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Abstract

Machine learning algorithms minimizing average risk are susceptible to distribu-1

tional shifts. Distributionally Robust Optimization (DRO) addresses this issue by2

optimizing the worst-case risk within an uncertainty set. However, DRO suffers3

from over-pessimism, leading to low-confidence predictions, poor parameter es-4

timations as well as poor generalization. In this work, we conduct a theoretical5

analysis of a probable root cause of over-pessimism: excessive focus on noisy6

samples. To alleviate the impact of noise, we incorporate data geometry into cali-7

bration terms in DRO, resulting in our novel Geometry-Calibrated DRO (GCDRO)8

for regression. We establish that our risk objective aligns with the Helmholtz free9

energy in statistical physics, and this free-energy-based risk can extend to standard10

DRO methods. Leveraging gradient flow in Wasserstein space, we develop an ap-11

proximate minimax optimization algorithm with a bounded error ratio and standard12

convergence rate and elucidate how our approach mitigates noisy sample effects.13

Comprehensive experiments confirm GCDRO’s superiority over conventional DRO14

methods.15

1 Introduction16

Machine learning algorithms with empirical risk minimization (ERM) have been shown to perform17

poorly under distributional shifts, especially sub-population shifts where substantial data subsets are18

underrepresented in the average risk due to their small sample sizes. As an alternative, Distributionally19

Robust Optimization (DRO) (Namkoong and Duchi, 2017; Blanchet and Murthy, 2019; Blanchet20

et al., 2019a; Duchi and Namkoong, 2021; Zhai et al., 2021; Liu et al., 2022a; Gao and Kleywegt,21

2022; Gao et al., 2022) aims to optimize against the worst-case risk distribution within a predefined22

uncertainty set. This uncertainty set is centered around the training distribution, and generalization23

performance can be guaranteed when the test distribution falls within this set.24

However, DRO methods have been found to experience the over-pessimism problem in practice (Hu25

et al., 2018; Zhai et al., 2021) (i.e., low-confidence predictions, poor parameter estimations, and26

generalization), recent studies have sought to address this issue. From the uncertainty set perspective,27

Blanchet et al. (2019b); Liu et al. (2022a,b) proposed data-driven methods to learn distance metrics28

from data. However, these approaches remain vulnerable to noisy samples, as demonstrated in Table 2.29

Recently, Słowik and Bottou (2022); Agarwal and Zhang (2022) observed that DRO may overly focus30

on sub-populations with higher noise levels, leading to suboptimal generalization. Consequently,31

from the risk objective perspective, they suggest incorporating calibration terms to mitigate this issue.32

Nevertheless, applicable calibration terms either require expert knowledge or are computationally33

intensive, and few practical algorithms have been proposed.34

To devise a practical calibration term for DRO, we first aim to identify the root causes of over-35

pessimism, which we attribute to the excessive focus on noisy samples that frequently exhibit higher36
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prediction errors. For typical DRO methods (Namkoong and Duchi, 2017; Staib and Jegelka, 2019;37

Duchi and Namkoong, 2021; Liu et al., 2022b), based on a simple yet insightful linear example,38

we theoretically demonstrate that the variance of estimated parameters becomes substantially large39

when noisy samples have higher densities, in line with the empirical findings reported in (Zhai et al.,40

2021). Furthermore, we demonstrate that existing outlier-robust regression methods are not directly41

applicable for mitigating noisy samples in DRO scenarios where both noisy samples and distribution42

shifts coexist, highlighting the non-trivial nature of this problem.43

In this work, inspired by the ideas in (Słowik and Bottou, 2022; Agarwal and Zhang, 2022), we design44

calibration terms, i.e., total variation and entropy regularization, to prevent DRO from excessively45

focusing on random noisy samples. In conjunction with the Geometric Wasserstein uncertainty set46

(Liu et al., 2022b) utilized in our methods, these calibration terms effectively incorporate information47

from the data manifold, leading to improved regulation of the worst-case distribution in DRO.48

Specifically, during the optimization, the total variation term penalizes the variation of weighted49

prediction errors along the data manifold, preventing random noisy samples from gaining excessive50

densities. The entropy regularization term, also used in (Liu et al., 2022b), acts as a non-linear51

graph Laplacian operator that enforces the smoothness of the sample weights along the manifold.52

These calibration terms work together to render the worst-case distribution more reasonable for DRO,53

leading to our Geometry-Calibrated DRO (GCDRO) approach. We validate the effectiveness of our54

GCDRO on both simulation and real-world data.55

Furthermore, from a statistical physics perspective, we demonstrate that our risk objective corresponds56

to the Helmholtz free energy, comprising three components: interaction energy, potential energy, and57

entropy. The free energy formulation generalizes typical DRO methods such as KL-DRO, χ2-DRO58

(Duchi and Namkoong, 2021), MMD-DRO (Staib and Jegelka, 2019) and GDRO (Liu et al., 2022b).59

