
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CHOICES ARE MORE IMPORTANT THAN EFFORT: LLMS
ENABLE EFFICIENT MULTI-AGENT EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

With expansive state-action spaces, efficient multi-agent exploration remains a
longstanding challenge in reinforcement learning. Although pursuing novelty,
diversity, or uncertainty attracts increasing attention, redundant efforts brought
by exploration without proper guidance choices poses a practical issue for the
community. This paper introduces a systematic approach, termed LEMAE, choos-
ing to channel informative task-relevant guidance from a knowledgeable Large
Language Model (LLM) for Efficient Multi-Agent Exploration. Specifically,
we ground linguistic knowledge from LLM into symbolic key states, that are
critical for task fulfillment, in a discriminative manner at low LLM inference
costs. To unleash the power of key states, we design Subspace-based Hindsight
Intrinsic Reward (SHIR) to guide agents toward key states by increasing reward
density. Additionally, we build the Key State Memory Tree (KSMT) to track tran-
sitions between key states in a specific task for organized exploration. Benefiting
from diminishing redundant explorations, LEMAE outperforms existing SOTA
approaches on the challenging benchmarks (e.g., SMAC and MPE) by a large
margin, achieving a 10x acceleration in certain scenarios. Our code is available at
https://anonymous.4open.science/r/LEMAE.

1 INTRODUCTION

Exploration stands as a fundamental issue in reinforcement learning (RL) (Du et al., 2023; Liu et al.,
2023). Researchers have developed several exploration strategies directed by novelty, diversity, or
uncertainty (Linke et al., 2020; Burda et al., 2018b; Pathak et al., 2017), mainly in single-agent
reinforcement learning. However, these methods may induce task-irrelevant redundant exploration,
especially in complex environments (Du et al., 2023). In the realm of Multi-Agent Reinforcement
Learning (MARL), the need to mitigate exploration redundancy becomes even more urgent due to the
challenges like exponential expansion of the state-action spaces. Widespread real-world applications,
including MOBA games (Qu et al., 2023), social science (Jaques et al., 2019), and multi-vehicle
control (Xu et al., 2018), further underscore the growing need for efficient multi-agent exploration.

This work identifies task-relevant guidance as an important consideration in enhancing exploration
efficiency. Incorporating priors in exploration mechanism design, such as complex reward structures,
typically requires expert knowledge and substantial human efforts (Liu et al., 2023; Abbeel & Ng,
2004). Hopefully, recent advances have witnessed the remarkable reasoning and planning capabilities
of Large Language Models (Touvron et al., 2023; Achiam et al., 2023), providing a plausible choice
to facilitate efficient exploration through LLM’s effortless prior provision. However, it is non-trivial
to effectively comprise linguistic LLM priors into symbolically represented RL tasks (Peng et al.,
2023; Carta et al., 2023), and the investigation of practical ways to avoid nuisances caused by such
an expression discrepancy is of critical importance.

In response to the above issue, we propose LEMAE, a novel framework to enable efficient multi-
agent exploration with LLM. The framework primarily consists of two components: (i) key states
localization with LLM and (ii) key state-guided exploration. The first component automatically
localizes key states essential for task completion, through LLM discrimination, thereby injecting
LLM priors into the RL process. Specifically, the discriminator function induced by LLM works to
discriminate key states from rollout trajectories, avoiding the overburden of LLM inference costs.
The second component harnesses the localized key states as meaningful guidance to achieve efficient

1

https://anonymous.4open.science/r/LEMAE

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: (a) The map of the task Pass. Two agents are initially positioned in the left room, requiring
cooperation to explore the rooms, uncover the hidden switches, and move to the right room. (b)
The key states (κ1 and κ2) generated by LLM for the task Pass, where the superscripts A,B of κi

denote two agents Alice and Bob. (c) Visitation Map (log scale) of SOTA baseline method CMAE.
(d) Visitation Map (log scale) of our method LEMAE. Our method exhibits a significant reduction in
redundant exploration. Furthermore, an organic division of labor among agents emerges.

exploration. In implementation, we treat key states as explicit training signals, devising Subspace-
based Hindsight Intrinsic Reward (SHIR) to refine rewards for achieving these key states. To facilitate
organized exploration with memory, Key States Memory Tree (KSMT) is further constructed to track
key state transitions, constraining the state space in exploration and enhancing guidance in SHIR. As
illustrated in Fig. 1, our design empowers LEMAE with a significant performance advantage through
notably reducing redundant exploration.

Our main contributions are summarized as follows:

1. We build a bridge between LLM and RL to facilitate efficient multi-agent exploration by
developing a systematic approach dubbed LEMAE.

2. We devise a computationally efficient inference strategy channeling task-specific information
from LLM to distinguish key states critical for task fulfillment as subgoals for targeted
exploration.

3. We introduce a Key State Memory Tree to organize exploration according to historic key
state transitions and devise the Subspace-based Hindsight Intrinsic Reward, encouraging
agents’ guidance.

We conduct extensive experiments on typical multi-agent exploration benchmarks. LEMAE (i)
consistently outperforms the state-of-the-art (SOTA) baselines with 10x acceleration in certain
scenarios, (ii) achieves performance comparable to the baseline trained with human-designed dense
rewards in sparse reward scenarios, and (iii) exhibits potential to generalize to tasks previously
unseen by LLM or involving non-symbolic states. These observations validate the effectiveness of
our design in reducing redundant exploration and improving exploration efficiency, showing promise
for real-world deployment in scenarios requiring efficient exploration.

2 PRELIMINARY

The environments considered in this work are characterized as a decentralized partially observable
Markov decision process (Dec-POMDP) (Oliehoek et al., 2016) with n agents, which can be defined
as a tuple G = ⟨S,A, I, P, r, Z,O, n, γ⟩, where s ∈ S is the global state, A is the action space for
each agent, and γ ∈ [0, 1) is the discount factor. At time step t, each agent i ∈ I ≡ {1, ..., n} has its
local observations oi ∈ O drawn from the observation function Z(s, i) : S × I → O and chooses
an action ai ∈ A by its policy πi(ai|oi) : O → ∆([0, 1]|A|), forming a joint action a ∈ A ≡ An.
T (s′|s,a) : S ×A× S → [0, 1] is the environment’s state transition distribution. All agents share a
common reward function r(s,a) : S ×A → R. The agents’ joint policy π :=

∏n
i=1 π

i induces a
joint action-value function: Qπ(s,a) = E[R|s,a], where R =

∑∞
t=0 γ

trt is the expected discounted
return. The goal of MARL is to find the optimal joint policy π∗ such that Qπ∗

(s,a) ≥ Qπ(s,a),
∀π and (s,a) ∈ S×A. Notably, we specifically focus on sparse reward tasks, i.e., rt = 1 only when
st+1 = ssuccess, otherwise rt = 0. We denote the symbol for the i-th key state by κi together with
its discriminator function Fi.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 RELATED WORKS

LLM in Decision Making. Large Language Models have shown impressive capabilities across
downstream tasks (Touvron et al., 2023; Radford et al., 2019; Brown et al., 2020). Recent advances
indicate a growing trend of using LLM in decision-making problems (Wang et al., 2023b). A primary
challenge is grounding LLM’s linguistic knowledge into specific low-level control tasks typically
represented in symbolic form (Peng et al., 2023; Carta et al., 2023), especially in RL. Creating
linguistic twin tasks (Carta et al., 2023) is intuitive but require substantial manual workloads. Some
works employ LLMs as high-level planners, e.g., coding with APIs (Liang et al., 2023), using human-
annotated or LLM-summarized actions (Yao et al., 2022; Shinn et al., 2023; Lin et al., 2023; Zhu et al.,
2023; Wang et al., 2023a). Despite significant progress, they rely on difficult-to-obtain low-level
policies or APIs, limiting real-world applicability. Recently, LLMs have been integrated with RL
to enhance low-level decision making (Cao et al., 2024). LLMs act as environmental information
processors, reducing learning complexity (Paischer et al., 2022; 2024; Kim et al., 2024; Wang et al.,
2024), but cannot directly facilitate efficient exploration. Some works utilize LLMs as goal selectors
in goal-conditioned RL (Su & Zhang, 2023; Shukla et al., 2023), teacher policy (Zhou et al., 2023), or
task sampler (Zhang et al., 2023b) but require predefined task pools, skills or subgoals. Other methods
like LLM-based reward or policy design (Klissarov et al., 2023; Ma et al., 2023; Kwon et al., 2023;
Song et al., 2023; Liu et al., 2024; Chen et al., 2024) rely on large annotated datasets, frequent LLM
inferences, or are restricted to simple tasks with ample information. Fine-tuning (Carta et al., 2023;
Shi et al., 2023) demands enormous data and resources. LLaMAC (Zhang et al., 2023a) employs
multiple LLMs to balance exploration and exploitation but emphasizes step-wise decision-making
via frequent LLM calls. ELLM (Du et al., 2023) enhances exploration using LLM but depends on
predefined symbolic observation captioner and frequent LLM inferences. Its semantic similarity-
based rewards may also struggle to generalize across scenarios. In contrast, LEMAE integrates
linguistic LLM priors into symbolic states with minimal task information and LLM inference costs,
achieved by localizing key states in rollout trajectories using LLM-generated discriminator functions.

Efficient Multi-Agent Exploration. Exploration efficiency has long been a focal point in
RL (Thrun, 1992; Cai et al., 2020; Seo et al., 2021; Mahajan et al., 2019; Jeon et al., 2022; Ecoffet
et al., 2019). Typical exploration methods focus on random exploration (Mnih et al., 2013; Rashid
et al., 2018) or heuristic indicators, such as diversity or novelty, to facilitate exhaustive exploration,
particularly in single agent exploration (Linke et al., 2020; Burda et al., 2018b; Pathak et al., 2017;
Burda et al., 2018a; Bellemare et al., 2016). Despite their success, they may induce notable redundant
exploration due to a lack of task-relevant guidance (Du et al., 2023). The exponential expansion of the
state-action spaces renders exhaustive exploration impractical in multi-agent settings. Consequently,
efficient multi-agent exploration (MAE) becomes increasingly imperative and necessary (Jeon et al.,
2022; Liu et al., 2021). MAE is also challenging due to the complex configurations, e.g., the entangled
effect of multi-agent actions and intricate reward design (Liu et al., 2023; Qu et al., 2023; Xu et al.,
2023). Given our emphasis on efficient exploration, we prioritize evaluation in multi-agent settings.
Some MAE methods encourage influential behaviors during agent interactions (Liu et al., 2023;
Jaques et al., 2019; Wang et al., 2019). Nevertheless, they may lead to unintended coalitions or require
additional priors (Liu et al., 2023). Certain studies leverage subgoals to guide exploration (Jeon
et al., 2022). However, due to challenges in integrating task-related information into subgoals, they
either necessitate human expertise for subgoals design (Tang et al., 2018; Kulkarni et al., 2016) or
struggle to identify useful subgoals (Jeon et al., 2022; Liu et al., 2021). A recent influential work,
WToE (Dong et al., 2023), focuses on when to explore by identifying discrepancies between the
actor policy and an environmental-change-detection policy, which does not employ intrinsic rewards
as guidance. Distinguished from the above, this work underscores the significance of task-relevant
guidance in exploration and utilizes the key state priors extracted from LLM to enable efficient
multi-agent exploration.

4 METHOD

This section first induces the concept of key states as task-relevant guidance. Centering around the
key states, we construct two components: (i) key states localization with LLM (Sec. 4.2) and (ii) key
state-guided exploration (Sec. 4.3). The former directs LLM to generate discriminator functions for
localizing key states in rollout trajectories, while the latter guides exploration with the introduced
Subspace-based Hindsight Intrinsic Reward and Key States Memory Tree. Please refer to Fig. 2 and
Algorithm 1 for details. Also, we provide a demonstration to clarify LEMAE’s execution pipeline.

