
LayerAnimate: Layer-level Control for Animation

Yuxue Yang1,2 Lue Fan2 Zuzeng Lin3 Feng Wang4 Zhaoxiang Zhang1,2,5†

1School of Artificial Intelligence, University of Chinese Academy of Sciences
2NLPR & MAIS, Institute of Automation, Chinese Academy of Science

3Tianjin University 4CreateAI 5Shanghai Artificial Intelligence Laboratory
{yangyuxue2023, lue.fan, zhaoxiang.zhang}@ia.ac.cn

linzuzeng@tju.edu.cn feng.wff@gmail.com

Abstract

Traditional animation production decomposes visual ele-
ments into discrete layers to enable independent processing
for sketching, refining, coloring, and in-betweening. Ex-
isting anime generation video methods typically treat ani-
mation as a distinct data domain different from real-world
videos, lacking fine-grained control at the layer level. To
bridge this gap, we introduce LayerAnimate, a novel video
diffusion framework with layer-aware architecture that em-
powers the manipulation of layers through layer-level con-
trols. The development of a layer-aware framework faces
a significant data scarcity challenge due to the commer-
cial sensitivity of professional animation assets. To address
the limitation, we propose a data curation pipeline fea-
turing Automated Element Segmentation and Motion-based
Hierarchical Merging. Through quantitative and qualita-
tive comparisons, and user study, we demonstrate that Lay-
erAnimate outperforms current methods in terms of anima-
tion quality, control precision, and usability, making it an
effective tool for both professional animators and amateur
enthusiasts. This framework opens up new possibilities for
layer-level animation applications and creative flexibility.
Our code is available at https://layeranimate.
github.io.

1. Introduction
Animation is a globally beloved art form, yet its produc-
tion remains a complex process involving sketch draft-
ing, refining, coloring, and in-betweening. With the de-
velopment of video generation models, automation tech-
nologies are increasingly being integrated into the anima-
tion production process. Recent animation generation mod-
els [15, 24, 32, 35] have adapted real-world generation mod-
els [1, 37] to achieve impressive results in interpolation and
sketch coloring. However, previous works typically treat
animation as a distinct data domain compared to real-world

†Corresponding author

Generated Frames

0.60

Sketch

Trajectory

Input

Motion Score

Trajectory

Generated FramesInput

0.00

Motion Score

Sketch

Trajectory

Figure 1. LayerAnimate enables controllable video generation un-
der multiple layer-level controls.

videos, generating videos under frame-level controls. They
overlook a fundamental concept to animation, layer, which
allows independent controls on decomposed elements as
depicted in Fig. 1. The principle of layer decomposition
forms a foundational methodology across animation his-
tory, manifesting as stacked translucent celluloid overlays
in classical hand-drawn production and evolving into digi-
tal layer hierarchies within modern software. The hierarchi-
cal paradigm helps animators conduct nondestructive edit-
ing through layer isolation, enabling precise control over
individual elements.

Considering the scarcity of layer data due to its com-
mercial value, it is challenging to develop a video gen-
eration model supporting layer-level controls. We design
a layer curation pipeline comprising Automated Element
Segmentation and Motion-based Hierarchical Merging to
overcome the challenge. We iteratively leverage SAM [18]
and SAM2 [27] for element segmentation, then merge over-
segmented elements into layers based on their motion states
with hierarchical clustering.

With the curated layer data, we propose LayerAnimate,
a framework that facilitates flexible composition of hetero-
geneous layer-level control signals and fine-grained manip-
ulation of animation layers. Initially, the frame-level ref-
erence image is decomposed into layer-level regions using
layer masks from our curation pipeline, establishing explicit

https://layeranimate.github.io
https://layeranimate.github.io

spatial correspondence between layer-level control signals
and target regions. Heterogeneous control modalities (e.g.,
motion scores, sketches, and trajectories) are injected into
each layer through dedicated encoders. Following the en-
coding process, layer-level features are passed into Con-
trolNet [42] branches for independent processing, followed
by cross-attention for feature fusion within the UNet. Lay-
erAnimate permits simultaneous manipulation of different
elements under composite controls, which is unattainable
in conventional frameworks.

We conduct extensive experiments and user studies
across various video generation tasks under different con-
ditions, i.e. first-frame Image-to-Video (I2V), I2V with tra-
jectory, I2V with sketch, interpolation, interpolation with
trajectory, interpolation with sketch, to demonstrate that
LayerAnimate is versatile and superior in terms of anima-
tion quality, control precision, and usability. Our contribu-
tions are listed as follows.
• We design a layer curation pipeline to automatically ex-

tract layer data from animations, addressing the challenge
of limited layer data on the Internet.

• We propose a layer-level control framework, LayerAn-
imate, that combines the traditional principle of layer
decomposition with modern video generation models to
achieve more precise animation control and generation.

• Extensive experimental results demonstrate the effective-
ness and versatility of LayerAnimate on various tasks. It
also supports innovative layer-level applications, such as
a flexible composition of various layer-level controls.

