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ABSTRACT

With expansive state-action spaces, efficient multi-agent exploration remains a
longstanding challenge in reinforcement learning. Although pursuing novelty,
diversity, or uncertainty attracts increasing attention, redundant efforts brought
by exploration without proper guidance choices poses a practical issue for the
community. This paper introduces a systematic approach, termed LEMAE, choos-
ing to channel informative task-relevant guidance from a knowledgeable Large
Language Model (LLM) for Efficient Multi-Agent Exploration. Specifically,
we ground linguistic knowledge from LLM into symbolic key states, that are
critical for task fulfillment, in a discriminative manner at low LLM inference
costs. To unleash the power of key states, we design Subspace-based Hindsight
Intrinsic Reward (SHIR) to guide agents toward key states by increasing reward
density. Additionally, we build the Key State Memory Tree (KSMT) to track tran-
sitions between key states in a specific task for organized exploration. Benefiting
from diminishing redundant explorations, LEMAE outperforms existing SOTA
approaches on the challenging benchmarks (e.g., SMAC and MPE) by a large
margin, achieving a 10x acceleration in certain scenarios. Our code is available at
https://anonymous.4open.science/r/LEMAE.

1 INTRODUCTION

Exploration stands as a fundamental issue in reinforcement learning (RL) ( , ;
). Researchers have developed several exploratlon strategies directed by novelty, diversity, or

uncertainty ( , , ), mainly in single-agent
reinforcement learning. However these methods may induce task-irrelevant redundant exploration,
especially in complex environments ( , ). In the realm of Multi-Agent Reinforcement

Learning (MARL), the need to mitigate exploration redundancy becomes even more urgent due to the
challenges like exponential expansion of the state-action spaces. Widespread real-world applications,
including MOBA games ( . ), social science ( s ), and multi-vehicle
control ( , ), further underscore the growing need for efficient multi-agent exploration.

This work identifies task-relevant guidance as an important consideration in enhancing exploration
efficiency. lncorporatmg priors in exploration mechanism design, such as complex reward structures,
typically requires expert knowledge and substantial human efforts ( , ,
). Hopefully, recent advances have wrtnessed the remarkable reasoning and planmng capabilities
of Large Language Models ( , ), providing a plaus1ble choice
to facilitate efficient exploratron through LLM S effortless prior provision. However, it is non-trivial
to effectrvely comprise linguistic LLM priors into symbolically represented RL tasks ( ,
, ), and the investigation of practical ways to avoid nuisances caused by such

an expressron discrepancy is of critical importance.

In response to the above issue, we propose LEMAE, a novel framework to enable efficient multi-
agent exploration with LLM. The framework primarily consists of two components: (i) key states
localization with LLM and (ii) key state-guided exploration. The first component automatically
localizes key states essential for task completion, through LLM discrimination, thereby injecting
LLM priors into the RL process. Specifically, the discriminator function induced by LLM works to
discriminate key states from rollout trajectories, avoiding the overburden of LLM inference costs.
The second component harnesses the localized key states as meaningful guidance to achieve efficient
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Figure 1: (a) The map of the task Pass. Two agents are initially positioned in the left room, requiring
cooperation to explore the rooms, uncover the hidden switches, and move to the right room. (b)
The key states (x1 and x2) generated by LLM for the task Pass, where the superscripts A, B of x;
denote two agents Alice and Bob. (c) Visitation Map (log scale) of SOTA baseline method CMAE.
(d) Visitation Map (log scale) of our method LEMAE. Our method exhibits a significant reduction in
redundant exploration. Furthermore, an organic division of labor among agents emerges.

exploration. In implementation, we treat key states as explicit training signals, devising Subspace-
based Hindsight Intrinsic Reward (SHIR) to refine rewards for achieving these key states. To facilitate
organized exploration with memory, Key States Memory Tree (KSMT) is further constructed to track
key state transitions, constraining the state space in exploration and enhancing guidance in SHIR. As
illustrated in Fig. 1, our design empowers LEMAE with a significant performance advantage through
notably reducing redundant exploration.

Our main contributions are summarized as follows:

1. We build a bridge between LLM and RL to facilitate efficient multi-agent exploration by
developing a systematic approach dubbed LEMAE.

2. We devise a computationally efficient inference strategy channeling task-specific information
from LLM to distinguish key states critical for task fulfillment as subgoals for targeted
exploration.

3. We introduce a Key State Memory Tree to organize exploration according to historic key
state transitions and devise the Subspace-based Hindsight Intrinsic Reward, encouraging
agents’ guidance.

We conduct extensive experiments on typical multi-agent exploration benchmarks. LEMAE (i)
consistently outperforms the state-of-the-art (SOTA) baselines with 10x acceleration in certain
scenarios, (ii) achieves performance comparable to the baseline trained with human-designed dense
rewards in sparse reward scenarios, and (iii) exhibits potential to generalize to tasks previously
unseen by LLM or involving non-symbolic states. These observations validate the effectiveness of
our design in reducing redundant exploration and improving exploration efficiency, showing promise
for real-world deployment in scenarios requiring efficient exploration.

2 PRELIMINARY

The environments considered in this work are characterized as a decentralized partially observable
Markov decision process (Dec-POMDP) ( , ) with n agents, which can be defined
asatuple G = (S, A, I, P,r,Z,O,n,~), where s € S is the global state, A is the action space for
each agent, and v € [0, 1) is the discount factor. At time step ¢, each agenti € I = {1,...,n} has its
local observations o' € O drawn from the observation function Z(s,4) : S x I — O and chooses
an action @’ € A by its policy 7(a’|o’) : O — A([0, 1]!41), forming a joint actiona € A = A™.
T(s'|s,a): S x A x S — [0,1] is the environment’s state transition distribution. All agents share a
common reward function r(s,a) : S x A — R. The agents’ joint policy 7 := []!_, 7* induces a
joint action-value function: Q™ (s,a) = E[R|s, a], where R = Y~ , v'r, is the expected discounted
return. The goal of MARL is to find the optimal joint policy 7* such that Q™ (s,a) > Q™ (s, a),
V7 and (s,a) € S x A. Notably, we specifically focus on sparse reward tasks, i.e., 7, = 1 only when
St41 = Ssuccess> otherwise 7y = 0. We denote the symbol for the i-th key state by x; together with
its discriminator function ;.



3 RELATED WORKS

LLM in Decision Making. Large Language Models have shown impressive capabilities across
downstream tasks ( , ). Recent advances
indicate a growing trend of using LLM in decrsron makmg problems ( , ). A primary
challenge is grounding LLM’s linguistic knowledge into specific low-level control tasks typically
represented in symbolic form ( , , ), especially in RL. Creating
linguistic twin tasks ( s ) is 1ntu1t1ve but require substantial manual workloads. Some
works employ LLMs as high-level planners, e.g., codrng with APIs ( , ), usmg human-
annotated or LLM-summarized actions ( ;

). Despite significant progress they rely on dlfﬁcult to- obtam low- level
pohc1es or APIs, l1m1t1ng real-world applicability. Recently, LLMs have been integrated with RL
to enhance low-level decision making ( , ). LLMs act as environmental information
processors, reducing learning complexity ( ; ; ,

), but cannot directly facilitate efﬁ01ent exploration. Some works utilize LLMs as goal selectors
in goal-conditioned RL ( , ), teacher policy ( , ), or
task sampler ( , ) but requrre predefined task pools skills or subgoals Other methods
like LLM-based reward or pohcy design (

, , ) rely on large annotated datasets frequent LLM
inferences, or are restrlcted to srmple tasks with ample information. Fine-tuning (

s ) demands enormous data and resources. LLaMAC ( , ) employs
multiple LLMs to balance exploration and exploitation but emphasizes step-wise decision-making
via frequent LLM calls. ELLM ( , ) enhances exploration using LLLM but depends on
predefined symbolic observation captioner and frequent LLM inferences. Its semantic similarity-
based rewards may also struggle to generalize across scenarios. In contrast, LEMAE integrates
linguistic LLM priors into symbolic states with minimal task information and LLM inference costs,
achieved by localizing key states in rollout trajectories using LLM-generated discriminator functions.

Efficient Mult1-Agent Exploratlon Exploration efficiency has long been a focal point in
RL ( ; ) ;

, ). Typrcal exploranon methods focus on random explorat1on ( , ;

, ) or heuristic indicators, such as diversity or novelty, to facilitate exhaustrve exploratlon
particularly in s1ngle agent exploration (

, ). Despite the1r success, they may mduce notable redundant
exploration due toa lack of task-relevant guidance ( , ). The exponential expansion of the
state-action spaces renders exhaustive exploration impractical in multi-agent settings. Consequently,
efﬁc1ent multi-agent exploration (MAE) becomes increasingly imperative and necessary ( ,

, ). MAE is also challenging due to the complex conﬁguratlons e.g., the entangled
effect of multi-agent actions and intricate reward design ( s s s

). Given our emphasis on efficient exploration, we prioritize evaluat1on in multi- agent settings.

Some MAE methods encourage influential behaviors during agent interactions ( , ;
, ). Nevertheless, they may lead to unintended coalitions or require
additional pr1ors ( , ). Certain studies leverage subgoals to guide exploration (

, ). However, due to challenges in integrating task-related 1nformat10n into subgoals, they
either necessitate human expertise for subgoals des1gn ( , , ) or
struggle to identify useful subgoals ( , , ). A recent influential work,
WTOoE ( , ), focuses on when to explore by identifying discrepancies between the
actor policy and an environmental-change-detection policy, which does not employ intrinsic rewards
as guidance. Distinguished from the above, this work underscores the significance of task-relevant
guidance in exploration and utilizes the key state priors extracted from LLM to enable efficient
multi-agent exploration.