3

https://sites.google.com/view/lemae

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Prompt

Role Instruction
(Template):

Thought: “CoT”,

Key_states: {“𝜅1 ”: ...},

Discriminator: {“𝜅1”:

‘def … return 0/1’}

Self-Check:

Reponse

Thought:

“agent0 finds the

switch to open …”,

Key_states:

{“𝜅1”: “agent0 on the

switch…”,…},

Discriminators:

{“𝜅1”:
def Iskeystate1(s):
return s[4]==1 …

“𝜅2”: …}

Key States Memory Tree

Feedback

Subspace-based

Hindsight Intrinsic Reward

𝜿 Chain

Look up

𝒓𝑰
𝜿𝟐 𝒓𝑰

𝜿𝟏 𝒓𝑰
𝜿𝒎

Iskeystate1()

··· ··· ···𝒔𝒕
𝜿𝟐 𝒔𝒕+𝟏 𝒔𝒏+𝟏𝒔𝒏

𝜿𝟏

𝒔𝒏
𝜿𝟏

𝒔𝒕
𝜿𝟐

··· ···𝒔𝟎 𝒔𝒕+𝟏 𝒔𝒏+𝟏𝒔𝒏
𝜿𝟏 𝒔𝑻𝒔𝒕

𝜿𝟐 𝜿𝒎

LLM Extract

Task Description:

“Two agents …”

State Form:

[agent0.x, agent0.y, …]

Trajectory

···

···𝜿𝟏···

···

𝒔𝒕 𝒔𝒕+𝟏 𝒔𝒏+𝟏𝒔𝒏··· ··· ··· ···

Sample

Next 𝜿

𝜿𝒎

𝜿𝟐

𝒓𝒐𝒐𝒕

Figure 2: Overview of the training process. (a) Key States Localization with LLM: We devise a set
of prompts to guide LLM in localizing key states based on task-specific information. Refinements
of the response are achieved through iterative self-checks by LLM. Subsequently, discriminator
functions are derived from the final response to discriminate key states within trajectories. (b) Key
States-Guided Exploration: Using the achieved key states chain within the processed trajectory, we
look up KSMT to get the most probable next key states. By sampling from them as the subgoal for
the concluding sub-trajectory, we integrate intrinsic rewards into the overall trajectory using SHIR.

4.1 DEVIL IS IN THE KEY STATES

Previous methods suffer from redundant exploration efforts in pursuing task-agnostic novelty (Du
et al., 2023), potentially reducing training efficiency. This motivates us to integrate task-relevant
information as a better guidance choice for efficient exploration. Nevertheless, practical proposals
are limited in the field. This work identifies the Key States as the novel task-relevant prior, which
corresponds to intermediate states with explicit semantics and expressions pertaining to the task.
Meanwhile, Proposition 4.1 explicitly reflects the efficacy of incorporating them.

Proposition 4.1. Consider the one-dimensional asymmetric random walk problem, where an agent
starts at x = 0 and aims to reach x = N ∈ N+, N > 1. The initial policy is asymmetric and random
with probabilities p ∈ (0.5, 1) and 1− p for right and left movements, respectively. Without prior
knowledge, the expected first hitting time is E(T0→N) = N

2p−1 . After introducing the task-relevant
information that the agent must first reach key states κ = 1, ..., N −1 before reaching x = N , we can
decrease the expected first hitting time by E(T0→N)−E(T prior

0→N) = (N − 1) ∗ (1
2p−1 −

2
p +1) > 0.

The proof is deferred to Appendix C. The exploration policy substantially benefits from the involve-
ment of key states, e.g., E(T0→N)−E(T prior

0→N)→∞with p→ 0.5. Such a concept is also commonly
seen in practical scenarios, such as in-game checkpoints (Demaine et al., 2016) and landmarks in
navigation (Becker et al., 1995).

4.2 KEY STATES LOCALIZATION WITH LLM

To reduce manual workload, we employ LLM to localize key states. Although generating the
aforementioned symbolic key states can be straightforward, LLM’s weakness in comprehending
symbolic states or environment details necessitates additional information in certain tasks and can
lead to errors and hallucinations that are difficult to detect. Here, we stress the importance of LLM’s
discriminative ability to localize key states in rollout trajectories to better leverage LLM’s general
knowledge. The rationale is that discrimination demands only a high-level task understanding and is
more reliable and universal than naive generation, as discussed in detail in Appendix B.1.

To discriminate key states, we prompt LLM to generate m (determined by LLM) discriminator
functions {Fi}mi=1, as depicted in Fig. 2. Each discriminator function Fi (the ‘IsKeystatei(s)’ block
in Fig. 2) takes in the state st at timestep t and outputs a boolean value to tell whether st is the
corresponding key state κi. Such an approach systematically annotates each state in trajectories as a
key state instance (st → sκ2

t in Fig. 2) or not. Notably, LEMAE injects task-relevant information into
the symbolic states without predefined components such as observation captioners (Du et al., 2023) or
environment codes (Xie et al., 2023), which require manual fine-tuning, may be unavailable in many
scenarios, or could introduce extra information. In addition, the discriminator functions’ reusability
avoids frequent calls, and our method empirically requires fewer than three LLM inferences for a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

specific task. These advantages highlight the potential of LEMAE to expand the scope of application
scenarios with fewer constraints and reduced costs.

We design prompts to alleviate the burden of labor-intensive prompt engineering across tasks. As
illustrated in Fig. 2, each task’s prompt is structured by a standardized prompt template and task
information. The prompt template, consistent across tasks, primarily contains several role instructions
to guide LLM in role understandings (including promoting labor division among agents in MARL)
and output constraints, e.g., in JSON format. For a new task with symbolic state space, the prompt
template requires only essential details, i.e., the task description and the state form, which can be
easily extracted from the task document without additional processing, making it less demanding
than previous methods (Ma et al., 2023; Du et al., 2023). LLM then generates key states definitions
and discriminator functions, which can be easily extracted from the JSON response via key-value
matching. An extension to vision-based tasks is described in Appendix F.2.

Considering that LLM sometimes generates inaccurate responses and non-executable codes, we
develop a Self-Check mechanism to enable LLM’s autonomous evaluation and response improvement,
which is inspired by recent approaches (Shinn et al., 2023; Dhuliawala et al., 2023). The mechanism
comprises two checking operations: LLM rethinking and code verification. The former prompts
LLM with a set of queries for self-assessment, ensuring compliance with specified criteria. The latter
verifies the executability of discriminator functions with actual state inputs, providing feedback until
all functions are executable. Table 1 further examines its effectiveness.

We use GPT-4-turbo from OpenAI API and prompt and response details are attached in Appendix D.

4.3 KEY STATE-GUIDED EXPLORATION

4.3.1 SUBSPACE-BASED HINDSIGHT INTRINSIC REWARD

With the annotated key states, trajectories can naturally be segmented into sub-trajectories. Drawing
inspiration from Andrychowicz et al. (2017), we integrate hindsight intrinsic rewards by conceptualiz-
ing the annotated key states as sub-trajectories’ subgoals, which is further discussed in Appendix E.3.
Such integration guides the policy toward achieving these key states by increasing reward density,
thus reducing manual reward design burdens. Moreover, the state vector index from the discriminator
function constitutes the reward-related subspace of the state (Liu et al., 2021). Here, we write the
Subspace-based Hindsight Intrinsic Reward (SHIR) function as:

rκm

I (t) = ∥Φm(st)− Φm(κm)∥ − ∥Φm(st+1)− Φm(κm)∥, (1)

where ∥·∥ denotes a distance metric, e.g., Manhattan distance or cosine similarity; Φm(s) = (se)e∈υm

restricts the state space to elements e ∈ υm, se is the e-th element of the full-state s, and υm ⊂ N+

refers to the subset of entire state space from the discriminator function Fm.

Given that rewards generally rely on a limited subset of the entire state space (Liu et al., 2021;
Todorov et al., 2012), adopting subspace-based rewards helps avoid the potential redundancy and bias
associated with the design of intrinsic rewards in the entire state space. LEMAE is also applicable to
scenarios where rewards depend on the global state space, as it imposes no strict constraints. Hence,
the final reward function is further derived as:

r(t) = α · rE(t) + β · rκm

I (t), (2)

where rE denotes the extrinsic reward with α, β ∈ R+ non-negative scaling factors.

4.3.2 KEY STATES MEMORY TREE

To organize exploration with memory, we introduce the concept of Key States Memory Tree (KSMT).
It tracks transitions between key states and further serves exploration and planning. Compared
with the naive ϵ-greedy method, gradually revealing the KSMT helps avoid redundant exploration
throughout the state space, revealing its potential for real-world applications. Notably, LEMAE is
compatible with other memory structures, such as Directed Acyclic Graphs.

Construct KSMT: Initialized at the root node, KSMT dynamically expands by iteratively incorporat-
ing key state chains obtained from annotated trajectories, as outlined in Algorithm 2. These steps
repeat until either reaching the success state or fully depicting the transitions between key states.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

0.00 0.25 0.50 0.75 1.00 1.25
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

Acceleration Rate: 4.6Acceleration Rate: 4.6Acceleration Rate: 4.6Acceleration Rate: 4.6Acceleration Rate: 4.6

Push-Box

0.0 0.5 1.0 1.5 2.0 2.5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Acceleration Rate: 13.8Acceleration Rate: 13.8Acceleration Rate: 13.8Acceleration Rate: 13.8Acceleration Rate: 13.8

Pass

0.0 0.5 1.0 1.5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Acceleration Rate: 6.1Acceleration Rate: 6.1Acceleration Rate: 6.1

Secret-Room

0.0 0.5 1.0 1.5 2.0 2.5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Acceleration Rate: >6.7Acceleration Rate: >6.7Acceleration Rate: >6.7

Large-Pass
LEMAE(Ours) CMAE LAIES EITI EDTI HER Eureka-si ELLM

Figure 3: Evaluating LEMAE against baseline methods on four MPE maps with sparse rewards,
using test win rate as the evaluation metric. The acceleration rate refers to how much faster LEMAE
finds the success state compared to CMAE.

Explore with KSMT: To discover new KSMT branches, we adopt an exploration strategy that
balances high-randomness policy πϵh

θ for exploring under-explored nodes with low-randomness
policy πϵl

θ to minimize interference with policy learning, as shown in Algorithm 2. Upon reaching a
leaf node, agents execute πϵh

θ to deepen KSMT. While reaching a non-leaf node ξi, the agents take
πϵh
θ with probability pi to expand the breadth or πϵl

θ with probability 1− pi for progression towards
the next key state. The probability pi is calculated as pi = 1

di+1 , with di the degree of the node ξi as
an indicator of the degree of under-exploration. The exploration phase completes upon the discovery
of the success state. We also prune branches that do not lead to success to circumvent task-irrelevant
key states. In this way, KSMT enables exploration in a more meaningful state subspace.

Plan with KSMT: Since KSMT acts as a dynamic model within the key state space, we plan the
subgoal for the final sub-trajectory based on it. As shown in Fig. 2b, given the achieved key states
chain, we identify the corresponding branch (κ2 → κ1 → children) in KSMT through a lookup
operation. Since they have been validated by memory, the children represent the most likely next key
states, from which we randomly sample the final subgoal. This process mainly handles cases where
trajectories fail to reach a key state as the final subgoal. It enhances SHIR and improves the efficacy
of exploring KSMT by encouraging agents to access existing key states.

5 EXPERIMENTS

We conduct experiments on commonly used multi-agent exploration benchmarks: (1) the Multiple-
Particle Environment (Lowe et al., 2017; Wang et al., 2019) and (2) the StarCraft Multi-Agent
Challenge (Samvelyan et al., 2019b). Following previous studies (Ma et al., 2023; Liu et al., 2021;
Xu et al., 2023), we focus primarily on tasks with symbolic state spaces and use the sparse reward
version for all tasks without specific instructions.

