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Abstract

Recent years have seen the emergence of pre-
trained representations as a powerful abstraction
for AI applications in computer vision, natural
language, and speech. However, policy learn-
ing for control is still dominated by a tabula-
rasa learning paradigm, with visuo-motor poli-
cies often trained from scratch using data from
deployment environments. In this context, we
revisit and study the role of pre-trained visual rep-
resentations for control, and in particular repre-
sentations trained on large-scale computer vision
datasets. Through extensive empirical evaluation
in diverse control domains (Habitat, DeepMind
Control, Adroit, Franka Kitchen), we isolate and
study the importance of different representation
training methods, data augmentations, and feature
hierarchies. Overall, we find that pre-trained vi-
sual representations can be competitive or even
better than ground-truth state representations to
train control policies. This is in spite of using only
out-of-domain data from standard vision datasets,
without any in-domain data from the deployment
environments.

1. Introduction
Representation learning has emerged as a key compo-
nent in the success of deep learning for computer vision,
natural language processing (NLP), and speech process-
ing. Representations trained using massive amounts of la-
beled (Krizhevsky et al., 2012; Sun et al., 2017; Brown
et al., 2020) or unlabeled (Devlin et al., 2019; Goyal et al.,
2021) data have been used “off-the-shelf” for many down-
stream applications, resulting in a simple, effective, and
data-efficient paradigm. By contrast, policy learning for
control is still dominated by a “tabula-rasa” paradigm where
an agent performs millions or even billions of interactions

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Figure 1: (Top) In our paradigm, a pre-trained vision model
is used as a perception module for the policy. The model
is frozen and not further trained during policy updates. Its
output, namely the pre-trained visual representation (PVR),
serves as state representation and policy input. (Bottom)
Our PVR is competitive with ground-truth features for train-
ing policies with imitation learning, in spite of being pre-
trained on out-of-domain data. By contrast, the classic
approach of training an end-to-end visuo-motor policy from
scratch fails with the same amount of imitation data.

with an environment to learn task-specific visuo-motor poli-
cies from scratch (Espeholt et al., 2018; Wijmans et al.,
2020; Yarats et al., 2021b).

In this paper, we take a step back and ask the following fun-
damental question. Why have pre-trained visual representa-
tions, like those trained on ImageNet, not found widespread
success in control despite their ubiquitous usage in computer
vision? Is it because control tasks are too different from
vision tasks? Or because of the domain gap in the visual
characteristics? Or is it that “the devil lies in the details”,
and we are failing to consider some key components? We
note that dataset domain gap is not a core issue in computer
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Figure 2: Classic training paradigm (left) vs. ours (right). In tabula-rasa training, the perception module is part of the
control policy and is trained from scratch on data from the environment. By contrast, in our paradigm the perception module
is detached from the policy. First, it is trained once on out-of-domain data (e.g., ImageNet) and frozen. Then, given some
tasks, control policies are trained on the deployment environments re-using the same frozen perception module.

vision. For instance, ImageNet-trained models have been
shown to transfer to a variety of different tasks like human
pose estimation (Cao et al., 2017). In this context, we aim
to investigate the following fundamental question.

Can we make a single vision model, pre-trained entirely on
out-of-domain datasets, work for different control tasks?

To answer this question, we consider a large collection of
pre-trained visual representation (PVR) models commonly
used in computer vision, and investigate how such models
can be used as frozen perception modules for control tasks,
as depicted in Figure 2. We perform a series of experi-
ments to understand the effectiveness of these representa-
tions in four well-known domains that require visuo-motor
control policies: Habitat (Savva et al., 2019), DeepMind
Control (Tassa et al., 2018), Adroit dexterous manipula-
tion (Rajeswaran et al., 2018), and Franka kitchen (Gupta
et al., 2019). Our investigation reveals very surprising re-
sults1 that can be summarized as follows.

• Our main finding is that frozen PVRs trained on com-
pletely out-of-domain datasets can be competitive with
or even outperform ground-truth state features for train-
ing policies (with imitation learning). We emphasize that
these vision models have never seen even a single frame
from our evaluation environments during pre-training.

• Self-supervised learning (SSL) provides better features
for control policies compared to supervised learning.

• Crop augmentations appear to be more important in SSL
for control compared to color augmentations. This is
consistent with a number of “on-the-fly” representation
learning works that primarily employ crop augmenta-
tions (Srinivas et al., 2020; Yarats et al., 2021b).