This physical interpretation provides a novel perspective for understanding different DRO methods60

by drawing parallels between the worst-case distribution and the steady state in statistical physics,61

offering valuable insights. From the free energy point of view, our GCDRO specifically addresses the62

interaction energy between samples to mitigate the effects of noisy samples. Motivated by the study of63

the Fokker-Planck equation (FPE, Chow et al. (2017); Esposito et al. (2021)), through gradient flow64

in the Geometric Wasserstein space, we derive an approximate minimax algorithm with a bounded65

error ratio e−CTin after Tin inner-loop iterations and a convergence rate of O(1/
√
Tout) after Tout66

outer-loop iterations. Our optimization method supports any quadratic form of interaction energy,67

potentially paving the way for designing more effective calibration terms for DRO in the future.68

2 Preliminaries: Noisy Samples Bring Over-Pessimism in DRO69

Notations. X ∈ X denotes the covariates, Y ∈ Y denotes the target, fθ(·) : X → Y is the predictor70

parameterized by θ ∈ Θ. P̂N denotes the empirical counterpart of distribution P (X,Y ) with N71

samples, and p = (p1, . . . , pN )T ∈ RN
+ is the probability vector. [N ] = {1, 2, . . . , N} denotes the72

set of integers from 1 to N . The random variable of data points is denoted by Z = (X,Y ) ∈ Z .73

The random vector of n dimension is denoted by h⃗n = (h1, . . . , hn)
T . GN = (V,E,W ) denotes74

a finite weighted graph with N nodes, where V = [N ] is the vertex set, E is the edge set and75

W = {wij}(i,j)∈E is the weight matrix of the graph. And (x)+ = max(x, 0).76

Distributionally Robust Optimization (DRO) is formulated as:77

θ∗(P ) = argmin
θ∈Θ

sup
Q∈P(P )

EQ[ℓ(fθ(X), Y )] (1)

where ℓ is the loss function (typically mean square error) and P(P ) = {Q : Dist(Q,P ) ≤ ρ}78

denotes the ρ-radius uncertainty ball around the distribution P . Different distance metrics derive79

different DRO methods, e.g., f -divergence DRO (f -DRO, Namkoong and Duchi (2017); Duchi and80

Namkoong (2021)) with the Cressie-Read family of Rényi divergence, Wasserstein DRO (WDRO,81

Sinha et al. (2018); Blanchet and Murthy (2019); Blanchet et al. (2019a,b)), MMD-DRO (Staib and82

Jegelka, 2019) with maximum mean discrepancy, and Geometric DRO (GDRO, Liu et al. (2022b))83

with Geometric Wasserstein distance. Although DRO methods are designed to resist sub-population84

shifts, they have been observed to have poor generalization performances (Hu et al., 2018; Frogner85

et al., 2019; Słowik and Bottou, 2022) in practice, which is referred to as over-pessimism.86

In this section, we identify one of the root causes of the over-pessimism of DRO: the excessive focus87

on noisy samples with typically high prediction errors.88
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Figure 1: Visualizing the Worst-Case Distribution for Different DRO Methods: We show the data
manifold and sample weights for each point, where blue points represent the major group, green ones
represent the minor group, and red ones are noisy samples. The bars display the total sample weights
of different groups, and the original group ratio is major (93.1%), minor (4.9%), (noisy 2%).

• We showcase DRO methods’ excessive focus on noisy samples in practice and reveal their probabil-89

ity densities are linked to high prediction errors in worst-case distributions.90

• Through a simple yet insightful regression example, we prove that such a phenomenon leads to91

high estimation variances and subsequently poor generalization performance.92

• We demonstrate that existing outlier-robust regression methods are not directly applicable for93

mitigating noisy samples in DRO scenarios, emphasizing the non-trivial nature of this problem.94

Problem Setting Given the underlying clean distribution Pclean = (1−α)Pmajor+αPminor, 0 <95

α < 1
2 , the goal of DRO can be viewed as achieving good performance across all possible96

sub-populations Pminor. Denote the observed contaminated training distribution by Ptrain. Based97

on Huber’s ϵ-contamination model (Huber, 1992), we formulate Ptrain as:98

Ptrain = (1− ϵ)Pclean + ϵQ̃ = (1− ϵ)(1− α)Pmajor︸ ︷︷ ︸
major sub-population

+(1− ϵ)αPminor︸ ︷︷ ︸
minor sub-population

+ ϵQ̃︸︷︷︸
noisy sub-population

, (2)

where Q̃ is an arbitrary noisy distribution (typically with larger noise scale), 0 < ϵ < 1
2 is the noise99

level. Note that the minor sub-population could represent any distribution with a proportion of α100

in P . However, we explicitly specify it here to emphasize the distinction between our setting and101

the traditional Huber’s ϵ-contaminated setting, as the latter does not take sub-population shifts into102

account.103

Empirical Observations. Following a typical regression setting (Duchi and Namkoong, 2021; Liu104

et al., 2022b), we demonstrate the worst-case distribution of KL-DRO, χ2-DRO, and GDRO in Figure105