2. Related Works
Video Diffusion Models. Video generation [7–9, 16, 19–
21, 26, 39, 40, 46, 47] has experienced significant advance-
ments with the development of diffusion models [5, 11,
29]. Many methods [7, 9, 12, 13, 28, 36] extend text-
to-image diffusion architectures to generate temporally co-
herent videos. However, it remains challenging to con-
vey user intent exclusively through text. To address this,
several works [1, 3, 4, 33, 35, 37, 41, 44] incorporate im-
ages into diffusion models to enable video generation con-
ditioned on given images. To digest the reference im-
age condition, a common approach used by VideoCom-
poser [33], VideoCrafter [3], and DynamiCrafter [37] is en-
coding the image through pre-trained CLIP or other well-
designed image encoders before feeding it into diffusion
models along with text prompts. Furthermore, models
like PixelDance [41], SEINE [4], DynamiCrafter [37], and
ToonCrafter [35] concatenate two different reference im-
ages with noisy frame latents to interpolate images with
smooth transitions. However, they fill the intermediate
frames with placeholders, which underutilizes the condi-
tions. In contrast, our LayerAnimate assigns layers based
on their motion states to the intermediate frame, allowing

for injecting motion state.

Controllable Video Generation. Image-to-Video and in-
terpolation models define videos’ endpoints but struggle to
provide motion information for intermediate frames. Ap-
proaches [6, 14, 15, 24, 25, 30, 34, 35, 45] like Spar-
seCtrl [6] and ToonCrafter [35] introduce an auxiliary
branch for controllable video generation, inspired by Con-
trolNet [42]. LVCD [15] introduces a sketch-guided Con-
trolNet to facilitate color transfer from the reference image
to other frames. However, these methods require frame-
level control. When applied to animation, such frame-level
control will make regions without signals undergo unpre-
dictable deformation. The most recent work AniDoc [24]
facilitates high-quality animation with a reference charac-
ter and sketch guidance without backgrounds, while it is
tailored for characters. Another classic control manner is
movement control through trajectories, such as DragAny-
thing [34] and Tora [45]. However, neither of them is adapt-
able to anime generation. In this paper, our proposed Lay-
erAnimate allows users to provide layer-level control sig-
nals and supports applying multiple controls simultaneously
in a more user-friendly manner for controllable anime gen-
eration.

3. Layer Curation

The construction of a well-curated dataset with detailed
layer information is a prerequisite for training a layer-level
controllable animation generation framework, which re-
mains constrained by two critical challenges. First, the
commercial sensitivity of professional animation assets and
the high cost of manual annotation make layer data hard
to be scalable. Second, unlike real-world video process-
ing where depth estimation facilitates element stratification
(e.g., MIMO [23]), the inherent 2D property of animations
constrains reliable geometric cues for decomposing a frame
into layers. Conventional segmentation models applied to
animations typically yield over-segmented color patches
that lack semantics and are impractical for manipulation.
To address the challenges, we devise a novel layer curation
pipeline comprising Automated Element Segmentation and
Motion-based Hierarchical Merging, as illustrated in Fig. 2.

3.1. Automated Element Segmentation
Taking advantage of recent advancements in visual foun-
dation models [18, 27], we develop an iterative segmenta-
tion pipeline for automated element extraction in animation
clips. The process initiates with uniform temporal sam-
pling at 4-frame intervals to establish Key Frames, where
the first Key Frame K0 is segmented via SAM [18] to gen-
erate atomic element masks M0. These masks then serve
as prompts, which are propagated to all F frames in a clip

SAM

SAM2SAM2

Key Frames

SAM

Mask 𝒯𝑡𝑖

𝑖−1

Image 𝐾𝑖

Mask Prompt
ℳ0

New Elements Δℳ𝑖

—

Key Frame 𝐾𝑖

Iteration on All Key Frames

Mask Prompt
ℳ𝑖 = 𝒯𝑡𝑖

𝑖−1 ∪ Δℳ𝑖

Motion-based
Hierarchical

Merging

Optical Flow

5.85

0.08

1.09

Motion Score

2.69

Frame 0 Frame 20 Frame 40 Frame 60 Frame 80

Non-Key Frames

Key Frame 𝐾0

Set Subtraction

Masklets ڂ𝑡=0
𝐹−1 𝒯𝑡

𝑖−1 Masklets ڂ𝑡=0
𝐹−1 𝒯𝑡

𝑖

𝐹 Frames

if Δℳ𝑖 = ∅

if Δℳ𝑖 ≠ ∅

continue

Figure 2. Layer Curation Pipeline. The bottom orange dashed box illustrates curated layer masks with different motion scores, where
motion scores remain temporally constant throughout the animation clip. Yellow dashed boxes denote new elements absent in the first
frame, demonstrating our pipeline’s capability to segment dynamically appearing elements. We transparently present some frames of
masklets

⋃F−1
t=0 T i

t to highlight the new elements in Key Frame Ki.

through SAM2 [27], establishing initial masklets with tem-
poral coherence.

Considering the frequent occurrence of new elements
appearing in subsequent frames, the initial masklets can-
not segment these elements. Thus, we implement an itera-
tive refinement to solve the issue. We first denote the ini-
tial masklets as

⋃F−1
t=0 T i=0

t , where T i
t denotes the refined

masks for the t-th frame at the i-th iteration. We detect new
elements for each Key Frame Ki with its frame index ti
through mask set subtraction:

∆Mi = SAM(Ki) \ T i−1
ti . (1)

Any new elements ∆Mi ̸= ∅ will update mask prompts

Mi = T i−1
ti ∪∆Mi, (2)

which is repropagated through SAM2 to obtain refined
masklets

⋃F−1
t=0 T i

t . If there is no new element, the masklets
at iteration i remain the same as iteration i − 1. The
pipeline’s iterative refinement enables coherent element ex-
traction across the temporal dimension, even for the dynam-
ically appearing elements.