4 METHOD

This section first induces the concept of key states as task-relevant guidance. Centering around the
key states, we construct two components: (i) key states localization with LLM (Sec. 4.2) and (ii) key
state-guided exploration (Sec. 4.3). The former directs LLM to generate discriminator functions for
localizing key states in rollout trajectories, while the latter guides exploration with the introduced
Subspace-based Hindsight Intrinsic Reward and Key States Memory Tree. Please refer to Fig. 2 and
Algorithm 1 for details. Also, we provide a demonstration to clarify LEMAE’s execution pipeline.
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(a) Key States Localization with LLM (b) Key States-Guided Exploration

Figure 2: Overview of the training process. (a) Key States Localization with LLM: We devise a set
of prompts to guide LLM in localizing key states based on task-specific information. Refinements
of the response are achieved through iterative self-checks by LLM. Subsequently, discriminator
functions are derived from the final response to discriminate key states within trajectories. (b) Key
States-Guided Exploration: Using the achieved key states chain within the processed trajectory, we
look up KSMT to get the most probable next key states. By sampling from them as the subgoal for
the concluding sub-trajectory, we integrate intrinsic rewards into the overall trajectory using SHIR.

4.1 DEVILIS IN THE KEY STATES

Previous methods suffer from redundant exploration efforts in pursuing task-agnostic novelty (

, ), potentially reducing training efficiency. This motivates us to integrate task-relevant
information as a better guidance choice for efficient exploration. Nevertheless, practical proposals
are limited in the field. This work identifies the Key States as the novel task-relevant prior, which
corresponds to intermediate states with explicit semantics and expressions pertaining to the task.
Meanwhile, Proposition 4.1 explicitly reflects the efficacy of incorporating them.

Proposition 4.1. Consider the one-dimensional asymmetric random walk problem, where an agent
starts at © = 0 and aims to reachx = N € NT N > 1. The initial policy is asymmetric and random
with probabilities p € (0.5,1) and 1 — p for right and left movements, respectively. Without prior
knowledge, the expected first hitting time is E(To—n) = 21%1' After introducing the task-relevant
information that the agent must first reach key states k = 1, ..., N — 1 before reaching x = N, we can

decrease the expected first hitting time by E(To,N) — ]E(Té’:f?\;") =(N-1)% (2;—_1 — % +1)>0.

The proof is deferred to Appendix C. The exploration policy substantially benefits from the involve-
ment of key states, e.g., E(To—,n) —E(T3",%) — oo with p — 0.5. Such a concept is also commonly
seen in practical scenarios, such as in-game checkpoints ( , ) and landmarks in
navigation ( , ).

4.2 KEY STATES LOCALIZATION WITH LLM

To reduce manual workload, we employ LLM to localize key states. Although generating the
aforementioned symbolic key states can be straightforward, LLM’s weakness in comprehending
symbolic states or environment details necessitates additional information in certain tasks and can
lead to errors and hallucinations that are difficult to detect. Here, we stress the importance of LLM’s
discriminative ability to localize key states in rollout trajectories to better leverage LLM’s general
knowledge. The rationale is that discrimination demands only a high-level task understanding and is
more reliable and universal than naive generation, as discussed in detail in Appendix B.1.

To discriminate key states, we prompt LLM to generate m (determined by LLM) discriminator
functions {7} ,, as depicted in Fig. 2. Each discriminator function F; (the ‘IsKeystatei(s)’ block
in Fig. 2) takes in the state s; at timestep ¢ and outputs a boolean value to tell whether s; is the
corresponding key state ;. Such an approach systematically annotates each state in trajectories as a
key state instance (s; — s;? in Fig. 2) or not. Notably, LEMAE injects task-relevant information into
the symbolic states without predefined components such as observation captioners ( , ) or
environment codes ( , ), which require manual fine-tuning, may be unavailable in many
scenarios, or could introduce extra information. In addition, the discriminator functions’ reusability
avoids frequent calls, and our method empirically requires fewer than three LLM inferences for a



specific task. These advantages highlight the potential of LEMAE to expand the scope of application
scenarios with fewer constraints and reduced costs.

We design prompts to alleviate the burden of labor-intensive prompt engineering across tasks. As
illustrated in Fig. 2, each task’s prompt is structured by a standardized prompt template and task
information. The prompt template, consistent across tasks, primarily contains several role instructions
to guide LLM in role understandings (including promoting labor division among agents in MARL)
and output constraints, e.g., in JSON format. For a new task with symbolic state space, the prompt
template requires only essential details, i.e., the task description and the state form, which can be
easily extracted from the task document without additional processing, making it less demanding
than previous methods ( , ; , ). LLM then generates key states definitions
and discriminator functions, which can be easily extracted from the JSON response via key-value
matching. An extension to vision-based tasks is described in Appendix F.2.

Considering that LLM sometimes generates inaccurate responses and non-executable codes, we
develop a Self-Check mechanism to enable LLM’s autonomous evaluation and response improvement,
which is inspired by recent approaches ( , ). The mechanism
comprises two checking operations: LLM rethmkmg and code verification. The former prompts
LLM with a set of queries for self-assessment, ensuring compliance with specified criteria. The latter
verifies the executability of discriminator functions with actual state inputs, providing feedback until
all functions are executable. Table 1 further examines its effectiveness.

We use GPT-4-turbo from OpenAl API and prompt and response details are attached in Appendix D.

4.3 KEY STATE-GUIDED EXPLORATION
4.3.1 SUBSPACE-BASED HINDSIGHT INTRINSIC REWARD

With the annotated key states, trajectories can naturally be segmented into sub-trajectories. Drawing
inspiration from ( ), we integrate hindsight intrinsic rewards by conceptualiz-
ing the annotated key states as sub-trajectories’ subgoals, which is further discussed in Appendix E.3.
Such integration guides the policy toward achieving these key states by increasing reward density,
thus reducing manual reward design burdens. Moreover, the state vector index from the discriminator

function constitutes the reward-related subspace of the state ( s ). Here, we write the
Subspace-based Hindsight Intrinsic Reward (SHIR) function as:
7 () = 1P (st) = Prn(m) || = [P (8t41) — Prn(Kim) |, (1

where |- || denotes a distance metric, e.g., Manhattan distance or cosine similarity; ®,,(s) = (S¢)eew,,
restricts the state space to elements e € v,,, s is the e-th element of the full-state s, and v,,, C N
refers to the subset of entire state space from the discriminator function F,.

Given that rewards generally rely on a limited subset of the entire state space ( ;

, ), adopting subspace-based rewards helps avoid the potential redundancy and bias
associated with the design of intrinsic rewards in the entire state space. LEMAE is also applicable to
scenarios where rewards depend on the global state space, as it imposes no strict constraints. Hence,
the final reward function is further derived as:

r(t) = a-rp(t)+ 8- (), )

where i denotes the extrinsic reward with «, 8 € R™ non-negative scaling factors.

4.3.2 KEY STATES MEMORY TREE

To organize exploration with memory, we introduce the concept of Key States Memory Tree (KSMT).
It tracks transitions between key states and further serves exploration and planning. Compared
with the naive e-greedy method, gradually revealing the KSMT helps avoid redundant exploration
throughout the state space, revealing its potential for real-world applications. Notably, LEMAE is
compatible with other memory structures, such as Directed Acyclic Graphs.

Construct KSMT: Initialized at the root node, KSMT dynamically expands by iteratively incorporat-
ing key state chains obtained from annotated trajectories, as outlined in Algorithm 2. These steps
repeat until either reaching the success state or fully depicting the transitions between key states.
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Figure 3: Evaluating LEMAE against baseline methods on four MPE maps with sparse rewards,
using test win rate as the evaluation metric. The acceleration rate refers to how much faster LEMAE
finds the success state compared to CMAE.

Explore with KSMT: To discover new KSMT branches, we adopt an exploration strategy that
balances high-randomness policy 7ry" for exploring under-explored nodes with low-randomness
policy 7ry' to minimize interference Wlth policy learning, as shown in Algorithm 2. Upon reaching a
leaf node, agents execute 7" to deepen KSMT. While reaching a non-leaf node &;, the agents take

7" with probability p; to expand the breadth or 7' with probablhty 1 — p; for progression towards
the next key state. The probability p; is calculated as p; = Fr +1 , with d; the degree of the node ¢; as
an indicator of the degree of under-exploration. The exploratlon phase completes upon the discovery
of the success state. We also prune branches that do not lead to success to circumvent task-irrelevant
key states. In this way, KSMT enables exploration in a more meaningful state subspace.

Plan with KSMT: Since KSMT acts as a dynamic model within the key state space, we plan the
subgoal for the final sub-trajectory based on it. As shown in Fig. 2b, given the achieved key states
chain, we identify the corresponding branch (k2 — x; — children) in KSMT through a lookup
operation. Since they have been validated by memory, the children represent the most likely next key
states, from which we randomly sample the final subgoal. This process mainly handles cases where
trajectories fail to reach a key state as the final subgoal. It enhances SHIR and improves the efficacy
of exploring KSMT by encouraging agents to access existing key states.

5 EXPERIMENTS

We conduct experiments on commonly used multi-agent exploration benchmarks: (1) the Multiple-
Particle Environment ( s R ) and (2) the StarCraft Multi-Agent
Challenge ( s ). Followmg previous studies ( s ; ;

, ), we focus primarily on tasks with symbolic state spaces and use the sparse reward
version for all tasks without specific instructions.

Baselines. We compare LEMAE with representative baselines: IPPO is a MARL algorithm which
extends PPO ( , ); QMIX ( s ) is a widely adopted MARL
baseline; EITI and EDTI ( , ) employ the impact of interaction in coordinated agents’
behaviors; MAVEN ( , ) combine value-based and policy-based approaches through
hierarchical control; CMAE ( , ) learns cooperative exploration by selecting shared goals
from multiple projected state space; RODE ( , ) decomposes joint action spaces into
role-based ones to enhance exploration; MASER ( , ) generates subgoals automatically
for multiple agents from the experience replay buffer; LAIES ( , ) addresses the lazy
agents problem by mathematical definition and causal analysis. ELLM ( , ) employs
LLM priors to guide vision-based exploration, using state captioners and semantic similarity-based
rewards. LEMAE is implemented on IPPO in MPE and QMIX in SMAC, consistent with previous
works ( s ; s ; s ) to ensure fair comparisons.