Baselines. We compare LEMAE with representative baselines: IPPO is a MARL algorithm which
extends PPO (Schulman et al., 2017); QMIX (Rashid et al., 2018) is a widely adopted MARL
baseline; EITI and EDTI (Wang et al., 2019) employ the impact of interaction in coordinated agents’
behaviors; MAVEN (Mahajan et al., 2019) combine value-based and policy-based approaches through
hierarchical control; CMAE (Liu et al., 2021) learns cooperative exploration by selecting shared goals
from multiple projected state space; RODE (Wang et al., 2020b) decomposes joint action spaces into
role-based ones to enhance exploration; MASER (Jeon et al., 2022) generates subgoals automatically
for multiple agents from the experience replay buffer; LAIES (Liu et al., 2023) addresses the lazy
agents problem by mathematical definition and causal analysis. ELLM (Du et al., 2023) employs
LLM priors to guide vision-based exploration, using state captioners and semantic similarity-based
rewards. LEMAE is implemented on IPPO in MPE and QMIX in SMAC, consistent with previous
works (Wang et al., 2019; Liu et al., 2023; Jeon et al., 2022) to ensure fair comparisons.

We run each algorithm on five random seeds and report the mean performance with standard deviation.
Further details can be referenced in Appendix E.

5.1 MULTIPLE-PARTICLE ENVIRONMENT (MPE)

In MPE, we evaluate LEMAE on Pass, Secret-Room, Push-Box, and Large-Pass, which are commonly
used multi-agent exploration tasks in previous works (Wang et al., 2019; Liu et al., 2021).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

(a) (b) (c)
Figure 4: (a) Key states discrimination functions generated on task Pass. (b) The map of Secret-Room
with key states: κ1 represents occupying the left switch to open all doors, while κ2, κ3, and κ4

represent exploring right rooms 1, 2, and 3, respectively. The directional arrows symbolize the
transitional relationships within KSMT. (c) The key states number curve in Secret-Room shows that
LEMAE can identify all key states and proficiently prune task-irrelevant ones.

LLM can effectively discriminate key states. To start with, we examine the efficacy of LLM in
discriminating key states. On the Pass task, as shown in Fig. 1a, a room is divided by a wall, each
half containing an invisible switch. Passage through the door is allowed only when an agent occupies
a switch. Initially, in the left half-room, agents must cooperate to move to the right half-room. In
Fig. 4a, LLM exhibits a precise understanding of the task and generates meaningful discriminator
functions, demonstrating the feasibility of our approach based on the current LLM.

LEMAE achieves superior performance. We investigate how LEMAE enhances exploration by
comparing it with baselines, confirming the value of incorporating LLM priors. The training curves
are depicted in Fig. 3. The failure of commonly used baselines highlights the necessity and urgency
for efficient exploration, while the superior performance of LEMAE underscores the effectiveness
of augmenting RL with task-specific guidance from LLM. Specifically, the failure of EITI, EDTI,
and LAIES may be attributed to the complexity of learning dynamics or the scarcity of external
state changes in the tasks. While CMAE learns effective strategies for simple tasks, its redundant
exploration hampers efficiency, rendering it inadequate for tasks with expansive exploration spaces,
such as Large-Pass. Although it benefits from LLM priors, ELLM performs worse than LEMAE
due to the weak guidance provided by semantic similarity-based rewards, not to mention its reliance
on frequent LLM inference and a predefined state captioner. Furthermore, we compare LEMAE
with traditional SOTA baseline CMAE using the metric of the number of exploration steps taken to
find the success state. The results indicate a significant exploration acceleration rate, up to 10x,
underscoring LEMAE’s efficiency. The superior performance of our method can be attributed to the
mitigating of redundant exploration by incorporating task-relevant information.

LEMAE benefits from LLM priors through discrimination. We evaluate HER (Andrychowicz
et al., 2017), which also employs hindsight intrinsic rewards but selects goals randomly from memory.
HER’s poor performance emphasizes the critical role of incorporating LLM priors for localizing
key states in achieving efficient exploration. To support our claim about the superiority of LLM
discrimination over generation, we evaluate Eureka-si, a single-iteration Eureka (Ma et al., 2023)
variant, which uses LLM to generate reward functions. While Eureka-si performs comparably to
LEMAE in simple tasks, it struggles in complex tasks with partial observability, indicating that
LLM-based discrimination may offer a more general and effective integration of LLM. Notably, these
two methods are not specifically designed for efficient exploration. To ensure fairness, we retain the
prompt information consistent across all relevant LLM-based methods. Please refer to Appendix E.2,
E.3 for details.

LEMAE reduces redundant exploration. We further compare the exploration behavior of LEMAE
with that of CMAE on the Pass task. The visitation maps, displayed in log scale, are depicted in
Fig. 1. The illustration reveals that LEMAE markedly avoids redundant exploration: agents trained
with CMAE tend to excessively explore the left room, while the agents’ visitation area in LEMAE
is notably concentrated around the success path. Furthermore, an organic division of labor among
agents emerges, affirming the efficacy of encouraging labor division in prompt design.

LEMAE circumvents task-irrelevant key states. Due to the incomplete information, LLM may
discriminate task-irrelevant key states. For instance, in the Secret-Room task, three rooms are present

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

MMM2

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
3s5z_vs_3s6z

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
3s_vs_5z

0 1 2 3 4 5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

5m_vs_6m

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
2m_vs_1z

0.00 0.25 0.50 0.75 1.00 1.25 1.50
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
1c3s5z

LEMAE(Ours) LAIES QMIX-DR ELLM QMIX CMAE MAVEN MASER RODE

Figure 5: Evaluating LEMAE on six SMAC maps with sparse rewards, using test win rate as the
evaluation metric. Notably, QMIX-DR is QMIX with dense rewards in the original SMAC, serving
as an upper bound, with its intrinsic rewards designed by a human expert.

on the right, but LLM is not informed about the real target room for fairness. In Fig. 4b, LLM
discriminates two task-irrelevant key states, denoted as κ2 and κ4, which represent an exploration
of the two irrelevant rooms, respectively. Fig. 4c shows that the pruning mechanism after finding
the success state in LEMAE makes it effective in circumventing task-irrelevant key states. A more
detailed robustness analysis is provided in Sec. 5.5.

5.2 STARCRAFT MULTI-AGENT CHALLENGE (SMAC)

SMAC is a widely-used challenging benchmark in MARL. In contrast to dense or semi-sparse reward
versions used before, we employ fully sparse-reward tasks to emphasize exploration, rewarding
agents only upon complete enemy elimination. In addition, to validate LEMAE across diverse
scenarios, we conduct experiments on six maps with varied difficulty and agent numbers.

In Fig. 5, LEMAE demonstrates superior performance over all baselines. Although baselines QMIX,
MAVEN, CDS, and MASER excel in dense or semi-sparse reward settings, they struggle in fully
sparse reward scenarios. CMAE shows partial efficacy in simpler tasks but fails in harder scenarios
due to the lack of task-related information in curiosity-driven goal selection. LAIES is the only non-
LLM baseline comparable to LEMAE. However, it requires handcrafted external state priors and still
underperforms compared to LEMAE, especially on more challenging tasks. ELLM, benefiting from
LLM priors, performs well on simpler tasks, but its effectiveness diminishes on harder ones, likely
due to the instability and less reliable guidance of semantic similarity-based rewards. Notably, we add
QMIX-DR, which augments QMIX with dense rewards in the original SMAC. Surprisingly, LEMAE
demonstrates the potential to match or even surpass QMIX-DR, particularly in hard maps, shedding
light on minimizing the manual workload in complex reward design in real-world scenarios. Given
the complexity of the SMAC benchmark, the consistent superiority of LEMAE confirms its potential
applicability in more complex real-world scenarios. We further evaluate LEMAE on SMACv2 (Ellis
et al., 2024), an enhanced version with more stochasticity, as detailed in Appendix F.1.

5.3 COMPATIBLILITY WITH VARIOUS ALGORITHMS

LEMAE incorporates task-relevant guidance in the form of intrinsic rewards and is agnostic to RL
algorithms. Sec. 5.1 and 5.2 have verified the compatibility through implementing on two distinct
MARL algorithms: IPPO in MPE and QMIX in SMAC. To further substantiate this claim, we
build our method on two widely-used MARL algorithms, namely QPLEX (Wang et al., 2020a)
and VMIX (Su et al., 2021), adopting a value-based and actor-critic methodology respectively.
As illustrated in Fig. 6a, algorithms combined with LEMAE consistently improve performance,
underscoring the potential of LEMAE to integrate with alternative algorithms across diverse fields
in the future. Additionally, LEMAE is a versatile approach for efficient exploration, not limited to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

2m_vs_1z 1c3s5z MMM2
0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 W

in
 R

at
e

QMIX+Ours QPLEX+Ours VMIX+Ours

(a)

0 1 2 3 4
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

3s_vs_5z

0.0 0.5 1.0 1.5 2.0 2.5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
Large-Pass

LEMAE Base+SHIR
Base+SHIR+KSMTE Base+SHIR+KSMTP Base

(b)

Figure 6: (a) Evaluations on baselines of well-known MARL algorithms, i.e., QPLEX and VMIX.
Notably, both QPLEX and VMIX exhibit complete failure unless integrated with our approach.
(b) Ablation studies are conducted on two exemplary tasks from MPE and SMAC to assess the
significance of KSMT and SHIR within LEMAE.

Table 1: Ablation studies on Self-Check mechanism and
LLMs. We compare the performance of two LLMs (GPT-
4-turbo and GPT-3.5-turbo), recording the Acceptance
Rate (racc) and Execution Rate (rexe) in ten runs of the
generated discriminator functions. w/o denotes the ab-
sence of our Self-Check mechanism.

racc (rexe) GPT-4-turbo GPT-4-turbo w/o GPT-3.5-turbo

Large-Pass 1.0 (1.0) 0.8 (1.0) 0.7 (1.0)

2m vs 1z 1.0 (1.0) 0.7 (1.0) 0.6 (1.0)

5m vs 6m 1.0 (1.0) 0.9 (1.0) 1.0 (1.0)
MMM2 0.8 (1.0) 0.6 (0.7) 0.0 (1.0)

0.1 0.5 1.0 5.0 10.0
Relative Scaling Rate

0.0

0.5

1.0

Te
st

 W
in

 R
at

e

Figure 7: Hyperparameter examination
on reward scaling rate α and β. The x-
axis represents the relative values with
respect to the default parameters.

MARL. To validate this assertion, we conduct further evaluations of LEMAE in a single-agent variant
of MPE, as demonstrated in Appendix F.4.

5.4 ABLATION STUDIES

Role of SHIR and KSMT. We conduct an ablation study to assess the significance of KSMT and
SHIR within LEMAE. We select two exemplary tasks from MPE and SMAC and report results
in Fig. 6b. In SMAC, Base refers to QMIX, while in MPE, it denotes IPPO. Besides, SHIR
represents subspace-based hindsight intrinsic reward, KSMTE signifies exploration with KSMT,
KSMTP denotes planning with KSMT, and LEMAE encompasses Base+SHIR+KSMTE+KSMTP.
As illustrated, the absence of SHIR or KSMT significantly deteriorates performance, revealing both
components’ pivotal roles in achieving effective key state-guided exploration.

Role of Self-Check mechanism and LLMs. We conduct a comparative analysis between GPT-4-
turbo and GPT-3.5-turbo regarding generating discriminator functions. Meanwhile, we investigate the
performance of GPT-4-turbo without the Self-Check mechanism (GPT-4-turbo w/o). The Acceptance
Rate (racc) denotes the proportion of seeds achieving over 80% of the best performance after RL
training, while the Execution Rate (rexe) indicates the proportion of seeds for which all discriminator
functions are executable. As depicted in Table 1, the results demonstrate that a powerful LLM
with our Self-Check mechanism effectively ensures the high quality of key states, as evidenced by
the code’s executability and the final performance. The scalability of LEMAE to LLM and our
Self-Check mechanism promise that LEMAE can leverage more powerful LLMs in the future and be
applied to more challenging real-world tasks safely and efficiently.

5.5 SENSITIVITY & ROBUSTNESS ANALYSIS

Sensitivity to Hyperparameters. We conduct experiments on the pivotal hyperparameters in
LEMAE, i.e., reward scaling rates α and β. The x-axis represents the relative values with respect

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

to the default (α = 10, β = 1), encompassing evaluations for α ∈ {1, 5, 10, 50, 100} and β ∈
{0.1, 0.5, 1, 5, 10}. Fig. 7 illustrates that LEMAE is robust to these hyperparameters across a
considerable range. Notably, excessive extrinsic reward scaling rate α or insufficient intrinsic reward
scaling rate β can cause performance degradation due to the abrupt alteration of the reward or the
inadequate motivational impact. Additionally, we conduct an ablation study on mixed-randomness
exploration in Appendix F.3.

