are cost(a), the112

total cost (distance), current(a), the current node, and visited(a), the set of visited nodes (including113

the start node). Without loss of generality, we let 0 be the start node, so we initialize the beam at step114

t = 0 with the empty initial solution with cost(a) = 0, current(a) = 0 and visited(a) = {0}. At115

step t, the action at ∈ {0, ..., n − 1} indicates the next node to visit, and is a feasible action for a116

partial solution a = (a0, ..., at−1) if (at−1, at) is an edge in the graph and at 6∈ visited(a), or, when117

all are visited, if at = 0 to return to the start node. When expanding the solution to a′ = (a0, ..., at),118

we can compute the state variables incrementally as:119

cost(a′) = cost(a) + ccurrent(a),at
, current(a′) = at, visited(a′) = visited(a) ∪ {at}. (1)

A (partial) solution a is a dominated solution if there exists a (dominating) solution a∗ such120

that visited(a∗) = visited(a), current(a∗) = current(a) and cost(a∗) < cost(a). The tuple121

(visited(a), current(a)) we refer to as the DP state, so removing all dominated partial solutions,122

we keep exactly one minimum-cost solution for each unique DP state1. Since a solution can only123

dominate other solutions with the same set of visited nodes, we only need to remove dominated124

solutions from sets of solutions with the same number of actions. Therefore, we can efficiently125

execute the DP algorithm in iterations, where at step t all solutions have (after t actions) t+ 1 visited126

nodes (including the start node), keeping the memory need at O(B) states (with B the beam size).127

We define the scoring policy using a pretrained model [26], which takes as input node coordinates128

and edge distances to predict a raw ‘heatmap’ value ĥij ∈ (0, 1) for each edge (i, j). The model was129

trained to predict optimal solutions, so ĥij can be seen as the probability that edge (i, j) is in the130

optimal tour. We force the heatmap to be symmetric thus we define hij = max{ĥij , ĥji}. The policy131

is defined using the heatmap values, in such a way to select the (partial) solutions with the largest132

total heat, while also taking into account the (heat) potential for the unvisited nodes. The policy thus133

selects the B solutions which have the highest score, defined as score(a) = heat(a)+potential(a),134

with heat(a) =
∑t−1

i=1 hai−1,ai
, i.e. the sum of the heat of the edges, which can be computed135

incrementally when expanding a solution. The potential is added as an estimate of the ‘heat-to-136

go’ (similar to the heuristic in A∗ search) for the remaining nodes, and avoids the ‘greedy pitfall’137

of selecting the best edges while skipping over nearby nodes, which would prevent good edges138

from being used later. It is defined as potential(a) = potential0(a) +
∑

i6∈visited(a) potentiali(a)139

with potentiali(a) = wi

∑
j 6∈visited(a)

hji∑n−1
k=0 hki

, where wi is the node potential weight given by140

wi = (maxj hji) · (1 − 0.1( ci0
maxj cj0

− 0.5)). By normalizing the heatmap values for incoming141

edges, the (remaining) potential for node i is initially equal to wi but decreases as good edges142

become infeasible due to neighbours being visited. The node potential weight wi is equal to the143

maximum incoming edge heatmap value (an upper bound to the heat contributed by node i), which144

gets multiplied by a factor 0.95 to 1.05 to give a higher weight to nodes closer to the start node, which145

we found helps to encourage the algorithm to keep edges that enable to return to the start node. The146

overall heat + potential function identifies promising partial solutions and is computationally cheap.147

3.2 Vehicle Routing Problem148

For the VRP, we add a special depot node to the graph, indicated by DEP. Each node i has a demand149

di, and the goal is to find multiple routes, which have a limited capacity denoted by CAPACITY.150

Additionally to the TSP state variables cost(a), current(a) and visited(a), we keep track of151

capacity(a), which is the remaining capacity in the current route/vehicle. A solution starts at the152

depot, so we initialize the beam at step t = 0 with the empty initial solution with cost(a) = 0,153

current(a) = DEP, visited(a) = ∅ and capacity(a) = CAPACITY. For the VRP, we do not consider154

visiting the depot as a separate action. Instead, we define 2n actions, where at ∈ {0, ..., 2n − 1}.155