3.2. Motion-based Hierarchical Merging
While SAM2 is capable of managing automated element
segmentation for animations, it will cause an issue of over-
segmentation. This issue arises when regions that should
belong to the same layer are divided by inner boundaries,
resulting in a large count of elements. If we regard each
element as a layer, such over-segmentation breaks semantic
objects into granular yet meaningless subdivisions, but also
diminishes usability.

To address this, we introduce Motion-based Hierarchi-
cal Merging (MHM), designed to merge over-segmented
masklets based on their motion states. It is inspired by an-
imation workflow, where animators dynamically merge or
separate layers according to their motion states. Firstly, we
employ Unimatch [38] to estimate optical flow, computing
a motion score for each masklet by averaging flow mag-
nitudes across all pixels in the masklet. Notably, we do
not use the direction of flow to represent motion state since
pixels may move in diverse directions within a layer, such
as dispersing smoke. MHM regards masklets as nodes and
constructs a treemap using hierarchical clustering based on
motion scores, merging layers with similar motion scores
from the bottom up. Considering the variability in layer
numbers during production, we do not restrict a fixed num-
ber of layers. Instead, we define the maximum layer capac-
ity N , which is much less than the number of masklets, and
a motion score merging threshold ηs. Layers are merged
from the bottom up until the count of layers falls below
the capacity N and the motion score difference exceeds the
threshold ηs. The motion score of the final merged layer is
set by averaging the motion scores from the merged layers.
A simple illustration of Motion-based Hierarchical Merging
can be found in Supplementary Material.

4. LayerAnimate

Given a reference image cimage, layer masks M, and layer-
level control signals, our objective is to generate animation
videos from Gaussian noise z through a conditional denois-
ing network ϵθ. Hence, we propose LayerAnimate, a frame-
work that enhances fine-grained control over layers within

Reference Image Layer Regions 𝐑
(𝑁 × 3 × 𝐻 ×𝑊)

Motion-based
Assignment

Layer Masks ഥ𝐌
(𝑁 × 𝐹 × 1 × 𝐻 ×𝑊)

𝜀𝑙

F Frames

0.08
Motion Score

Sketch

Trajectory

Control Encoders

noisy latents z
(𝐹 × 𝑐 × ℎ × 𝑤)

Layer Encoder

Layer ControlNet

UNet

Trainable Frozen

Spatial Layer

Temporal Layer

Cross Attention

Element-wise Addition

Concatenationc

LayerAnimate

Layer Masks

Frame-level Control Layer-level Control
Layer Masks ഥ𝐌

(𝑁 × 𝐹 × 1 × 𝐻 ×𝑊)

Layer Regions ഥ𝐑
(𝑁 × 𝐹 × 3 × 𝐻 ×𝑊)

Frame Decomposition
Layer 0

Layer 1

Layer 2

Layer 3

0.08

1.09

5.852.69

Randomly
Selection

Layer Regions ഥ𝐑
(𝑁 × 𝐹 × 3 × 𝐻 ×𝑊)

VAE Encoder

𝜀 c

𝜀𝑐

Layer Masks 𝐌
(𝑁 × 1 × 𝐻 ×𝑊)

resize

5.85

0.08

1.09

2.69

Motion static

static

Ti
m

e

0.08

0.08

0.08

0.08

0.08

Layer-level Control

Figure 3. Overview of LayerAnimate. LayerAnimate establishes a layer-level control architecture for animation generation. It enables
the flexible composition of control signals at the layer level, allowing for injecting distinct conditions (e.g., motion scores, trajectories, and
sketches) for different layers. For simplicity, the text and image injection branches are omitted from the core architecture schematic.

a video diffusion model, as illustrated in Fig. 3.

4.1. Frame Decomposition

To unify the representation of layer information across
various videos, we begin with padding the variable num-
ber of layer masks M to the fixed maximum capacity N .
We then decompose the reference image cimage with bi-
nary layer masks M ∈ RN×1×H×W to get layer regions
R ∈ RN×3×H×W and indicate layer motion state with their
motion scores obtained from Sec. 3.2. With the layer infor-
mation in hand, we need to consider it for non-reference
frames across the temporal dimension.

Some multi-frame control methods, such as SparseC-
trl [6] and ToonCrafter [35], employ zero images to imply
unconditional frames. Conversely, approaches like SVD [1]
and DynamiCrafter [37] that condition on a single refer-
ence image replicate the reference across all frames and
then concatenate them with the input of the diffusion model.
In LayerAnimate, we integrate the aforementioned meth-
ods to propose Motion-based Assignment. It first cate-
gorizes layers into dynamic and static based on motion
scores and a predefined threshold η, where the static lay-
ers are expected to remain unchanged along the temporal.
Specifically, we assign static layers from the reference to

all F − 1 non-reference frames, while assigning zero im-
ages to the F − 1 non-reference frames of dynamic layers,
where F is the number of frames in the video. Through
the assignment, we unsqueeze layer masks and layer re-
gions from M ∈ RN×1×H×W ,R ∈ RN×3×H×W to
M ∈ RN×F×1×H×W ,R ∈ RN×F×3×H×W in the tem-
poral dimension.

