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Abstract001

Recent advancements in Large Language Mod-002
els (LLMs) have achieved robust performance003
across diverse tasks, but fine-tuning these mod-004
els for specific domains remains resource-005
intensive. Parameter-Efficient Fine-Tuning006
(PEFT) methods like Low-Rank Adaptation007
(LoRA) address this challenge by fine-tuning008
a small subset of parameters. However, exist-009
ing methods for fusing multiple LoRAs lack010
dynamic fusion based on contextual inputs and011
often increase inference time due to token-012
level operations. We propose DLP-LoRA, a013
Dynamic Lightweight Plugin that employs a014
mini-MLP module with only 5M parameters to015
dynamically fuse multiple LoRAs at the sen-016
tence level rather than the token level using017
top-p sampling strategies for possible LoRAs.018
This approach reduces inference time to less019
than 2x that of a single LoRA inference by020
leveraging parallel computation. Evaluations021
across 26 tasks, including multiple-choice ques-022
tions and question answering, demonstrate that023
DLP-LoRA achieves an average accuracy of024
91.9% on multiple-choice datasets and signif-025
icant improvements in BLEU, ROUGE-1 and026
ROUGE-L scores (54.1%, 43.5% and 40.8%)027
on QA datasets, outperforming many LoRA028
baselines under different LLMs backbones.029
DLP-LoRA effectively balances performance030
and efficiency, making it a practical solution031
for dynamic multi-task adaptation in LLMs.032

1 Introduction033

Recent advancements in Large Language Models034

(LLMs) such as LLaMA 3.1 (Dubey et al., 2024),035

Qwen 2.5 (Team, 2024), and Gemma 2 (Team et al.,036

2024) have led to robust and superior performance037

across multiple benchmarks (Muennighoff et al.,038

2022; Ilyas Moutawwakil, 2023; Fourrier et al.,039

2024). These models have demonstrated remark-040

able capabilities in diverse areas, including code041

generation (Bai et al., 2023), mathematical rea-042

soning (Ahn et al., 2024), and question answer-043

ing (Achiam et al., 2023). Despite these achieve- 044

ments, fine-tuning all parameters of such large mod- 045

els for specific domains remains resource-intensive 046

and time-consuming. 047

Parameter-Efficient Fine-Tuning (PEFT) meth- 048

ods (Houlsby et al., 2019; Xu et al., 2023) address 049

this challenge by enabling the fine-tuning of a small 050

subset of parameters, thereby improving perfor- 051

mance in various applications like multi-task learn- 052

ing (Xu et al., 2024; Kong et al., 2024), multilin- 053

gual summarisation, and transfer learning (White- 054

house et al., 2024; Zhao et al., 2024). One promi- 055

nent PEFT approach is Low-Rank Adaptation 056

(LoRA) (Hu et al., 2021), which fine-tunes low- 057

rank matrices to capture domain-specific knowl- 058

edge and merges them with pre-trained LLMs. 059

To enhance the multi-task learning capabili- 060

ties of LLMs, several methods have been pro- 061

posed to fuse task-specific LoRAs, including Ar- 062

row (Ostapenko et al., 2024), LoRAHub (Huang 063

et al., 2024) and MeteoRA (Xu et al., 2025). These 064

approaches primarily use learnable gating networks 065

or multiple iterations to adapt and combine mul- 066

tiple LoRAs. For instance, MeteoRA (Xu et al., 067

2024) introduces 7 token-level gating networks to 068

all attention and MLP layers for dynamic LoRA 069

fusion. 070

However, most of these methods lack the ability 071

to dynamically fuse LoRAs based on contextual 072

prompt inputs during inference. They either re- 073

quire manual selection before combining LoRAs 074

or necessitate additional fine-tuning of embedded 075

gating networks when new tasks are introduced. 076

Moreover, existing LoRA mixture strategies like 077

MeteoRA focus on token-level Mixture-of-Experts 078

(MoE) gating across all attention heads and MLP 079

layers, which significantly increases inference time 080

for next-token generation. Observations from prior 081

studies (Xu et al., 2025; Lin et al., 2024; Muqeeth 082

et al., 2024) indicate that within the same sentence 083

of a task, the same LoRA is consistently assigned 084
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to each token. This suggests that token-level LoRA085