We run each algorithm on five random seeds and report the mean performance with standard deviation.
Further details can be referenced in Appendix E.

5.1 MULTIPLE-PARTICLE ENVIRONMENT (MPE)

In MPE, we evaluate LEMAE on Pass, Secret-Room, Push-Box, and Large-Pass, which are commonly
used multi-agent exploration tasks in previous works ( s ; s ).
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Figure 4: (a) Key states discrimination functions generated on task Pass. (b) The map of Secret-Room
with key states: k1 represents occupying the left switch to open all doors, while ks, k3, and kg
represent exploring right rooms 1, 2, and 3, respectively. The directional arrows symbolize the
transitional relationships within KSMT. (c) The key states number curve in Secret-Room shows that
LEMAE can identify all key states and proficiently prune task-irrelevant ones.

LLM can effectively discriminate key states. To start with, we examine the efficacy of LLM in
discriminating key states. On the Pass task, as shown in Fig. 1a, a room is divided by a wall, each
half containing an invisible switch. Passage through the door is allowed only when an agent occupies
a switch. Initially, in the left half-room, agents must cooperate to move to the right half-room. In
Fig. 4a, LLM exhibits a precise understanding of the task and generates meaningful discriminator
functions, demonstrating the feasibility of our approach based on the current LLM.

LEMAE achieves superior performance. We investigate how LEMAE enhances exploration by
comparing it with baselines, confirming the value of incorporating LLM priors. The training curves
are depicted in Fig. 3. The failure of commonly used baselines highlights the necessity and urgency
for efficient exploration, while the superior performance of LEMAE underscores the effectiveness
of augmenting RL with task-specific guidance from LLM. Specifically, the failure of EITI, EDTI,
and LAIES may be attributed to the complexity of learning dynamics or the scarcity of external
state changes in the tasks. While CMAE learns effective strategies for simple tasks, its redundant
exploration hampers efficiency, rendering it inadequate for tasks with expansive exploration spaces,
such as Large-Pass. Although it benefits from LLM priors, ELLM performs worse than LEMAE
due to the weak guidance provided by semantic similarity-based rewards, not to mention its reliance
on frequent LLM inference and a predefined state captioner. Furthermore, we compare LEMAE
with traditional SOTA baseline CMAE using the metric of the number of exploration steps taken to
find the success state. The results indicate a significant exploration acceleration rate, up to 10x,
underscoring LEMAE’s efficiency. The superior performance of our method can be attributed to the
mitigating of redundant exploration by incorporating task-relevant information.

LEMAE benefits from LLM priors through discrimination. We evaluate HER (

, ), which also employs hindsight intrinsic rewards but selects goals randomly from memory.
HER’s poor performance emphasizes the critical role of incorporating LLM priors for localizing
key states in achieving efficient exploration. To support our claim about the superiority of LLM
discrimination over generation, we evaluate Eureka-si, a single-iteration Eureka ( , )
variant, which uses LLM to generate reward functions. While Eureka-si performs comparably to
LEMAE in simple tasks, it struggles in complex tasks with partial observability, indicating that
LLM-based discrimination may offer a more general and effective integration of LLM. Notably, these
two methods are not specifically designed for efficient exploration. To ensure fairness, we retain the
prompt information consistent across all relevant LLM-based methods. Please refer to Appendix E.2,
E.3 for details.

LEMAE reduces redundant exploration. We further compare the exploration behavior of LEMAE
with that of CMAE on the Pass task. The visitation maps, displayed in log scale, are depicted in
Fig. 1. The illustration reveals that LEMAE markedly avoids redundant exploration: agents trained
with CMAE tend to excessively explore the left room, while the agents’ visitation area in LEMAE
is notably concentrated around the success path. Furthermore, an organic division of labor among
agents emerges, affirming the efficacy of encouraging labor division in prompt design.

LEMAE circumvents task-irrelevant key states. Due to the incomplete information, LLM may
discriminate task-irrelevant key states. For instance, in the Secret-Room task, three rooms are present
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Figure 5: Evaluating LEMAE on six SMAC maps with sparse rewards, using test win rate as the
evaluation metric. Notably, QMIX-DR is QMIX with dense rewards in the original SMAC, serving
as an upper bound, with its intrinsic rewards designed by a human expert.

on the right, but LLM is not informed about the real target room for fairness. In Fig. 4b, LLM
discriminates two task-irrelevant key states, denoted as 2 and x4, which represent an exploration
of the two irrelevant rooms, respectively. Fig. 4c shows that the pruning mechanism after finding
the success state in LEMAE makes it effective in circumventing task-irrelevant key states. A more
detailed robustness analysis is provided in Sec. 5.5.

5.2 STARCRAFT MULTI-AGENT CHALLENGE (SMAC)

SMAC is a widely-used challenging benchmark in MARL. In contrast to dense or semi-sparse reward
versions used before, we employ fully sparse-reward tasks to emphasize exploration, rewarding
agents only upon complete enemy elimination. In addition, to validate LEMAE across diverse
scenarios, we conduct experiments on six maps with varied difficulty and agent numbers.

In Fig. 5, LEMAE demonstrates superior performance over all baselines. Although baselines QMIX,
MAVEN, CDS, and MASER excel in dense or semi-sparse reward settings, they struggle in fully
sparse reward scenarios. CMAE shows partial efficacy in simpler tasks but fails in harder scenarios
due to the lack of task-related information in curiosity-driven goal selection. LAIES is the only non-
LLM baseline comparable to LEMAE. However, it requires handcrafted external state priors and still
underperforms compared to LEMAE, especially on more challenging tasks. ELLM, benefiting from
LLM priors, performs well on simpler tasks, but its effectiveness diminishes on harder ones, likely
due to the instability and less reliable guidance of semantic similarity-based rewards. Notably, we add
QMIX-DR, which augments QMIX with dense rewards in the original SMAC. Surprisingly, LEMAE
demonstrates the potential to match or even surpass QMIX-DR, particularly in hard maps, shedding
light on minimizing the manual workload in complex reward design in real-world scenarios. Given
the complexity of the SMAC benchmark, the consistent superiority of LEMAE confirms its potential
applicability in more complex real-world scenarios. We further evaluate LEMAE on SMACV2 (
s ), an enhanced version with more stochasticity, as detailed in Appendix F.1.

5.3 COMPATIBLILITY WITH VARIOUS ALGORITHMS

LEMAE incorporates task-relevant guidance in the form of intrinsic rewards and is agnostic to RL
algorithms. Sec. 5.1 and 5.2 have verified the compatibility through implementing on two distinct
MARL algorithms: IPPO in MPE and QMIX in SMAC. To further substantiate this claim, we
build our method on two widely-used MARL algorithms, namely QPLEX ( , )
and VMIX ( , ), adopting a value-based and actor-critic methodology respectively.
As illustrated in Fig. 6a, algorithms combined with LEMAE consistently improve performance,
underscoring the potential of LEMAE to integrate with alternative algorithms across diverse fields
in the future. Additionally, LEMAE is a versatile approach for efficient exploration, not limited to
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Figure 6: (a) Evaluations on baselines of well-known MARL algorithms, i.e., QPLEX and VMIX.
Notably, both QPLEX and VMIX exhibit complete failure unless integrated with our approach.
(b) Ablation studies are conducted on two exemplary tasks from MPE and SMAC to assess the
significance of KSMT and SHIR within LEMAE.
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LLMs. We compare the performance of two LLMs (GPT- :
4-turbo and GPT-3.5-turbo), recording the Acceptance
Rate (r,..) and Execution Rate (r...) in ten runs of the
generated discriminator functions. w/o denotes the ab-
sence of our Self-Check mechanism.
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MARL. To validate this assertion, we conduct further evaluations of LEMAE in a single-agent variant
of MPE, as demonstrated in Appendix F.4.

5.4 ABLATION STUDIES

Role of SHIR and KSMT. We conduct an ablation study to assess the significance of KSMT and
SHIR within LEMAE. We select two exemplary tasks from MPE and SMAC and report results
in Fig. 6b. In SMAC, Base refers to QMIX, while in MPE, it denotes IPPO. Besides, SHIR
represents subspace-based hindsight intrinsic reward, KSMTE signifies exploration with KSMT,
KSMTP denotes planning with KSMT, and LEMAE encompasses Base+SHIR+KSMTE+KSMTP.
As illustrated, the absence of SHIR or KSMT significantly deteriorates performance, revealing both
components’ pivotal roles in achieving effective key state-guided exploration.

Role of Self-Check mechanism and LLMs. We conduct a comparative analysis between GPT-4-
turbo and GPT-3.5-turbo regarding generating discriminator functions. Meanwhile, we investigate the
performance of GPT-4-turbo without the Self-Check mechanism (GPT-4-turbo w/0). The Acceptance
Rate (r4..) denotes the proportion of seeds achieving over 80% of the best performance after RL
training, while the Execution Rate (r.,.) indicates the proportion of seeds for which all discriminator
functions are executable. As depicted in Table 1, the results demonstrate that a powerful LLM
with our Self-Check mechanism effectively ensures the high quality of key states, as evidenced by
the code’s executability and the final performance. The scalability of LEMAE to LLM and our
Self-Check mechanism promise that LEMAE can leverage more powerful LLMs in the future and be
applied to more challenging real-world tasks safely and efficiently.