Robustness to Perturbations in Key States. We conduct experiments to evaluate the robust-
ness of LEMAE to perturbations in key states. Specifically, Reduction simulates the absence
of key states by randomly clearing a certain percentage of key states. Distraction simulates
the misidentification of common states as key states by randomly adding a certain portion of

Table 2: Robustness analysis of LEMAE to perturbations in
key states, whether randomly deleting key states (Reduction)
or adding distracting states (Distraction).

Reduction Distraction
Tasks Default 25% 50% 50% 100%

1c3s5z 0.98±0.02 0.97±0.01 0.97±0.02 0.92±0.04 0.89±0.05

3s vs 5z 0.83±0.07 0.80±0.18 0.57±0.28 0.80±0.11 0.66±0.08

MMM2 0.89±0.08 0.89±0.03 0.79±0.09 0.86±0.04 0.79±0.08

distracting states (encouraging a ran-
dom state dimension to 0). The
observed performance decrease with
increasing perturbations in Table 2
underscores the significance of key
states’ quality. LEMAE exhibits no-
table robustness to perturbations, en-
suring its reliability across diverse
application scenarios, particularly in
light of the limited capabilities of cur-
rent LLMs.

5.6 SCALABILITY & GENERALIZATION ANALYSIS

Alice
Bob

Mountain

(a) (b)

Figure 8: (a) A brand new task, River, which
LLM has never encountered before. (b) The
training curves of LEMAE and baselines using
the evaluation metric of test win rate.

To rule out the possibility that LEMAE’s success
relies on LLM’s familiarity with the chosen tasks,
we’ve handcrafted a brand new task, termed River,
which LLM has never encountered before. The task
is illustrated in Fig. 8a, where the objective is for
Bob to help Alice, who is afraid of water, cross two
rivers to reach the bottom-right corner. As shown
in Fig. 8b, LEMAE outperforms the baselines, and
this confirms LLM’s generalization capabilities to
empower LEMAE’s effectiveness in promoting effi-
cient exploration in diverse new tasks. Please refer
to Appendix E.4.3 for details on the task.

Additionally, we extend LEMAE to a vision-based
task, as described in Appendix F.2, demonstrating
the scalability potential of LEMAE.

6 CONCLUSION

Summary of This Work: We present LEMAE, a novel framework that benefits multi-agent explo-
ration with task-specific guidance from LLM. LEMAE executes the key states localization with LLM
and enables the key state-guided exploration to improve sample efficiency. In this way, we can (i)
build up connections between LLM and RL to ground linguistic knowledge into decision-making, (ii)
reduce the manual workload in accessing knowledge and intensive inference calls from LLM, and
(iii) significantly boost exploration efficiency through guided and organized exploration. Extensive
experiments further examine the effectiveness of LEMAE in typical benchmarks.

Limitations & Future Investigations: In developing LEMAE, we made efforts to compensate for
the pitfalls of concurrent LLMs, e.g., careful preparation for prompt engineering and task-related
prior provision to avoid the nuisances in LLM usages. All of these can be circumvented with the
progress of LLM’s capability enhancement. This work paves the way for LLM-empowered RL to
achieve the potential in complicated decision-making scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Craig Becker, Joaquin Salas, Kentaro Tokusei, and J-C Latombe. Reliable navigation using landmarks.
In Proceedings of 1995 IEEE International conference on Robotics and Automation, volume 1, pp.
401–406. IEEE, 1995.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza-
tion. In International Conference on Machine Learning, pp. 1283–1294. PMLR, 2020.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Guolong Liu, Gaoqi Liang, Junhua Zhao, and Yun
Li. Survey on large language model-enhanced reinforcement learning: Concept, taxonomy, and
methods. arXiv preprint arXiv:2404.00282, 2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. arXiv preprint arXiv:2302.02662, 2023.

Liangliang Chen, Yutian Lei, Shiyu Jin, Ying Zhang, and Liangjun Zhang. Rlingua: Improving
reinforcement learning sample efficiency in robotic manipulations with large language models.
IEEE Robotics and Automation Letters, 2024.

Erik D Demaine, Giovanni Viglietta, and Aaron Williams. Super mario bros. is harder/easier than we
thought. 2016.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. Chain-of-verification reduces hallucination in large language models. arXiv preprint
arXiv:2309.11495, 2023.

Shaokang Dong, Hangyu Mao, Shangdong Yang, Shengyu Zhu, Wenbin Li, Jianye Hao, and Yang
Gao. Wtoe: Learning when to explore in multiagent reinforcement learning. IEEE Transactions
on Cybernetics, 2023.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. arXiv preprint arXiv:2302.06692, 2023.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
episodic bonuses. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In International Conference on Machine Learning (ICML), 2019.

Jeewon Jeon, Woojun Kim, Whiyoung Jung, and Youngchul Sung. Maser: Multi-agent reinforcement
learning with subgoals generated from experience replay buffer. In International Conference on
Machine Learning, pp. 10041–10052. PMLR, 2022.

Yonghyeon Jo, Sunwoo Lee, Junghyuk Yum, and Seungyul Han. Fox: Formation-aware exploration
in multi-agent reinforcement learning. arXiv preprint arXiv:2308.11272, 2023.

Woo Kyung Kim, SeungHyun Kim, Honguk Woo, et al. Efficient policy adaptation with contrastive
prompt ensemble for embodied agents. Advances in Neural Information Processing Systems, 36,
2024.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. arXiv preprint arXiv:2310.00166, 2023.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Gregory F Lawler and Vlada Limic. Random walk: a modern introduction, volume 123. Cambridge
University Press, 2010.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithviraj Ammanabrolu, Faeze Brahman, Shiyu Huang,
Chandra Bhagavatula, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. arXiv preprint arXiv:2305.17390, 2023.

Cam Linke, Nadia M Ady, Martha White, Thomas Degris, and Adam White. Adapting behavior
via intrinsic reward: A survey and empirical study. Journal of artificial intelligence research, 69:
1287–1332, 2020.

Boyin Liu, Zhiqiang Pu, Yi Pan, Jianqiang Yi, Yanyan Liang, and Du Zhang. Lazy agents: a
new perspective on solving sparse reward problem in multi-agent reinforcement learning. In
International Conference on Machine Learning, pp. 21937–21950. PMLR, 2023.

Iou-Jen Liu, Unnat Jain, Raymond A Yeh, and Alexander Schwing. Cooperative exploration for
multi-agent deep reinforcement learning. In International Conference on Machine Learning, pp.
6826–6836. PMLR, 2021.

Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu, and Jiaya Jia.
Rl-gpt: Integrating reinforcement learning and code-as-policy. arXiv preprint arXiv:2402.19299,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in neural information
processing systems (NeurIPS), 2017.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in neural information processing systems, 32, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs.
Springer, 2016.

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian
Lehner, Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language models
in reinforcement learning. In International Conference on Machine Learning, pp. 17156–17185.
PMLR, 2022.

Fabian Paischer, Thomas Adler, Markus Hofmarcher, and Sepp Hochreiter. Semantic helm: A
human-readable memory for reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning (ICML), 2017.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Shaohui Peng, Xing Hu, Qi Yi, Rui Zhang, Jiaming Guo, Di Huang, Zikang Tian, Ruizhi Chen,
Zidong Du, Qi Guo, et al. Self-driven grounding: Large language model agents with automatical
language-aligned skill learning. arXiv preprint arXiv:2309.01352, 2023.

Yun Qu, Boyuan Wang, Jianzhun Shao, Yuhang Jiang, Chen Chen, Zhenbin Ye, Lin Liu, Yang Jun
Feng, Lin Lai, Hongyang Qin, et al. Hokoff: Real game dataset from honor of kings and its
offline reinforcement learning benchmarks. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019a.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019b.

Vishnu Sarukkai, Brennan Shacklett, Zander Majercik, Kush Bhatia, Christopher Ré, and
Kayvon Fatahalian. Automated rewards via llm-generated progress functions. arXiv preprint
arXiv:2410.09187, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy
maximization with random encoders for efficient exploration. In International Conference on
Machine Learning, pp. 9443–9454. PMLR, 2021.

Jianzhun Shao, Hongchang Zhang, Yun Qu, Chang Liu, Shuncheng He, Yuhang Jiang, and Xiangyang
Ji. Complementary attention for multi-agent reinforcement learning. In International Conference
on Machine Learning, pp. 30776–30793. PMLR, 2023.

Jianzhun Shao, Yun Qu, Chen Chen, Hongchang Zhang, and Xiangyang Ji. Counterfactual conserva-
tive q learning for offline multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S Du, and Huazhe Xu. Unleashing the power of pre-trained
language models for offline reinforcement learning. arXiv preprint arXiv:2310.20587, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Yash Shukla, Wenchang Gao, Vasanth Sarathy, Alvaro Velasquez, Robert Wright, and Jivko Sinapov.
Lgts: Dynamic task sampling using llm-generated sub-goals for reinforcement learning agents.
arXiv preprint arXiv:2310.09454, 2023.

Jiayang Song, Zhehua Zhou, Jiawei Liu, Chunrong Fang, Zhan Shu, and Lei Ma. Self-refined large
language model as automated reward function designer for deep reinforcement learning in robotics.
arXiv preprint arXiv:2309.06687, 2023.

Jianhai Su and Qi Zhang. Subgoal proposition using a vision-language model. In CoRL 2023
Workshop on Learning Effective Abstractions for Planning (LEAP), 2023.

Jianyu Su, Stephen Adams, and Peter Beling. Value-decomposition multi-agent actor-critics. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 11352–11360, 2021.

Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hangtian Jia, Chunxu
Ren, Yan Zheng, Zhaopeng Meng, Changjie Fan, et al. Hierarchical deep multiagent reinforcement
learning with temporal abstraction. arXiv preprint arXiv:1809.09332, 2018.

Sebastian B Thrun. Efficient exploration in reinforcement learning. Carnegie Mellon University,
1992.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Boyuan Wang, Yun Qu, Yuhang Jiang, Jianzhun Shao, Chang Liu, Wenming Yang, and Xiangyang Ji.
Llm-empowered state representation for reinforcement learning. arXiv preprint arXiv:2407.13237,
2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
arXiv preprint arXiv:2308.11432, 2023b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent exploration.
arXiv preprint arXiv:1910.05512, 2019.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
Rode: Learning roles to decompose multi-agent tasks. arXiv preprint arXiv:2010.01523, 2020b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Automated dense reward function generation for reinforcement learning.
arXiv preprint arXiv:2309.11489, 2023.

Pei Xu, Junge Zhang, Qiyue Yin, Chao Yu, Yaodong Yang, and Kaiqi Huang. Subspace-aware
exploration for sparse-reward multi-agent tasks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11717–11725, 2023.

Zhao Xu, Yang Lyu, Quan Pan, Jinwen Hu, Chunhui Zhao, and Shuai Liu. Multi-vehicle flocking
control with deep deterministic policy gradient method. In International Conference on Control
and Automation (ICCA), 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Yang Yu and Zhi-Hua Zhou. A new approach to estimating the expected first hitting time of
evolutionary algorithms. Artificial Intelligence, 172(15):1809–1832, 2008.

Bin Zhang, Hangyu Mao, Jingqing Ruan, Ying Wen, Yang Li, Shao Zhang, Zhiwei Xu, Dapeng
Li, Ziyue Li, Rui Zhao, et al. Controlling large language model-based agents for large-scale
decision-making: An actor-critic approach. arXiv preprint arXiv:2311.13884, 2023a.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of
human notions of interestingness. arXiv preprint arXiv:2306.01711, 2023b.

