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Abstract. Medical image segmentation is essential in clinical practice
for accurately quantifying anatomical structures and pathological re-
gions. Despite a shift towards foundation models capable of handling
various segmentation tasks, current models are often optimized for nat-
ural images and require substantial computational resources, limiting
their widespread clinical use. In this paper, we analyze the distribution of
data across different modalities of medical images in the training dataset
of the challenge. We adjust the probabilities of selecting each modal-
ity during data loading to alleviate the severe imbalance in modality
data and improve the segmentation performance of medical images with
limited data in certain modalities. We fine-tune LiteMedSAM, incorpo-
rating the low-rank adaptation technique into the multi-head attention
and multilayer perceptron of TinyVit. To improve inference speed, we
concurrently perform inference with multiple box prompts and utilize
the argmax operation to process the outputs of multiple box prompts,
thereby enhancing segmentation accuracy.

Keywords: Medical image segmentation - Segment Anything Model -
Low-Rank Adaptation.

1 Introduction

Medical image segmentation serves as a crucial component in clinical practice,
enabling the precise quantification of anatomical structures and pathological re-
gions. Currently, the field is undergoing a significant transformation, shifting
from specialized models tailored to specific tasks towards more versatile foun-
dation models capable of handling diverse segmentation scenarios. One notable
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example is the Segment Anything Model (SAM) [1], a family of image segmenta-
tion models pretrained on a comprehensive dataset comprising 11 million images
and 1 billion masks. SAM exhibits remarkable zero-shot image segmentation per-
formance and finds applications across various domains, including medical image
segmentation.

Despite these advancements, a prevalent challenge persists: many existing
segmentation foundation models are optimized primarily for natural images or
demand substantial computational resources during inference. This limitation
poses a significant obstacle to their widespread adoption within clinical settings.
Therefore, there is a pressing need to refine and adapt these models to meet
the unique demands of medical imaging, ensuring their practical feasibility and
effectiveness in clinical applications.

This challenge aims to develop universal, promptable medical image segmen-
tation models that can be deployed on laptops or other edge devices without
relying on GPUs. Specifically, the task involves creating a lightweight bounding
box-based segmentation model. To support this endeavor, This challenge offers
a comprehensive training dataset containing over 1,000,000 image-mask pairs.
This dataset covers 10 medical image modalities and encompasses more than
20 types of cancer. The goal is to develop models that not only deliver accurate
segmentation results but also operate efficiently on resource-constrained devices,
facilitating their widespread deployment in clinical settings.

To accelerate SAM, numerous efforts have been made to replace SAM’s image
encoder with lightweight models. For example, MobileSAM [7] distills the knowl-
edge of SAM’s ViT-H model into a tiny vision transformer. EdgeSAM [?] trains
a purely CNN-based model to mimic ViT-H, employing a meticulous distillation
strategy with the prompt encoder and mask decoder involved in the process. Ef-
ficientSAM [5] leverages the MAE pretraining method to improve performance.
Efficient ViT-SAM mitigates performance decline by replacing SAM’s image en-
coder with EfficientViT [8] while reducing computation costs. In the domain of
medical image segmentation, MedSAM, a refined foundational model, signifi-
cantly enhances SAM’s segmentation performance on medical images. This ac-
complishment is achieved through fine-tuning SAM on an unprecedented dataset
containing over one million medical image-mask pairs. Further, a lightweight
version of MedSAM (LiteMedSAM) is proposed by replacing MedSAM’s image
encoder with TinyVit to improve inference speed for deployment on laptops.

In this paper, we analyze the distribution of data across different modalities
of medical images in the training dataset. We adjust the probabilities of selecting
each modality during data loading to alleviate the severe imbalance in modality
data and improve the segmentation performance of medical images with lim-
ited data in certain modalities. We fine-tune LiteMedSAM, incorporating the
low-rank adaptation technique into the multi-head attention and multilayer per-
ceptron of TinyVit. To improve inference speed, we concurrently perform infer-
ence with multiple box prompts and utilize the argmax operation to process the
outputs of multiple box prompts, thereby enhancing segmentation accuracy.
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Fig. 1. Network architecture (Copyright preserved. Please do not directly use this
figure in your manuscript.) Please also include the network description in the figure
title. So reviewers could quickly understand your idea.