The actions 0, ..., n− 1 indicate a direct move from the current node to node at, whereas the actions156

1If we have multiple partial solutions with the same state and cost, we can arbitrarily choose one to dominate
the other(s), for example the one with the lowest index of the current node.
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n, ..., 2n − 1 indicate a move to node at − n via the depot. Feasible actions are those that move157

to unvisited nodes via edges in the graph and obey the following constraints. For the first action158

a0 there is no choice and we constrain (for convenience of implementation) a0 ∈ {n, ..., 2n − 1}.159

A direct move (at < n) is only feasible if dat
≤ capacity(a) and updates the state similar to TSP160

but reduces remaining capacity by dat
. A move via the depot is always feasible (respecting the161

graph edges and assuming di ≤ CAPACITY ∀i) as it resets the vehicle CAPACITY before subtracting162

demand, but incurs the ‘via-depot cost’ cDEP
ij = ci,DEP + cDEP,j . When all nodes are visited, we allow a163

special action to return to the depot. This somewhat unusual way of representing a CVRP solution164

has desirable properties similar to the TSP formulation: at step t we have exactly t nodes visited, and165

we can run the DP in iterations, removing dominated solutions at each step t.166

For VRP, a partial solution a is a dominated solution dominated by a∗ if visited(a∗) = visited(a)167

and current(a∗) = current(a) (i.e. a∗ corresponds to the same DP state) and cost(a∗) ≤ cost(a)168

and capacity(a∗) ≥ capacity(a), with at least one of the two inequalities being strict. This means169

that for each DP state, given by the set of visited nodes and the current node, we do not only keep170

the (single) solution with lowest cost (as in the TSP algorithm), but keep the complete set of pareto-171

efficient solutions in terms of cost and remaining vehicle capacity. This is because a higher cost172

partial solution may still be preferred if it has more remaining vehicle capacity, and vice versa.173

For the VRP scoring policy, we modify the model [26] to include the depot node and demands. The174

special depot node gets a separate learned initial embedding parameter, and we add additional edge175

types for connections to the depot, to mark the depot as being special. Additionally, each node gets176

an extra input (next to its coordinates) corresponding to di/CAPACITY (where we set dDEP = 0).177

Apart from this, the model remains exactly the same2. The model is trained on example solutions178

from LKH [24] (see Section 4.2), which are not optimal, but still provide a useful training signal.179

Compared to TSP, the definition of the heat is slightly changed to accommodate for the ‘via-depot180

actions’ and is best defined incrementally using the ‘via-depot heat’ hDEP
ij = hi,DEP · hDEP,j · 0.1,181

where multiplication is used to keep heat values interpretable as probabilities and in the range (0, 1).182

The additional penalty factor of 0.1 for visiting the depot encourages the algorithm to minimize the183

number of vehicles/routes. The initial heat is 0 and when expanding a solution a to a′ using action184

at, the heat is incremented with either hcurrent(a),at
(if at < n) or hDEP

current(a),at−n (if at ≥ n). The185

potential is defined similarly to TSP, replacing the start node 0 by DEP.186

3.3 Travelling Salesman Problem with Time Windows187

For the TSPTW, we also have a special depot / start node 0, and each node i has a time window188

defined by (li, ui) in which the node should be visited, assuming travel time is equal to cost/distance.189

It is allowed to wait if arrival at a node is before li, but arrival cannot be after ui (i.e. the constraint is190

hard). We consider the objective to be minimizing total cost, but minimizing total time (or makespan)191

only requires training on different example solutions. Due to the hard constraints, TSPTW is typically192

considered more challenging to solve than plain TSP, for which every solution is feasible.193

The state variables and initial solution are equal to TSP except that we add time(a) which is194

initially 0 (= l0). Feasible actions at ∈ {0, ..., n − 1} are those that move to unvisited nodes via195

edges in the graph such that the arrival time is no later than uat
and do not directly eliminate the196

possibility to visit other nodes in time3. Expanding a solution a to a′ using action at updates the197

time as time(a′) = max{time(a) + ccurrent(a),at
, lat
}.198

For each DP state, we keep all efficient solutions in terms of cost and time, so a partial solution a is a199

dominated solution dominated by a∗ if a∗ has the same DP state (visited(a∗) = visited(a) and200

current(a∗) = current(a)) and is strictly better in terms of cost and time, i.e. cost(a∗) ≤ cost(a)201

and time(a∗) ≤ time(a), with at least one of the two inequalities being strict.202