Zihao Zhou, Bin Hu, Chenyang Zhao, Pu Zhang, and Bin Liu. Large language model as a policy
teacher for training reinforcement learning agents. arXiv preprint arXiv:2311.13373, 2023.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A ALGORITHM

This section includes the pseudo algorithms. Algorithm 1 presents LEMAE’s main algorithm.
LEMAE consists of four phases: generating discriminator functions with LLM, exploring with
KSMT, calculating SHIR, and performing RL training. For on-policy RL, the buffer D corresponds
to a rollout buffer, while for off-policy RL, it is initialized as a replay buffer (Paischer et al.,
2022). Algorithm 2 illustrates the process of exploring with KSMT. As our approach is agnostic to
reinforcement learning algorithms, we leave out the details of standard RL training in the main paper.

Algorithm 1: LEMAE
Input: Large language modelM, prompt P , rethinking prompt Pre, non-negative scaling

factors α, β, randomness epsilon ϵl, ϵh (ϵl < ϵh), training frequency N , max episodes
Nmax, key states numbers K.

Output: Policy network πθ.
Randomly initialize the policy network parameter θ.
Initialize key states memory tree T ← [root], replay buffer D, key states chain replay buffer Dks

Initial discriminator functions {F̂i}Ki=1 ←M(P);
// Self-Check Mechanism

LLM rethinking {F̂re
i }Ki=1 ←M(P, {F̂i}Ki=1,Pre);

while there are non-executable discriminator functions in {F̂re
i }Ki=1 do

{F̂re
i }Ki=1 ←M(P, {F̂re

i }Ki=1, error)
end
Final discriminator functions {Fi}Ki=1;
for episode = 1 to Nmax do

// Explore with Key States Memory Tree (Algorithm 2)
κ chain, T , τ ← KSMT-Exp (πθ, T , {Fi}Ki=1, ϵl, ϵh);
D ← D ∪ {τ}, Dks ← Dks ∪ {κ chain};
if episode mod N = 0 then

Sample a batch B = {τi}|B|
i=1 from D and the corresponding batch of key states chains

Bks = {κ chaini}|B|
i=1 from Dks;

for τ = {(st,at, st+1, rt)}tmax
t=1 , κ chain ∈ B,Bks do

tstart ← 1;
for {tend, κm} ∈ κ chain do

for t = tstart to tend do
// Subspace-based Hindsight Intrinsic Reward (equation 1)
Update τ with rt = α · rt + β · rκm

I (st, st+1); tstart ← tend;
end

end
// Plan with Key States Memory Tree
if branch corresponding to κ chain in T then

Extract all children nodes C = {ξi}|C|i=1 and randomly sample a node ξi ∼ C;
end
else

Randomly sample a node ξi from all nodes (not in κ chain) in T ;
end
κplan corresponds to the sampled node ξi;
for t = tstart to tmax do

Update τ with rt = α · rt + β · rκplan

I (st, st+1);
end
Update B with τ ;
// RL Training (Algorithm Agnostic)
Use an MARL algorithm to train θ with B;

end
end

end

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Algorithm 2: Explore with Key States Memory Tree (KSMT-Exp)

Input: Policy network πθ, key states memory tree T , discriminator functions {Fi}Ki=1,
randomness epsilon ϵl, ϵh (ϵl < ϵh).

Output: κ chain, key states memory tree T , trajectory τ .
Initialize κ chain← [] , τ ← {}
for t = 1 to tmax do

// key states localization in rollout trajectories
Discriminate st with {Fi}Ki=1;
if (st is a key state κm) and (κm not in κ chain) then

κ chain.append({t, κm});
if branch corresponding to κ chain not in T then

// update KSMT
add the branch into T ;

end
else if κm correponds to a non-leaf node ξ then

// mixed-randomness exploration strategy
d← the degree of the node ξ;
p = 1

d+1 ;

ϵ =

{
ϵh with probability p

ϵl with probability 1− p
;

end
else

ϵ = ϵh;
end

end
With probability ϵ select a random action at;
Otherwise select at ∼ πθ(st);
Obtain a tuple (st,at, st+1, rt) by executing at;
τ ← τ ∪ {(st,at, st+1, rt)}

end

B FURTHER DISCUSSIONS

B.1 THE INSIGHTS BEHIND KEY STATES DISCRIMINATION

In our considered scenarios, we claim that discrimination is generally easier and more universal
than key state generation by LLM, particularly in the context of high-dimensional states and partial
observability. The reasons are as follows:

1. Discrimination focuses on high-level task understanding and identifying key state charac-
teristics, while generation requires detailed, low-level comprehension, assigning values to
each element. This makes generation more challenging and error-prone, particularly in
high-dimensional settings. Discrimination equivalently simplifies the output space to key
state labels, thus alleviating issues like hallucinations.

2. In implementations, errors in discriminator functions are easier to examine and correct
through testing with real states. In contrast, errors in generated key states are harder to detect
and are typically inferred from training performance.

3. In cases of partial observability, generating key states directly is unreliable. For example, in
the Pass task, the positions of hidden switches are unknown and must be inferred from the
door’s status. LLM cannot generate key states accurately without knowledge of the specific
agents’ positions required to activate a switch.

B.2 LIMITATIONS

We build a bridge between LLM and RL to facilitate efficient exploration by leveraging task-related
guidance provided by LLM. However, persistent constraints inherent to LLMs, such as their limited

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

capacity to comprehend task-specific information and the inevitable hallucination, become bottlenecks
in our approach, which induces the following limitations:

1. We mitigate heavy prompt engineering through the use of a standardized prompt template but
the necessity persists for manually providing task information for LLM. Thus, we assume the
availability of semantic meanings for symbolic states. This assumption is feasible, as these
manually designed states have inherent meanings documented in task specifications (Liu
et al., 2021; Samvelyan et al., 2019b), and is no stronger than prior works requiring a state
captioner (Du et al., 2023) or environment code (Ma et al., 2023), which also involve manual
fine-tuning or access to additional state information.

2. Constrained by the limitations of LLM’s capabilities and the inherent issue of hallucination,
it may face challenges in directly providing effective key state priors for more complex tasks.
Besides, due to our use of LLMs, this work primarily focuses on tasks with symbolic states.
Future research could extend its application to more complicated tasks, e.g., image-based
tasks, by employing advanced multi-modal LLMs. We provide an initial attempt to extend
LEMAE beyond symbolic tasks in Appendix F.2.

Since the efficiency of the proposed LEMAE is essentially derived from versatile LLMs, we believe
that the surge of foundation model exploration will flourish LLM-empowered RL.

B.3 FUTURE WORKS

The success of the proposed LEMAE highlights the necessity and efficacy of empowering RL with
LLM. To enhance performance and extend applicability, we will explore two avenues for future
research aimed at addressing the identified limitations. These avenues are outlined as follows:

1. Streamlining the task information provision through multi-modal self-collection: Multi-
modal LLMs are garnering increasing attention for their ability to comprehend situations
through various modalities. Incorporating them with self-exploration and memory mecha-
nisms shows promise in automating the collection and understanding of task information,
thereby streamlining the implementation and enhancing the adaptability of LEMAE. We
provide an initial attempt to extend LEMAE beyond symbolic tasks in Appendix F.2.

2. Unleashing the power of better LLM with an iterative feedback mechanism: Undoubtedly,
given the rapid pace of LLM development, the emergence of more powerful LLMs is
imminent. On one hand, we intend to harness the capabilities of these advanced LLMs.
On the other hand, to fully unleash the potential of LLMs, we plan to devise an iterative
feedback mechanism to feedback LLM in LEMAE during RL training to mitigate issues
like hallucinations and errors in task understanding.

B.4 BROADER IMPACTS

Large Language Models have demonstrated considerable potential in showcasing impressive ca-
pabilities across various downstream tasks. However, research on empowering RL with LLMs is
still nascent. As a pioneering endeavor to empower RL with LLM, we propose a general approach
facilitating efficient exploration in RL with task-specific guidance from LLM.

1. For the research community, the publication of this work will inspire further exploration
into encouraging the integration of LLMs with RL to address the inherent challenges in RL,
such as efficient exploration, limited sample efficiency, and unsatisfactory generalization.
Additionally, our design promotes the application of discrimination and coding to ground
linguistic knowledge from LLMs into symbolic tasks.

2. LEMAE shows promise for real-world deployment in scenarios requiring efficient explo-
ration, such as autonomous vehicle control and robot manipulation. Moreover, as LLM is
growing by leaps and bounds, it is foreseeable that LEMAE can be applied to more chal-
lenging real-world tasks by taking advantage of more powerful LLM. Notably, to mitigate
potential risks, it is imperative to conduct LLM generation and RL training under human
supervision, thereby ensuring undesirable outcomes are averted.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

C PROOF OF PROPOSITION 4.1

Proof. Random walk is a fundamental stochastic process, formed by successive summation of
independent, identically distributed random variables (Lawler & Limic, 2010). This work considers
the one-dimensional asymmetric random walk problem, where an agent starts at x = 0 and aims to
reach x = N ∈ N+, N > 1. The expected first hitting time considered as the metric of performance,
implying the average computational time complexity (Yu & Zhou, 2008). Below is the proof of
Proposition 4.1.

Firstly, we can prove the expected first hitting time within the default setting through the application
of martingale theory. According to the problem setting, we can define the movement at each time
step as: M0 = 0, M1,M2... are i.i.d. random variables with distribution P (Mi = 1) = p, P (Mi =
−1) = 1− p, p ∈ (0.5, 1). Then the position of agent after n steps can be represented as:

Sn =

n∑
i=1

Mi, S0 = 0 (3)

However, because of the asymmetry of random variables Mi, {Sn, n ≥ 0} does not pertain to the
martingale w.r.t. {Mn, n ≥ 1}. It’s observed that E(Mi) = 2p− 1, i ≥ 1. Then, we can define:

Yn =

n∑
i=1

(Mi − (2p− 1)) , Y0 = 0 (4)

It’s easy to prove that

E|Yn| =
n∑

i=1

E|Mi| − n(2p− 1) = 2n− 2np <∞ (5)

E(Yn+1|M0,M1, ...Mn) = Yn + E(Mn+1)− (2p− 1) = Yn (6)
So, according to the definition, {Yn, n ≥ 0} is a martingale w.r.t. {Mn, n ≥ 1}
Let T0→N = min{n : S0 = 0, Sn = N} = min{n : Y0 = 0, Yn = N − n ∗ (2p − 1)}. It’s clear
that T0→N is a stopping time w.r.t. {Mn, n ≥ 1}.
It’s easy to prove that

E (|Yn+1 − Yn||M0,M1, ...Mn) = E (|Mn+1|)− (2p− 1) = 2− 2p < 2 (7)

We can assume that E(T0→N) <∞. Then, according to the Optional Stopping Theorem (Durrett,
2019), we can get

E(YT0→N
) = N − E(T0→N) ∗ (2p− 1) = E(Y0) = 0 (8)

Then
E(T0→N) =

N

2p− 1
(9)

The assumption E(T0→N) <∞ is thereby validated. Consequently, the expected first hitting time
within the default setting is E(T0→N) = N

2p−1 , a conclusion also articulated in Theorem 4.8.9 of
Durrett (2019).

We can introduce the task-relevant information that the agent must first reach key states: κ =
1, ..., N − 1 before progressing to x = N . It is presupposed that every time the agent achieves at
x = κ, the policy where x < κ is updated to a deterministic rightward movement, i.e., P (Mx =
1) = 1, x < κ, thereby emulating the update process in Reinforcement Learning.

The expected first hitting time from x = 0 to x = 1 is E(T0→1) =
1

2p−1 . After reaching x = 1, the
expected first hitting time from x = 1 to x = 2 can be calculated as:

E(T prior
1→2) = p ∗

∞∑
n=0

(2n+ 1)(1− p) =
2

p
− 1 (10)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Similarly, we can easily prove that

E(T prior
1→N) = (N − 1) ∗

(
2

p
− 1

)
(11)

Consequently, the expected first hitting time after the integration of priors becomes E(T prior
0→N) =

E(T0→1) + E(T prior
1→N) = 1

2p−1 + (N − 1) ∗
(

2
p − 1

)
.