MoE might be unnecessary and computationally086

inefficient.087

In this paper, we propose a Dynamic088

Lightweight Plugin for LoRA fusion (DLP-089

LoRA), which employs a lightweight mini-MLP090

module to dynamically fuse multiple LoRAs091

based on top-p sampling strategies on the sentence092

level. This mini-MLP plugin, containing only093

5M parameters, is fast to train for multi-task094

classification and easily adaptable to new domains,095

such as increasing task numbers from 50 to 100.096

By leveraging sentence-level LoRA selection097

and fusion guided by the mini-MLP plugin,098

DLP-LoRA requires less than 2x the inference099

time compared to manually selecting and loading100

a single LoRA and different LoRA baselines101

equipped with dynamic fusion methods, making it102

comparable in efficiency.103

We evaluate DLP-LoRA across 26 tasks, includ-104

ing 18 multiple-choice question (MCQ) datasets105

spanning mathematical QA, logical reasoning, lan-106

guage identification, and reading comprehension,107

as well as 8 question-answering (QA) datasets fo-108

cused on summarisation, machine translation, and109

open-domain QA. Under comparable inference110

times to single LoRA setups and different dynamic111

LoRA baselines, DLP-LoRA achieves an average112

accuracy of 91.9% across the 18 MCQ datasets and113

average BLEU, ROUGE-1, and ROUGE-L scores114

of 54.1, 43.5, and 40.8, respectively, across the 8115

QA datasets. These evaluations are conducted us-116

ing Qwen-2 1.5B, Qwen-2 7B, LLaMA-2 7B, and117

LLaMA-3 8B backbones. Additionally, our model118

demonstrates relative improvements of 92.95%119

and 13.2% for the MCQ and QA tasks, respec-120

tively, compared to different LLM backbones un-121

der composite task settings. With DLP-LoRA, the122

inference speed of the LLaMA-2 7B backbone is123

improved by average 353.8% compared to differ-124

ent dynamic LoRA baselines. Our case studies125

further illustrate that sentence-level DLP-LoRA126

effectively balances the trade-off between multi-127

LoRA inference and fusion.128

In summary, our contributions are threefold:129

• We introduce DLP-LoRA, a dynamic and130

lightweight plugin for multi-LoRA selection131

and fusion that is fast to train and easily adapt-132

able to new domains.133

• By employing sentence-level multi-LoRA se-134

lection and fusion, DLP-LoRA leverages par-135

allel CUDA acceleration, achieving less than 136

2x the inference time compared to single 137

LoRA inference and outperforming token- 138

level MoE gating routers in efficiency. 139

• Through extensive evaluations on 26 tasks in- 140

cluding MCQ and QA, DLP-LoRA signifi- 141

cantly improves accuracy, BLEU, ROUGE-1 142

and ROUGE-L compared to different SOTA 143

LoRA baselines under single and composite 144

task settings. 145

2 Background 146

Low-Rank Adaptation (LoRA). LoRA (Hu 147

et al., 2021) fine-tunes LLMs efficiently by freesing 148

most pre-trained weights and adding low-rank 149

matrices to specific layers, notably within Trans- 150

former attention projections (and recently, MLP 151

layers (Dou et al., 2024; Li et al., 2024)). Given 152

a weight matrix W ∈ Rh×d, LoRA introduces 153

matrices A ∈ Rh×r and B ∈ Rr×d with r ≪ 154

min(h, d), modifying the weight as: 155

W ′ = W +AB. (1) 156

For an input x, the output becomes h = xW + 157

xAB. This approach leverages the insight that 158

fine-tuning updates often lie in a low-dimensional 159

subspace, drastically reducing trainable parameters 160

(sometimes by up to 10,000×) while keeping infer- 161

ence efficient, since the low-rank matrices can be 162

merged with the original weights after training. 163

Multi-task LoRA Mixture. A single LoRA 164

adapter is tailored to one downstream task, lim- 165

iting its utility to that particular application. To en- 166

able multi-task handling, one approach fine-tunes 167

a single adapter on a combined dataset, but this 168

can dilute domain-specific knowledge (Lin et al., 169

2024). Alternatively, individual LoRA adapters 170

can be treated as modular components. Some ar- 171

chitectures combine multiple adapters via a learn- 172

able weighted sum (Huang et al., 2023) or unified 173

CUDA memory pools (Sheng et al., 2023), though 174

these often require manual selection and additional 175

few-shot or in-context learning. A more dynamic 176

method, as seen in MeteoRA (Xu et al., 2025), uses 177

a token-level Mixture-of-Experts framework with 178

a trainable gating mechanism across layers to au- 179

tomatically fuse different LoRAs. However, the 180

inclusion of a trainable gating module at every at- 181

tention and MLP layer with token-level routing sig- 182

nificantly increases inference time compared to sin- 183

gle LoRA inference. This performance drawback 184
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Figure 1: DLP-LoRA framework: different LoRAs will be activated based on the input task and sentence via
mini-MLP plugin. When Top-p sampling is used via the mini-MLP plugin, multiple LoRAs will be sampled and
fused with probability p as the threshold. DLP-LoRA fusion is only enabled once the first token of every new
sentence is generated.

remains substantial even with the development of185

GPU kernel acceleration methods.186

3 Methodology187

Our proposed DLP-LoRA framework comprises188

three key components: a lightweight mini-MLP189

plugin CMLP, a base LLM backbone M, and a set of190

N fine-tuned LoRA modules L{1...N} correspond-191

ing to different tasks D{1...N}, as illustrated in Fig-192

ure 1. Initially, we train the mini-MLP classifier193

CMLP on these tasks to achieve high task classifica-194

tion accuracy (we evaluate 26 tasks in this work;195

see Appendix B for details). Once trained, the LLM196

backbone M utilises the mini-MLP plugin to dy-197

namically fuse the appropriate fine-tuned LoRAs198

L{1...N} at the sentence level, enabling efficient199

multi-task learning.200

3.1 Lightweight Multi-task Classification201

Plugin202

Previous methods that perform token-level task203

classification and routing within the LLM back-204

bone, by injecting a trainable gating network at205

each attention and MLP layer, are computationally206

intensive and inefficient during inference (Xu et al.,207

2025). Observing that most tokens within a sen-208

tence typically pertain to the same task (Xu et al.,209

2025; Lin et al., 2024; Muqeeth et al., 2024), we210

propose a more efficient sentence-level task clas-211

sification approach. Specifically, we introduce an212

off-the-shelf 4-layer mini-MLP plugin CMLP that213

requires training only once on the sentence level 214

for the selected N tasks. 215

Given N distinct tasks D{1...N} and a collection 216

of M sentences S{1...M} ∈ Dn, our lightweight 217

4-layer CMLP encodes each input sentence Sm us- 218

ing a specific tokenizer (we utilise the ALBERT 219

tokenizer (Lan, 2019) in this work) and classifies 220

Sm to the correct task Dn: 221

Yn = CMLP(Sm), where Yn ∈ D{1...N}, (2) 222

3.2 Dynamic LoRA Fusion 223

Once the CMLP classifier is well-trained on the tasks 224

D{1...N}, it serves as a plugin to the LLM back- 225

bone M for dynamically fusing multiple LoRAs 226

L{1...N} at the sentence level. For the current input 227

sentence Sm ∈ Dn, we consider the first token w1 228

and the previous contextual history H{1...k}. We 229

employ a top-p sampling scheme via CMLP to dy- 230

namically select the possible LoRAs to fuse, using 231

probability p as the threshold: 232

Ip = {Y{1...R} | w1 ∈ Sm,H{1...k}}, where Yr ≥ p.
(3) 233

Using the set Ip for the current sentence Sm, 234

we fuse the selected LoRAs based on normalised 235

weights obtained via a softmax function: 236

Wm = Softmax(Ip) = {w1, . . . , wR}. (4) 237

Importantly, the CMLP classifier is only activated 238

when the first token w1 of the current sentence Sm 239

is generated, leveraging the contextual information 240
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H{1...k}. This approach significantly accelerates241

the inference time of M compared to token-level242

gating network classification (Xu et al., 2025), as it243

avoids the overhead of per-token classification.244

3.3 Parallel Multi-LoRA Acceleration245

Beyond the efficiency gained from sentence-level246

LoRA sampling and fusion, which avoids the in-247

efficiency of repetitive per-token LoRA classifica-248

tion, a significant advantage of our approach is the249

ability to fully exploit parallel multi-LoRA acceler-250

ation.251

Given N fine-tuned LoRAs, we construct two252

tensors A ∈ RN×h×r and B ∈ RN×r×d, which253

are allocated contiguously in High Bandwidth254

Memory (HBM). In contrast to token-level LoRA255

classification and forward computation, where each256

token in the batch operates independently, limit-257

ing the effectiveness of General Matrix Multipli-258

cation (GEMM) optimisations in frameworks like259

PyTorch, our sentence-level LoRA classification re-260

moves the independence constraints among tokens261

within a sentence. By iterating over all N LoRAs262

using a hash table stored in HBM, we retrieve the263

sampled LoRAs Ip based on top-p sampling and264

their corresponding weights Wm. Subsequently, all265

sampled LoRAs are fused into the original layer-266

wise weights W of the LLM as follows:267

[∆o1, . . . ,∆oBM ]︸ ︷︷ ︸
B×M

=
∑
R

WB×M×R(([x1, . . . ,xBMR]︸ ︷︷ ︸
B×M×R

×

[A1, . . . ,ABMR]︸ ︷︷ ︸
B×M×R

)× [B1, . . . ,BBMR]︸ ︷︷ ︸
B×M×R

)

(5)