The model [26] for the scoring policy is adapted to include the time windows (li, ui) as node features203

(in the same unit as coordinates and costs), and we use a special embedding for the depot similar to204

VRP. Due to the time dimension, a TSPTW solution is directed, and edge (i, j) may be good whereas205

(j, i) may be not, so we adapt the model to enable predictions hij 6= hji (see details in Appendix206

B). We generated example training solutions using (heuristic) DP with a large beam size, which was207

faster than using LKH. Given the heat predictions, the score (heat + potential) is exactly as for TSP.208

2Except that we do not use the K-nearest neighbour feature [26] as it contains no additional information.
3E.g., arriving at a node i at t = 10 (including waiting) is not feasible if node j has uj = 12 and cij = 3.
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3.4 Graph sparsity209

As described, the DP algorithm can take into account a sparse graph to define feasible expansions. As210

our problems are defined on sets of nodes rather than graphs, the use of a sparse graph is an artificial211

design choice, which allows to significantly reduce the runtime but may sacrifice the possibility to212

find good or optimal tours. We propose two different strategies for defining the sparse graph on213

which to run the DP: thresholding the heatmap values hij and using the K-nearest neighbour (KNN)214

graph. By default, we use a (low) heatmap threshold of 10−5, which rules out most of the edges as215

the model confidently predicts (close to) 0 for most edges. This is a secondary way to leverage the216

neural network (independent of the scoring policy), which can be seen as a form of learned problem217

reduction [49]. For symmetric problems (TSP and VRP), we add KNN edges in both directions. For218

the VRP, we additionally connect each node to the depot (and vice versa) to ensure feasibility.219

3.5 Implementation & hyperparameters220

We implement DPDP using PyTorch [44] to leverage batched computation on the GPU. For details,221

see Appendix A. Our code is publicly available.4 DPDP has very few hyperparameters, but the222

heatmap threshold of 10−5 and details like the functional form of e.g. the scoring policy are ‘educated223

guesses’ or manually tuned on a few validation instances and can likely be improved. The runtime is224

influenced by implementation choices which were manually selected using a few validation instances.225

4 Experiments226

4.1 Travelling Salesman Problem227

In Table 1 we report our main results for DPDP with beam sizes of 10K (10 thousand) and 100K,228

for the TSP with 100 nodes on a commonly used test set [29]. We report results using Concorde [2],229

LKH [24] and Gurobi [22], as well as recent results of the strongest methods using neural networks230

(‘neural approaches’) from literature. Running times for solving 10000 instances after training should231

be taken as rough indications as some are on different machines, typically with 1 GPU or a many-core232

CPU (8 - 32). The costs indicated with * are not directly comparable due to slight dataset differences233

[17]. Times for generating heatmaps (if applicable) is reported separately (as the first term) from the234

running time for MCTS [17] or DP. DPDP achieves close to optimal results, strictly outperforming235

the neural baselines achieving better results in less time (except POMO [30], see Section 4.2).236

4https://github.com/?????, to be disclosed after review

Table 1: Mean cost, gap and total time to solve 10000 TSP/VRP instances after training.

PROBLEM TSP100 VRP100
METHOD COST GAP TIME COST GAP TIME

CONCORDE [2] 7.765 0.000 % 6M
HYBRID GENETIC SEARCH [56, 55] 15.563 0.000 % 6H11M
GUROBI [22] 7.776 0.151 % 31M
LKH [24] 7.765 0.000 % 42M 15.647 0.536 % 12H57M

GNN HEATMAP + BEAM SEARCH [26] 7.87 1.39 % 40M
LEARNING 2-OPT HEURISTICS [9] 7.83 0.87 % 41M
MERGED GNN HEATMAP + MCTS [17] 7.764* 0.04 % 4M + 11M