1, where the size of each point is proportional to its density. In this scenario, the underlying distribution106

P comprises a known major sub-population (95%, blue points) and a minor sub-population (5%,107

green points). And the noise level ϵ in Ptrain is 2%. DRO methods are expected to upweigh samples108

from minor sub-population to learn a model with uniform performances w.r.t. sub-populations.109

However, from Figure 1, we could observe that KL-DRO, χ2-DRO and GDRO excessively focus110

on noisy samples, resulting in a noise level 10 to 15 times larger than the original. This observation111

helps to explain their poor performance on this task (detailed results can be found in Table 2).112

Theoretical Analysis. To support our observations, we first analyze the worst distribution of113

KL-DRO, χ2-DRO and GDRO, shedding light on the underlying reasons for this phenomenon.114

Proposition 2.1 (Worst-case Distribution). Let Q̂∗
N = (q∗1 , q

∗
2 , . . . , q

∗
N )T ∈ RN

+ denotes the worst-115

case distribution, and ℓ(fθ(xi), yi) (abbr. ℓi) denotes the prediction error of sample i ∈ [N ]. For116

different choices of Dist(·, ·) in P(P ) = {Q : Dist(Q,P ) ≤ ρ}, we have:117

• KL-DRO: q∗i /q
∗
j ∝ exp(ℓi − ℓj);118

• GDRO’s final state (gradient flow step T → ∞): q∗i /q
∗
j ∝ exp(ℓi − ℓj);119

• χ2-DRO: q∗i /q
∗
j = (ℓi − λ)+/(ℓj − λ)+, and λ ≥ 0 is the dual parameter independent of i.120

Proposition 2.1 demonstrates that for KL-DRO, χ2-DRO, and GDRO (large gradient flow step), the121

relative density between samples is solely determined by their prediction errors, indicating that a122

larger prediction error results in a higher density. However, in our problem setting, samples from both123

minor sub-population Pminor and noisy sub-population Q̃ exhibit high prediction errors. The primary124

goal of DRO is to focus on the minor sub-population Pminor, but the presence of noisy samples in125

Q̃ significantly interferes with this objective and hurts model learning. As shown in Figure 1, for126

KL-DRO, χ2-DRO and GDRO, noisy samples attract much density. Intuitively, it is not surprising127

that an excessive focus on noisy samples can have a detrimental impact. As KL-DRO, χ2-DRO, and128
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GDRO can be viewed as optimization within a weighted empirical distribution, we use the following129

simple example with the weighted least square model to demonstrate how this excessive focus on130

noisy samples can lead to high estimation variance, ultimately causing over-pessimism.131

Example (Weighted Least Square). Consider the data generation process as Y = kX + ξ, where132

X,Y ∈ R and random noise ξ satisfies ξ ⊥ X , E[ξ] = 0 and E[ξ2] (abbr. σ2) is finite. As-133

sume that the training dataset XD consists of clean samples {x(i)
c , y

(i)
c }i∈[Nc] and noisy samples134

{x(i)
o , y

(i)
o }i∈[No] with σ2

c < σ2
o . Consider the weighted least-square model f(X) = θX . Denote the135

sample weight of a clean sample (x(i)
c , y

(i)
c ) as w(i)

c ∈ R+, i ∈ [Nc], and the sample weight of a noisy136

sample (x
(i)
o , y

(i)
o ) as w(i)

o ∈ R+, i ∈ [No] with
∑

i∈[Nc]
w

(i)
c +

∑
i∈[No]

w
(i)
o = 1. The variance of137

the estimator θ̂ is given by:138

Var[θ̂|XD] =

∑Nc
i=1(w

(i)
c )2(x

(i)
c )2σ2

c +
∑No

i=1(w
(i)
o )2(x

(i)
o )2σ2

o[∑Nc
i=1 w

(i)
c (x

(i)
c )2 +

∑No
i=1 w

(i)
o (x

(i)
o )2

]2 , (3)

where XD = {x(i)
c }Nc

1 ∪ {x(i)
o }No

1 are the sampled covariates in the dataset. Besides, the minimum139

variance is achieved if and only if ∀1 ≤ i ≤ Nc, 1 ≤ j ≤ No, w
(j)
o /w

(i)
c = σ2

c/σ
2
o < 1.140

From the results, we make the following remarks:141

• If noisy samples have higher weights than clean samples (e.g., wo/wc > 1), the variance of the142

estimated parameter θ̂ will be larger, suggesting that the learned θ̂ could be significantly unstable.143

• In conjunction with Proposition 2.1, DRO methods tend to assign high weights to noisy samples,144

which can lead to unstable parameter estimation. While this example is relatively simple, this145

phenomenon aligns with the empirical findings in Zhai et al. (2021), which demonstrate that DRO146

methods can be quite unstable when confronted with label noise.147

Relationship with Conventional Outlier-robust Regression. We would like to explain why148

conventional outlier-robust regression methods cannot be directly applied to our problem. The main149

challenge stems from the coexistence of noisy samples and minor sub-populations, both of which150

typically exhibit high prediction errors, leading to a misleading worst-case distribution in DRO.151