2.1 Preprocessing

Based on the distribution of data quantities, the various medical image modal-
ities show significant disparities. CT (Computed Tomography) has the largest
dataset, with 1,218,411 samples, comprising nearly 82% of the total. The next
largest is MR (Magnetic Resonance), with 191,308 samples, accounting for ap-
proximately 13%. Other medical image modalities have relatively smaller datasets;
for instance, Microscopy, Fundus, Mammography, US, and OCT each have fewer
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than 2,000 samples. Their respective proportions are all below 3%, with many
even less than 1%. This distribution could significantly impact model train-
ing, potentially resulting in poorer segmentation performance for medical image
modalities with smaller datasets.
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Fig. 2. Distribution of various medical image modality quantities in the training set

To address this issue, during training, we randomly select data from differ-
ent medical image modalities based on their quantities. Specifically, CT, having
the largest quantity, will be selected with a probability of 40%. MR, being the
second largest, will be selected with a probability of 10%. The remaining 50% of
the time, we will randomly choose from the other nine modalities, which have
smaller quantities. The data processing involves resampling based on the largest
dimension, followed by min-max normalization and padding with zeros to make
the height and width consistent. Data augmentation includes random horizontal
and vertical flipping.

2.2 Proposed Method

Please provide figures to show your pipeline or network architecture.
Figure 2 shows a typical example of 3D U-Net

In order to reduce SAM’s parameters and improve inference speed, the image
encoder of SAM adopts the lightweight VIT variant, TinyVIT [4]. TinyVIT
adopts a hierarchical vision transformer as its fundamental architecture, for the
convenience of dense prediction downstream tasks like segmentation that require
multi-scale features. Specifically, the base model comprises four stages, with a
gradual reduction in resolution akin to previous works such as Swin and LeViT .
The patch embedding block consists of two convolutions with a kernel size of 3, a
stride of 2, and padding of 1. Lightweight and efficient MBConvs are employed in
Stage 1 and downsampling blocks, leveraging the effectiveness of convolutions at
earlier layers in efficiently learning low-level representations due to their strong
inductive biases. The last three stages are constructed using transformer blocks,
incorporating window attention to reduce computational cost. Attention biases
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and a 3 x 3 depthwise convolution between attention and MLP are introduced
to capture local information. Residual connections are applied to each block
in Stage 1, as well as attention blocks and MLP blocks. Activation functions
throughout the model employ GELU. Convolutional and linear normalization
layers utilize BatchNorm and LayerNorm , respectively.

Low-Rank Adaptation (LoRA) is a technique designed to enhance the effi-
ciency of neural networks by reducing the number of trainable parameters. When
applied to the Segment Anything Model (SAM) for medical image segmentation,
LoRA decomposes the weight matrices within SAM’s architecture into lower-
rank matrices. This reduction in computational and memory requirements allows
SAM to be fine-tuned effectively on large medical image datasets, such as those
used for segmenting anatomical structures and pathological regions. By incor-
porating LoRA, SAM can maintain high segmentation performance while being
more resource-efficient, facilitating its deployment in clinical settings where com-
putational resources are often limited. We fine-tune LiteMedSAM, incorporating
the low-rank adaptation technique into the multi-head attention and multilayer
perceptron of TinyVit.

Loss function: we use the summation between Dice loss and focal loss because
compound loss functions have been proven to be robust in various medical image
segmentation tasks [2].

To improve inference speed, we concurrently perform inference with multiple
box prompts and utilize the argmax operation to process the outputs of multiple
box prompts, thereby enhancing segmentation accuracy.

2.3 Post-processing

We did not use any post-processing techniques.

3 Experiments

3.1 Dataset and evaluation measures

We only used the data provided by the challenge for training.

The evaluation metrics include two accuracy measures—Dice Similarity Co-
efficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measure—running time. These metrics collectively contribute to the ranking
computation.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.
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Table 1. Development environments and requirements. (mandatory table)

System Ubuntu 18.04.5 LTS

CPU Intel(R) Core(TM) i9-7900X CPU@3.30GHz
RAM 16x4GB; 2.67TMT/s

GPU (number and type) One NVIDIA A100 80G

CUDA version 11.0

Programming language Python 3.20

Deep learning framework torch 2.0, torchvision 0.2.2

Specific dependencies

Code https://github.com/lseventeen /SAMIL

Training protocols During training, we randomly select data from different
medical image modalities based on their quantities. Specifically, CT, having the
largest quantity, will be selected with a probability of 40%. MR, being the sec-
ond largest, will be selected with a probability of 10%. The remaining 50% of
the time, we will randomly choose from the other nine modalities, which have
smaller quantities. The data processing involves resampling based on the largest
dimension, followed by min-max normalization and padding with zeros to make
the height and width consistent. Data augmentation includes random horizontal
and vertical flipping.