5.5 SENSITIVITY & ROBUSTNESS ANALYSIS

Sensitivity to Hyperparameters. We conduct experiments on the pivotal hyperparameters in
LEMAE, i.e., reward scaling rates « and 3. The x-axis represents the relative values with respect



to the default (o« = 10, 8 = 1), encompassing evaluations for « € {1,5,10,50,100} and 8 €
{0.1,0.5,1,5,10}. Fig. 7 illustrates that LEMAE is robust to these hyperparameters across a
considerable range. Notably, excessive extrinsic reward scaling rate « or insufficient intrinsic reward
scaling rate 5 can cause performance degradation due to the abrupt alteration of the reward or the
inadequate motivational impact. Additionally, we conduct an ablation study on mixed-randomness
exploration in Appendix F.3.

Robustness to Perturbations in Key States. We conduct experiments to evaluate the robust-
ness of LEMAE to perturbations in key states. Specifically, Reduction simulates the absence
of key states by randomly clearing a certain percentage of key states. Distraction simulates
the misidentification of common states as key states by randomly adding a certain portion of
distracting states (encouraging a ran-

dom state dimension to 0). The Table 2: Robustness analysis of LEMAE to perturbations in
observed performance decrease with ~key states, whether randomly deleting key states (Reduction)
increasing perturbations in Table 2 or adding distracting states (Distraction).

underscores the significance of key

states” quality. LEMAE exhibits no- ‘ Reduction | Distraction
table robustness to perturbations, en- Tasks | Default [ 25% 50% | 50% 100%
suring its reliability across diverse 1c3s5z | 0.98+002 | 0.97+001 0.97+0.02 | 0.92+004 0.89+005
application scenarios, particularly in 3s_vs 5z | 0.83+0.07 | 0.80+018 0.57+028 | 0.80+011 0.66+0.08
MMM2 | 0.89+0.08 | 0.89+0.03 0.79+£009 | 0.86+004 0.79+008

light of the limited capabilities of cur-
rent LLMs.

5.6 SCALABILITY & GENERALIZATION ANALYSIS

To rule out the possibility that LEMAE’s success

relies on LLM’s familiarity with the chosen tasks, Bob T EmAROuE) T Re T cuas
we’ve handcrafted a brand new task, termed River, .o O. River
which LLM has never encountered before. The task O N
is illustrated in Fig. 8a, where the objective is for

Bob to help Alice, who is afraid of water, cross two

rivers to reach the bottom-right corner. As shown

in Fig. 8b, LEMAE outperforms the baselines, and Mountain

Test Win Rate

2

this confirms LLM’s generalization capabilities to e 15 20 25
empower LEMAE’s effectiveness in promoting effi- @ T(g;")

cient exploration in diverse new tasks. Please refer

to Appendix E.4.3 for details on the task. Figure 8: (a) A brand new task, River, which

Additionally, we extend LEMAE to a vision-based LLM has never encountered before: (b) The
task, as described in Appendix F.2, demonstrating ~ramning curves of LEMAE anq baselines using
the scalability potential of LEMAE. the evaluation metric of test win rate.

6 CONCLUSION

Summary of This Work: We present LEMAE, a novel framework that benefits multi-agent explo-
ration with task-specific guidance from LLM. LEMAE executes the key states localization with LLM
and enables the key state-guided exploration to improve sample efficiency. In this way, we can (i)
build up connections between LLM and RL to ground linguistic knowledge into decision-making, (ii)
reduce the manual workload in accessing knowledge and intensive inference calls from LLM, and
(iii) significantly boost exploration efficiency through guided and organized exploration. Extensive
experiments further examine the effectiveness of LEMAE in typical benchmarks.

Limitations & Future Investigations: In developing LEMAE, we made efforts to compensate for
the pitfalls of concurrent LLMs, e.g., careful preparation for prompt engineering and task-related
prior provision to avoid the nuisances in LLM usages. All of these can be circumvented with the
progress of LLM’s capability enhancement. This work paves the way for LLM-empowered RL to
achieve the potential in complicated decision-making scenarios.
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A ALGORITHM

This section includes the pseudo algorithms. Algorithm 1 presents LEMAE’s main algorithm.
LEMAE consists of four phases: generating discriminator functions with LLM, exploring with
KSMT, calculating SHIR, and performing RL training. For on-policy RL, the buffer D corresponds
to a rollout buffer, while for off-policy RL, it is initialized as a replay buffer ( ,

). Algorithm 2 illustrates the process of exploring with KSMT. As our approach is agnostic to
reinforcement learning algorithms, we leave out the details of standard RL training in the main paper.

Algorithm 1: LEMAE
Input: Large language model M, prompt P, rethinking prompt P"¢, non-negative scaling
factors «, 3, randomness epsilon ¢;, €}, (¢, < €p,), training frequency N, max episodes
N™az key states numbers K.
Qutput: Policy network 7y.
Randomly initialize the policy network parameter 6.
Initialize key states memory tree 7 < [root], replay buffer D, key states chain replay buffer DFs
Initial discriminator functions {F;}< | « M(P);
// Self-Check Mechanism
LLM rethinking {F/¢}X | « M(P, {F;}C  Pre);
while there are non-executable discriminator functions in {.7:7 S )
‘ {j:ire}iczl A M(P7 {‘/—:.{e}lev BTTO’I")
end
Final discriminator functions {F;}X ;
for episode = 1 to N do
// Explore with Key States Memory Tree (Algorithm 2)
k_chain, T, T <+ KSMT-Exp (mg, T, {Fi} < |, e, en);
D + DU {7}, D** « D** U {k_chain};
if episode mod N = 0 then
Sample a batch B = {Tz}ll]jl from D and the corresponding batch of key states chains
BFs = {mchaini}iill from DFs;
for 7 = {(s¢,at, si41,7¢) }i®, k_chain € B, B* do
tstart — 1;
for {t*"¢ k,,} € Kk_chain do
for t = t5tert 1o t*nd do
// Subspace-based Hindsight Intrinsic Reward (equation 1)
Update 7 with 7, = a- 7y + B 7™ (8¢, Sp41); 50078 < tend;

end
end
// Plan with Key States Memory Tree
if branch corresponding to x_chain in T then

‘ Extract all children nodes C = {¢;} chll and randomly sample a node &; ~ C;
end
else
\ Randomly sample a node &; from all nodes (not in x_chain) in T
end
Kplan corresponds to the sampled node &;;
for t = 5197 1o ™% do
‘ Update 7 with 7, = o - 74 + 8- 777" (8¢, 8¢.41);
end
Update B with 7;
// RL Training (Algorithm Agnostic)
Use an MARL algorithm to train 6 with B;

end
end

end
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Algorithm 2: Explore with Key States Memory Tree (KSMT-Exp)

Input: Policy network 7y, key states memory tree 7, discriminator functions {]—"i}f:l,
randomness epsilon €, €5, (€; < €p).

Output: x_chain, key states memory tree T, trajectory 7.

Initialize k_chain < [],7 + {}

for ¢t = 1t0 ¢, do

// key states localization in rollout trajectories

Discriminate s; with {F;}< ;

if (s; is a key state k., ) and (K, not in k_chain) then

k_chain.append({t, Km });

if branch corresponding to k_chain not in T then

// update KSMT

add the branch into T

end
else if x,, correponds to a non-leaf node £ then
// mixed-randomness exploration strategy
d < the degree of the node &;
P= 77
€p,  with probability p )
= {q with probability 1 — p’

end
else
| e=an
end

end

With probability e select a random action a;
Otherwise select a; ~ my(s¢);

Obtain a tuple (s¢, at, si+1,7¢) by executing a,;
T TU{(5¢, a4, S¢41,7¢) }

end

B FURTHER DISCUSSIONS

B.1 THE INSIGHTS BEHIND KEY STATES DISCRIMINATION

In our considered scenarios, we claim that discrimination is generally easier and more universal
than key state generation by LLM, particularly in the context of high-dimensional states and partial
observability. The reasons are as follows:

1. Discrimination focuses on high-level task understanding and identifying key state charac-
teristics, while generation requires detailed, low-level comprehension, assigning values to
each element. This makes generation more challenging and error-prone, particularly in
high-dimensional settings. Discrimination equivalently simplifies the output space to key
state labels, thus alleviating issues like hallucinations.

2. In implementations, errors in discriminator functions are easier to examine and correct
through testing with real states. In contrast, errors in generated key states are harder to detect
and are typically inferred from training performance.

3. In cases of partial observability, generating key states directly is unreliable. For example, in
the Pass task, the positions of hidden switches are unknown and must be inferred from the
door’s status. LLM cannot generate key states accurately without knowledge of the specific
agents’ positions required to activate a switch.

B.2 LIMITATIONS

We build a bridge between LLM and RL to facilitate efficient exploration by leveraging task-related
guidance provided by LLM. However, persistent constraints inherent to LLMs, such as their limited
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capacity to comprehend task-specific information and the inevitable hallucination, become bottlenecks
in our approach, which induces the following limitations:

1. We mitigate heavy prompt engineering through the use of a standardized prompt template but
the necessity persists for manually providing task information for LLM. Thus, we assume the
availability of semantic meanings for symbolic states. This assumption is feasible, as these
manually designed states have inherent meanings documented in task spemﬁcatlons (

; , ), and is no stronger than prior works requiring a state
captloner ( , ) or environment code ( R ), which also involve manual
fine-tuning or access to additional state information.

2. Constrained by the limitations of LLM’s capabilities and the inherent issue of hallucination,
it may face challenges in directly providing effective key state priors for more complex tasks.
Besides, due to our use of LLMs, this work primarily focuses on tasks with symbolic states.
Future research could extend its application to more complicated tasks, e.g., image-based
tasks, by employing advanced multi-modal LLMs. We provide an initial attempt to extend
LEMAE beyond symbolic tasks in Appendix F.2.

Since the efficiency of the proposed LEMAE is essentially derived from versatile LLMs, we believe
that the surge of foundation model exploration will flourish LLM-empowered RL.