Conventional outlier-robust regression methods (Diakonikolas and Kane, 2018; Klivans et al., 2018;152

Diakonikolas et al., 2022) primarily focus on mitigating the effects of outliers without considering153

sub-population shifts. For instance, the L2-estimation-error of outlier-robust linear regression is154

O(ϵ log(1/ϵ)) (Diakonikolas and Kane, 2018), where ϵ represents the noise level in Equation 1.155

However, as analyzed in Proposition 2.1 and demonstrated in Figure 1, during the optimization156

of DRO, the noise level ϵ significantly increases, rendering even outlier-robust estimation quite157

inaccurate. Moreover, Klivans et al. (2018) propose finding a pseudo distribution with minimal158

prediction errors to avoid outliers (see Algorithm 5.2 in (Klivans et al., 2018)). Nevertheless, this159

approach might inadvertently exclude minor sub-populations, which should be the focus under160

sub-population shifts, due to the main challenge: the coexistence of noisy samples and minor sub-161

populations. Zhai et al. (2021) incorporate this idea into DRO. Still, their method requires an implicit162

assumption that the prediction errors of noisy samples are higher than those of minor sub-populations,163

which does not always hold in practice. And Bennouna and Van Parys (2022) build the uncertainty164

set via two measures, KL-divergence and Wasserstein distance, leading to a combined approach of165

KL-DRO and ridge regression. Despite this, as we discussed earlier, DRO tends to increase the noise166

level in data, making it difficult to fix using ridge regression.167

Based on the analysis above, we stress the importance of integrating more data-derived information.168

In pursuit of this, we propose to leverage the unique geometric properties that distinguish noisy169

samples from minor sub-populations to address this issue.170

3 Proposed Method171

In this work, with a focus on regression, we introduce our Geometry-Calibrated DRO (GCDRO). The172

fundamental idea is to utilize data geometry to distinguish between random noisy samples and minor173

sub-populations. It is motivated by the fact that prediction errors for minor sub-populations typically174

exhibit local smoothness along the data manifold, a property that is not shared by noisy samples.175
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Discrete Geometric Wasserstein Distance. We briefly revisit the definition of the discrete geomet-176

ric Wasserstein distance. Given a weighted finite graph GN = (V,E,W ), the probability set P(GN )177

supported on the vertex set V is defined as P(GN ) = {p ∈ RN |
∑N

i=1 pi = 1, pi ≥ 0, for i ∈ V },178

and its interior is denoted as Po(GN ). A velocity field v = (vij)i,j∈V ∈ RN×N on GN179

is defined on the edge set E satisfying that vij = −vji if (i, j) ∈ E. ξij(p) is a func-180

tion interpolated with the associated nodes’ densities pi, pj . The flux function pv ∈ RN×N181

on GN is defined as pv := (vijξij(p))(i,j)∈E and its divergence is defined as divGN
(pv) :=182

−(
∑

j∈V :(i,j)∈E

√
wijvijξij(p))

N
i=1 ∈ RN . Then for distributions p0,p1 ∈ Po(GN ), the discrete183

geometric Wasserstein distance (Chow et al., 2017; Liu et al., 2022b) is defined as:184

GW2
GN

(p0,p1) := inf
v


∫ 1

0

1

2

∑
(i,j)∈E

ξij(p(t))v
2
ijdt s.t.

dp

dt
+ divGN (pv) = 0,p(0) = p0,p(1) = p1

 .

(4)
Equation 4 computes the shortest (geodesic) length among all potential plans, integrating the total185

kinetic energy of the velocity field throughout the transportation process. A key distinction from the186

Wasserstein distance is that it only permits density to appear at the graph nodes.187

Formulation Given training dataset Dtr = {(xi, yi)}Ni=1 and a finite weighted graph GN =188

(V,E,W ) representing the inherent structure of sample covariates. Denote the empirical marginal189

distribution as P̂X , the formulation of GCDRO is:190

min
θ∈Θ

sup
q:GW2

GN
(P̂X ,q)≤ρ︸ ︷︷ ︸

Geometric Wasserstein set

{
RN (θ,q) :=

N∑
i=1

qiℓ(fθ(xi), yi)−
α

2
·

∑
(i,j)∈E

wijqiqj(ℓi − ℓj)
2

︸ ︷︷ ︸
Calibration Term I

−β ·
N∑
i=1

qi log qi︸ ︷︷ ︸
Calibration Term II

}
,

(5)
where ρ is the pre-defined radius of the uncertainty set, ℓi is the loss on the i-th sample and wij ∈ W191

denotes the edge weight between sample i and j. α and β are hyper-parameters.192

Illustrations. In our formulation, for any distribution q within the uncertainty set,193