268

where B is the batch size, M is the number of269

sentences, R is the number of sampled LoRAs,270

and x represents the encoded representation of the271

first token of each input sentence Sm. Normally,272

M is significantly smaller than the token numbers273

during finetuning. Leveraging this parallel multi-274

LoRA acceleration, our DLP-LoRA achieves an275

inference time that is on average only 1.20x slower276

than single LoRA inference compared with 2.62x277

slower of MeteoRA (see Section 4.2 for detailed278

comparisons).279

4 Experiments280

4.1 Experimental Setup281

Datasets. To comprehensively evaluate our pro-282

posed DLP-LoRA framework, we follow the283

methodology of Xu et al. (2025) and conduct ex-284

periments across 26 diverse tasks. These include285

18 multiple-choice question (MCQ) datasets cov- 286

ering domains such as mathematical question an- 287

swering, logical reasoning, language identifica- 288

tion, and reading comprehension. Additionally, 289

we assess performance on 8 question-answering 290

(QA) datasets focused on summarisation, machine 291

translation, and open-domain QA. Specifically, we 292

utilise 20 tasks from the BigBench benchmark (Sri- 293

vastava et al., 2023), 3 machine translation tasks 294

from the News Commentary dataset (Tiedemann, 295

2012) translating from non-English to English, 296

and 3 generative tasks: GSM8K (Cobbe et al., 297

2021), CNN/DailyMail (See et al., 2017), and Al- 298

paca (Taori et al., 2023). Detailed descriptions of 299

each dataset are provided in Appendix B. 300

LLM Backbones, LoRAs, and Mini-MLP Plu- 301

gin. We compared DLP-LoRA with several 302

LoRA baselines, such as TIES (Yadav et al., 303

2024), DARE (Yu et al., 2024), Arrow (Ostapenko 304

et al., 2024), LoraHub (Huang et al., 2024) and 305

MeteoRA (T1-1k) (Xu et al., 2025), using four 306

widely adopted LLM backbones: Qwen-2 1.5B 307

and 7B (Yang et al., 2024a), LLaMA-2 7B (Tou- 308

vron et al., 2023), and LLaMA-3 8B (Dubey et al., 309

2024). In addition, we use Huggingface PEFT (i.e., 310

PEFT) with all 26 LoRA loaded and manual ac- 311

tivation for specific LoRA during evaluation as a 312

reference model. We further train a single LoRA 313

(i.e., LoRA-F) with a mixed training dataset from 314

all 26 tasks for comparison. 315

For the baseline comparisons involving single 316

LoRA modules, we fine-tune a separate LoRA for 317

each task using 900 training samples, randomly 318

selected according to a 9:1 train/test split from 319

each original dataset following (Xu et al., 2025). 320

The rank of each LoRA used in baselines and our 321

DLP-LoRA is 8. The mini-MLP plugin, responsi- 322

ble for task classification, is trained on the same 323

samples and achieves an average classification ac- 324

curacy of 98.45%. Notably, the mini-MLP plu- 325

gin is lightweight, containing only 5M parameters, 326

and can be trained rapidly in under 10 minutes for 327

all 26 tasks and easy to extend to 100 tasks with- 328

out further fine-tuning the gating networks con- 329

tained in MoE-structure baselines, such as Mete- 330

oRA. All experiments regarding DLP-LoRA and 331

other baselines are conducted on a single NVIDIA 332

GTX 3090Ti GPU 24GB and H100, respectively. 333

Evaluation Metrics and Composite Task Setting. 334

Given that all 26 tasks can be categorised into MCQ 335

and QA types, we employ accuracy as the evalua- 336
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Figure 2: The performance of DLP-LoRA compared to 7 LoRA baselines using Qwen-2 1.5B (left) and LLaMA-3
8B (right) backbones across 26 tasks. See Appendix C for more results using Qwen-2 7B and LLaMA-2 7B LLMs
backbones.

Models Accuracy↑ BLEU↑ ROUGE-1↑ ROUGE-L↑

PEFT (Ref.) 90.4 / 93.3 / 90.1 / 95.5 51.0/ 55.1 / 54.7 / 55.2 38.5/ 45.4 / 40.8 / 45.8 35.8 / 42.9 / 38.3 / 43.2

LoRA-F 74.1 / 76.9 / 75.5 / 79.0 34.4 / 41.4 / 37.7 / 42.9 24.2 / 30.8 / 27.2 / 32.7 22.6 / 29.1 / 25.9 / 30.6
TIES 40.0 / 42.5 / 41.1 / 44.4 26.9 / 33.2 / 29.6 / 34.7 13.3 / 18.4 / 15.8 / 19.9 9.2 / 14.3 / 11.4 / 15.8
DARE 36.2 / 38.9 / 37.4 / 40.7 30.1 / 35.3 / 32.3 / 36.7 12.0 / 17.3 / 14.5 / 18.8 8.6 / 13.6 / 11.1 / 14.7
Arrow 60.8 / 63.6 / 62.2 / 66.0 23.0 / 28.5 / 25.7 / 29.9 20.9 / 26.9 / 23.6 / 28.3 16.9 / 22.9 / 19.9 / 24.2
LoraHub 18.5 / 21.7 / 19.5 / 22.9 6.5 / 9.6 / 8.1 / 10.1 8.1 / 12.8 / 10.4 / 14.1 5.8 / 9.4 / 7.4 / 10.4
MeteoRA (T1-1k) 77.8 / 81.6 / 79.0 / 84.1 37.4 / 43.6 / 40.5 / 45.6 25.4 / 32.0 / 28.0 / 33.8 24.0 / 29.7 / 26.6 / 31.4

DLP-LoRA 89.7 / 92.9 / 90.0 / 95.0 51.9 / 54.8 / 54.9 / 54.9 40.1 / 45.4 / 41.8 / 46.6 36.9 / 43.1 / 39.1 / 44.0

Table 1: Average performance of 26 tasks on four different LLM backbones by comparing different LoRA baselines
and our DLP-LoRA. For each column under the corresponding evaluation metric, the results represent Qwen-2
1.5B / Qwen-2 7B / LLaMA-2 7B / LLaMA-3 8B backbones used for each baseline, respectively. Our DLP-LoRA
significantly outperforms all LoRA baselines across all tasks based on the average evaluation metric. For each task
result, please refer to the Appendix C.

tion metric for MCQ tasks and BLEU, ROUGE-1,337

and ROUGE-L scores for QA tasks. To assess338

multi-task learning capabilities, we create compos-339

ite task settings by combining the 18 MCQ tasks340

(Composite-18) and the 8 QA tasks (Composite-8).341

In all experiments, we report the average results342

over 10 runs to ensure statistical reliability.343

4.2 Experimental Results344

Main Results. Figure 2 presents the performance345

of our DLP-LoRA compared to 7 LoRA baselines346

across 26 tasks using Qwen-2 1.5B and LLaMA-3347

8B as backbones. Our DLP-LoRA not only signifi-348

cantly outperforms most LoRA baselines but also349

achieves performance comparable to, and in some350

cases surpassing, that of the manually loaded PEFT351

method across 26 tasks. Similar trends are observed 352

for another two LLM backbones in Appendix C. As 353

shown in Table 1, DLP-LoRA achieves significant 354

improvement on accuracy, BLEU, ROUGE-1 and 355

ROUGE-L with the average 91.9%, 54.1, 43.5 and 356

40.8 compared to SOTA MeteoRA, respectively. 357

In addition, DLP-LoRA has comparable or better 358

performance on MCQ tasks or QA tasks when us- 359

ing Qwen-2 7B, LLaMA-2 7B and LLaMA-3 8B 360

than the PEFT reference approach. These results 361

demonstrate that DLP-LoRA can match or even 362

exceed the performance of individually fine-tuned 363

single LoRAs or dynamic MoE-based LoRA base- 364

lines by dynamically selecting and fusing multiple 365

LoRAs on the sentence level. 366
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Composite-n Metric (Avg.) ↑ Basic LoRA-F (r=64) DLP-LoRA

Composite-18 Acc. 48.0 81.3 92.6

Composite-8
BLEU 52.3 52.6 57.5
ROUGE-1 49.1 49.5 55.9
ROUGE-L 46.5 46.9 53.8

Table 2: Evaluation results for composite-n task, where
composite-8 includes all QA tasks, and composite-18
includes all MCQ tasks. In addition, we compare a
single LoRA with a higher rank trained on composite-
26 task setting. The evaluation results are averaged after
running 10 times.