The total advantage resulting from the integration of appropriate priors is expressed as E(T0→N)−
E(T prior

0→N) = (N − 1) ∗ (1
2p−1 −

2
p + 1) > 0, p ∈ (0.5, 1), N ∈ N+, N > 1

D LLM PROMPTS AND RESPONSES

Here are the example prompt and response in our work. Please reference the code for further details.
Notably, we adopt the chain-of-thought technique from Wei et al. (2022).

SMAC Prompt and Response Example

SYSTEM:

(Task Description)
We are playing StarCraft II micro scenario, tring to control our agents to defeat all of the
enemy units.

(State Form)
In each step, the current state is represented as a 1-dimensional list:
[nf al] ∗ n agents+ [nf en] ∗ n enemies+ [last actions].

nf al denotes the unit state for each agent with attributes
[health rate, weapon cooldown rate, relative x to map center,
relative y to map center, shield rate (1 dimension if a race is P else 0 dimension),
unit type bits (the dimension is defined in the map config)].

nf en represents the unit state for each enemy with attributes
[health rate, relative x to map center, relative y to map center,
shield rate (1 dimension if b race in map config is P else 0 dimension),
unit type bits (the dimension is defined in the map config)].

The last actions component does not require consideration.

(Role Instruction)(Template)
Your role is to give several critical key states in the task which we should try to reach and
generate the corresponding discriminator function for each key state which can discriminate
if the input state has reached the key state.
Note:

1. Don’t use the information you are not told.
2. The code should be as generic as possible.
3. The discriminator functions for different key states should be independent.
4. Your answer should be complete and not omitted.

Please think step by step and adhere to the following JSON format (just replace the () with
your answer):
{

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Thought: (Please fully understand the task. Think step by step and give your thought
about the concrete state here),

Key states: {
init: all agents and enemies are alive,
key state 1: (description),
key state 2: (description),
...,
success: all enemies are dead and at least one agent is alive
},
Discriminators: {

key state 1: (a python function with the form of def iskeystate1(state): ... return 0 or 1),
key state 2: (a python function with the form of def iskeystate2(state): ... return 0 or 1),
...
}
Subspace states: {

key state 1: (extract subspace state used in corresponding discriminator functions, such
as [1] or [2,5]),

key state 2: (extract subspace state used in corresponding discriminator functions, such
as [1] or [2,5]),

...
}

}

USER:

Task is 2m vs 1z. The map config is: {
n agents: 2, n enemies: 1, limit: 150, a race: T, b race: P, unit type bits: 0, map type:

marines
}.
Give more than 2 key states and the corresponding discriminator functions.

ASSISTANT: (LLM response)

{
Thought: Since a race is T, there is no shield rate in nf al; b race is P, so there

is 1-dim shield rate in nf en; the dim of unit type bits is 0. The dimension of nf al
= 4+0+0 = 4, the dimension of nf en = 3+1+0 = 4. The concrete state form is
[agent 0 health rate, agent 0 weapon cooldown rate, agent 0 relative x to map center,
agent 0 relative y to map center, agent 1 health rate, agent 1 weapon cooldown rate,
agent 1 relative x to map center, agent 1 relative y to map center, enemy 0 health rate,
enemy 0 relative x to map center, enemy 0 relative y to map center, enemy 0 shield rate,
last actions]. Key states should focus on the health and shield status of the enemy and the
health of our agents.,

Key states: {
init:all agents and enemies are alive,
key state 1: enemy 0’s shield is significantly damaged,
key state 2: enemy 0 is significantly damaged,
key state 3: enemy 0 is about to die,
success:all enemies are dead and at least one agent is alive
},

Discriminators: {
key state 1: def iskeystate1(state): return 1 if state[11] <0.6 else 0,
key state 2: def iskeystate2(state): return 1 if state[8] <0.6 else 0,
key state 3: def iskeystate3(state): return 1 if state[8] <0.05 else 0,
}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Subspace states: {
key state 1: [11],
key state 2: [8],
key state 3: [8],
}

}
USER:

(LLM Rethinking)
Please carefully check your response to make sure it meets the task requirements and notes
without including unnecessary details. Also, confirm that the discriminator functions do not
use any undefined variables.

ASSISTANT: (LLM response)

...... (We have omitted the intermediate LLM outputs to maintain conciseness, retaining only
the initial generation, as the differences between the initial and rechecked generations are
minimal in the absence of errors.)

MPE Prompt and Response Example

USER:

(Task Description)
Two agents are in a 30x30 room with the coordinate of the point in the upper left corner is
(0,0) and the point in the lower right corner is (29,29), separated by a wall with a door.
The door can not be directly open. There is a hidden switch in each room (The switch
coordinates are unknown and differ from the coordinate of the door.). The door will be open
only when one of the switch is occupied by an agent otherwise close. Both agents begin in
the left half of the room(agent0.x<15 and agent1.x<15).
The task is considered successfully completed as long as both agents are located in the right
half-room(agent0.x>15 and agent1.x>15).

(State Form)
In each step we can get current state. The state is a 1-dim list:
(agent0.x, agent0.y, agent1.x, agent1.y,door.open).

(Role Instruction)(Template)
Your role is to give several critical key states in the task which we should try to reach and
generate the corresponding discriminator function for each key state which can discriminate
if the input state has reached the key state.
Note:

1. Don’t use the information you are not told.
2. The code should be as generic as possible.
3. The discriminator functions for different key states should be independent.
4. Try not to put too much distance between the key states.

Please think step by step and adhere to the following JSON format (just replace the () with
your answer):
{

Thought: (Please fully understand the task. Think step by step and give your thought
about the concrete state here),

Key states: {
init: init state,
key state 1: (description),
key state 2: (description),

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

...,
success: success state
},

Discriminators: {
key state 1: (a python function with the form of def iskeystate1(state): ... return 0 or 1),
key state 2: (a python function with the form of def iskeystate2(state): ... return 0 or 1),
...
},
Subspace states: {

key state 1: (extract subspace state used in corresponding discriminator functions, such
as [1] or [2,5]),

key state 2: (extract subspace state used in corresponding discriminator functions, such
as [1] or [2,5]),

...
}

}

ASSISTANT: (LLM response)
{

Thought: To complete the task, we need to find the hidden switch in one of the rooms
to open the door, then move both agents through the door to the right half of the room. We
should establish key states that represent the discovery of the switch, the opening of the door,
and the successful transition of both agents to the right half of the room. We’ll assume that
agent0 is responsible for finding the switch and agent1 is responsible for moving through the
door once it’s open.,

Key states: {
init:Initial state where both agents are in the left half of the room.,
key state 1:Agent0 has found the switch and is standing on it, opening the door,
key state 2:Agent1 has moved through the open door to the right half of the room while

agent0 is still on the switch,
key state 3:Agent0 has joined agent1 in the right half of the room

},
Discriminators: {

key state 1:def iskeystate1(state): return 1 if state[4] == 1 and state[0] >15 else 0,
key state 2:def iskeystate2(state): return 1 if state[4] == 1 and state[2] >15 and state[0]

<15 else 0,
key state 3:def iskeystate3(state): return 1 if state[0] >15 and state[2] >15 else 0

},
Subspace states: {

key state 1: [4,0],
key state 2: [0,2,4],
key state 3: [0,2],
}

}

USER:

(LLM Rethinking)
Please carefully check your response to make sure it meets the task requirements and notes
without including unnecessary details. Also, confirm that the discriminator functions do not
use any undefined variables.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

ASSISTANT: (LLM response)

...... (We have omitted the intermediate LLM outputs to maintain conciseness, retaining only
the initial generation, as the differences between the initial and rechecked generations are
minimal in the absence of errors.)

Pass Push-Box Secret-RoomLarge-Pass 2m_vs_1z 1c3s5z 5m_vs_6m 3s_vs_5z 3s5z_vs_3s6z MMM2
0

5

10

15

20

25

Ke
y

St
at

e
Nu

m

Figure 9: The number of LLM-generated key state discriminator functions.

Notably, the number of key states is primarily determined by LLM. For each task, we only prompt
LLM to prevent it from generating too few functions according to the complexity of the environment.
Specifically, as detailed in Appendix D, we instruct LLM to generate several critical key states for
MPE and more than 2*n enemies critical key states for SMAC.

As shown in Fig. 9, we summarize the number of LLM-generated key state discriminator functions.
It is notable that the number of discriminator functions increases with the difficulty of the task or the
number of interactive objects in the environment, which aligns with intuition.

Additionally, we have omitted the intermediate LLM outputs to maintain conciseness in this section,
retaining only the initial generation, as the differences between the initial and rechecked generations
are minimal in the absence of errors.

E IMPLEMENTATION DETAILS

E.1 LEMAE AND BASELINES

LEMAE: Our code is based on the widely-used code framework pymarl2 at https://github.
com/hijkzzz/pymarl2. In this study, we have integrated our method with several base algo-
rithms IPPO, QMIX, QPLEX, and VMIX. Throughout the integration process, we have refrained
from modifying the algorithmic implementation and have maintained consistency in parameters,
including batch size, learning rate, and loss coefficients, in alignment with the configurations of the
base algorithms.

EITI and EDTI (Wang et al., 2019): We compare our method with EITI and EDTI on MPE tasks
proposed in Liu et al. (2021). We use the experiment results reported in Liu et al. (2021), which
found that these algorithms perform poor because a long rollout (512 steps × 32 processes) between
model updates is used.

CMAE (Liu et al., 2021): We compare our method with CMAE on MPE and SMAC tasks. On MPE
tasks, the results of CMAE are reproduced using the publicly available code released by the authors
at https://github.com/IouJenLiu/CMAE. As CMAE lacks an implementation for SMAC,
we use the results reported in the original paper.

MAVEN (Mahajan et al., 2019): We use the code at https://github.com/
starry-sky6688/MARL-Algorithms, which contains pytorch implementations of various
MARL algorithms on SMAC, like the choice in LAIES (Liu et al., 2023).

RODE (Wang et al., 2020b) and MASER (Jeon et al., 2022): We utilized the publicly available
code provided by the authors, accessible at https://github.com/Jiwonjeon9603/MASER
and https://github.com/TonghanWang/RODE, respectively. Default configurations were
employed, and their suboptimal performance is also documented in LAIES (Liu et al., 2023).

24

https://github.com/hijkzzz/pymarl2
https://github.com/hijkzzz/pymarl2
https://github.com/IouJenLiu/CMAE
https://github.com/starry-sky6688/MARL-Algorithms
https://github.com/starry-sky6688/MARL-Algorithms
https://github.com/Jiwonjeon9603/MASER
https://github.com/TonghanWang/RODE

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

LAIES (Liu et al., 2023): We employed the publicly accessible code provided by the authors, which
can be accessed at https://github.com/liuboyin/LAIES. When conducting experiments
on SMAC, we adhered to the default configurations and external states. Notably, the original LAIES
paper evaluation did not include assessments on the MPE. Consequently, we integrated the MPE
environment into the LAIES codebase, designating the external states to represent the door status or
the position of the box.

ELLM (Du et al., 2023): Since the tasks in this work have clearly defined goals, we minimize
LLM inference costs by following the ELLM methodology but adapting its goal generation to
occur only once at the start of the training. Consistent with the hyperparameters in the official
codebase https://github.com/yuqingd/ellm, we set the similarity threshold to 0.99,
rewarding only when the goal is achieved. We rely on LLM-generated functions to verify goal
achievement, which we found to be more effective than directly using semantic similarity-based
rewards.

For all algorithms, we ensure the same environmental settings, including observation space, environ-
ment reward function, and so on.

E.2 COMPARISON WITH LLM REWARD DESIGN

We conduct additional experiments comparing LEMAE with a baseline called Eureka-si, which can
be seen as a single-iteration variant of Eureka (Ma et al., 2023), where LLM designs rewards directly.
For fairness, we does not adopt evolutionary optimization in Eureka and use LLM to generate reward
functions with the same role instructions as in Eureka, while maintaining designs like Self-Check as
in LEMAE. As shown in Fig. 3, Eureka-si is comparable to LEMAE in simple tasks like Push-Box
but fails in challenging tasks with characteristics like partial observability, such as Pass, where hidden
switches make it difficult to design effective reward functions. In contrast, LEMAE consistently
demonstrates impressive performance. Notably, comparing LEMAE with Eureka directly would
be unfair since Eureka’s evolutionary search requires multiple training iterations and candidates,
leading to significantly more sampling and training than LEMAE. Overall, LEMAE’s advantage
over RL algorithms lies in incorporating prior knowledge from the LLM, and its advantage over
other LLM-based methods is due to our designs for better LLM incorporation, such as utilizing
discrimination, SHIR, and KSMT.