B.3 FUTURE WORKS

The success of the proposed LEMAE highlights the necessity and efficacy of empowering RL with
LLM. To enhance performance and extend applicability, we will explore two avenues for future
research aimed at addressing the identified limitations. These avenues are outlined as follows:

1. Streamlining the task information provision through multi-modal self-collection: Multi-
modal LLMs are garnering increasing attention for their ability to comprehend situations
through various modalities. Incorporating them with self-exploration and memory mecha-
nisms shows promise in automating the collection and understanding of task information,
thereby streamlining the implementation and enhancing the adaptability of LEMAE. We
provide an initial attempt to extend LEMAE beyond symbolic tasks in Appendix F.2.

2. Unleashing the power of better LLM with an iterative feedback mechanism: Undoubtedly,
given the rapid pace of LLM development, the emergence of more powerful LLMs is
imminent. On one hand, we intend to harness the capabilities of these advanced LLMs.
On the other hand, to fully unleash the potential of LLMs, we plan to devise an iterative
feedback mechanism to feedback LLM in LEMAE during RL training to mitigate issues
like hallucinations and errors in task understanding.

B.4 BROADER IMPACTS

Large Language Models have demonstrated considerable potential in showcasing impressive ca-
pabilities across various downstream tasks. However, research on empowering RL with LLMs is
still nascent. As a pioneering endeavor to empower RL with LLM, we propose a general approach
facilitating efficient exploration in RL with task-specific guidance from LLM.

1. For the research community, the publication of this work will inspire further exploration
into encouraging the integration of LLMs with RL to address the inherent challenges in RL,
such as efficient exploration, limited sample efficiency, and unsatisfactory generalization.
Additionally, our design promotes the application of discrimination and coding to ground
linguistic knowledge from LLMs into symbolic tasks.

2. LEMAE shows promise for real-world deployment in scenarios requiring efficient explo-
ration, such as autonomous vehicle control and robot manipulation. Moreover, as LLM is
growing by leaps and bounds, it is foreseeable that LEMAE can be applied to more chal-
lenging real-world tasks by taking advantage of more powerful LLM. Notably, to mitigate
potential risks, it is imperative to conduct LLM generation and RL training under human
supervision, thereby ensuring undesirable outcomes are averted.
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C PROOF OF PROPOSITION 4.1

Proof. Random walk is a fundamental stochastic process, formed by successive summation of
independent, identically distributed random variables ( s ). This work considers
the one-dimensional asymmetric random walk problem, where an agent starts at x = 0 and aims to
reachz = N € NT, N > 1. The expected first hitting time considered as the metric of performance,
implying the average computational time complexity ( , ). Below is the proof of
Proposition 4.1.

Firstly, we can prove the expected first hitting time within the default setting through the application
of martingale theory. According to the problem setting, we can define the movement at each time
step as: My = 0, My, Ms... are i.i.d. random variables with distribution P(M; = 1) = p, P(M; =
—1)=1—p,p € (0.5,1). Then the position of agent after n steps can be represented as:

Sn =Y M;, S, =0 3)
1=1

However, because of the asymmetry of random variables M;, {S,,n > 0} does not pertain to the
martingale w.r.t. {M,,,n > 1}. It’s observed that E(M;) = 2p — 1,4 > 1. Then, we can define:

n

Yo=Y (M;—(2p—1)),Y=0 @)
i=1
It’s easy to prove that
E\Yn|:iE\Mi|—n(2p—l):2n—2np<oo 5)
i=1
]E(Yn+1|MO, My, Mn) =Y, + E(MH-H) - (2p - 1) =Y, ©6)

So, according to the definition, {Y;,,» > 0} is a martingale w.r.t. {M,,n > 1}

Let To.ny = min{n : Sy =0,S, = N} =min{n: Yy =0,Y, = N —n=* (2p — 1)}. It’s clear
that Ty, v is a stopping time w.r.t. {M,,n > 1}.

It’s easy to prove that
E(|Yat1 — Yaol||Mo, My, ..M,) =E(|Mp41|) —(2p—1)=2—-2p < 2 )

We can assume that E(Tp_, y) < co. Then, according to the Optional Stopping Theorem ( ,
), we can get

E(YT()*)N) =N - E(TOHN) * (2]7 — ].) = E(YE)) =0 ®)
Then N
E(To-n) = -1 ©)

The assumption E(7y_, 5) < oo is thereby validated. Consequently, the expected first hitting time

within the default setting is E(Ty_n) = Tj\iv a conclusion also articulated in Theorem 4.8.9 of
(2019).

We can introduce the task-relevant information that the agent must first reach key states: k =

1,..., N — 1 before progressing to x = . It is presupposed that every time the agent achieves at

x = K, the policy where = < k is updated to a deterministic rightward movement, i.e., P(M, =
1) = 1,z < k, thereby emulating the update process in Reinforcement Learning.

The expected first hitting time from z = 0 to # = 1is E(To1) = 5,7 After reaching = = 1, the
expected first hitting time from z = 1 to z = 2 can be calculated as:

. 0 2
E(TS) =px Y (2n+1)(1-p) = 5! (10)
n=0
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Similarly, we can easily prove that

E(TN%) = (N = 1) » (; - 1) (11)

Consequently, the expected first hitting time after the integration of priors becomes IE(T(’)’Z?VT) =
E(To-n) + BTN = s + (V= 1)+ (2-1).

The total advantage resulting from the integration of appropriate priors is expressed as E(To—nN) —
E(IyY)=(N—=1)x (35— 2+1)>0,pe (05,1),N e NF, N > 1

2p—1 P

O

D LLM PROMPTS AND RESPONSES

Here are the example prompt and response in our work. Please reference the code for further details.

Notably, we adopt the chain-of-thought technique from ( ).
SYSTEM:
(Task_Description)

We are playing StarCraft II micro scenario, tring to control our agents to defeat all of the
enemy units.

(State_Form)
In each step, the current state is represented as a 1-dimensional list:
[nf_al] * n_agents + [nf_en] * n_enemies + [last_actions].

nf_al denotes the unit state for each agent with attributes

[health_rate, weapon_cooldown_rate, relative_x_to-map_center,
relative_y_to_map_center, shield_rate (1 dimension if a_race is P else 0 dimension),
unit_type_bits (the dimension is defined in the map config)].

n f_en represents the unit state for each enemy with attributes
[health_rate, relative_x_to_map_center, relative_y_to_map_center,
shield_rate (1 dimension if b_race in map config is P else 0 dimension),
unit_type_bits (the dimension is defined in the map config)].

The last_actions component does not require consideration.

(Role_Instruction)(Template)
Your role is to give several critical key states in the task which we should try to reach and
generate the corresponding discriminator function for each key state which can discriminate
if the input state has reached the key state.
Note:

1. Don’t use the information you are not told.

2. The code should be as generic as possible.

3. The discriminator functions for different key states should be independent.

4. Your answer should be complete and not omitted.
Please think step by step and adhere to the following JSON format (just replace the () with
your answer):

{
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Thought: (Please fully understand the task. Think step by step and give your thought
about the concrete state here),
Key states: {
init: all agents and enemies are alive,
key_state_1: (description),
key_state_2: (description),

success: all enemies are dead and at least one agent is alive

}7

Discriminators: {
key_state_1: (a python function with the form of def iskeystatel(state): ... return O or 1),
key_state_2: (a python function with the form of def iskeystate2(state): ... return O or 1),

Subspace_states: {
key_state_1: (extract subspace state used in corresponding discriminator functions, such
as [1] or [2,5)),
key_state 2: (extract subspace state used in corresponding discriminator functions, such
as [1] or [2,5]),

}
}

USER:

Task is 2m_vs_Iz. The map config is: {

n_agents: 2, n_enemies: 1, limit: 150, a_race: T, b_race: P, unit_type_bits: 0, map_type:
marines
1.

Give more than 2 key states and the corresponding discriminator functions.

ASSISTANT: (LLM response)

Thought: Since a_race is T, there is no shield_rate in nf_al; b_race is P, so there
is 1-dim shield_rate in nf_en; the dim of unit_type_bits is 0. The dimension of nf_al
= 44+0+0 = 4, the dimension of nf.en = 3+1+0 = 4. The concrete state form is
[agent_0_health rate, agent 0_weapon_cooldown rate, agent 0_relative_x_to_map_center,
agent_(_relative_y_to_map_center, agent_l_health rate, agent_1_weapon_cooldown_ rate,
agent_I _relative_x_to_map_center, agent_l_relative_y_to_map_center, enemy_0_health_rate,
enemy_0_relative_x_to_map_center, enemy_0_relative_y_to_map_center, enemy_0_shield_rate,
last_actions]. Key states should focus on the health and shield status of the enemy and the
health of our agents.,
Key _states: {
init:all agents and enemies are alive,
key_state_1: enemy_0’s shield is significantly damaged,
key_state_2: enemy _0 is significantly damaged,
key _state_3: enemy_0 is about to die,
success:all enemies are dead and at least one agent is alive
b

Discriminators: {
key_state_1: def iskeystatel(state): return 1 if state[11] <0.6 else O,
key_state_2: def iskeystate2(state): return 1 if state[8] <0.6 else O,
key_state_3: def iskeystate3(state): return 1 if state[8] <0.05 else O,

}
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Subspace_states: {
key_state_1: [11],
key_state_2: [8],
key_state_3: [8],

}
}
USER:

(LLM Rethinking)

Please carefully check your response to make sure it meets the task requirements and notes
without including unnecessary details. Also, confirm that the discriminator functions do not
use any undefined variables.

ASSISTANT: (LLM response)
...... (We have omitted the intermediate LLM outputs to maintain conciseness, retaining only

the initial generation, as the differences between the initial and rechecked generations are
minimal in the absence of errors.)

MPE Prompt and Response Example

USER:

(Task_Description)

Two agents are in a 30x30 room with the coordinate of the point in the upper left corner is
(0,0) and the point in the lower right corner is (29,29), separated by a wall with a door.

The door can not be directly open. There is a hidden switch in each room (The switch
coordinates are unknown and differ from the coordinate of the door.). The door will be open
only when one of the switch is occupied by an agent otherwise close. Both agents begin in
the left half of the room(agent0.x<15 and agentl.x<15).