Multi-task Composite Performance. We fur-367

ther evaluate DLP-LoRA’s capability in multi-task368

learning under composite task settings by combin-369

ing the 18 MCQ tasks and the 8 QA tasks. As370

presented in Table 2, DLP-LoRA significantly en-371

hances performance over the basic LLM backbones,372

achieving absolute improvements of 44.6% in ac-373

curacy for the MCQ composite, and 5.2, 6.8, and374

7.3 in BLEU, ROUGE-1, and ROUGE-L scores,375

respectively, for the QA composite. In addition, we376

further fine-tuned a single LoRA with a higher rank377

64 on all 26 tasks, and the improvement of such378

LoRA-F (r = 64) is incremental, which confirmed379

the argument that a single adapter on a combined380

dataset can dilute domain-specific knowledge (Lin381

et al., 2024). These findings indicate that DLP-382

LoRA effectively and automatically selects the ap-383

propriate LoRAs based on the input prompts within384

composite tasks, facilitating dynamic multi-task385

adaptation. A detailed example illustrating how386

DLP-LoRA selects and fuses multiple LoRAs is387

provided in Section 4.3.388

Inference Time Efficiency Compared to LLM389

Backbones. We also conduct a comprehensive390

evaluation of the inference time efficiency of DLP-391

LoRA and its variants compared to the basic LLM392

backbones and single LoRA models. As shown393

in Table 3, single LoRA models exhibit inference394

speeds comparable to the baseline LLMs, being395

only about 1.05x slower on average. When incor-396

porating ALBERT (11M parameters) as the plugin,397

DLP-LoRA’s inference time ranges from 1.12 to398

1.90x slower than the basic LLMs, representing399

a 41.90% increase compared to single LoRA in-400

ference. By contrast, using the mini-MLP plugin401

with 5M parameters, DLP-LoRA achieves faster402

inference, with only an 18.10% average increase403

in inference time over single LoRA models across404

all tasks. These results validate the efficiency of405

our sentence-level LoRA selection and fusion ap-406

Models LoRA DLP (ALBERT) DLP (mini-MLP)

Qwen-2 1.5B 1.15 1.90+65.22% 1.12−2.61%

Qwen-2 7B 1.00 1.13+13.00% 1.12+12.00%

LLaMA-2 7B 1.05 1.80+71.43% 1.60+52.38%

LLaMA-3 8B 1.00 1.12+12.00% 1.11+11.00%

Avg. 1.05 1.49+41.90% 1.24+18.10%

Table 3: The averaged inference time ratio across 26
datasets by comparing the single LoRA, and DLP-LoRA
equipped ALBERT and mini-MLP plugin with the basic
LLMs backbones. The subscript percentage denotes
relative inference time improvement or reduction of
DLP-LoRA over the single LoRA inference.

Models Decoding latency ratio Peak Memory ratio

LLaMA2-7B 1.00 1.00

MOLA 10.54+954% 2.04+104%

PESC 3.54+254% 1.02+2%

MoRAL 3.58+258% 1.02+2%

LoRA-Switch 1.29+29% 1.07+7%

MeteoRA 2.62+162% 1.12+12%

DLP-LoRA 1.20+20% 1.00+0%

Table 4: The inference time and memory consuming
ratio compared with different dynamic LoRAs base-
lines based on LLaMA-2 7B. The subscript percent-
age denotes relative inference time and memory us-
age improvement of different LoRAs baselines over the
LLaMA-2 7B backbone.

proach. 407

Efficiency Comparison among Different Dy- 408

namic LoRAs Baselines. We further compare 409

our DLP-LoRA with different dynamic LoRAs 410

baselines in order to evaluate the DLP-LoRA’s effi- 411

ciency at inference speed and memory usage. We 412

fine-tuned 8 different LoRAs based on selected 8 413

datasets including ARC (Clark et al., 2018), Hel- 414

laSwag (Zellers et al., 2019), MMLU (Hendrycks 415

et al., 2020), TruthfulQA (Lin et al., 2022), Wino- 416

Grande (Sakaguchi et al., 2021), ScienceQA (Lu 417

et al., 2022), CommonsenseQA (Talmor et al., 418

2019), and OpenbookQA (Mihaylov et al., 2018). 419

Then we compare DLP-LoRA with different base- 420

lines, such as MOLA (Gao et al., 2024), PESC (Wu 421

et al., 2024), MoRAL (Yang et al., 2024b) and 422

LoRA-Switch (Kong et al., 2024) on the ShareGPT 423

dataset (Wang et al., 2023) 1. As shown in Table 4, 424

it is evident that DLP-LoRA stands out in both 425

speed and memory efficiency. Even when handling 426

8 tasks, DLP-LoRA completes inference tasks fast 427

1Since LoRA-Switch did not descript how many LoRAs
are utilised during inference for ShareGPT dataset, we assume
that all 8 LoRAs based on the original work are equipped and
we can regard this as the lower-bound of DLP-LoRA.
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Content Contributions of LoRAs

Query: Is it common to see frost during some college commencements? AbsNarr: 50.5%
Output: Yes, it is common to see frost during some college commencements, especially in areas where the weather is cooler or more temperate.
Frost is the formation of ice crystals on surfaces in the atmosphere, typically when the temperature is below freezing. It can occur on surfaces
such as grass, leaves, and even clothing.
In some cases, frost can form on the ground or on surfaces during college commencements, especially if the temperature is around or below
freezing. This can happen in the early morning or late evening, when the air is colder.

GSM8K: 49.5%

Query: Aber das Ausmaß dieser Korruption sollte uns angesichts der Probleme mit der Buchführung der öffentlichen Hand nicht blenden. Auch
in diesem Bereich werden hinterhältige Dinge gedreht.

NewsDE: 100.0%

Output: But the freezing of this corruption should not blind us to the problems with the public sectors accounting. In this area, too, something is
being covered up.

Query: It is not always easy to see which chemicals are contained in our consumer products. The following argument pertains to this question:
First premise: Selenium sulfide is an ingredient of Water Baby. Second premise: Being an ingredient of Climate Control is sufficient for not
being an ingredient of Water Baby. We may conclude that selenium sulfide is not an ingredient of Climate Control. Is the argument, given the
explicitly stated premises, deductively valid or invalid? A valid B invalid:

FormFall: 100.0%

Output: A

Table 5: Case study of DLP-LoRA based on LLaMA-3 8B backbone under composite-3 task setting, where the
selected LoRAs with corresponding probabilities are demonstrated on the right side.

with only 1.20x slower than the basic LLaMA-2428

7B inference and with minimal additional memory429

costs, demonstrating a significant advantage over430

other dynamic LoRA baselines.431

4.3 Case Study432

To illustrate the practical effectiveness of DLP-433

LoRA, we present a case study in Table 5 using434

the LLaMA-3 8B backbone under a composite task435

setting involving three tasks. For the first input436

prompt, DLP-LoRA selects two LoRAs, i.e., Ab-437

sNarr and GSM8K, with probabilities of 50.5% and438

49.5%, respectively, using top-p sampling. The439

AbsNarr dataset involves narratives encapsulating440

human experiences and wisdom, while GSM8K441

focuses on practical scenarios requiring general442

knowledge through mathematical reasoning. The443

gold standard dataset, StratQA, requires answer-444

ing general knowledge questions with reasoning445

steps. DLP-LoRA effectively fuses the AbsNarr446

and GSM8K LoRAs to generate logical explana-447

tions that incorporate general knowledge about448

frost weather and commencements. When sub-449

sequent questions are input, concatenated with450

the history, DLP-LoRA continues to successfully451

select the appropriate LoRAs, i.e., NewsDE and452

FormFall, from the pool of 26 LoRAs stored in453

high-bandwidth memory (HBM). This case study454

demonstrates DLP-LoRA’s ability to dynamically455

select and fuse multiple LoRAs to address diverse456

tasks effectively.457

5 Discussion458

Limitations of Top-k Selection. Most existing459

Multi-LoRA or LoRA-MoE methods employ a top-460

k router to manually determine the fixed number461

of LoRAs to use for multi-task learning (Li et al.,462

2024; Yang et al., 2024b; Wu et al., 2024). This463

manual selection can restrict the model’s ability to 464

dynamically select and fuse multiple LoRAs based 465

on the task requirements. In our approach, we 466

utilise top-p selection, which leverages the proba- 467

bilities assigned by the mini-MLP plugin to each 468

LoRA, using a threshold p. This allows DLP-LoRA 469

to adaptively decide both the number and combina- 470

tion of LoRAs to fuse for different tasks, enhancing 471

flexibility and performance. 472

Additional Parameters Added by Different Lo- 473

RAs. Apart from the performance comparison in 474

Table 1, we further analyse how many additional 475

parameters are introduced for each LoRA base- 476

line compared to our DLP-LoRA in Table 6. We 477

demonstrate the layer-wise parameters added to the 478

LLM backbones, and indicate the fusion strategy 479

and whether each LoRA baseline is dynamic. As 480

demonstrated in Table 6, DLP-LoRA only intro- 481

duces 5e6
L parameters2 per layer compared to all 482

static LoRA baselines. When compared to other 483

two dynamic LoRA baselines, i.e., Arrow and Me- 484

teoRA, our DLP-LoRA has a superior advantage, 485

as Arrow has to implement SVD decomposition for 486

all LoRAs to build layer-wise weight matrices for 487

hidden states routing and MeteoRA inserts the train- 488

able gating network with MoE on 7 components (Q, 489

K, V and O in the attention layer and up-projection, 490

gating for SiLU and down-projection in MLP) per 491

layer. 492

Inference Time of Multi-LoRA Loading at Scale 493

Table 1 shows the superior performance of our 494

DLP-LoRA compared to other LoRA baselines 495

across 26 tasks. It is also important to demonstrate 496

whether the inference time is practical when more 497

LoRAs are required in real-world settings. We con- 498

2Those new introduced parameters are the mini-MLP, and
it accounts for 5M in total when we sum up across all layers.
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Models Param. (layer-wise) Fusion Dynamic