Calibration term I (
∑

(i,j)∈E wijqiqj(ℓi − ℓj)
2) calculates the graph total variation of prediction194

errors along the data manifold that is characterized by GN . Intuitively, when selecting the worst-case195

distribution, this term imposes a penalty on distributions that allocate high densities to random noisy196

samples, as this allocation significantly amplifies the overall variation in prediction errors. Conversely,197

this term does not penalize distributions that allocate high densities to minor sub-populations, as their198

errors are smooth and have a relatively small impact on the total variation along the manifold. This199

differing phenomenon arises from the distinct geometric properties of random noisy samples and200

minor sub-populations, as samples from the latter typically cluster together on the data manifold.201

Further, during the optimization of model parameter θ, this term acts like a variance term, resulting202

in a quantile-like risk objective, which helps to mitigate the effects of outliers.203

Calibration term II (
∑N

i=1 qi log qi) represents the negative entropy of distribution q. As discussed204

in Section 3.2, during optimization, this term transforms into a non-linear graph Laplacian operator205

that encourages sample weights to be smooth along the manifold, avoiding extreme sample weights206

in the worst-case distribution.207

3.1 Free Energy Implications on Worst-case Distribution208

We first demonstrate the free energy implications of our risk objective RN (θ,q). Intuitively, the209

change of sample weights across N samples (the inner maximization problem of RN (θ,q)) can be210

analogously related to the dynamics of particles in a system, wherein the concentration of densities211

coincides with the aggregation of particle masses at N distinct locations (in the case of infinite212

samples, these locations converge to the data manifold). As a result, a deeper understanding of the213

steady state in a particle system can offer valuable insights into the worst-case distribution for DRO.214

Building on this analogy, we can dive deeper into the physics of particle interactions. When particles215

exist within a potential energy field, they are subject to external forces. Simultaneously, there are216

interactions among the particles themselves, leading to a constant state of motion within the system.217

In statistical physics, a key point of interest is identifying when a system reaches a steady state. In a218

standard process like the reversible isothermal process, it is established that spontaneous reactions219

consistently move in the direction of decreasing Helmholtz free energy (Fu et al., 1990; Reichl, 1999;220
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Friston, 2010), which consists of interaction energy, potential energy and the negative entropy:221

E(q) = q⊤Kq︸ ︷︷ ︸
Interaction Energy

+ q⊤V︸ ︷︷ ︸
Potential Energy

−β

N∑
i=1

(−qi log qi)︸ ︷︷ ︸
Temperature×Entropy

= −RN (θ,q). (6)

By taking V = −ℓ⃗ and Kij =
α
2wij(ℓi − ℓj)

2 for (i, j) ∈ E, our risk objective is a special case of222

Helmholtz free energy, where the potential energy of sample i is −ℓiqi and the interaction energy223

between sample i and j is α
2wij(ℓi − ℓj)

2qiqj . Specifically, such mutual interactions can manifest as224

repulsive forces between adjacent particles, thereby preventing the concentration of mass in locations225

where local prediction errors are significantly high. And this explains from a physical perspective226

why our calibration term I could mitigate random noisy samples.227

Additionally, Proposition 3.1 offers physical interpretations to comprehend the worst-case distribution228

of various DRO methods. We make some remarks: (1) current DRO methodologies, except MMD-229

DRO, do not explicitly formulate the interaction term between samples in their design considerations230

(χ2-DRO does not involve interaction between samples), despite the corresponding interaction energy231

between particles being a common phenomenon in physics; (2) MMD-DRO simply uses kernel gram232

matrix for interaction and lacks efficient optimization algorithms; (3) by considering this interaction233

energy, our proposed GCDRO is capable of mitigating the impacts of random noisy samples.234

Proposition 3.1 (Free Energy Implications). The dual reformulations of some typical DRO methods235

are equivalent to the free-energy-based minimax problem minθ∈Θ,λ≥0 maxq∈P

{
λρ− E(q, θ, λ)

}
236

with different choices of P, ρ and K,V,H[q] in the free energy E . Details are shown in Table 1.237

Table 1: Free energy implications of some DRO methods. ∆N denotes the N -dimensional simplex,
η in marginal DRO is the dual parameter.

Method Energy Type Specific Formulation

Interaction Potential Entropy K V H[q] P

KL-DRO % " " - −ℓ⃗ H[q] ∆N

χ2-DRO " " % λI −ℓ⃗ - ∆N

MMD-DRO " " %
Kernel Gram

Matrix K
−ℓ⃗− 2λ

N K⊤1 - ∆N

Marginal χ2-DRO % " % - −(ℓ⃗− η)+ - ∆N with Hölder
continuity

GDRO % " " - −ℓ⃗ H[q]
Geometric

Wasserstein Set

GCDRO " " "
Interaction
Matrix K

−ℓ⃗ H[q]
Geometric

Wasserstein Set

Through free energy, we could understand the type of energy or steady state that DRO methods238

strive to achieve, and design better interaction energy terms in DRO. Moreover, our optimization, as239

outlined in Section 3.2, could accommodate multiple quadratic forms of interaction energy.240