The task is considered successfully completed as long as both agents are located in the right
half-room(agent0.x>15 and agentl.x>15).

(State_Form)
In each step we can get current state. The state is a 1-dim list:
(agent0.x, agent0.y, agentl.x, agentl.y,door.open).

(Role_Instruction)(Template)
Your role is to give several critical key states in the task which we should try to reach and
generate the corresponding discriminator function for each key state which can discriminate
if the input state has reached the key state.
Note:

1. Don’t use the information you are not told.

2. The code should be as generic as possible.

3. The discriminator functions for different key states should be independent.

4. Try not to put too much distance between the key states.
Please think step by step and adhere to the following JSON format (just replace the () with
your answer):

Thought: (Please fully understand the task. Think step by step and give your thought
about the concrete state here),
Key states: {
init: init state,
key_state_1: (description),
key_state_2: (description),
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success: success state

|8

Discriminators: {
key_state_1: (a python function with the form of def iskeystate1(state): ... return O or 1),
key_state_2: (a python function with the form of def iskeystate2(state): ... return O or 1),

.

Subspace_states: {
key_state_1: (extract subspace state used in corresponding discriminator functions, such
as [1] or [2,5]),
key_state_2: (extract subspace state used in corresponding discriminator functions, such
as [1] or [2,5)),

}
}

ASSISTANT: (LLM response)

Thought: To complete the task, we need to find the hidden switch in one of the rooms
to open the door, then move both agents through the door to the right half of the room. We
should establish key states that represent the discovery of the switch, the opening of the door,
and the successful transition of both agents to the right half of the room. We’ll assume that
agent( is responsible for finding the switch and agent1 is responsible for moving through the
door once it’s open.,

Key _states: {

init:Initial state where both agents are in the left half of the room.,

key_state_1:AgentO has found the switch and is standing on it, opening the door,

key_state_2:Agentl has moved through the open door to the right half of the room while
agent( is still on the switch,

key_state_3:AgentO has joined agentl in the right half of the room

Discriminators: {

key_state_1:def iskeystatel(state): return 1 if state[4] == 1 and state[0] >15 else 0,

key_state_2:def iskeystate2(state): return 1 if state[4] == 1 and state[2] >15 and state[0]
<15 else 0,

key_state_3:def iskeystate3(state): return 1 if state[0] >15 and state[2] >15 else O
}

Subspace_states: {
key_state_1: [4,0],
key_state_2: [0,2,4],
key_state_3: [0,2],

}

}

USER:

(LLM Rethinking)

Please carefully check your response to make sure it meets the task requirements and notes
without including unnecessary details. Also, confirm that the discriminator functions do not
use any undefined variables.
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ASSISTANT: (LLM response)

...... (We have omitted the intermediate LLM outputs to maintain conciseness, retaining only
the initial generation, as the differences between the initial and rechecked generations are
minimal in the absence of errors.)

= = ~ N
5 & S &

Key State Num

w

Pass Push-Box Secret-RoomlLarge-Pass 2m_vs_1z  1c3s5z 5m_vs_6m 3s_vs_5z 3s5z_vs_3s6z MMM2

Figure 9: The number of LLM-generated key state discriminator functions.

Notably, the number of key states is primarily determined by LLM. For each task, we only prompt
LLM to prevent it from generating too few functions according to the complexity of the environment.
Specifically, as detailed in Appendix D, we instruct LLM to generate several critical key states for
MPE and more than 2*n_enemies critical key states for SMAC.

As shown in Fig. 9, we summarize the number of LLM-generated key state discriminator functions.
It is notable that the number of discriminator functions increases with the difficulty of the task or the
number of interactive objects in the environment, which aligns with intuition.

Additionally, we have omitted the intermediate LLM outputs to maintain conciseness in this section,
retaining only the initial generation, as the differences between the initial and rechecked generations
are minimal in the absence of errors.

E IMPLEMENTATION DETAILS

E.1 LEMAE AND BASELINES

LEMAE: Our code is based on the widely-used code framework pymarl2 at https://github.
com/hijkzzz/pymarl2. In this study, we have integrated our method with several base algo-
rithms IPPO, QMIX, QPLEX, and VMIX. Throughout the integration process, we have refrained
from modifying the algorithmic implementation and have maintained consistency in parameters,
including batch size, learning rate, and loss coefficients, in alignment with the configurations of the
base algorithms.

EITI and EDTI ( s ): We compare our method with EITI and EDTI on MPE tasks
proposed in ( ). We use the experiment results reported in ( ), which
found that these algorithms perform poor because a long rollout (512 steps x 32 processes) between
model updates is used.

CMAE ( , ): We compare our method with CMAE on MPE and SMAC tasks. On MPE
tasks, the results of CMAE are reproduced using the publicly available code released by the authors
athttps://github.com/IouJenLiu/CMAE. As CMAE lacks an implementation for SMAC,
we use the results reported in the original paper.

MAVEN ( , ) We use the code at https://github.com/
starry-sky6688/MARL-Algorithms, which contains pytorch implementations of various
MARL algorithms on SMAC, like the choice in LAIES ( s ).

RODE ( , ) and MASER ( , ): We utilized the publicly available
code provided by the authors, accessible at ht tps://github.com/Jiwonjeon9603/MASER
and https://github.com/TonghanWang/RODE, respectively. Default configurations were
employed, and their suboptimal performance is also documented in LAIES ( s ).
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LAIES ( , ): We employed the publicly accessible code provided by the authors, which
can be accessed at https://github.com/liuboyin/LATES. When conducting experiments
on SMAC, we adhered to the default configurations and external states. Notably, the original LAIES
paper evaluation did not include assessments on the MPE. Consequently, we integrated the MPE
environment into the LAIES codebase, designating the external states to represent the door status or
the position of the box.

ELLM ( s ): Since the tasks in this work have clearly defined goals, we minimize
LLM inference costs by following the ELLM methodology but adapting its goal generation to
occur only once at the start of the training. Consistent with the hyperparameters in the official
codebase https://github.com/yugingd/ellm, we set the similarity threshold to 0.99,
rewarding only when the goal is achieved. We rely on LLM-generated functions to verify goal
achievement, which we found to be more effective than directly using semantic similarity-based
rewards.

For all algorithms, we ensure the same environmental settings, including observation space, environ-
ment reward function, and so on.

E.2 COMPARISON WITH LLM REWARD DESIGN

We conduct additional experiments comparing LEMAE with a baseline called Eureka-si, which can
be seen as a single-iteration variant of Eureka ( , ), where LLM designs rewards directly.
For fairness, we does not adopt evolutionary optimization in Eureka and use LLM to generate reward
functions with the same role instructions as in Eureka, while maintaining designs like Self-Check as
in LEMAE. As shown in Fig. 3, Eureka-si is comparable to LEMAE in simple tasks like Push-Box
but fails in challenging tasks with characteristics like partial observability, such as Pass, where hidden
switches make it difficult to design effective reward functions. In contrast, LEMAE consistently
demonstrates impressive performance. Notably, comparing LEMAE with Eureka directly would
be unfair since Eureka’s evolutionary search requires multiple training iterations and candidates,
leading to significantly more sampling and training than LEMAE. Overall, LEMAE’s advantage
over RL algorithms lies in incorporating prior knowledge from the LLM, and its advantage over
other LLM-based methods is due to our designs for better LLM incorporation, such as utilizing
discrimination, SHIR, and KSMT.

E.3 CONNECTION AND COMPARISON WITH HER

The proposed Key State-Guided Exploration is similar to Hindsight Experience Replay
(HER) ( , ) in form, where key states and subgoals are certain states from
sampled trajectories. However, unlike HER, which samples goals from memory using random or
heuristic strategies and often struggles with shaped rewards, our method incorporates LLM priors for
more targeted goal selection (key states localization). Additionally, the proposed KSMT and SHIR
facilitate organized exploration and enhanced reward guidance.

We conduct additional experiments to further confirm the advantages of our method. We evaluate
HER with IPPO as the backbone in MPE. We use the future strategy for goal selection, as proposed in
the HER paper, and employ a reward function based on the Manhattan Distance, which we find to be
the best match. However, as depicted in Fig. 3, HER does not perform well on both MPE tasks. This
outcome suggests that the random sampling strategy for goals may not be sufficient, underscoring the
importance of incorporating LLLM priors for efficient exploration as we proposed.

E.4 TASKS

E.4.1 MULTIPLE-PARTICLE ENVIRONMENT (MPE)

The Multiple-Particle Environment serves as a widely-adopted benchmark for multi-agent scenarios.
In this work, we employ tasks specifically crafted for evaluating multi-agent exploration, proposed
by ( ). The implementation utilized in this study is based on the work by

( ). In this section, we provide details of the four sparse-reward tasks we adopted.

e Pass: In the Pass task, depicted in Fig. 10a, two agents are positioned in a room of 30 x 30
grid. The room is divided into two halves by a wall featuring a door. Each half-room contains an
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invisible switch, the details of which are not contained in the state or prompt for LLM. The door
permits passage only when one of the switches is occupied by an agent. Initially situated within the
left half-room, both agents must cooperate to transfer to the right half-room. The external reward
function is denoted as rp = I(two agents are in the right room), where I represents the indicator
function.

e Secret-Room: Secret-Room is an extension task of Pass. As illustrated in Fig. 10b, the configuration
comprises one sizable room on the left and three smaller rooms on the right, interconnected by
three doors. Within each room, there is an invisible switch; notably, the switch in the left room
has the capability to control all three doors, whereas each right room’s switch exclusively controls
its respective door. The grid size is 25 x 25. Two agents are initialized within the left room and
are required to collaborate in order to transition to the real target room, which is the right room 2.
The external reward function is denoted as rg = I(two agents are in the right room 2), where I
represents the indicator function.

e Push-Box: As depicted in Fig. 10(c), two agents and a box are initially positioned within a 15
x 15 grid. To successfully move the box, both agents must simultaneously exert force in the same
direction. The task is deemed accomplished when the box is successfully pushed to the wall. The
external reward function is denoted as rp = I(the box is pushed to the wall), where I represents
the indicator function.

e Large-Pass: Large-Fass is a direct extension task of Pass by enlarging the grid dimensions to 50 x
50, which makes it more challenging. The external reward function aligns with that of the Pass task.