PEFT (Ref.) 2(A+B) ✗ ✗

LoRA-F 2(A+B) Manually merge all datasets ✗
TIES 2(A+B) Trim redundancy + Merge aligned vectors ✗
DARE 2(A+B) Random drop + Rescale delta parameters + Merge ✗
Arrow 2(hN +A+B) SVD of each LoRA params from built Model-Based Clustering LoRAs ✓
LoraHub 2(A+B) Compose multiple LoRAs + Adapt the set of coefficients based evolution strategies ✗
MeteoRA (T1-1k) 7(hN +A+B) Token-level trainable Gating network added to 7 modules per layer ✓

DLP-LoRA 5e6
L

+ 2(A+B) A 5M mini-MLP plugin to dynamically fuse multiple LoRAs ✓

Table 6: The layer-wise LoRA parameters comparison among different baselines and our DLP-LoRA with corre-
sponding LoRA fusion methods, where A,B, h,N,L indicate the parameters of LoRA’s A, B matrices, model’s
hidden representations, number of LoRAs and number of total layers, respectively. Apart from MeteoRA which is
designed to add a gating network with LoRA to 7 components per layer, other LoRA baselines and our DLP-LoRA
only introduce LoRAs to the query and value projections in the attention layer.

Models Num. of LoRA # Params (%) Inference Time Ratio

MeteoRA (T1-1k)
50 2.065 3.75
100 8.483 4.02

DLP-LoRA
50 0.043 1.76
100 0.085 1.83

Table 7: The increased LoRA’s parameters and inference
time ratio compared between MeteoRA (T1-1k) and our
DLP-LoRA under different numbers of LoRAs using
the LLaMA-3 8B as the backbone. # Params denote the
percentage of LoRAs’ parameters over the LLaMA-3
8B.

ducted an ablation study to assess how the inference499

time scales with the increasing number of LoRAs,500

using the LLaMA-3 8B backbone as a reference.501

As illustrated in Table 7, even as the number of502

LoRAs increases to 100, the inference time ratio of503

DLP-LoRA remains within 2x using the LLaMA-3504

8B model. Additionally, the combined parameters505

of all LoRAs constitute less than 0.1% of the 8B506

parameters in the LLaMA-3 backbone. With our507

DLP plugin method, switching to a different LoRA508

requires only retraining a small 5M mini-MLP, re-509

sulting in minimal computational overhead. How-510

ever, MeteoRA needs to further insert and fine-tune511

the whole seven trainable gating networks per layer512

for all introduced new LoRAs, which significantly513

increases the number of new parameters and com-514

putational resources. In contrast, DLP-LoRA only515

adjusts the final linear layer of mini-MLP, which516

keeps the total increase to around 5M parameters.517

This suggests that LoRA fine-tuning can enable518

LLMs to enhance their capabilities across various519

domains simultaneously when equipped with suffi-520

cient LoRAs. In summary, these results in Table 7521

demonstrate that our approach scales efficiently522

with the number of LoRAs without incurring sig-523

nificant computational overhead, maintaining prac-524

tical inference times even at scale. 525

6 Conclusion 526

We introduced DLP-LoRA, a dynamic and 527

lightweight plugin that employs a mini-MLP mod- 528

ule with only 5 million parameters to dynamically 529

fuse multiple LoRAs at the sentence level using 530

top-p sampling strategies. Our comprehensive eval- 531

uation across 17 MCQ tasks and 9 QA tasks demon- 532

strates that DLP-LoRA not only closely matches 533

the performance of individually fine-tuned single 534

LoRAs but also surpasses them on certain tasks, 535

all while incurring less than twice the inference 536

time. Through detailed discussions and ablation 537

studies, we have shown that DLP-LoRA effectively 538

balances performance and efficiency in multi-task 539

learning, making it a practical solution for dynamic 540

multi-task adaptation in LLMs. 541

Limitations 542

Our evaluation of DLP-LoRA was primarily con- 543

ducted on LLM backbones ranging from 1.5 bil- 544

lion to 8 billion parameters, constrained by the 545

computational limitations of our GPU resources. 546

Consequently, we were unable to assess the per- 547

formance of DLP-LoRA on larger models such 548

as Qwen-2.5 32B (Hui et al., 2024) and LLaMA- 549

3.1 70B (Dubey et al., 2024), which may exhibit 550

different behaviors and performance characteris- 551

tics. Additionally, when composite tasks include 552

a higher proportion of MCQ datasets, DLP-LoRA 553

tends to assign higher probabilities to the specific 554

MCQ LoRA, potentially limiting its ability to effec- 555

tively fuse and utilize QA LoRAs. This tendency 556

might restrict the diversity of generated outputs 557

and the fusion capabilities of DLP-LoRA across a 558

broader range of tasks. 559
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A Broader Impacts818

The lightweight design of DLP-LoRA, featuring819

a mini-MLP with only 5 million parameters, of-820

fers significant flexibility and efficiency, making821

it suitable for deployment on smaller devices with822

limited computational resources. Moreover, DLP-823

LoRA facilitates easy integration of new LoRAs824

corresponding to additional tasks without necessi-825

tating further fine-tuning of the entire model. This826

capability enhances the accessibility and adaptabil-827

ity of LLMs in various applications, promoting828

broader utilisation in resource-constrained environ-829

ments.830

B Details about 26 Tasks and Datasets 831

Table 8 includes detailed descriptions of each 832

dataset’s name, keywords, main content and cor- 833

responding evaluation metrics. These 26 tasks in- 834

clude diverse topics, such as mathematical QA, 835

logical reasoning, language identification, reading 836

comprehension, summarisation, machine transla- 837

tion, and open-domain QA. 838

C Experimental Results on All Datasets 839

Table 9, 10, 11 and 12 show all results among differ- 840

ent LoRA baselines and DLP-LoRA using Qwen-2 841

1.5B, Qwen-2 7B, LLaMA-2 7B and LLaMA-3 8B 842

backbones. 843

We further demonstrate more radar charts to 844

show more results for Qwen-2 7B and LLaMA- 845

3 8B backbones in Figure 3. 846

D Composite-n Task Results across Four 847

LLMs Backbones 848

Table 17 shows all details about composite-n tasks 849

by comparing the Basic LLMs, LoRA-F (r = 850

64) and our DLP-LoRA under composite-18 and 851

composite-8 task settings. 852
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Task Name Keywords Description Evaluation Met-
rics

abstract_narrative_understanding (AbsNarr) narrative understand-
ing, multiple choice

Given a narrative, choose the most related
proverb.

Accuracy

alpaca (ALPACA) instruction-tuning Write appropriate answers according to in-
structions.