ATTENTION MODEL + SAMPLING [29] 7.94 2.26 % 1H 16.23 4.28 % 2H
STEP-WISE ATTENTION MODEL [60] 8.01 3.20 % 29S 16.49 5.96 % 39S
LEARNING IMPROV. HEURISTICS [59] 7.87 1.42 % 2H 16.03 3.00 % 5H
ATTENTION MODEL + POMO [30] 7.77 0.14 % 1M 15.76 1.26 % 2M
NEUREWRITER [7] 16.10 3.45 % 1H
DYNAMIC ATTN. MODEL + 2-OPT [45] 16.27 4.54 % 6H
NEUR. LRG. NEIGHB. SEARCH [25] 15.99 2.74 % 1H
LEARN TO IMPROVE [35] 15.57* - 4000H

DPDP 10K 7.765 0.009 % 10M + 16M 15.830 1.713 % 10M + 50M

DPDP 100K 7.765 0.004 % 10M + 2H35M 15.694 0.843 % 10M + 5H48M

DPDP 1M 15.627 0.409 % 10M + 48H27M

6
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Table 2: Mean cost, gap and total time to solve 10000 realistic [51] VRP100 instances after training.

METHOD COST GAP TIME (1 GPU OR 16 CPUS) TIME (4 GPUS OR 32 CPUS)

HGS [56, 55] 18050 0.000 % 7H53M 3H56M
LKH [24] 18133 0.507 % 25H32M 12H46M

DPDP 10K 18414 2.018 % 10M + 50M 2M + 13M
DPDP 100K 18253 1.127 % 10M + 5H48M 2M + 1H27M
DPDP 1M 18168 0.659 % 10M + 48H27M 2M + 12H7M

4.2 Vehicle Routing Problem237

For the VRP, we train the model using 1 million instances of 100 nodes, generated according to the238

distribution described by [41] and solved using one run of LKH [24]. We train using a batch size of239

48 and a learning rate of 10−3 (selected as the result of manual trials to best use our GPUs), for (at240

most) 1500 epochs of 500 training steps (following [26]) from which we select the saved checkpoint241

with the lowest validation loss. We use the validation and test sets by [29].242

Table 1 shows the results compared to a recent implementation of Hybrid Genetic Search (HGS)5,243

a SOTA heuristic VRP solver [56, 55]. HGS is faster and improves around 0.5% over LKH, which244

is typically considered the baseline in related work. We present the results for LKH, as well as the245

strongest neural approaches and DPDP with beam sizes up to 1 million. Some results used 2000246

(different) instances [35] and cannot be directly compared6. DPDP outperforms all other neural247

baselines, except POMO [30], which delivers good results very quickly by exploiting symmetries in248

the problem. However, as it cannot (easily) improve further with additional runtime, we consider this249

contribution orthogonal to DPDP. DPDP is competitive to LKH (see also Section 4.4).250

More realistic instances We also train the model and run experiments with instances with 100251

nodes from a more realistic and challenging data distribution [51]. This distribution, commonly used252

in the routing community, has greater variability, in terms of node clustering and demand distributions.253

LKH failed to solve two of the test instances, which we found out is because LKH by default uses254

a fixed number of routes equal to a lower bound, given by
⌈∑n−1

i=0 di

CAPACITY

⌉
, which may be infeasible7.255

Therefore we solve these instances by rerunning LKH with an unlimited number of allowed routes256

(which in general gives worse results, see Section 4.4).257

DPDP was run on a machine with 4 GPUs, but we also report (estimated) runtimes for 1 GPU258

(1080Ti), and we compare against 16 or 32 CPUs for HGS and LKH. In Table 2 it can be seen that259

the difference with LKH is, as expected, slightly larger than for the simpler dataset, but still below260

1% for beam sizes of 100K-1M. We also observed a higher validation loss, so it may be possible to261

improve results using more training data. Nevertheless, finding solutions within 1% of the specialized262

SOTA HGS algorithm, and even closer to LKH, is impressive for these challenging instances, and we263

consider the runtime (for solving 10K instances) acceptable, especially when using multiple GPUs.264