E.3 CONNECTION AND COMPARISON WITH HER

The proposed Key State-Guided Exploration is similar to Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017) in form, where key states and subgoals are certain states from
sampled trajectories. However, unlike HER, which samples goals from memory using random or
heuristic strategies and often struggles with shaped rewards, our method incorporates LLM priors for
more targeted goal selection (key states localization). Additionally, the proposed KSMT and SHIR
facilitate organized exploration and enhanced reward guidance.

We conduct additional experiments to further confirm the advantages of our method. We evaluate
HER with IPPO as the backbone in MPE. We use the future strategy for goal selection, as proposed in
the HER paper, and employ a reward function based on the Manhattan Distance, which we find to be
the best match. However, as depicted in Fig. 3, HER does not perform well on both MPE tasks. This
outcome suggests that the random sampling strategy for goals may not be sufficient, underscoring the
importance of incorporating LLM priors for efficient exploration as we proposed.

E.4 TASKS

E.4.1 MULTIPLE-PARTICLE ENVIRONMENT (MPE)

The Multiple-Particle Environment serves as a widely-adopted benchmark for multi-agent scenarios.
In this work, we employ tasks specifically crafted for evaluating multi-agent exploration, proposed
by Wang et al. (2019). The implementation utilized in this study is based on the work by Liu et al.
(2021). In this section, we provide details of the four sparse-reward tasks we adopted.

• Pass: In the Pass task, depicted in Fig. 10a, two agents are positioned in a room of 30 x 30
grid. The room is divided into two halves by a wall featuring a door. Each half-room contains an

25

https://github.com/liuboyin/LAIES
https://github.com/yuqingd/ellm

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

invisible switch, the details of which are not contained in the state or prompt for LLM. The door
permits passage only when one of the switches is occupied by an agent. Initially situated within the
left half-room, both agents must cooperate to transfer to the right half-room. The external reward
function is denoted as rE = I(two agents are in the right room), where I represents the indicator
function.

• Secret-Room: Secret-Room is an extension task of Pass. As illustrated in Fig. 10b, the configuration
comprises one sizable room on the left and three smaller rooms on the right, interconnected by
three doors. Within each room, there is an invisible switch; notably, the switch in the left room
has the capability to control all three doors, whereas each right room’s switch exclusively controls
its respective door. The grid size is 25 x 25. Two agents are initialized within the left room and
are required to collaborate in order to transition to the real target room, which is the right room 2.
The external reward function is denoted as rE = I(two agents are in the right room 2), where I
represents the indicator function.

• Push-Box: As depicted in Fig. 10(c), two agents and a box are initially positioned within a 15
x 15 grid. To successfully move the box, both agents must simultaneously exert force in the same
direction. The task is deemed accomplished when the box is successfully pushed to the wall. The
external reward function is denoted as rE = I(the box is pushed to the wall), where I represents
the indicator function.

• Large-Pass: Large-Pass is a direct extension task of Pass by enlarging the grid dimensions to 50 x
50, which makes it more challenging. The external reward function aligns with that of the Pass task.

The details of these tasks, including observation space and action space, are listed in Table 3.

Table 3: Details of MPE tasks

MPE tasks n agents observation space state space action space
Pass 2 5 5 4

Secret-Room 2 5 5 4
Push-Box 2 6 6 4
Large-Pass 2 5 5 4

Figure 10: MPE Tasks.

E.4.2 STARCRAFTII MULTI-AGENT CHALLENGE (SMAC)

StarCraftII Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019a) is a widely-used benchmark
in the realm of cooperative multi-agent reinforcement learning research (Rashid et al., 2018; Shao
et al., 2023; Liu et al., 2023; Shao et al., 2024). Derived from the renowned real-time strategy game
StarCraft II, SMAC concentrates specifically on decentralized micromanagement scenarios rather
than the full game. Typically, the tasks within SMAC adopt a dense-reward framework, wherein
agents receive dense rewards for damage received, attacking and eliminating enemies. To promote the
need for exploration, we adopt fully sparse-reward versions of tasks in SMAC where agents are solely
rewarded upon the successful elimination of all enemies. The external reward function is denoted

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

as rE = I(all enemies are eliminated), where I represents the indicator function. Notably, this
sparse-reward setting differs from the sparse SMAC, which can be called semi-sparse SMAC, used
in some previous studies (Jeon et al., 2022; Jo et al., 2023), where agents are rewarded when one
or all enemies die or when one ally dies. In addition, to validate the versatility of LEMAE across
diverse scenarios, we conducted experiments on six maps with different difficulty and diverse agent
numbers, as illustrated in Table 4 and Table 5. We use the version of SC2.4.10. Please refer to the
official document1 for more details.

Table 4: SMAC tasks.

Task Ally Units Enemy Units Type Difficulty

1c3s5z
1 Colossi,
3 Stalkers,
5 Zealots

1 Colossi,
3 Stalkers,
5 Zealots

heterogeneous & symmetric Easy

2m vs 1z 2 Marines 1 Zealot micro-trick: alternating fire Easy
3s vs 5z 3 Stalkers 5 Zealots micro-trick: kiting Hard

5m vs 6m 5 Marines 6 Marines homogeneous & asymmetric Hard

3s5z vs 3s6z 3 Stalkers,
5 Zealots

3 Stalkers,
6 Zealots heterogeneous & asymmetric Super-Hard

MMM2
1 Medivac,

2 Marauders,
7 Marines

1 Medivac,
3 Marauders,

8 Marines
heterogeneous & asymmetric Super-Hard

Table 5: Details of SMAC tasks

SMAC tasks n agents n enemies observation space state space action space
2m vs 1z 2 1 16 26 7

1c3s5z 9 9 162 270 15
3s vs 5z 3 5 48 68 11

5m vs 6m 5 6 55 98 12
3s5z vs 3s6z 8 9 136 230 15

MMM2 10 12 176 322 18

E.4.3 A BRAND NEW TASK: River

To exclude the probability that LEMAE’s success relies on LLM’s familiarity with the chosen tasks,
we’ve designed a brand new task, termed River, which LLM has never encountered before. The task
is detailed as follows:

The River task is adapted from the Multiple-Particle Environment and its map is illustrated in Fig. 8a.
Two agents, Alice and Bob, are placed in a 30 x 30 grid field intersected by two rivers running
vertically and horizontally. A mountain in the bottom-left corner obstructs the passage. Alice and Bob
start randomly in the top-left part of the field and need to move to the bottom-right part. However,
Alice is afraid of water and cannot cross the river unless Bob stays in the river to act as a bridge for
her.

The observation space is discrete with four dimensions, representing the positions of two agents, i.e.,
o = [x1, y1, x2, y2]. The action space is also discrete, allowing movement in four directions. Agents
receive a positive reward only when both agents reach the bottom-right corner of the field.

E.5 HYPERPARAMETERS

In LEMAE, we introduce three important hyperparameters: extrinsic reward scaling rate α, intrinsic
reward scaling rate β, and high randomness epsilon ϵh. Notably, the low randomness epsilon ϵl is the
hyperparameter in the base algorithms, such as 0.05 for QMIX and 0.0 for IPPO.

1https://github.com/oxwhirl/smac/blob/master/docs/smac.md

27

https://github.com/oxwhirl/smac/blob/master/docs/smac.md

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

For MPE, we adopt {α = 10, β = 0.1, ϵh = 1} on Pass, Secret-Room, and Large-Pass and use
{α = 10, β = 0.05, ϵh = 0.2} on Push-Box.

For SMAC, we adopt {α = 50, β = 1, ϵh = 0.5} on MMM2 and 1c3s5z, {α = 10, β = 1, ϵh = 0.5}
on 3s vs 5z and 2m vs 1z, {α = 1, β = 1, ϵh = 0.5} on 5m vs 6m and 3s5z vs 3s6z.

E.6 RESOURCES

We use a server with 8*NVIDIA RTX 3090 GPUs, and 2*AMD 7H12 CPUs to run all the experiments.
Without specifying, each setting is repeated for 5 seeds. For one seed in SC2, the running time ranges
from approximately 50 minutes to 12 hours. For MPE, the running time varies from around 3 to 7
hours. The input for each LLM (GPT-4-1106-preview) inference comprises approximately 600-4000
tokens (0.006-0.04 dollars), yielding an output of about 300-1600 tokens (0.009-0.048 dollars).

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 MORE COMPLICATED BENCHMARK: SMACV2

We have evaluated LEMAE on three typical tasks, protoss 5 vs 5, terran 5 vs 5, and zerg 5 vs 5, in
SMACv2 (Ellis et al., 2024) to demonstrate its effectiveness under stochastic dynamics settings. We
utilized the typical hyperparameters for both LEMAE and LAIES as used in SMAC. Additionally,
we evaluate several typical baselines, including a generic intrinsic reward method, E3B Henaff et al.
(2022), and two LLM-based methods, ELLM Du et al. (2023) and ProgressCount Sarukkai et al.
(2024). Notably, all these additional baselines were originally proposed for single-agent scenarios,
and we made proper adaptations for multi-agent settings to ensure a fair comparison. As shown in
Fig. 11, LEMAE achieves outstanding performance, confirming its applicability to such settings and
the effectiveness of its specific design choices for MARL. This result further demonstrates LEMAE’s
potential for real-world scenarios with complexity and stochasticity.

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

Te
st

 W
in

 R
at

e

protoss_5_vs_5

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8
terran_5_vs_5

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6
zerg_5_vs_5

LEMAE(Ours) LAIES E3B ELLM ProgressCount QMIX-DR QMIX

Figure 11: Evaluating LEMAE against baseline methods across three maps in SMACv2, which
features greater randomness, using the evaluation metric of test win rate. QMIX-DR is QMIX with
dense rewards in the original SMACv2, serving as an upper bound, with its intrinsic rewards designed
by a human expert. This result further demonstrates LEMAE’s potential for real-world scenarios with
complexity and stochasticity.

F.2 EXTENDING LEMAE BEYOND SYMBOLIC TASKS

This work primarily focuses on tasks with symbolic state spaces, where states are represented as
symbolic arrays describing the agent and environment. As discussed in Appendix B.3, to extend
LEMAE from symbolic tasks to vision-based tasks, we can exchange the LLM for a multi-modal LM
in LEMAE for key state localization. To confirm the applicability of LEMAE to vision-based tasks,
we conduct a demonstrative experiment: We extend the task Pass to a vision-based task Visual-Pass,
as illustrated in Fig. 12a. We prompt a LLM to define key states with the same task description
and role instruction as proposed in Sec. 4.2 and use the LLM-generated definition as the prompt
for a Vision Language Model (GPT-4o). Then, it is prompted to discriminate key states in the
randomly sampled states. GPT-4o achieves a 98% accuracy rate in discriminating key states among

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

the 50 sampled image states. This confirms that with a proper extension of the LLM, LEMAE can
eliminate dependence on state semantics and be applied to other tasks such as visual-input. As shown
in Fig. 12c, we evaluate the effectiveness of LEMAE on the image-based task Visual-Pass by using a
VLM as the discriminator and object pixel detection for reward calculation. The experimental results
show LEMAE’s broader applicability.

Figure 12: (a) An illustration of the vision-based task Visual-Pass. (b) The prompt for the Vision
Language Model (VLM), which includes the task description, role instruction, image state and key
states definition provided by another LLM. The VLM is tasked with determining whether the given
image state corresponds to a key state. (c) Training curves of LEMAE and IPPO on the image-based
Visual-Pass tasks, where IPPO-DR refers to IPPO trained with human-designed dense rewards.