BLEU, ROUGE

cnn_dailymail (CNNDM) summarization Given news articles, write the summarization. ROUGE

contextual_parametric_knowledge_conflicts (ConParaKC) contextual question-
answering, multiple
choice

Answer questions given the contextual infor-
mation.

Accuracy

cs_algorithms (CSAlg) algorithms, numerical
response

Solve two common computer-science tasks. Accuracy

disfl_qa (DisflQA) contextual question-
answering, reading
comprehension

Pick the correct answer span from the context
given the disfluent question.

Accuracy

elementary_math_qa (ElemMath) mathematics Answer multiple choice mathematical word
problems.

Accuracy

epistemic_reasoning (EpiReason) logical reasoning, mul-
tiple choice

Determine whether one sentence entails the
next.

Accuracy

formal_fallacies_syllogisms_negation (FormFall) logical reasoning, mul-
tiple choice,

Distinguish deductively valid arguments from
formal fallacies.

Accuracy

gsm8k (GSM8K) mathematics Solve the grade school math word problems. Accuracy

language_identification (LangID) multilingual, multiple
choice

Given a sentence, select the correct language. Accuracy

linguistics_puzzles (LingPuzz) logical reasoning, lin-
guistics

Solve Rosetta Stone-style linguistics puzzles. BLEU, ROUGE

logical_deduction (LogDeduc) logical reasoning, mul-
tiple choice

Deduce the order of a sequence of objects. Accuracy

news_commentary_de (NewsDE) multilingual, transla-
tion

Translate German sentences into English. BLEU

news_commentary_es (NewsES) multilingual, transla-
tion

Translate Spanish sentences into English. BLEU

news_commentary_it (NewsIT) multilingual, transla-
tion

Translate Italian sentences into English. BLEU

object_counting (ObjCount) logical reasoning Questions that involve enumerating objects
and asking the model to count them.

Accuracy

play_dialog_same_or_different (PlayDiag) reading comprehen-
sion, multiple choice

Determine if nearby lines in a Shakespeare
play were spoken by the same individual.

Accuracy

question_selection (QuestSel) reading comprehen-
sion, multiple choice

Given an answer along with its context, select
the most appropriate question which has the
given answer as its answer.

Accuracy

reasoning_about_colored_objects (ColorReason) reading comprehen-
sion, logical reasoning,
multiple choice

Answer extremely simple questions about the
colors of objects on a surface.

Accuracy

strategyqa (StratQA) logical reasoning,
context-free question
answering

Answer questions in which the required rea-
soning steps are implicit in the question.

BLEU, ROUGE,
Accuracy

topical_chat (TopChat) free response Open-domain response generation. BLEU, ROUGE

tracking_shuffled_objects (TrackObj) logical reasoning, mul-
tiple choice

Determine the final positions given initial posi-
tions and a description of a sequence of swaps.

Accuracy

unit_conversion (UnitConv) contextual question-
answering, mathemat-
ics, multiple choice

Perform various tasks relating to units, includ-
ing identification and conversion.

Accuracy

vitaminc_fact_verification (VitaFact) truthfulness, reading
comprehension, multi-
ple choice

Identify whether a claim is True or False based
on the given context.

Accuracy

winowhy (WinoWhy) causal reasoning, mul-
tiple choice

Evaluate the reasoning in answering Winograd
Schema Challenge questions.

Accuracy

Table 8: Details about the 26 selected tasks following (Xu et al., 2025).
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Models PEFT (Ref.) LoRA-F TIES DARE Arrow LoraHub MeteoRA (T1-1k) DLP-LoRA

AbsNarr 89.3 75.6 36.8 28.9 72.2 8.1 71.6 89.8
ConParaKC 100.0 94.0 55.9 43.9 92.0 17.5 91.8 93.8
CSAlg 97.5 76.9 62.7 63.0 72.6 54.0 76.1 98.8
DisflQA 87.6 65.9 33.3 32.1 44.9 13.7 65.4 88.1
ElemMath 81.0 74.8 25.4 20.0 55.9 7.8 73.9 81.3
EpiReason 99.8 97.2 41.7 37.8 54.6 13.5 98.0 99.5
FormFall 100.0 93.5 46.6 47.5 75.8 15.4 94.1 100.0
GSM8K 86.0 50.2 5.0 8.6 13.2 2.6 48.5 85.3
LangID 77.0 67.6 37.0 33.7 56.9 14.8 71.4 77.0
LogDeduc 84.5 65.4 38.6 31.5 59.8 30.6 68.9 80.8
ObjCount 89.0 51.8 10.0 12.7 5.4 17.6 80.6 88.0
PlayDiag 89.0 56.3 58.7 57.6 59.3 6.0 57.4 88.0
QuesSel 99.0 85.4 45.6 41.9 78.4 19.4 86.7 98.0
ColorReason 79.0 88.0 54.2 48.6 72.7 18.6 90.5 78.3
TrackObj 79.8 54.8 14.6 11.0 74.0 13.2 90.3 78.8
UnitConv 100.0 75.4 44.8 36.9 58.9 39.4 74.7 100.0
VitaFact 94.0 86.2 60.6 50.1 77.6 26.8 85.8 92.3
WinoWhy 94.8 74.6 48.0 46.4 70.7 14.6 75.2 96.0

Avg. 90.4 74.1 40.0 36.2 60.8 18.5 77.8 89.7

Table 9: The classification accuracy results on 18 MCQ tasks by comparing different LoRA baselines under Qwen-2
1.5B as LLM backbone. The evaluation results are averaged after running 10 times.

Models PEFT (Ref.) LoRA-F TIES DARE Arrow LoraHub MeteoRA (T1-1k) DLP-LoRA

AbsNarr 93.3 78.5 40.2 30.2 75.6 10.4 76.2 92.8
ConParaKC 99.0 96.1 57.7 47.8 95.5 20.8 95.3 94.0
CSAlg 100.0 80.8 65.2 64.4 74.7 57.9 81.3 100.0
DisflQA 89.6 67.2 36.8 35.7 47.8 18.1 68.5 88.0
ElemMath 85.8 76.8 28.6 22.5 60.3 8.9 76.4 86.0
EpiReason 100.0 99.2 43.6 40.8 57.3 16.4 99.4 100.0
FormFall 100.0 95.2 49.7 49.5 78.9 18.1 96.2 100.0
GSM8K 93.4 55.3 7.7 10.0 16.2 4.8 53.9 93.3
LangID 89.3 71.6 39.8 36.2 59.9 18.4 75.8 88.0
LogDeduc 89.5 67.9 40.5 35.8 61.2 34.7 73.2 90.8
ObjCount 94.7 53.6 8.6 13.4 2.4 21.7 82.8 93.9
PlayDiag 90.8 59.5 62.4 61.9 62.7 8.1 60.3 89.8
QuesSel 98.0 88.7 48.2 45.7 81.4 22.7 90.9 97.0
ColorReason 87.5 92.5 57.6 51.3 76.8 21.5 95.3 87.8
TrackObj 81.0 56.8 17.4 12.1 77.9 15.6 97.4 82.3
UnitConv 100.0 78.9 47.3 39.5 62.3 43.7 79.6 100.0
VitaFact 96.5 87.8 63.6 52.5 80.3 29.8 88.4 95.5
WinoWhy 91.3 77.4 49.4 50.2 73.7 18.4 78.5 93.5

Avg. 93.3 76.9 42.5 38.9 63.6 21.7 81.6 92.9

Table 10: The classification accuracy results on 18 MCQ tasks by comparing different LoRA baselines under
Qwen-2 7B as LLM backbone. The evaluation results are averaged after running 10 times.
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Models PEFT (Ref.) LoRA-F TIES DARE Arrow LoraHub MeteoRA (T1-1k) DLP-LoRA