4.2. Layer Controlling
Following frame decomposition, precise control signal in-
jection at the layer level is crucial for layer-level control-
lable animation generation. Considering user accessibility,
we implement three control modalities, which are in as-
cending order of control information: motion score (scalar
fields), trajectory (directional guidance), and layer-level
sketch (dense structural priors). During training, layer-level
control signals are randomly selected from frame-level sig-
nals through layer masks, enabling a flexible composition
of control signals. At inference, users can freely decom-
pose the reference frame into layers and apply layer-level
controls through an interactive interface.

Motion Score. In Image-to-Video (I2V) task, motion is
conventionally depicted by the text prompt; however, it’s
difficult for users to express precise motion descriptions for

each layer. Besides, certain elements like flames and par-
ticle effects, which are challenging to describe using tra-
jectories, are common in animation clips. Hence, we in-
troduce layer-level motion scores to provide a more user-
friendly control manner. As detailed in Sec. 3.2, we obtain
layer motion scores s via optical flow estimation. For con-
sistent representation, we define an upper score smax and
normalize s to [0, 1] by s′ = ⌈ s

smax
⌉. The scores s′ ∈ RN×1

are spatially and temporally aligned with layer masks M ∈
RN×F×1×H×W through broadcasting and concatenated in
the channel dimension. Notably, layer masks M only rely
on the reference frame, eliminating the requirement for per-
frame mask annotations.
Trajectory. Trajectory offers enhanced spatial-temporal
controllability compared to scalar motion scores. We im-
plement CoTracker3 [17] to track the 60 × 60 grid points
across animation clips. To filter out low-quality point tra-
jectories wandering across different layers, we enforce con-
straints using masklets

⋃F−1
t=0 T i

t from Sec. 3.1. We assign
the masklets to each trajectory based on their coordinates
in the first frame, then retain those trajectories maintaining
more than 80% overlap within the masklet to ensure layer-
consistency. The filtered trajectories are converted into a
three-channel map, including one channel that indicates a
Gaussian Heatmap like DragAnything [34] and the other
two channels store a normalized offset map like Tora [45].
This hybrid representation combines the strengths of both
forms: the heatmap channel resolves static/dynamic ambi-
guity in the offset map, i.e., static and uncontrolled regions
are both zero, while the offset map models temporal corre-
spondences between heatmap peaks in adjacent frames. As
demonstrated in Sec. 5.5, the hybrid scheme achieves better
performance.
Sketch. Sketch enables precise manipulation of complex
motions with dense structure guidance. Unlike conventional
complete frame-level sketch requirements, we randomly se-
lect layer-level sketches with curated layer masklets from
Sec. 3 and remove the area of other layers to develop the
capability of permitting partial sketching.

4.3. Layer Feature Fusion
As illustrated in Fig. 3, the decomposed layer regions R
are encoded into latent space by a VAE encoder. To distin-
guish valid regions from invalid zero values, we resize layer
masks M to match the size of layer latents by bilinear in-
terpolation for concatenation and further encode them with
the layer encoder εl. Layer-level controls are organized into
the image format for subsequent encoding. We implement
conventional blocks to achieve an 8x spatial compression as
control encoders εc except for sketch, which is encoded by
a VAE Encoder and a trainable convolution layer.

After the layer encoder and control encoders, the en-
coded layer features are combined and fed into ControlNet

for parallel processing at the layer level, i.e., each layer is
regarded as an independent sample. Since the processed
layer-level features RN×F×c×h×w from ControlNet are N
times the number of frame-level features RF×c×h×w in
the denoising UNet, we implement cross-attention to fuse
layer features, where the frame-level features in UNet act
as queries and the layer features serve as keys and values.
It’s crucial to note that we introduce a validity mask to indi-
cate padded layers, ensuring only valid layers participate in
feature fusion.

4.4. Training and Inference
Training. During training, we optimize the conditional
denoising network ϵθ, which consists of layer encoder εl,
control encoders εc, UNet, and ControlNet. The encoders
εl, εc, the spatial layer in the decoder of UNet and Control-
Net are trainable, while all other parameters are frozen. The
objective is given by:

minEz0,t,ϵ∼N (0,I)

[
||ϵ− ϵθ(zt; c,R,M,Lc)||22

]
, (3)

where z0 represents the initial video latents from VAE en-
coder, zt is the noised video latents at timestep t, R,M
denote the layer regions and masks obtained from Sec. 4.1,
Lc corresponds to layer-level controls, and c indicates other
conditions like the reference image cimage and the text
prompt ctext. Moreover, we implement random control se-
lection to enhance the model’s robustness against diverse
conditions. We apply a 10% dropout probability to layer
masks simulating incomplete user annotations. For each
retained layer, the control among the three modalities will
be randomly selected in the following probabilities: 20%
for motion score, 40% for trajectory, and 40% for sketch.
Since the three modalities are in ascending order of guid-
ance information, the simultaneous application of weaker
control does not provide additional guidance when select-
ing a strong control; therefore, we only select one control
for each layer.
Inference During inference, LayerAnimate allows users
to generate layer masks on the reference image by simply
clicking using SAM [18]. Users can freely input distinct
controls for different layers to generate an animation video
tailored to the users’ specifications.

5. Experiments
5.1. Implementation
During the layer curation phase, we collect a considerable
number of raw animation videos, which are systematically
cleaned following OpenSora [46]. On this basis, we curate
layer data through our layer curation pipeline. Throughout
the process, we define the maximum layer capacity as N =
4 and set the motion score merging threshold ηs = 1.0.
The pipeline yields a dataset of 665K clips, ranging from 16

to 128 frames per clip, from which 1K clips are randomly
selected as the evaluation set.