Table 2. Training protocols. (mandatory table)

Pre-trained Model LiteMedSAM [3]
Batch size 16

Patch size 256x256

Total epochs 20

Optimizer AdamW

Initial learning rate (Ir) 0.00005

Lr decay schedule ReduceLROnPlateau
Training time 30 hours

Loss function Dice loss and focal loss
Number of model parameters 985.22M”

Number of flops 59.32G”

CO2eq 1 Kg°

4 Results and discussion

Note: Please describe at least the following aspects in this section
- In what kind of cases the proposed method works well?
- What are the possible reasons for the failed cases?
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- Segmentation efficiency analysis

Table 3. Quantitative evaluation results. The last two columns should corre-
spond to your final docker submission. Please show at least one ablation study
result A useful online tool to create latex table https://www.tablesgenerator.com/
latex_tables. (mandatory table)

Baseline Ablation Study 1| Ablation Study 2 Proposed

Target DSC(%) NSD(%)|DSC(%) NSD(%)|DSC(%) NSD (%)[DSC(%) NSD (%)
CT 92.26 94.9 89.67 91.66 92.47 95.3 92.03 94.18
MR 89.63 93.37 82.12 84.67 87.92 91.89 86.39 89.5
PET 51.58 25.17 69.86 52.35 62.64 42.03 65.23 44.91
US 94.77 96.81 83.7 88.52 85.61 90.45 87.17 92.35
X-Ray 75.83 80.39 76.63 82.29 85.08 90.1 84.26 89.23

Dermotology| 92.47  93.85 | 94.92 96.34 | 94.69 96.13 94.8 96.17
Endoscopy 96.04  98.11 96 98.25 | 96.08 98.44 96.57 98.75

Fundus 94.81  96.41 96.01 97.53 | 95.95 97.53 95.96 97.51
Microscopy | 61.63  65.38 | 81.35  87.78 | 79.64 85.88 81.07 87.33
Average 83.23  82.71 85.58 86.6 86.68 87.53 87.05 87.77

Note to Table 3: if you have multiple solutions, such as a faster model with
lower DSC or a slower model with higher DSC, you can use a similar Table
format to report the performance on the public/online validation set.

4.1 Quantitative results on validation set

Please describe the results

4.2 Qualitative results on validation set
please show some examples with good segmentation results and two examples

with bad segmentation results.

Note: the ground truth of the validation set is not available but authors can
show results on other public datasets where annotations are available

4.3 Segmentation efficiency results on validation set
4.4 Results on final testing set

This is a placeholder. We will announce the testing results during CVPR, (6.17-
18)
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Table 4. Quantitative evaluation of segmentation efficiency in terms of running time
(s). Note: The inference process cannot use GPU. If you didn’t make validation docker
submissions during the challenge, you can obtain these metrics on your local laptop.
(mandatory table)

Case ID Size Num. Objects Baseline Ablation Study Proposed
3DBox_CT _ 0566 (287, 512, 512) 6 376.4
3DBox_ CT 0888 (237, 512, 512) 6 100.5
3DBox_CT_0860 (246, 512, 512) 1 17.7
3DBox_MR_ 0621 (115, 400, 400) 6 157.1
3DBox MR 0121 (64, 290, 320) 6 99.9
3DBox_MR_ 0179 (84, 512, 512) 1 17.1
3DBox_PET 0001 (264, 200, 200) 1 12.1
2DBox_US_ 0525 (256, 256, 3) 1 6.3
2DBox_ X-Ray_ 0053 (320, 640, 3) 34 7.3
2DBox_Dermoscopy 0003 (3024, 4032, 3) 1 6.5
2DBox_Endoscopy 0086 (480, 560, 3) 1 6.1
2DBox_Fundus_0003 (2048, 2048, 3) 1 6.1
2DBox_Microscope 0008 (1536, 2040, 3) 19 6.8
2DBox_Microscope 0016 (1920, 2560, 3) 241 19.1

4.5 Limitation and future work

5 Conclusion

In this paper, we analyze the distribution of data across different modalities of
medical images in the training dataset. We adjust the probabilities of selecting
each modality during data loading to alleviate the severe imbalance in modality
data and improve the segmentation performance of medical images with lim-
ited data in certain modalities. We fine-tune LiteMedSAM, incorporating the
low-rank adaptation technique into the multi-head attention and multilayer per-
ceptron of TinyVit. To improve inference speed, we concurrently perform infer-
ence with multiple box prompts and utilize the argmax operation to process the
outputs of multiple box prompts, thereby enhancing segmentation accuracy.
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Table 5. Checklist Table. Please fill out this checklist table in the answer column.
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A meaningful title Yes/No
The number of authors (<6) Number
Author affiliations and ORCID Yes/No
Corresponding author email is presented Yes/No
Validation scores are presented in the abstract Yes/No
Introduction includes at least three parts:

o Yes/No
background, related work, and motivation
A pipeline/network figure is provided Figure number
Pre-processing Page number
Strategies to data augmentation Page number
Strategies to improve model inference Page number
Post-processing Page number
Environment setting table is provided Table number
Training protocol table is provided Table number
Ablation study Page number
Efficiency evaluation results are provided Table number
Visualized segmentation example is provided Figure number
Limitation and future work are presented Yes/No
Reference format is consistent. Yes,/No

Main text >= 8 pages (not include references and appendix) Yes/No