AbsNarr 92.5 76.8 38.9 29.4 73.9 8.5 72.8 89.5
ConParaKC 96.0 95.4 56.7 45.8 93.2 18.4 92.4 92.8
CSAlg 99.0 78.6 64.2 63.2 74.3 54.7 77.5 98.8
DisflQA 89.0 66.8 34.9 33.8 45.6 15.8 66.4 91.2
ElemMath 78.0 75.7 26.7 21.2 58.5 7.7 74.7 80.0
EpiReason 100.0 98.5 42.3 39.3 55.3 14.8 99.1 100.0
FormFall 100.0 94.2 48.2 48.2 77.5 16.3 95.4 100.0
GSM8K 79.8 53.0 6.1 9.1 14.8 3.0 50.3 78.9
LangID 79.8 69.7 38.1 34.8 57.6 15.4 72.5 79.8
LogDeduc 83.0 66.8 39.4 33.9 60.4 31.9 70.0 82.8
ObjCount 91.1 52.6 9.4 13.2 4.6 19.9 81.5 90.7
PlayDiag 87.8 57.9 60.9 59.7 60.9 6.8 58.8 88.3
QuesSel 99.0 86.7 46.0 43.8 80.1 20.6 88.4 99.0
ColorReason 80.8 90.4 55.8 49.6 74.9 19.0 91.4 80.8
TrackObj 80.0 55.6 15.8 11.5 75.4 13.8 92.7 78.8
UnitConv 100.0 76.9 45.7 37.8 60.9 40.9 75.9 100.0
VitaFact 90.9 87.0 61.9 51.9 79.6 27.3 86.5 92.7
WinoWhy 94.3 75.8 48.6 47.7 71.8 15.8 76.3 96.3

Avg. 90.1 75.5 41.1 37.4 62.2 19.5 79.0 90.0

Table 11: The classification accuracy results on 18 MCQ tasks by comparing different LoRA baselines under
LLaMA-2 7B as LLM backbone. The evaluation results are averaged after running 10 times.

Models PEFT (Ref.) LoRA-F TIES DARE Arrow LoraHub MeteoRA (T1-1k) DLP-LoRA

AbsNarr 97.4 79.3 42.5 33.5 77.2 7.5 78.7 97.3
ConParaKC 98.0 99.9 59.4 49.2 99.7 21.9 99.9 95.1
CSAlg 99.5 84.1 68.6 66.3 78.0 60.2 84.5 99.0
DisflQA 94.4 68.0 39.6 37.7 50.4 19.7 70.6 90.0
ElemMath 90.0 77.7 30.8 24.5 64.5 10.6 77.6 90.5
EpiReason 100.0 99.6 45.0 42.5 60.0 17.0 100.0 100.0
FormFall 100.0 97.0 51.9 52.0 83.6 19.0 98.7 100.0
GSM8K 81.6 56.6 8.6 10.8 17.2 5.0 55.5 79.1
LangID 95.1 74.9 41.2 38.3 62.5 19.2 77.9 94.5
LogDeduc 96.0 70.7 42.3 38.3 62.7 36.7 75.7 96.4
ObjCount 97.1 55.5 8.0 13.0 0.5 23.0 87.5 97.3
PlayDiag 95.0 63.2 65.0 64.4 65.6 9.2 64.9 94.8
QuesSel 97.0 91.1 50.6 47.2 84.5 24.7 92.7 97.0
ColorReason 95.6 94.5 59.5 53.0 79.3 23.8 96.0 96.3
TrackObj 90.0 58.8 19.5 13.6 80.4 17.1 99.3 90.5
UnitConv 100.0 81.4 49.1 41.0 64.7 46.3 82.0 100.0
VitaFact 95.4 90.3 65.5 54.1 82.2 31.1 90.7 95.4
WinoWhy 96.9 79.7 51.6 52.6 75.0 20.3 81.8 96.9

Avg. 95.5 79.0 44.4 40.7 66.0 22.9 84.1 95.0

Table 12: The classification accuracy results on 18 MCQ tasks by comparing different LoRA baselines under
LLaMA-3 8B as LLM backbone. The evaluation results are averaged after running 10 times.
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Models Metric PEFT (Ref.) LoRA-F TIES DARE Arrow LoraHub MeteoRA (T1-1k) DLP-LoRA

CNNDM
BLEU 15.1 10.1 11.2 1.0 7.5 8.3 6.4 18.6

ROUGE-1 16.9 17.2 7.6 5.8 7.9 2.3 13.2 19.0
ROUGE-L 15.8 15.9 3.3 2.7 5.2 0.8 14.2 17.2

LingPuzz
BLEU 43.3 28.9 27.5 49.6 53.7 30.2 35.9 42.0

ROUGE-1 29.4 55.7 33.8 26.9 61.2 17.9 60.2 26.7
ROUGE-L 27.8 52.9 24.8 22.9 55.0 12.1 54.8 26.0

NewsDE
BLEU 64.2 65.8 36.4 28.6 28.9 5.0 74.8 64.3

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

NewsES
BLEU 66.7 68.9 20.3 9.4 21.9 0.0 71.8 67.3

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

NewsIT
BLEU 63.5 43.9 29.7 45.8 29.8 0.2 43.9 64.4

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

StratQA
BLEU 60.7 5.0 4.6 7.5 6.4 7.9 4.2 63.3

ROUGE-1 57.9 15.8 4.8 5.7 11.9 7.6 16.8 61.0
ROUGE-L 54.6 15.4 3.2 3.6 7.9 5.4 16.3 56.9

TopChat
BLEU 32.0 26.9 18.4 30.1 28.5 0.0 37.6 29.0

ROUGE-1 31.1 9.5 4.1 3.6 6.4 1.4 8.9 29.7
ROUGE-L 28.3 8.9 3.1 2.0 3.9 0.4 8.5 26.9

ALPACA
BLEU 62.2 25.9 66.8 68.4 7.2 0.0 24.8 66.0

ROUGE-1 57.2 22.7 16.4 17.9 17.0 11.3 27.9 63.9
ROUGE-L 52.3 20.0 11.7 11.9 12.6 10.2 26.2 57.5

Avg.
BLEU 51.0 34.4 26.9 30.1 23.0 6.5 37.4 51.9

ROUGE-1 38.5 24.2 13.3 12.0 20.9 8.1 25.4 40.1
ROUGE-L 35.8 22.6 9.2 8.6 16.9 5.8 24 36.9

Table 13: The BLEU, ROUGE-1 and ROUGE-L results on 8 QA tasks by comparing different LoRA baselines
under Qwen-2 1.5B as LLM backbone.

Figure 3: Radar chart of Qwen-2 1.5B across 17 MCQ and 9 QA tasks.
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Models Metric PEFT (Ref.) LoRA-F TIES DARE Arrow LoraHub MeteoRA (T1-1k) DLP-LoRA