The details of these tasks, including observation space and action space, are listed in Table 3.

Table 3: Details of MPE tasks

MPE tasks n_agents observation space state space action space

Pass 2 5 5 4
Secret-Room 2 5 5 4
Push-Box 2 6 6 4
Large-Pass 2 5 5 4
Right Bob Right Room 1
Bob N Bob
Q\ Switch Q\\ Alice /9
Alice N ,’, Alice \ Q\\ /;
% ‘\ // Q ‘. Right Room 2 Toa s
: | Door : : “““ A Box
: el i ,,’/ Right Room 3 I'llt
T Left T Left "
Switch Switch n
(a) Pass(Large-Pass) (b) Secret-Room (c) Push-Box
Figure 10: MPE Tasks.
E.4.2 STARCRAFTII MULTI-AGENT CHALLENGE (SMAC)
StarCraftIl Multi-Agent Challenge (SMAC) ( , ) is a widely-used benchmark

in the realm of cooperative multl agent reinforcement learning research ( ,

, ). Derived from the renowned real-time strategy game
StarCraft II SMAC concentrates specifically on decentralized micromanagement scenarios rather
than the full game. Typically, the tasks within SMAC adopt a dense-reward framework, wherein
agents receive dense rewards for damage received, attacking and eliminating enemies. To promote the
need for exploration, we adopt fully sparse-reward versions of tasks in SMAC where agents are solely
rewarded upon the successful elimination of all enemies. The external reward function is denoted
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as rg = I(all enemies are eliminated), where I represents the indicator function. Notably, this
sparse-reward setting differs from the sparse SMAC, which can be called semi-sparse SMAC, used
in some prev10us studies ( , ), where agents are rewarded when one
or all enemies die or when one ally dles In addition, to validate the versatility of LEMAE across
diverse scenarios, we conducted experiments on six maps with different difficulty and diverse agent
numbers, as illustrated in Table 4 and Table 5. We use the version of SC2.4.10. Please refer to the
official document! for more details.

Table 4: SMAC tasks.

Task Ally Units  Enemy Units Type Difficulty
1 Colossi, 1 Colossi,
1c3s5z 3 Stalkers, 3 Stalkers, heterogeneous & symmetric Easy
5 Zealots 5 Zealots
2m_vs_lz 2 Marines 1 Zealot micro-trick: alternating fire Easy
3s_vs_5z 3 Stalkers 5 Zealots micro-trick: kiting Hard
Sm_vs_6m 5 Marines 6 Marines homogeneous & asymmetric Hard
3s5z_vs_3s6z 358222132’ 368222132’ heterogeneous & asymmetric ~ Super-Hard

1 Medivac, 1 Medivac,
MMM2 2 Marauders, 3 Marauders, heterogeneous & asymmetric ~ Super-Hard
7 Marines 8 Marines

Table 5: Details of SMAC tasks

SMAC tasks n_agents n_enemies observation space state space action space

2m_vs_lz 2 1 16 26 7
1¢3s5z 9 9 162 270 15
3s_vs_5z 3 5 48 68 11
Sm_vs_6m 5 6 55 98 12
3s5z_vs_3s6z 8 9 136 230 15
MMM?2 10 12 176 322 18

E.4.3 A BRAND NEW TASK: River

To exclude the probability that LEMAE’s success relies on LLM’s familiarity with the chosen tasks,
we’ve designed a brand new task, termed River, which LLM has never encountered before. The task
is detailed as follows:

The River task is adapted from the Multiple-Particle Environment and its map is illustrated in Fig. 8a.
Two agents, Alice and Bob, are placed in a 30 x 30 grid field intersected by two rivers running
vertically and horizontally. A mountain in the bottom-left corner obstructs the passage. Alice and Bob
start randomly in the top-left part of the field and need to move to the bottom-right part. However,
Alice is afraid of water and cannot cross the river unless Bob stays in the river to act as a bridge for
her.

The observation space is discrete with four dimensions, representing the positions of two agents, i.e.,
o = [x1,Y1,Z2,y2]. The action space is also discrete, allowing movement in four directions. Agents
receive a positive reward only when both agents reach the bottom-right corner of the field.

E.5 HYPERPARAMETERS

In LEMAE, we introduce three important hyperparameters: extrinsic reward scaling rate «, intrinsic
reward scaling rate 3, and high randomness epsilon €. Notably, the low randomness epsilon ¢; is the
hyperparameter in the base algorithms, such as 0.05 for QMIX and 0.0 for IPPO.

1 / . N
https://github.com/oxwhirl/smac/blob/master/docs/smac.md
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For MPE, we adopt {& = 10,8 = 0.1,€;, = 1} on Pass, Secret-Room, and Large-Pass and use
{a =10,8 =0.05, ¢, = 0.2} on Push-Box.

For SMAC, we adopt {a = 50,8 = 1, ¢, = 0.5} on MMM?2 and 1¢3s5z, {o = 10,8 = 1,¢;, = 0.5}
on 3s_vs_5zand 2mvs_Iz, {a = 1,8 = 1,e;, = 0.5} on 5m_vs_6m and 3s5z_vs_3s56z.

E.6 RESOURCES

We use a server with 8*NVIDIA RTX 3090 GPUs, and 2¥* AMD 7H12 CPUs to run all the experiments.
Without specifying, each setting is repeated for 5 seeds. For one seed in SC2, the running time ranges
from approximately 50 minutes to 12 hours. For MPE, the running time varies from around 3 to 7
hours. The input for each LLM (GPT-4-1106-preview) inference comprises approximately 600-4000
tokens (0.006-0.04 dollars), yielding an output of about 300-1600 tokens (0.009-0.048 dollars).

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 MORE COMPLICATED BENCHMARK: SMACV2

We have evaluated LEMAE on three typical tasks, protoss_5_vs_5, terran_5_vs_5, and zerg_5_vs_5, in
SMACV2 (Ellis et al., 2024) to demonstrate its effectiveness under stochastic dynamics settings. We
utilized the typical hyperparameters for both LEMAE and LAIES as used in SMAC. Additionally,
we evaluate several typical baselines, including a generic intrinsic reward method, E3B Henaff et al.
(2022), and two LLM-based methods, ELLM Du et al. (2023) and ProgressCount Sarukkai et al.
(2024). Notably, all these additional baselines were originally proposed for single-agent scenarios,
and we made proper adaptations for multi-agent settings to ensure a fair comparison. As shown in
Fig. 11, LEMAE achieves outstanding performance, confirming its applicability to such settings and
the effectiveness of its specific design choices for MARL. This result further demonstrates LEMAE’s
potential for real-world scenarios with complexity and stochasticity.

—— LEMAE(Ours) LAIES —— E3B —— ELLM —— ProgressCount QMIX-DR QMIX
protoss_5_vs_5 terran_5_vs_5 zerg_5_vs 5
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006 0.6
T 0.4
o
=
s 0.4 0.4 0.3
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4] 0.2
Foz2 0.2 |4
//_./\/‘/M 0.1
0.0L ——— — = 0.0 0.0 E==
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Figure 11: Evaluating LEMAE against baseline methods across three maps in SMACv2, which
features greater randomness, using the evaluation metric of test win rate. QMIX-DR is QMIX with
dense rewards in the original SMACV2, serving as an upper bound, with its intrinsic rewards designed
by a human expert. This result further demonstrates LEMAE’s potential for real-world scenarios with
complexity and stochasticity.

F.2 EXTENDING LEMAE BEYOND SYMBOLIC TASKS

This work primarily focuses on tasks with symbolic state spaces, where states are represented as
symbolic arrays describing the agent and environment. As discussed in Appendix B.3, to extend
LEMAE from symbolic tasks to vision-based tasks, we can exchange the LLM for a multi-modal LM
in LEMAE for key state localization. To confirm the applicability of LEMAE to vision-based tasks,
we conduct a demonstrative experiment: We extend the task Pass to a vision-based task Visual-Pass,
as illustrated in Fig. 12a. We prompt a LLM to define key states with the same task description
and role instruction as proposed in Sec. 4.2 and use the LLM-generated definition as the prompt
for a Vision Language Model (GPT-40). Then, it is prompted to discriminate key states in the
randomly sampled states. GPT-40 achieves a 98 % accuracy rate in discriminating key states among
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the 50 sampled image states. This confirms that with a proper extension of the LLM, LEMAE can
eliminate dependence on state semantics and be applied to other tasks such as visual-input. As shown
in Fig. 12¢, we evaluate the effectiveness of LEMAE on the image-based task Visual-Pass by using a
VLM as the discriminator and object pixel detection for reward calculation. The experimental results
show LEMAE’s broader applicability.

4 N\ —— LEMAE(Ours) —— IPPO
VLM Prompt — IPPO-DR — E38
Task Description: Visual-Pass

“Two agents in a room...”
LLM Thought: @ 08
“Thoughts from another LLM:...”

LLM Key States:
“Key states definition from LLM:...”

@
a

TTL T

Test Win Rate

Role Instruction:
“Your role is to determine if the 02
given image state belongs to...”

Image: {image url}

J e e e
(a) (b) (c)

Figure 12: (a) An illustration of the vision-based task Visual-Pass. (b) The prompt for the Vision
Language Model (VLM), which includes the task description, role instruction, image state and key
states definition provided by another LLM. The VLM is tasked with determining whether the given
image state corresponds to a key state. (c) Training curves of LEMAE and IPPO on the image-based
Visual-Pass tasks, where IPPO-DR refers to IPPO trained with human-designed dense rewards.