3.2 Optimization241

Then we derive an approximate minimax optimization for our GCDRO. For the inner maximization242

problem, we approximately deal with it via the gradient flow of −RN (θ,Q) w.r.t. Q in the geometric243

Wasserstein space (Po(GN ),GWGN
). We show that the error rate is O(e−CTin) after Tin iterations244

inner loop, which gives a nice approximation. For the outer minimization w.r.t. model parameters245

θ, we analyze the convergence rate of O(1/
√
Tout) after Tout iterations outer loop when the risk246

function satisfies Lipschitzian smoothness conditions.247

Inner Maximization. We denote the Continuous gradient flow as q : [0, T ] → Po(GN ), the248

probability density of sample i at time t is abbreviated as qi(t), and the Time-discretized gradient249

flow with time step τ as q̂τ . For inner maximization, we utilize the τ -time-discretized gradient flow250

(Villani, 2021) for −RN (θ,q) in the geometric Wasserstein space (Po(GN ),GW2
GN

) as:251

q̂τ (t+ τ) = argmax
q∈Po(GN )

RN (θ,q)− 1

2τ
GW2

GN
(q̂τ (t),q). (7)

The gradient of q in Equation 7 is given as (when τ → 0):252

dqi
dt

=
∑

(i,j)∈E

wijξij

(
q, ℓi − ℓj + β(log qj − log qi) + α

( ∑
h∈N(j)

(ℓh − ℓj)
2wjhqh −

∑
h∈N(i)

(ℓh − ℓi)
2wihqh

))
,

(8)
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where E is the edge set of GN , wij is the edge weight between node i and j, N(i) denotes the set of253

neighbors of node i, ℓi denotes the loss of sample i, and ξij(·, ·) : P(GN )× R → R is:254

ξij(q, v) := v ·
(
I(v > 0)qj + I(v ≤ 0)qi

)
, v ∈ R, (9)

which is the upwind interpolation commonly used in statistical physics and guarantees that the255

probability vector q keeps positive. From the gradient, we could see that the entropy regularization256

acts as a non-linear graph Laplacian operator to make the sample weights smooth along the manifold.257

In our algorithm, we fix the steps of the gradient flow to be Tin and prove that the error ratio is e−CTin258

compared with the ground-truth worst-case risk RN (θ,q∗) constrained in an ρ(θ, Tin)-radius ball.259

Proposition 3.2 (Approximation Error Ratio). Given the model parameter θ, denote the distri-260

bution after time Tin as qTin(θ), and the distance to training distribution P̂X as ρ(θ, Tin) :=261

GW2
GN

(P̂X ,qTin(θ)) (abbr. ρ(θ)). Assume RN (θ,q) is convex w.r.t q. Then define the ground-truth262

worst-case distribution q∗(θ) within the ρ(θ)-radius ball as:263

q∗(θ) := arg sup
q:GW2

GN
(P̂X ,q)≤ρ(θ)

RN (θ,q). (10)

The upper bound of the error rate of the objective function RN (θ,qTin) satisfies:264

(RN (θ,q∗)−RN (θ,qTin))/
(
RN (θ,q∗)−RN (θ, P̂X)

)
< e−CTin , (11)

C = 2mλsec(L̂)λmin(∇2RN )
1

(r + 1)2
> 0, (12)

where L̂ is the Laplacian matrix of GN . λsec, λmin are the second smallest and smallest eigenvalue,265

m, r are constants depending on RN , GN , β.266

We make some remarks:267

• For the assumption that RN is convex w.r.t. q, the Hessian is given by ∇2RN =268

βdiag(1/q1, ..., 1/qN ) + 2K. Since K is a sparse matrix whose nonzero elements in each row269

is far smaller than N , it is easily satisfied in empirical settings that the Hessian matrix ∇2R is270

diagonally dominant and thus positive definite, making the inner maximization concave w.r.t q.271

• During the optimization, our algorithm finds an approximate worst-case distribution that is close272

to the ground-truth one within a ρ(θ)-radius uncertainty set. Our robustness guarantee is similar to273

Sinha et al. (2018) (see Equation 12 in Sinha et al. (2018)).274

• The error ratio is e−CTin , enabling to find a nice approximation efficiently with finite Tin steps.275

Outer Minimization. The convergence property relies on the risk objective RN (θ,q). When276

RN (θ,q) is smooth w.r.t. θ, the following proposition guarantees convergence to a stationary point277

of problem 5 at a standard rate of O(1/
√
T ).278

Proposition 3.3 (Convergence). Assume F (θ) := supq:GW2
GN

(P̂X ,q)≤ρ(θ) RN (θ,q) is L-smooth,279

and RN (θ,q) is Lq-smooth w.r.t. q such that ∥∇qRN (θ,q) − ∇qRN (θ,q′)∥2 ≤ Lq∥q − q′∥2.280

ρ(θ) follows the definition in Proposition 3.2. Take a constant ∆F ≥ F (θ(0))− infθ F (θ) and set281

step size as α =
√
∆F /(LT ). For ∥qTin − q∗∥22 ≤ γ of the inner maximization problem, we have:282