CNNDM
BLEU 16.1 17.2 17.3 4.5 12.6 14.9 10.8 14.2

ROUGE-1 16.9 25.2 14.6 12.0 14.6 8.0 22.0 15.5
ROUGE-L 15.4 24.0 9.7 9.0 10.4 3.2 20.1 14.0

LingPuzz
BLEU 57.2 35.6 33.0 55.8 58.0 37.8 40.2 56.8

ROUGE-1 47.8 65.4 40.2 33.8 70.0 22.5 67.2 46.7
ROUGE-L 46.2 62.9 30.4 27.0 63.2 17.2 61.3 46.0

NewsDE
BLEU 63.6 75.8 44.9 34.2 35.6 10.3 83.6 68.8

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

NewsES
BLEU 68.9 78.5 27.9 15.4 30.0 0.1 79.0 66.9

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

NewsIT
BLEU 69.6 52.8 36.9 51.0 36.8 0.4 52.6 65.1

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

StratQA
BLEU 67.8 9.0 9.1 12.7 11.0 12.7 8.9 68.0

ROUGE-1 67.3 22.1 9.3 11.3 18.7 13.0 23.8 67.7
ROUGE-L 65.0 20.1 8.0 8.7 14.8 10.1 22.1 65.6

TopChat
BLEU 33.6 32.0 24.6 36.9 33.1 0.2 43.9 34.8

ROUGE-1 33.7 14.1 8.0 7.8 10.1 4.1 13.7 35.9
ROUGE-L 31.7 13.0 6.7 5.8 8.0 2.7 13.0 33.9

ALPACA
BLEU 63.9 30.1 71.8 72.1 11.0 0.3 29.8 63.8

ROUGE-1 61.5 27.0 20.1 21.6 21.0 16.2 33.5 61.2
ROUGE-L 56.1 25.3 16.8 17.6 18.1 14.0 31.8 56.0

Avg.
BLEU 55.1 41.4 33.2 35.3 28.5 9.6 43.6 54.8

ROUGE-1 45.4 30.8 18.4 17.3 26.9 12.8 32.0 45.4
ROUGE-L 42.9 29.1 14.3 13.6 22.9 9.4 29.7 43.1

Table 14: The BLEU, ROUGE-1 and ROUGE-L results on 8 QA tasks by comparing different LoRA baselines
under Qwen-2 7B as LLM backbone.
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Models Metric PEFT (Ref.) LoRA-F TIES DARE Arrow LoraHub MeteoRA (T1-1k) DLP-LoRA

CNNDM
BLEU 8.0 12.6 13.0 2.1 10.2 11.2 8.3 14.3

ROUGE-1 7.4 19.3 10.2 8.9 10.4 4.7 15.2 13.2
ROUGE-L 7.0 18.6 5.0 4.8 7.3 1.6 16.4 12.5

LingPuzz
BLEU 58.0 31.7 30.0 52.1 56.5 34.9 38.4 56.4

ROUGE-1 45.4 60.1 37.6 30.0 65.3 20.1 63.1 43.9
ROUGE-L 44.1 58.6 27.3 25.1 59.8 14.6 58.0 41.9

NewsDE
BLEU 69.4 70.1 40.3 31.2 31.5 8.3 79.3 67.6

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

NewsES
BLEU 68.7 72.7 24.2 11.7 26.8 0.0 75.7 67.0

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

NewsIT
BLEU 69.7 48.8 32.8 48.0 32.1 0.1 48.3 67.4

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

StratQA
BLEU 65.6 7.1 6.5 9.9 8.5 10.1 6.2 66.5

ROUGE-1 59.9 18.5 6.7 8.4 14.7 10.0 19.7 60.1
ROUGE-L 56.8 17.9 5.6 5.8 10.5 7.2 18.6 56.7

TopChat
BLEU 33.6 29.8 21.0 33.7 30.4 0.1 40.2 33.7

ROUGE-1 32.2 12.4 6.3 5.8 8.4 3.0 11.3 30.2
ROUGE-L 30.2 11.5 5.1 4.8 6.4 1.8 11.4 28.3

ALPACA
BLEU 64.7 28.4 69.2 70.0 9.3 0.0 27.6 66.4

ROUGE-1 59.2 25.6 18.3 19.5 19.0 14.3 30.8 61.7
ROUGE-L 53.6 22.9 14.2 14.8 15.6 12.0 28.8 55.9

Avg.
BLEU 54.7 37.7 29.6 32.3 25.7 8.1 40.5 54.9

ROUGE-1 40.8 27.2 15.8 14.5 23.6 10.4 28.0 41.8
ROUGE-L 38.3 25.9 11.4 11.1 19.9 7.4 26.6 39.1

Table 15: The BLEU, ROUGE-1 and ROUGE-L results on 8 QA tasks by comparing different LoRA baselines
under LLaMA-2 7B as LLM backbone.
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Models Metric PEFT (Ref.) LoRA-F TIES DARE Arrow LoraHub MeteoRA (T1-1k) DLP-LoRA

CNNDM
BLEU 9.0 16.1 18.1 4.7 13.1 15.3 11.9 17.9

ROUGE-1 9.7 24.8 15.4 13.7 15.3 8.7 23.3 18.9
ROUGE-L 8.8 23.3 10.9 9.6 11.1 3.8 21.8 17.8

LingPuzz
BLEU 64.6 36.9 34.2 56.2 59.0 39.3 41.7 65.7

ROUGE-1 58.6 71.8 43.2 35.7 72.1 24.5 69.5 58.9
ROUGE-L 57.2 66.6 33.9 28.1 65.9 18.4 63.6 58.1

NewsDE
BLEU 68.2 78.3 46.5 36.6 37.4 11.9 86.5 58.7

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

NewsES
BLEU 69.1 81.5 30.6 17.6 31.8 0.0 81.5 69.2

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

NewsIT
BLEU 65.6 54.9 37.5 52.2 38.0 0.0 54.9 68.4

ROUGE-1 - - - - - - - -
ROUGE-L - - - - - - - -

StratQA
BLEU 64.3 10.4 10.9 14.8 12.2 14.4 10.6 66.2

ROUGE-1 62.8 23.4 10.2 12.8 20.6 14.7 25.2 63.5
ROUGE-L 60.0 22.3 8.2 10.0 16.5 11.6 23.9 60.1

TopChat
BLEU 36.0 33.8 26.1 38.3 35.6 0.1 45.6 29.6

ROUGE-1 35.9 15.0 9.2 8.6 11.2 4.9 15.2 30.3
ROUGE-L 33.5 14.0 7.7 6.6 9.1 3.1 14.1 27.8

ALPACA
BLEU 64.4 31.5 73.5 73.5 12.3 0.0 32.3 63.4

ROUGE-1 61.8 28.4 21.4 23.0 22.2 17.6 35.8 61.2
ROUGE-L 56.6 26.7 18.1 19.2 18.6 15.1 33.5 56.3

Avg.
BLEU 55.2 42.9 34.7 36.7 29.9 10.1 45.6 54.9

ROUGE-1 45.8 32.7 19.9 18.8 28.3 14.1 33.8 46.6
ROUGE-L 43.2 30.6 15.8 14.7 24.2 10.4 31.4 44.0

Table 16: The BLEU, ROUGE-1 and ROUGE-L results on 8 QA tasks by comparing different LoRA baselines
under LLaMA-3 8B as LLM backbone.

Model Method Acc. (%) ↑ BLEU ↑ ROUGE-1 ↑ ROUGE-L ↑

Qwen-2 1.5B
Basic 31.65 51.48 48.69 45.72
LoRA-F (r = 64) 33.23 51.46 48.86 45.90
DLP-LoRA 90.43 56.00 54.61 52.27

Qwen-2 7B
Basic 58.59 53.25 50.70 48.58
LoRA-F (r = 64) 59.42 53.63 51.75 48.92
DLP-LoRA 92.75 57.44 56.84 54.90

LLaMA-2 7B
Basic 36.29 52.32 46.78 44.36
LoRA-F (r = 64) 37.93 52.84 46.96 45.35
DLP-LoRA 91.20 58.61 54.70 52.60

LLaMA-3 8B
Basic 65.44 52.00 50.16 47.16
LoRA-F (r = 64) 65.98 52.26 50.38 47.40
DLP-LoRA 96.03 57.79 57.45 55.35

Avg.
Basic 47.99 52.26 49.08 46.46
LoRA (r = 64) 49.14 52.55 49.49 46.89
DLP-LoRA 92.60+92.95% 57.46+9.95% 55.90+13.90% 53.78+15.76%

Table 17: Evaluation results for composite-n task, where composite-8 includes all QA tasks, and composite-18
includes all MCQ tasks. In addition, we compare a single LoRA with a higher rank trained on composite-26 task
setting. The evaluation results are averaged after running 10 times. The subscript percentage denotes relative
accuracy, BLEU, ROUGE-1 and ROUGE-L improvement or reduction over each basic LLMs baseline.
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