F.3 ABLATION STUDIES ON MIXED-RANDOMNESS EXPLORATION

As demonstrated in Fig 13, we conduct an ablation study on mixed-randomness exploration within
the 3s_vs_5z map. Results indicate that LEMAE exhibits insensitivity to the parameter ¢, provided
that the level of randomness remains moderate, as opposed to being excessively extreme (0.1 or 0.9).
Besides, the effectiveness of our design is highlighted through a comparison between LEMAE and its
variants, namely, only leaf node and LEMAE w/o KSMTE.

Eh=0.1 —_— £/—,=0.3 £h=0.7 e £/—,=0.9
—— LEMAE ¢,=0.5 —— only leaf node LEMAE w/o KSMTE
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@
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0 1 2 3 4
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Figure 13: Ablation study on mixed-randomness exploration. The default hyperparameter used in
LEMAE is €, = 0.5. Robustness evaluation included variations in €, = [0.1,0.3,0.7,0.9]. The only
leaf node denotes simply using ¢; for the non-leaf node and ¢, for the leaf node. The LEMAE w/o
KSMTE denotes LEMAE without mixed-randomness exploration.

F.4 EXPERIMENTS FOR SINGLE-AGENT SETUPS

Indeed, we propose LEMAE as a general approach for LLM-empowered efficient exploration in
reinforcement learning, applicable to both single-agent and multi-agent settings. We underscore the
evaluation of its performance in multi-agent settings due to its inherent complexity.
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As the proposed method can seamlessly extend to single-agent scenarios, we introduce a single-agent
variant of MPE and assess PPO ( s ) and PPO-based LEMAE across four tasks.
We run each algorithm using three random seeds with 300k environment steps, using the evaluation
metric of the test win rate. The following table shows that LEMAE can facilitate efficient exploration
in single-agent scenarios.

Table 6: Final test win rate of LEMAE and PPO on single-agent variant of MPE tasks.

Single MPE PPO LEMAE

Single Pass 0.00+0.00  1.00+0.00
Single Secret-Room  0.00+0.00  0.98+0.01
Single Large-Pass ~ 0.00+0.00 0.99-+0.01
Single Push-Box 0.00+000  0.96+0.08

F.5 DISCUSSION ON THE KSMT

Using KSMT could pose a limitation due to potential memory costs in certain scenarios. However,
this has not been a significant issue in our experiments, as the key states are relatively few, primarily
focusing on the most critical ones, with a natural sequential relationship typically existing between
them. Notably, LEMAE is also compatible with other memory structures, such as Directed Acyclic
Graphs (DAGs), which could be an interesting direction for future exploration.

To demonstrate the effectiveness of LEMAE with other memory structures, in scenarios where task
completion follows a linear pattern (e.g., Init - A — B — Success), we employ a more efficient
strategy by using a KSMT variant with a single branch representing the sequential order of key states.
Specifically, we systematically assign a priority value to each key state, continuously updating it
based on its occurrence order within the sequence of attained key states. The determination of the
ranking of key states within the one-branch KSMT relies on this established priority.

As illustrated in Fig. 14, an ablation study is conducted to compare the performance between raw
KSMT and the one-branch KSMT variant across six maps in SMAC. The results demonstrate the
increased necessity of employing the one-branch KSMT variant for tasks involving a larger number of
agents and greater complexity, such as Sm_vs_6m, 3s5z_vs_3s6z, and MMM?2. Consequently, we have
adopted the one-branch KSMT approach for these specific SMAC tasks: Sm_vs_6m, 3s5z_vs_3s6z,
and MMM?2.

F.5.1 CONNECTIONS WITH GO-EXPLORE

Go-Explore ( , ) is an influential work tackling exploration in RL. The similarities
between our KSMT and the archive in Go-Explore lie in both methods organizing exploration
through memory, i.e., by selecting possible historical states to explore. The differences and partial
contributions of LEMAE are as follows: (1) Our key states are semantically meaningful and task-
critical, whereas the archived states in Go-Explore are randomly explored; (2) Our KSMT samples
key states based on actual key states transitions, enhancing its reliability; (3) We propose Explore
with KSMT to balance exploration and exploitation, thereby reducing exploration complexity by
focusing on a more meaningful state subspace.

F.6 WORKING WITH DENSE REWARD SETTINGS

We also evaluate LEMAE in tasks with dense rewards in SMAC, denoted as LEMAE-DR. As shown
in Fig. 15, the results confirm that LEMAE-DR facilitates efficient exploration in both dense and
sparse reward settings, highlighting the main contribution of our method. Additionally, LEMAE-DR
achieves better convergence than LEMAE due to the guidance provided by dense rewards.

F.7 APPLICATIONS IN ROBOTICS CONTROL

We evaluate LEMAE on MaMuJoCo ( s ), a MARL robotics benchmark. We adapt
the tasks to emphasize exploration with sparse rewards for achieving high velocity v, where the
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Figure 14: Ablation study conducted to compare the performance between raw KSMT and the
one-branch KSMT variant across six maps in SMAC.

—— LEMAE(Ours) —— QMIX-DR LEMAE-DR
3s5z_vs_3s6z 3s_vs_5z 2m_vs_1z
1.0 | 1.0 1.0 j rv ———————
0.8 0.8 [t 0.8
e e /f
; /- d
0.6 0.6 0.6 f
£ / 7 ‘
% 0.4 / 0.4 0.4
wv
SN JL J
0.2 0.2 0.2 |
! 2z J
0.0 - 0.0 = 0.0
0 1 2 3 4 5 0 1 2 3 4 5 00 02 04 06 08 1.0
T (mil) T (mil) T (mil)

Figure 15: Evaluating LEMAE with dense rewards across three maps in SMAC using the evaluation
metric of test win rate. LEMAE-DR is LEMAE with dense rewards in the original SMAC, which
effectively ensures efficient exploration and achieves better convergence.
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reward function is defined as I(v > Uipreshola). We use HAPPO (Kuba et al., 2021) as the RL
backbone. As shown in Fig. 16, LEMAE achieves performance comparable to the baseline trained
with human-designed dense rewards. This observation is consistent with previous conclusions.
LEMAE benefits from the reliability of the proposed LLM key state discrimination, and the results
underscore LEMAE’s potential for handling complex tasks.
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Figure 16: Evaluating LEMAE on two tasks in MaMuJoCo using the metric of test success rate.
HAPPO-DR is HAPPO with dense rewards in the original tasks.

F.8 ADDITIONAL BASELINES
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Figure 17: Evaluating LEMAE and additional baselines on tasks in MPE.

As shown in Fig. 17, we compare LEMAE with three additional baselines:

* ProgressCounts (Sarukkai et al., 2024) is a recent LLM-based method which combines
LLM reward design and count-based exploration. Still, LEMAE consistently outperformed
ProgressCounts, suggesting the importance of our designs—specifically, the use of dis-
crimination, SHIR, and KSMT—in more effectively integrating LLMs compared to other
LLM-based methods.

* WToE (Dong et al., 2023) focuses on when to explore by identifying discrepancies between
the actor policy and a short-term inferred policy that adapts to environmental changes. WToE
does not utilize intrinsic reward as guidance, which may make it unsuitable for tackling
long-horizon sparse-reward tasks.

e E3B (Henaff et al., 2022) is a generic intrinsic reward method. The results witness LEMAE’s
superior exploration efficiency, implying the effectiveness of key states.

These comparisons highlight the effectiveness of LEMAE’s specific design choices in incorporating
LLMs and applying them to MARL.

F.9 ADDITIONAL RESULTS

In this section, we provide some additional experimental results.
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Table 7: Final test win rate of LEMAE and comparable baseline (CMAE) on MPE tasks.

MPE LEMAE (Ours) CMAE

Pass 1.00-0.00 0.75+0.43
Secret-Room 1.00-t0.00 0.80+0.40
Push-Box 1.00=+0.00 0.80+0.40
Large-Pass 1.00-+0.00 0.00=+0.00

Table 8: Final test win rate of LEMAE and comparable baseline (LAIES) on SMAC tasks. QMIX-DR
denotes training QMIX with dense reward.

SMAC LEMAE (Ours) LAIES QMIX-DR

1c3s5z 0.98+0.02 0.89+0.09 0.99-+0.01
2m_vs_lz 1.00+0.01 0.73+0.24 1.00-+0.01
3s_vs_5z 0.83+0.07 0.10+0.12 0.66+0.16
Sm_vs_6m 0.74+0.08 0.68+0.10 0.78+0.08
3s5z_vs_3s6z 0.73+0.14 0.45+0.35 0.73+0.07
MMM2 0.89-+0.08 0.62+0.25 0.90+0.05

Table 9: Comparing LEMAE with SOTA baseline CMAE across four maps in MPE using the metric
of the number of exploration steps (in thousand) taken to find the success state

MPE LEMAE (Ours) CMAE Acceleration rate
Pass 153.1+20.7 2114.8+1574 13.8
Secret-Room 316.6+134.6 1448.5+467.2 4.6
Push-Box 159.0+425 972.3+887.3 6.1
Large-Pass 446.9+256 >3000 >6.7
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Figure 18: The training curve while evaluating the efficacy of combining our method with various
algorithms.
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As demonstrated in Table 7 and Table 8, we augment the final test win rate of our proposed method,
LEMAE, with comparable baseline algorithms in MPE and SMAC tasks. This augmentation serves
to elucidate the superior performance of our method. It is pertinent to note that baseline algorithms,

the performance of which has been demonstrated to be poor in the training curves, are omitted from
the tables for conciseness.

As demonstrated in Table 9, we compare LEMAE with SOTA baseline CMAE using the metric of
the number of exploration steps taken to find the success state. The results indicate a significant
exploration acceleration rate, up to 10x, underscoring LEMAE’s superior efficiency.

Moreover, as illustrated in Fig. 18, we supplement the training curve while evaluating the efficacy of
combining our method with various algorithms, i.e., QPLEX and VMIX.
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