F.3 ABLATION STUDIES ON MIXED-RANDOMNESS EXPLORATION

As demonstrated in Fig 13, we conduct an ablation study on mixed-randomness exploration within
the 3s vs 5z map. Results indicate that LEMAE exhibits insensitivity to the parameter ϵh, provided
that the level of randomness remains moderate, as opposed to being excessively extreme (0.1 or 0.9).
Besides, the effectiveness of our design is highlighted through a comparison between LEMAE and its
variants, namely, only leaf node and LEMAE w/o KSMTE.

0 1 2 3 4
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

3s_vs_5z

h = 0.1
LEMAE h = 0.5

h = 0.3
only leaf node

h = 0.7
LEMAE w/o KSMTE

h = 0.9

Figure 13: Ablation study on mixed-randomness exploration. The default hyperparameter used in
LEMAE is ϵh = 0.5. Robustness evaluation included variations in ϵh = [0.1, 0.3, 0.7, 0.9]. The only
leaf node denotes simply using ϵl for the non-leaf node and ϵh for the leaf node. The LEMAE w/o
KSMTE denotes LEMAE without mixed-randomness exploration.

F.4 EXPERIMENTS FOR SINGLE-AGENT SETUPS

Indeed, we propose LEMAE as a general approach for LLM-empowered efficient exploration in
reinforcement learning, applicable to both single-agent and multi-agent settings. We underscore the
evaluation of its performance in multi-agent settings due to its inherent complexity.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

As the proposed method can seamlessly extend to single-agent scenarios, we introduce a single-agent
variant of MPE and assess PPO (Schulman et al., 2017) and PPO-based LEMAE across four tasks.
We run each algorithm using three random seeds with 300k environment steps, using the evaluation
metric of the test win rate. The following table shows that LEMAE can facilitate efficient exploration
in single-agent scenarios.

Table 6: Final test win rate of LEMAE and PPO on single-agent variant of MPE tasks.

Single MPE PPO LEMAE
Single Pass 0.00±0.00 1.00±0.00

Single Secret-Room 0.00±0.00 0.98±0.01
Single Large-Pass 0.00±0.00 0.99±0.01
Single Push-Box 0.00±0.00 0.96±0.08

F.5 DISCUSSION ON THE KSMT

Using KSMT could pose a limitation due to potential memory costs in certain scenarios. However,
this has not been a significant issue in our experiments, as the key states are relatively few, primarily
focusing on the most critical ones, with a natural sequential relationship typically existing between
them. Notably, LEMAE is also compatible with other memory structures, such as Directed Acyclic
Graphs (DAGs), which could be an interesting direction for future exploration.

To demonstrate the effectiveness of LEMAE with other memory structures, in scenarios where task
completion follows a linear pattern (e.g., Init→ A→ B → Success), we employ a more efficient
strategy by using a KSMT variant with a single branch representing the sequential order of key states.
Specifically, we systematically assign a priority value to each key state, continuously updating it
based on its occurrence order within the sequence of attained key states. The determination of the
ranking of key states within the one-branch KSMT relies on this established priority.

As illustrated in Fig. 14, an ablation study is conducted to compare the performance between raw
KSMT and the one-branch KSMT variant across six maps in SMAC. The results demonstrate the
increased necessity of employing the one-branch KSMT variant for tasks involving a larger number of
agents and greater complexity, such as 5m vs 6m, 3s5z vs 3s6z, and MMM2. Consequently, we have
adopted the one-branch KSMT approach for these specific SMAC tasks: 5m vs 6m, 3s5z vs 3s6z,
and MMM2.

F.5.1 CONNECTIONS WITH GO-EXPLORE

Go-Explore (Ecoffet et al., 2019) is an influential work tackling exploration in RL. The similarities
between our KSMT and the archive in Go-Explore lie in both methods organizing exploration
through memory, i.e., by selecting possible historical states to explore. The differences and partial
contributions of LEMAE are as follows: (1) Our key states are semantically meaningful and task-
critical, whereas the archived states in Go-Explore are randomly explored; (2) Our KSMT samples
key states based on actual key states transitions, enhancing its reliability; (3) We propose Explore
with KSMT to balance exploration and exploitation, thereby reducing exploration complexity by
focusing on a more meaningful state subspace.

F.6 WORKING WITH DENSE REWARD SETTINGS

We also evaluate LEMAE in tasks with dense rewards in SMAC, denoted as LEMAE-DR. As shown
in Fig. 15, the results confirm that LEMAE-DR facilitates efficient exploration in both dense and
sparse reward settings, highlighting the main contribution of our method. Additionally, LEMAE-DR
achieves better convergence than LEMAE due to the guidance provided by dense rewards.

F.7 APPLICATIONS IN ROBOTICS CONTROL

We evaluate LEMAE on MaMuJoCo (Peng et al., 2021), a MARL robotics benchmark. We adapt
the tasks to emphasize exploration with sparse rewards for achieving high velocity v, where the

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

MMM2

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
3s5z_vs_3s6z

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
5m_vs_6m

0 1 2 3 4
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

3s_vs_5z

0.0 0.2 0.4 0.6 0.8
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
2m_vs_1z

0.00 0.25 0.50 0.75 1.00 1.25 1.50
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
1c3s5z

One-Branch KSMT

Figure 14: Ablation study conducted to compare the performance between raw KSMT and the
one-branch KSMT variant across six maps in SMAC.

0 1 2 3 4 5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

3s5z_vs_3s6z

0 1 2 3 4 5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
3s_vs_5z

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
2m_vs_1z

LEMAE(Ours) QMIX-DR LEMAE-DR

Figure 15: Evaluating LEMAE with dense rewards across three maps in SMAC using the evaluation
metric of test win rate. LEMAE-DR is LEMAE with dense rewards in the original SMAC, which
effectively ensures efficient exploration and achieves better convergence.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

reward function is defined as I(v > vthreshold). We use HAPPO (Kuba et al., 2021) as the RL
backbone. As shown in Fig. 16, LEMAE achieves performance comparable to the baseline trained
with human-designed dense rewards. This observation is consistent with previous conclusions.
LEMAE benefits from the reliability of the proposed LLM key state discrimination, and the results
underscore LEMAE’s potential for handling complex tasks.

0.0 0.5 1.0 1.5 2.0
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 S

uc
ce

ss
 R

at
e

HalfCheetah

0.0 0.5 1.0 1.5 2.0
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
Humanoid

LEMAE(Ours) HAPPO-DR HAPPO

Figure 16: Evaluating LEMAE on two tasks in MaMuJoCo using the metric of test success rate.
HAPPO-DR is HAPPO with dense rewards in the original tasks.

F.8 ADDITIONAL BASELINES

0.00 0.25 0.50 0.75 1.00 1.25
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

Push-Box

0.0 0.5 1.0 1.5 2.0 2.5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
Pass

0.0 0.5 1.0 1.5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
Secret-Room

0.0 0.5 1.0 1.5 2.0 2.5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
Large-Pass

LEMAE(Ours) ELLM E3B ProgressCount WToE

Figure 17: Evaluating LEMAE and additional baselines on tasks in MPE.

As shown in Fig. 17, we compare LEMAE with three additional baselines:

• ProgressCounts (Sarukkai et al., 2024) is a recent LLM-based method which combines
LLM reward design and count-based exploration. Still, LEMAE consistently outperformed
ProgressCounts, suggesting the importance of our designs—specifically, the use of dis-
crimination, SHIR, and KSMT—in more effectively integrating LLMs compared to other
LLM-based methods.

• WToE (Dong et al., 2023) focuses on when to explore by identifying discrepancies between
the actor policy and a short-term inferred policy that adapts to environmental changes. WToE
does not utilize intrinsic reward as guidance, which may make it unsuitable for tackling
long-horizon sparse-reward tasks.

• E3B (Henaff et al., 2022) is a generic intrinsic reward method. The results witness LEMAE’s
superior exploration efficiency, implying the effectiveness of key states.

These comparisons highlight the effectiveness of LEMAE’s specific design choices in incorporating
LLMs and applying them to MARL.

F.9 ADDITIONAL RESULTS

In this section, we provide some additional experimental results.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Table 7: Final test win rate of LEMAE and comparable baseline (CMAE) on MPE tasks.

MPE LEMAE (Ours) CMAE
Pass 1.00±0.00 0.75±0.43

Secret-Room 1.00±0.00 0.80±0.40

Push-Box 1.00±0.00 0.80±0.40

Large-Pass 1.00±0.00 0.00±0.00

Table 8: Final test win rate of LEMAE and comparable baseline (LAIES) on SMAC tasks. QMIX-DR
denotes training QMIX with dense reward.

SMAC LEMAE (Ours) LAIES QMIX-DR
1c3s5z 0.98±0.02 0.89±0.09 0.99±0.01

2m vs 1z 1.00±0.01 0.73±0.24 1.00±0.01
3s vs 5z 0.83±0.07 0.10±0.12 0.66±0.16

5m vs 6m 0.74±0.08 0.68±0.10 0.78±0.08
3s5z vs 3s6z 0.73±0.14 0.45±0.35 0.73±0.07

MMM2 0.89±0.08 0.62±0.25 0.90±0.05

Table 9: Comparing LEMAE with SOTA baseline CMAE across four maps in MPE using the metric
of the number of exploration steps (in thousand) taken to find the success state

MPE LEMAE (Ours) CMAE Acceleration rate
Pass 153.1±20.7 2114.8±157.4 13.8

Secret-Room 316.6±134.6 1448.5±467.2 4.6
Push-Box 159.0±42.5 972.3±887.3 6.1
Large-Pass 446.9±256 >3000 >6.7

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

2m_vs_1z

0.00 0.25 0.50 0.75 1.00 1.25 1.50
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
1c3s5z

0 1 2 3 4 5
T (mil)

0.0

0.2

0.4

0.6

0.8

1.0
MMM2

QMIX+Ours QPLEX+Ours VMIX+Ours QPLEX VMIX

Figure 18: The training curve while evaluating the efficacy of combining our method with various
algorithms.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

As demonstrated in Table 7 and Table 8, we augment the final test win rate of our proposed method,
LEMAE, with comparable baseline algorithms in MPE and SMAC tasks. This augmentation serves
to elucidate the superior performance of our method. It is pertinent to note that baseline algorithms,
the performance of which has been demonstrated to be poor in the training curves, are omitted from
the tables for conciseness.

As demonstrated in Table 9, we compare LEMAE with SOTA baseline CMAE using the metric of
the number of exploration steps taken to find the success state. The results indicate a significant
exploration acceleration rate, up to 10x, underscoring LEMAE’s superior efficiency.

Moreover, as illustrated in Fig. 18, we supplement the training curve while evaluating the efficacy of
combining our method with various algorithms, i.e., QPLEX and VMIX.

34

	Introduction
	Preliminary
	Related Works
	Method
	Devil is in the Key States
	Key States Localization with LLM
	Key State-Guided Exploration
	Subspace-based Hindsight Intrinsic Reward
	Key States Memory Tree

	Experiments
	Multiple-Particle Environment (MPE)
	StarCraft Multi-Agent Challenge (SMAC)
	Compatiblility with Various Algorithms
	Ablation Studies
	Sensitivity & Robustness Analysis
	Scalability & Generalization Analysis

	Conclusion
	Algorithm
	Further Discussions
	The Insights Behind Key States Discrimination
	Limitations
	Future Works
	Broader Impacts

	Proof of Proposition 4.1
	LLM Prompts and Responses
	Implementation Details
	LEMAE and Baselines
	Comparison with LLM Reward Design
	Connection and Comparison with HER
	Tasks
	Multiple-Particle Environment (MPE)
	StarCraftII Multi-Agent Challenge (SMAC)
	A Brand New Task: River

	Hyperparameters
	Resources

	Additional Experimental Results
	More Complicated Benchmark: SMACv2
	Extending LEMAE Beyond Symbolic Tasks
	Ablation Studies on Mixed-Randomness Exploration
	Experiments for Single-Agent setups
	Discussion on the KSMT
	Connections with Go-Explore

	Working with dense reward settings
	Applications in Robotics Control
	Additional Baselines
	Additional Results