We adopt the pre-trained UNet from ToonCrafter [35],
designed for cartoon interpolation, as our denoising UNet.
We replace its specially designed interpolation-oriented
VAE with a standard VAE utilized in an I2V model Dynam-
iCrafter [37] in the I2V task. In LayerAnimate, the con-
trol encoders εc and layer embedding εl are implemented
with convolutional blocks. During the training, we classify
layers with motion scores below η = 0.1 as static and de-
fine the upper score smax = 30.0. The sketches utilized in
the experiments are extracted from original videos using the
method in [2].

All experiments are conducted over 30,000 steps using
AdamW [22] optimizer with a learning rate of 2e-5 on 32
NVIDIA A100 GPUs. The total batch size is set to 96. Our
LayerAnimate, with a maximum layer capacity of N = 4,
is trained to generate 16 frames at a resolution of 320× 512
on our collected anime dataset.

5.2. Comparison
To demonstrate the versatility of our model, we conduct
comparisons across six video generation tasks under dif-
ferent conditions: first-frame Image-to-Video (I2V), I2V
with trajectory, I2V with sketch, interpolation, interpola-
tion with trajectory, and interpolation with sketch. For
these tasks, we compare our method against the latest rep-
resentative state-of-the-art methods: SEINE [4], Dynami-
Crafter [37], and CogVideoX [40] for I2V and interpolation
tasks, DragAnything [34] and Tora [45] for I2V with tra-
jectory task, Framer [32] for interpolation with trajectory
task, AniDoc [24] and LVCD [15] for the I2V with sketch
task, and ToonCrafter [35] for interpolation and interpola-
tion with sketch tasks.

Discussion. Here we first briefly discuss the core differ-
ences between our methods and some related methods. (1)
DragAnything [34] assigns trajectories to distinct entities
based on masks, which is similar to our concept of layer-
level control; however, its control is limited to the sim-
ple displacement of entities. (2) AniDoc [24] is tailored
for character sketch coloring with the reference character
specification. Here, we take the first frame as the refer-
ence. (3) Framer [32] enables interpolation with given tra-
jectories, where we provide the trajectories obtained by Co-
Tracker3 [17]. To ensure a fair comparison, we do not input
motion scores in I2V and interpolation tasks and adopt the
same trajectories and sketches as the counterparts in related
tasks.

Quantitative Comparison. To evaluate the quality of the
generated videos in both spatial and temporal domains, we
employ FVD [31] and FID [10] metrics. Additionally, to as-
sess reconstruction quality in sketch-conditioned tasks, we

Task Method FVD↓ FID↓ LPIPS↓ PSNR↑ SSIM↑

I2
V

-

SEINE [4] 236.04 30.14 0.458 13.06 0.465
DynamiCrafter [37] 114.80 14.36 0.354 14.89 0.554
CogVideoX [40] 170.31 19.77 0.355 14.35 0.543
LayerAnimate (ours) 87.96 14.66 0.370 15.45 0.556

Tr
aj

. DragAnything [34] 300.51 26.10 0.464 14.00 0.514
Tora [45] 190.61 22.03 0.376 15.32 0.525
LayerAnimate (ours) 72.04 12.55 0.281 17.46 0.634

Sk
et

ch AniDoc [24] 42.26 12.16 0.131 21.39 0.792
LVCD [15] 29.85 7.01 0.076 26.22 0.862
LayerAnimate (ours) 26.64 5.92 0.075 25.71 0.858

In
te

rp
ol

at
io

n -

SEINE [4] 97.13 11.96 0.267 18.19 0.641
DynamiCrafter [37] 98.72 13.03 0.282 17.95 0.629
CogVideoX [40] 88.28 9.93 0.250 19.39 0.684
ToonCrafter [35] 74.63 9.97 0.244 19.92 0.668
LayerAnimate (ours) 59.64 8.38 0.216 20.07 0.696

Tr
aj

. Framer [32] 62.17 7.67 0.150 22.48 0.760
LayerAnimate (ours) 44.69 6.94 0.164 22.50 0.764

Sk
et

ch ToonCrafter [35] 66.26 8.40 0.128 23.28 0.794
LayerAnimate (ours) 15.63 3.23 0.044 29.84 0.908

Table 1. Quantitative comparison with other state-of-the-art
video generation models across various tasks on our evaluation
set. Traj.: Trajectory control.

adopt LPIPS [43], PSNR, and SSIM to measure the simi-
larity between the generated videos and the original videos.
As presented in Tab. 1, our method demonstrates superior
performance in all tasks. Although we only demonstrate
the performance with a certain single control in Tab. 1 for
fairness, our approach also allows for the combination of
multiple control modalities, indicating that our model pos-
sesses greater applicability, which can be seen in Sec. 5.3.
Qualitative Comparison. Unlike real-world videos,
anime videos feature special effects, objects appearing from
nowhere, and unconventional visual styles. We select sev-
eral representative clips for qualitative comparison, as de-
picted in Fig. 4.
• For I2V, DynamiCrafter struggles to maintain character

consistency, CogVideoX does not animate any elements
but merely blurs the image, whereas our method not only
generates particle effects but also preserves the charac-
ter’s facial consistency after particles pass across it.