4.3 TSP with Time Windows265

For the TSP with hard time window constraints, we use the data distribution by [6] and use their set266

of 100 test instances with 100 nodes. These were generated with small time windows, resulting in267

a small feasible search space, such that even with very small beam sizes, our DP implementation268

solves these instances optimally, eliminating the need for a policy. Therefore, we also consider a269

more difficult distribution similar to [10], which has larger time windows which are more difficult270

as the feasible search space is larger8 [15]. For details, see Appendix B. For both distributions, we271

generate training data and train the model exactly as we did for the VRP.272

5https://github.com/vidalt/HGS-CVRP
6The running time of 4000 hours (167 days) for 10K instances is estimated from 24min/instance [35].
7For example, three nodes with a demand of two cannot be assigned to two routes with a capacity of three.
8Up to a limit, as making the time windows infinite size reduces the problem to plain TSP.
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Table 3: Mean cost, gap and total time to solve TSPTW100 instances after training.

PROBLEM SMALL TIME WINDOWS [6] (100 INST.) LARGE TIME WINDOWS [10] (10K INST.)
METHOD COST GAP FAIL TIME COST GAP FAIL TIME

GVNS 30X [10] 5129.58 0.000 % 7S 2432.112 0.000 % 37M15S
GVNS 1X [10] 5129.58 0.000 % <1S 2457.974 1.063 % 1M4S
LKH 1X [24] 5130.32 0.014 % 1.00 % 5M48S 2431.404 -0.029 % 34H58M

BAB-DQN* [6] 5130.51 0.018 % 25H
ILDS-DQN* [6] 5130.45 0.017 % 25H

DPDP 10K 5129.58 0.000 % 6S + 1S 2431.143 -0.040 % 10M + 8M7S

DPDP 100K 5129.58 0.000 % 6S + 1S 2430.880 - 0.051 % 10M + 1H16M

Table 3 shows the results for both data distributions, which are reported in terms of the difference273

to General Variable Neighbourhood Search (GVNS) [10], the best open-source solver for TSPTW274

we could find9, using 30 runs. For the small time window setting, both GVNS and DPDP find275

optimal solutions for all 100 instances in just 7 seconds (in total, either on 16 CPUs or a single GPU).276

LKH fails to solve one instance, but finds close to optimal solutions, but around 50 times slower.277

BaB-DQN* and ILDS-DQN* [6], methods combining an existing solver with an RL trained neural278

policy, take around 15 minutes per instance (orders of magnitudes slower) to solve most instances to279

optimality. Due to complex set-up, we were unable to run BaB-DQN* and ILDS-DQN* ourselves for280

the setting with larger time windows. In this setting, we find DPDP outperforms both LKH (where281

DPDP is orders of magnitude faster) and GVNS, in both speed and solution quality. This illustrates282

that DPDP, due to its nature, is especially well suited to handle constrained problems.283

4.4 Ablations284

Scoring policy To evaluate the value of different components of DPDP’s GNN Heat + Potential285

scoring policy, we compare against other variants. GNN Heat is the version without the potential,286

whereas Cost Heat + Potential and Cost Heat are variants that use a ‘heuristic’ ĥij =
cij

maxk cik
287

instead of the GNN. Cost directly uses the current cost of the solution, and can be seen as ‘classic’288

restricted DP. Finally, BS GNN Heat + Potential uses beam search without dynamic programming,289

i.e. without removing dominated solutions. To evaluate only the scoring policy, each variant uses290

the fully connected graph (knn = n− 1). Figure 3a shows the value of DPDP’s potential function,291

although even without it results are still significantly better than ‘classic’ heuristic DP variants using292

cost-based scoring policies. Also, it is clear that using DP significantly improves over a standard beam293

search (by removing dominated solutions). Lastly, the figure illustrates how the time for generating294

the heatmap using the neural network, despite its significant value, only makes up a small portion of295

the total runtime.296

9https://github.com/sashakh/TSPTW
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Figure 3: DPDP ablations on 100 validation instances of VRP with 100 nodes.
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Beam size DPDP allows to trade off the performance vs. the runtime using the beam size B (and to297

some extent the graph sparsity, see Section 4.4). We illustrate this trade-off in Figure 3b, where we298

evaluate DPDP on 100 validation instances for VRP, with different beam sizes from 10K to 2.5M.299