1

T
E

[
T∑

t=1

∥∇θF (θ(t))∥22

]
− 1 + 2Lα

1− 2Lα
L2

qγ ≤ 2∆F√
∆FT − 2L∆F

. (13)

From Proposition 3.3, as T → ∞, ∇θF (θ(t)) exhibits a standard square-root convergence. Further-283

more, the parameter γ can be effectively controlled, owing to the concavity inherent in the inner284

maximization problem and the rapidly diminishing error ratio as described in Proposition 3.2.285

3.3 Mitigate the Effects of Random Noisy Samples286

Finally, we prove that our GCDRO method effectively de-emphasizes ’noisy samples’ with locally287

non-smooth prediction errors. Due to the challenge of assessing intermediate states in gradient flow,288

we focus on its final state (as Tin → ∞). Notably, in Proposition 3.2, the convergence rate of gradient289

flow is O(e−CTin), implying that an efficient approximation of the final state is feasible.290

For the worst-case distribution q∗, we denote the density ratio between samples as γ(i, j) := q∗i /q
∗
j .291

In sensitivity analysis, when only sample i is perturbed with label noises, we denote the density ratio292
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in the new worst-case distribution q̃∗ as γnoisy(i, j) := q̃∗i /q̃
∗
j . The sample weight sensitivity ξ(i, j)293

is defined as ξ(i, j) = log γnoisy(i, j)− log γ(i, j), which measures how much density ratio changes294

under perturbations on one sample. Larger ξ(i, j) indicates larger sensitivity to noisy samples.295

Proposition 3.4. Assume ℓnoisy
i − ℓi ≥ 2(

∑
k∈N(i) q

∗
kwikℓk∑

k∈N(i) q
∗
kwik

− ℓi) which is locally non-smooth. For any296

α > 0 (in Equation 5), we have ξGCDRO < ξGDRO. Furthermore, there exists M > 0 such that for any297

α > M , we have ξGCDRO(i, j) < 0 < min{ξχ2−DRO(i, j), ξGDRO(i, j)(= ξKL-DRO(i, j))}, indicating298

that GCDRO is not sensitive to locally non-smooth noisy samples.299

In practice, we do a grid search over α ∈ [0.1, 10] on an independent held-out validation dataset to300

select the best α. The complexity of gradient flow scales linearly with sample size.301

4 Experiments302

In this section, we test the empirical performances of our proposed GCDRO on simulation data and303

real-world regression datasets with natural distributional shifts. As for the baselines, we compare with304

empirical risk minimization (ERM), WDRO, two typical f -DRO methods, including KL-DRO, χ2-305

DRO (Duchi and Namkoong, 2021), GDRO (Liu et al., 2022b), HRDRO (Bennouna and Van Parys,306

2022) and DORO (Zhai et al., 2021), where HRDRO and DORO are designed to mitigate label noises.307

Table 2: Results on the simulation data. We report the root mean square errors.

Weak Label Noise (noise level 0.5%) Strong Label Noise (noise level 5%)

Train (major) Train (minor) Test Mean Test Std Parameter
Est Error Train (major) Train (minor) Test Mean Test Std Parameter

Est Error
ERM 0.337 0.850 0.598 0.264 0.423 0.368 0.855 0.599 0.243 0.431
WDRO 0.337 0.851 0.589 0.292 0.424 0.368 0.857 0.600 0.268 0.432
χ2-DRO 0.596 0.765 0.680 0.088 0.447 1.072 0.708 0.875 0.193 0.443
KL-DRO 0.379 1.616 0.974 0.660 0.886 0.468 1.683 1.037 0.621 0.913
HRDRO 0.325 1.298 0.794 0.516 0.693 0.330 1.343 0.801 0.522 0.694
DORO 0.347 0.793 0.565 0.230 0.384 0.334 0.919 0.611 0.295 0.449
GDRO 0.692 0.516 0.605 0.094 0.198 0.618 0.752 0.677 0.063 0.421
GCDRO 0.411 0.554 0.482 0.070 0.190 0.494 0.591 0.540 0.044 0.268

4.1 Simulation Data308

Data Generation. We design simulation settings with both sub-population shifts and noisy samples.309

The input covariates X = [S,U, V ]T ∈ R10 consist of stable covariates S ∈ R5, irrelevant ones310

U ∈ R4 and the unstable covariate V ∈ R:311

[S,U ] ∼ N (0, 2I9), Y = θTSS + 0.1S1S2S3 +N (0, 0.5), V ∼ Laplace(sign(r) · Y, 1/5 ln |r|), (14)

where θS ∈ R5 is the coefficients of the true model, |r| > 1 is the adjustment factor for each312

sub-population, and Laplace(·, ·) denotes the Laplace distribution. From the data generation, the313

relationship between S and Y stays invariant under different r, U ⊥ Y , while the relationship314

between V and Y is controlled by r, which varies across sub-populations. Intuitively, sign(r)315

controls whether the spurious correlation V -Y is positive or negative. And |r| controls the strength316

of the spurious correlation: the larger |r| is, the stronger the spurious correlation is. Furthermore, in317

order to conform to real data which are naturally assembled with label noises (Zhai et al., 2021), we318

introduce label noises by an ϵ proportion of labels as Y ′ ∼ N (0,Std(Y )). ϵ controls the noise level.319