• For I2V with trajectories, the flying red mecha controlled
by DragAnything disappears halfway through, and the
glass canopy of the aircraft not controlled by Tora fails
to maintain consistency. Our method exhibits excellent
tracking on the movement of the red flying mecha, and
enables aircraft to be unchanged through a fixed point tra-
jectory.

• For I2V with sketches, our method generates the knife
with luster, exhibiting greater detail.

• For interpolation, our method generates more reasonable
arm movements and facial expressions.

• For interpolation with trajectories, our method achieves

I2V Interpolation

I2V with trajectory

first frame D
yn
am

iC
ra
fte
r

C
og
Vi
de
oX

O
ur
s

O
ur
s

first frame last frame

To
on
C
ra
fte
r

O
ur
s

1 4

2

Interpolation with trajectory5

first frame last frame

C
og
Vi
de
oX

D
yn
am

iC
ra
fte
r

first frame D
ra
gA

ny
th
in
g

To
ra

O
ur
s

Fr
am

er

I2V with sketch

first frame

O
ur
s

3
LV
C
D

A
ni
D
oc

sketch

first frame last frame

O
ur
s

Interpolation with sketch6

To
on
C
ra
fte
r

sketch

Figure 4. Qualitative comparison with other competitors. We select several clips to exemplify the representative characteristics of
animation, including particle effects in ①, a knife appearing off-screen ③, and an unconventional fade-in visual style in ⑥. We provide the
corresponding videos in the supplementary materials, offering more clear and vivid comparisons.

excellent tracking and generates a more natural facial ex-
pression than Framer.

• For interpolation with sketches, which involves a fade-in
scene, ToonCrafter fails to reveal the background prop-
erly, and the character’s hair color alters over frames. Our
method maintains consistent hair color while accurately
generating the intended fade-in visual style.

5.3. Composite Control

Our proposed LayerAnimate enables multiple heteroge-
neous control over animation layers. Combining the mul-
tiple control signs leads to a composite manner of control,
as illustrated in Fig. 6. Taking the 4-layer sample as an ex-
ample (the first row of Fig. 6), we employ sketch for the
character layer to depict complex facial expressions while
using trajectory movement for the sky and assigning dif-
ferent motion scores to mecha and light effects. Ultimately,
this approach enables the generation of animation clips with
less cost than conventional frame-level sketching. Further-
more, other samples showcase effects such as the dragging
of the luminous shockwave (the 2nd row) and the rotation

DynamiCrafter 11.1%

I2V1

Interp. w/ sketch

LayerAnimate 68.9%

LVCD 24.4%

AniDoc 6.7%

LayerAnimate 62.2%

LayerAnimate 84.4%

ToonCrafter 15.6%

SEINE 6.7%

DynamiCrafter 4.4%

ToonCrafter 13.3%

LayerAnimate 86.7%

CogVideoX 4.4%

I2V w/ sketch

LayerAnimate 82.2%

Tora 13.3%

DragAnything 4.4%

CogVideoX 11.1%

LayerAnimate 71.1%

Framer 28.9%

I2V w/ traj.2 3

Interpolation4 Interp. w/ traj.5 6

Figure 5. Voting results of the user study. LayerAnimate exhibits
superior performance across different tasks. Interp.: Interpolation.
traj.: trajectory.

of stages (the 3rd row).

5.4. User Study
To further evaluate the effectiveness of our method, we con-
duct a user study involving 20 participants who voted the

Generated Frames

Motion Score

0.40

Sketch

Trajectory

First Frame

0.20

Last Frame

Generated Frames

Motion Score

Sketch

Trajectory

0.00

First Frame

Generated Frames

Sketch

Trajectory

First Frame

(move background)

(drag shockwave)

(rotate stage)

Figure 6. Composite control. LayerAnimate provides multiple user-friendly control options at the layer level, leading to a composite
control manner. We also provide the corresponding videos in the supplementary materials for clear illustration.

best-generated videos among LayerAnimate and other com-
petitors across six different tasks, as discussed in Sec. 5.2.
As shown in Fig. 5, our LayerAnimate exhibits superior per-
formance.

5.5. Ablation
Layer Capacity. To investigate the impact of layer capac-
ity N settings on the performance, we test N = 1, 2, 4 un-
der I2V with motion scores condition. As can be seen in
Tab. 2, increasing N will improve the performance, demon-
strating the superiority of our layer-level design. In prac-
tice, using 4 layers is adequate in most animation cases, so
we select N = 4 as the default layer capacity.

Motion Score. To demonstrate the effectiveness of layer-
level motion information, here we progressively input mo-
tion information from binary motion state to specific motion
score. The binary motion state (i.e., w/ MA in Tab. 2) means
a certain layer is either static or dynamic. Specific motion
score provides more detailed information indicating the de-
gree of movement, demonstrated by “w/ MA & scores” in
Tab. 2. As showcased in Tab. 2, more motion information
enables better generation quality in both I2V task and inter-
polation task.

Trajectory Representation. For the representation of
the trajectory, we integrate the commonly used Gaussian
Heatmap and offset map forms in Sec. 4.2. As demonstrated
in Tab. 2, our design results in a significant performance en-
hancement.