We also report the trade-off curve for the LKH(U), which is the strongest baseline that can also300

solve different problems. We vary the runtime using 1, 2, 5 and 10 runs (returning the best solution).301

LKHU(nlimited) is the version which allows an unlimited number of routes (see Section 4.2). It is302

hard to compare GPU vs CPU, so we report (estimated) runtimes for different hardware, i.e. 1 or 4303

GPUs (with 3 CPUs per GPU) and 16 or 32 CPUs. We report the difference (i.e. the gap) with HGS,304

analog to how results are reported in Table 1. We emphasize that in most related work (e.g. [29]), the305

strongest baseline considered is one run of LKH, so we compare against a much stronger baseline.306

Also, our goal is not to outperform HGS (which is SOTA and specific to VRP) or LKH, but to show307

DPDP has reasonable performance, while being a flexible framework for other (routing) problems.308

Graph sparsity We test the two graph sparsification strategies described in Section 3.4 as another309

way to trade off performance and runtime of DPDP. In Figure 3c, we experiment with different310

heatmap thresholds from 10−5 to 0.9 and different values for KNN from 5 to 99 (fully connected).311

The heatmap threshold strategy clearly outperforms the KNN strategy as it yields the same results312

using sparser graphs (and lower runtimes). This illustrates that the heatmap threshold strategy is more313

informed than the KNN strategy, confirming the value of the neural network predictions.314

5 Discussion315

In this paper we introduced Deep Policy Dynamic Programming, which combines machine learning316

and dynamic programming for solving vehicle routing problems. The method yields close to optimal317

results for TSPs with 100 nodes and is competitive to the highly optimized LKH [24] solver for VRPs318

with 100 nodes. On the TSP with time windows, DPDP also outperforms LKH, being significanlty319

faster, as well as GVNS [10], the best open source solver we could find. Given that DPDP was not320

specifically designed for TSPTW, and still has possibilities for improvement, we consider this an321

impressive and promising achievement.322

The constructive nature of DPDP (combined with search) allows to efficiently address hard constraints323

such as time windows, which are typically considered challenging in neural combinatorial optimiza-324

tion [5, 29] and are also difficult for local search heuristics (as they need to maintain feasibility while325

adapting a solution). Given our results on TSP, VRP and TSPTW, and the flexibility of DP as a326

framework, we think DPDP has great potential for solving many more variants of routing problems,327

and possibly even other problems that can be formulated using DP (e.g. job shop scheduling [21]).328

We hope that our work brings machine learning research for combinatorial optimization closer to329

the operations research (especially vehicle routing) community, by combining machine learning330

with DP and evaluating the resulting new framework on different data distributions used by different331

communities [41, 51, 6, 10].332

Scope, limitations & future work Deep learning for combinatorial optimization is a recent re-333

search direction, which could significantly impact the way practical optimization problems get solved334

in the future. Currently, however, it is still hard to beat most SOTA problem specific solvers from the335

OR community. Despite our success for TSPTW, DPDP is not yet a practical alternative in general,336

but we do consider our results as highly encouraging for further research. We belief such research337

could yield significant further improvement by addressing key current limitations: (1) the scalability338

to larger instances, (2) the dependency on example solutions and (3) the heuristic nature of the scoring339

function. First, while 100 nodes is not far from the size of common benchmarks (100 - 1000 for VRP340

[51] and 20 - 200 for TSPTW [10]), scaling is a challenge, mainly due to the ‘fully-connected’ O(n2)341

graph neural network. Future work could reduce this complexity following e.g. [33]. The dependency342

on example solutions from an existing solver also becomes more prominent for larger instances,343

but could potentially be removed by ‘bootstrapping’ using DP itself as we, in some sense, have344

done for TSPTW (see Section 3.3). Future work could iterate this process to train the model ‘tabula345

rasa’ (without example solutions), where DP could be seen analogous to MCTS in AlphaZero [48].346

Lastly, the heat + potential score function is a well-motivated but heuristic function that was manually347

designed as a function of the predicted heatmap. While it worked well for the three problems we348

considered, it may need suitable adaption for other problems. Training this function end-to-end349

[11, 58], while keeping a low computational footprint, would be an interesting topic for future work.350
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