Settings. In training, we generate 9,500 points with r = 1.9 (majority, strong positive spurious320

correlation V -Y ) and 500 points with r = −1.3 (minority, weak negative spurious correlation V -Y ).321

In testing, we vary r ∈ {3.0, 2.3,−1.9,−2.7} to simulate different spurious correlations V -Y . We322

use linear model with mean square error (MSE) and report the prediction root-mean-square errors323

(RMSE) for each sub-population, the mean and standard deviation of prediction errors among all324

testing sub-populations. Also, we report the parameter estimation errors ∥θ̂ − θ∗∥2 of all methods325

(θ∗ = (θTS , 0, . . . , 0)
T ). The results over 10 runs are shown in Table 2.326

Analysis. From Table 2, (1) compared with ERM, all typical DRO methods, especially χ2-DRO327

and KL-DRO, are strongly affected by label noises. (2) Although DORO is designed to mitigate328

outliers, it does not perform well under strong noises (κ = 5%), because it relies on the assumption329

that noisy points have the largest prediction errors, which does not always hold. (3) Our proposed330

GCDRO outperforms all baselines under different strengths of label noises, which demonstrates331

its effectiveness. (4) Compared with GDRO, we could see that our calibration terms in Equation332
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Figure 2: Results of real-world datasets with natural shifts. We do not manually add label noises here,
since real-world datasets intrinsically contain noises.

5 is effective to mitigate label noises. From Figure 1, the worst-case distribution of our GCDRO333

significantly upweighs on the minority (green points) and does not put much density on the noisy data334

(red points), while the others put much higher weights on the noisy samples and perform poorly.335

4.2 Real-world Data336

We use three real-world regression datasets with natural distributional shifts, including bike-sharing337

prediction, house price, and temperature prediction. For all these experiments, we use a two-layer338

MLP model with mean square error (MSE). We use the Adam optimizer Kingma and Ba (2015) with339

the default learning rate 1e− 3. And all methods are trained for 5e3 epochs.340

341

Datasets. (1) Bike-sharing dataset (Dua and Graff, 2017) contains the daily count of rental bikes342

in the Capital bike-sharing system with the corresponding 11 weather and seasonal covariates. The343

task is to predict the count of rental bikes of casual users. Note that the count of casual users is likely344

to be more random and noisy, which is suitable to verify the effectiveness of our method. We split345

the dataset according to the season for natural shifts. In the training data, the ratio of four seasons’346

data is 9 : 7 : 5 : 3. We test on the rest of the data and report the prediction error of each season.347

(2) House Price dataset1 contains house sales prices from King County, USA. The task is to predict348

the transaction price of the house via 17 predictive covariates such as the number of bedrooms, square349

footage of the house, etc. We divide the data into 5 sub-populations according to the built year of350

each house with each sub-population covering a span of 25 years. In training, we use data from the351

first group (built year < 1920) and report the prediction error for each testing group.352

(3) Temperature dataset (Dua and Graff, 2017) is largely composed of the LDAPS model’s next353

day’s forecast data, in-situ maximum and minimum temperatures of present-day, and geographic354

auxiliary variables in South Korea from 2013 to 2017. The task is to predict the next-day’s maximum355

air temperatures based on the 22 covariates. We divide the data into 5 groups corresponding with 5356

years. In the training data, the ratio of five years’ data is 9 : 7 : 5 : 3 : 1. We test on the rest of the357

data and report the prediction error of each year. More details could be found in Appendix.358

Analysis. (1) From the results in Figure 4.1, we could see that the performances of ERM drop a lot359

under distributional shifts, and DRO methods have better performance as well as robustness. (2) Our360

proposed GCDRO outperforms all baselines under strong shifts, with the most stable performances361

under natural distributional shifts. (3) As for the kNN graph’s fitting accuracy of the data manifold,362

we visualize the learned manifold in Appendix and we could see that the learned kNN graph fits363

the data manifold well. Besides, we show in Appendix that the performances of our GCDRO are364

relatively stable across different choices of k. Also, our GCDRO only needs the input graph GN to365

represent the data structure and any manifold learning or graph learning methods could be plugged366

in to give a better estimation of GN .367

5 Future Directions368

Our work deals with the over-pessimism in DRO via geometric calibration terms and provides free369

energy implications. The high-level idea could inspire future research on (1) relating free energy with370

DRO; (2) designing more reasonable calibration terms in DRO; (3) incorporating data geometry in371

general risk minimization algorithms.372

1https://www.kaggle.com/c/house-prices-advanced-regression- techniques/data
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