Method FVD↓ FID↓ LPIPS ↓ PSNR↑ SSIM↑

C
ap

ac
ity I2V (N = 1) 87.88 14.63 0.376 15.05 0.546

I2V (N = 2) 81.93 14.15 0.363 15.39 0.560
I2V (N = 4) 81.36 13.84 0.348 15.81 0.574

M
ot

io
n

Sc
or

e I2V 87.96 14.66 0.370 15.45 0.556
I2V w/ MA 87.12 14.44 0.363 15.64 0.565
I2V w/ MA & scores † 81.36 13.84 0.348 15.81 0.574

Interp. 59.64 8.38 0.216 20.07 0.696
Interp. w/ MA 59.79 8.31 0.214 20.15 0.699
Interp. w/ MA & scores 53.42 8.03 0.215 20.20 0.701

R
ep

re
se

nt
.

I2V w/ traj. (offset) 87.83 12.74 0.298 16.94 0.612
I2V w/ traj. (heatmap) 80.57 12.65 0.281 17.57 0.635
I2V w/ traj. (ours) 72.04 12.55 0.281 17.46 0.634

Table 2. Ablation study on LayerAnimate. MA: Motion-based
Assignment. Interp.: Interpolation. traj.: trajectory control. †: the
same setting with “I2V (N = 4)”.

6. Conclusion
We propose LayerAnimate, a layer-level control framework
combining the traditional layer separation philosophy in an-
imation production with video generation models. Lay-
erAnimate enables layer-level control over individual an-
imation layers, allowing users to apply multiple controls
to distinct layers. To address the issue of scarce layer-
level data, we design a data curation pipeline to automat-
ically extract layer from animations. Extensive experiments
demonstrate its effectiveness and versatility. This frame-
work opens up new possibilities for layer-level animation
applications and creative flexibility.

Acknowledgements
This work was supported in part by the National Key R&D
Program of China (No. 2022ZD0160102), the National
Natural Science Foundation of China (No.U21B2042,
No.62320106010).

References
[1] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel

Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, et al. Stable video
diffusion: Scaling latent video diffusion models to large
datasets. arXiv preprint arXiv:2311.15127, 2023. 1, 2, 4

[2] Caroline Chan, Frédo Durand, and Phillip Isola. Learning to
generate line drawings that convey geometry and semantics.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7915–7925, 2022. 6

[3] Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang,
Xiaodong Cun, Shaoshu Yang, Jinbo Xing, Yaofang Liu,
Qifeng Chen, Xintao Wang, et al. Videocrafter1: Open
diffusion models for high-quality video generation. arXiv
preprint arXiv:2310.19512, 2023. 2

[4] Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin
Zhuang, Xin Ma, Jiashuo Yu, Yali Wang, Dahua Lin, Yu
Qiao, and Ziwei Liu. SEINE: Short-to-long video diffu-
sion model for generative transition and prediction. In ICLR,
2024. 2, 6

[5] Prafulla Dhariwal and Alexander Nichol. Diffusion mod-
els beat gans on image synthesis. NeurIPS, 34:8780–8794,
2021. 2

[6] Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala,
Dahua Lin, and Bo Dai. Sparsectrl: Adding sparse controls
to text-to-video diffusion models. In ECCV, pages 330–348.
Springer, 2024. 2, 4

[7] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang,
Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and
Bo Dai. Animatediff: Animate your personalized text-to-
image diffusion models without specific tuning. In ICLR,
2024. 2

[8] Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel
Shalem, Dudu Moshe, Eitan Richardson, Eran Levin, Guy
Shiran, Nir Zabari, Ori Gordon, et al. Ltx-video: Realtime
video latent diffusion. arXiv preprint arXiv:2501.00103,
2024.

[9] Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and
Qifeng Chen. Latent video diffusion models for high-fidelity
long video generation. arXiv preprint arXiv:2211.13221,
2022. 2

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. NeurIPS, 30, 2017. 6

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. NeurIPS, 33:6840–6851, 2020.
2

[12] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben

Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022. 2

[13] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. NeurIPS, 35:8633–8646, 2022. 2

[14] Li Hu. Animate anyone: Consistent and controllable image-
to-video synthesis for character animation. In CVPR, pages
8153–8163, 2024. 2

[15] Zhitong Huang, Mohan Zhang, and Jing Liao. Lvcd:
Reference-based lineart video colorization with diffusion
models. arXiv preprint arXiv:2409.12960, 2024. 1, 2, 6

[16] Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang,
Nan Zhuang, Quzhe Huang, Yang Song, Yadong Mu, and
Zhouchen Lin. Pyramidal flow matching for efficient video
generative modeling. arXiv preprint arXiv:2410.05954,
2024. 2

[17] Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
tracker3: Simpler and better point tracking by pseudo-
labelling real videos. arXiv preprint arXiv:2410.11831,
2024. 5, 6

[18] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, pages 4015–4026, 2023. 1, 2, 5

[19] Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai,
Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang,
et al. Hunyuanvideo: A systematic framework for large video
generative models. arXiv preprint arXiv:2412.03603, 2024.
2

[20] Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu,
Shaodong Wang, Xianyi He, Yang Ye, Shenghai Yuan, Li-
uhan Chen, et al. Open-sora plan: Open-source large video
generation model. arXiv preprint arXiv:2412.00131, 2024.

[21] Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao,
Ruoxi Chen, Zhengqing Yuan, Yue Huang, Hanchi Sun, Jian-
feng Gao, et al. Sora: A review on background, technology,
limitations, and opportunities of large vision models. arXiv
preprint arXiv:2402.17177, 2024. 2

[22] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 6

[23] Yifang Men, Yuan Yao, Miaomiao Cui, and Liefeng Bo.
Mimo: Controllable character video synthesis with spatial
decomposed modeling. arXiv preprint arXiv:2409.16160,
2024. 2

[24] Yihao Meng, Hao Ouyang, Hanlin Wang, Qiuyu Wang, Wen
Wang, Ka Leong Cheng, Zhiheng Liu, Yujun Shen, and
Huamin Qu. Anidoc: Animation creation made easier. arXiv
preprint arXiv:2412.14173, 2024. 1, 2, 6

[25] Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-
Chang Yang, and Jiaya Jia. Controlnext: Powerful and effi-
cient control for image and video generation. arXiv preprint
arXiv:2408.06070, 2024. 2

[26] Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra,
Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-
Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of

media foundation models. arXiv preprint arXiv:2410.13720,
2024. 2

[27] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2:
Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 1, 2, 3

[28] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman.
Make-a-video: Text-to-video generation without text-video
data. In ICLR, 2023. 2

[29] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 2

[30] Shuai Tan, Biao Gong, Xiang Wang, Shiwei Zhang, Dandan
Zheng, Ruobing Zheng, Kecheng Zheng, Jingdong Chen,
and Ming Yang. Animate-x: Universal character image ani-
mation with enhanced motion representation. arXiv preprint
arXiv:2410.10306, 2024. 2

[31] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphaël Marinier, Marcin Michalski, and Sylvain Gelly.
FVD: A new metric for video generation. In ICLR work-
shop, 2019. 6

[32] Wen Wang, Qiuyu Wang, Kecheng Zheng, Hao OUYANG,
Zhekai Chen, Biao Gong, Hao Chen, Yujun Shen, and Chun-
hua Shen. Framer: Interactive frame interpolation. In ICLR,
2025. 1, 6

[33] Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Ji-
uniu Wang, Yingya Zhang, Yujun Shen, Deli Zhao, and Jin-
gren Zhou. Videocomposer: Compositional video synthesis
with motion controllability. NeurIPS, 36, 2024. 2

[34] Weijia Wu, Zhuang Li, Yuchao Gu, Rui Zhao, Yefei He,
David Junhao Zhang, Mike Zheng Shou, Yan Li, Tingting
Gao, and Di Zhang. Draganything: Motion control for any-
thing using entity representation. In ECCV, pages 331–348.
Springer, 2024. 2, 5, 6

[35] Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang,
Xintao Wang, Ying Shan, and Tien-Tsin Wong. Toon-
crafter: Generative cartoon interpolation. arXiv preprint
arXiv:2405.17933, 2024. 1, 2, 4, 6

[36] Jinbo Xing, Menghan Xia, Yuxin Liu, Yuechen Zhang, Yong
Zhang, Yingqing He, Hanyuan Liu, Haoxin Chen, Xiaodong
Cun, Xintao Wang, et al. Make-your-video: Customized
video generation using textual and structural guidance. IEEE
TVCG, 2024. 2

[37] Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen,
Wangbo Yu, Hanyuan Liu, Gongye Liu, Xintao Wang, Ying
Shan, and Tien-Tsin Wong. Dynamicrafter: Animating
open-domain images with video diffusion priors. In ECCV,
pages 399–417. Springer, 2024. 1, 2, 4, 6

[38] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi,
Fisher Yu, Dacheng Tao, and Andreas Geiger. Unifying flow,
stereo and depth estimation. IEEE TPAMI, 2023. 3

[39] Jiaqi Xu, Xinyi Zou, Kunzhe Huang, Yunkuo Chen, Bo Liu,
MengLi Cheng, Xing Shi, and Jun Huang. Easyanimate:
A high-performance long video generation method based on
transformer architecture. arXiv preprint arXiv:2405.18991,
2024. 2

[40] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu
Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiao-
han Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video
diffusion models with an expert transformer. arXiv preprint
arXiv:2408.06072, 2024. 2, 6

[41] Yan Zeng, Guoqiang Wei, Jiani Zheng, Jiaxin Zou, Yang
Wei, Yuchen Zhang, and Hang Li. Make pixels dance: High-
dynamic video generation. In CVPR, pages 8850–8860,
2024. 2

[42] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
ICCV, pages 3836–3847, 2023. 2

[43] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, pages 586–595,
2018. 6

[44] Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao,
Hangjie Yuan, Zhiwu Qin, Xiang Wang, Deli Zhao, and
Jingren Zhou. I2vgen-xl: High-quality image-to-video
synthesis via cascaded diffusion models. arXiv preprint
arXiv:2311.04145, 2023. 2

[45] Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai,
Bingxue Qiu, Siyu Zhu, Long Qin, and Weizhi Wang. Tora:
Trajectory-oriented diffusion transformer for video genera-
tion. arXiv preprint arXiv:2407.21705, 2024. 2, 5, 6

[46] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen,
Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, and Yang
You. Open-sora: Democratizing efficient video production
for all. arXiv preprint arXiv:2412.20404, 2024. 2, 5

[47] Yuan Zhou, Qiuyue Wang, Yuxuan Cai, and Huan Yang. Al-
legro: Open the black box of commercial-level video gener-
ation model. arXiv preprint arXiv:2410.15458, 2024. 2

	Introduction
	Related Works
	Layer Curation
	Automated Element Segmentation
	Motion-based Hierarchical Merging

	LayerAnimate
	Frame Decomposition
	Layer Controlling
	Layer Feature Fusion
	Training and Inference

	Experiments
	Implementation
	Comparison
	Composite Control
	User Study
	Ablation

	Conclusion