• Early convolution layer features are better for fine-grained
control tasks (MuJoCo) while later convolution layer fea-
tures are better for semantic tasks (Habitat ImageNav).

1We argue that our findings are surprising in the context of
representation learning for control. At the same time, the success of
PVRs should have been unsurprising considering their widespread
success and use in computer vision.

• By combining features from multiple layers of a pre-
trained vision model, we propose a single PVR that is
competitive with or outperform ground-truth state fea-
tures in all the domains we study.

2. Related Work
Representation Learning. Pre-training representations and
transfering them to downstream applications is an old and vi-
brant area of research in AI (Hinton & Salakhutdinov, 2006;
Krizhevsky et al., 2012). This approach gained renewed
interest in the fields of computer vision, speech, and NLP
with the observation that representations learned by deep
networks transfer remarkably well to downstream tasks (Gir-
shick et al., 2014; Devlin et al., 2019; Baevski et al., 2020),
resulting in improved data efficiency and/or improved per-
formance (Goyal et al., 2019).

Focusing on computer vision, representations can be learned
either through supervised methods, such as ImageNet classi-
fication (Krizhevsky et al., 2012; Russakovsky et al., 2015),
or through self-supervised methods that do not require any
labels (Doersch et al., 2015; Chen et al., 2020; Purush-
walkam & Gupta, 2020). The learned representations can be
used “off-the-shelf”, with the representation network frozen
and not adapted to downstream tasks. This approach has
been successfully used in object detection (Girshick et al.,
2014; Girshick, 2015), segmentation (He et al., 2017), cap-
tioning (Vinyals et al., 2016), and action recognition (Hara
et al., 2018). In this work, we investigate if frozen pre-
trained visual representations can also be used for policy
learning in control tasks.

Policy Learning. Reinforcement learning (RL) (Sutton
& Barto, 1998) and imitation learning (IL) (Abbeel & Ng,
2004) are two popular classes of approaches for policy learn-
ing. In conjunction with neural network policies, they have
demonstrated impressive results in a wide variety of control
tasks spanning locomotion, whole arm manipulation, dexter-
ous hand manipulation, and indoor navigation (Heess et al.,
2017; Rajeswaran et al., 2018; Peng et al., 2018; Wijmans
et al., 2020; OpenAI et al., 2020; Weihs et al., 2021).



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

The (Un)Surprising Effectiveness of Pre-Trained Vision Models for Control

Apartment 0 Office 0 Room 0 FRL Apartment 0 Hotel 0

Figure 3: Real-world scenes from the Replica dataset used in Habitat. The agent has to reach target locations from
anywhere on the scene. Its perception is based on its egocentric view of the scene and an image showing the target location.
Only ground-truth state features explicitly inform the agent about its position, the target coordinates, and the scene it is in.

Adroit Pen Adroit Relocate DMC Finger Spin DMC Cheetah DMC Reacher DMC Walker Franka Kitchen

Figure 4: MuJoCo tasks span three domains. In Adroit (left), the agent has to learn dexterous hand manipulation behaviors
like grasping and in-hand manipulation. In the DeepMind Control suite (center), it needs to learn low-level locomotion and
manipulation behaviors. In Franka Kitchen (right), it has to reconfigure objects in a kitchen using a Franka arm.

In this work, we focus on learning visuo-motor policies
using IL. A large body of work in IL and RL for continuous
control has focused primarily on learning from ground-truth
state features (Schulman et al., 2015; Lillicrap et al., 2016;
Ho & Ermon, 2016). While such privileged state infor-
mation may be available in simulation or motion capture
systems, it is seldom available in real-world settings. This
has motivated researchers to investigate continuous control
from visual inputs by building upon ideas like data augmen-
tations (Laskin et al., 2020; Yarats et al., 2021b), contrastive
learning (Srinivas et al., 2020; Zhang et al., 2021), or pre-
dictive world models (Hafner et al., 2020; Rafailov et al.,
2021). However, these works still learn representations from
scratch using frames from the deployment environments.

Pre-trained Visual Encoders in Control. The use of pre-
trained vision models in control tasks has received limited
attention. Stooke et al. (2021) pre-trained representations in
DeepMind Control suite, and evaluated downstream policy
learning in the same domain. By contrast, we study the
use of representations learned using out-of-domain datasets,
which is a more scalable paradigm that is not limited by
frames from the deployment environment. Khandelwal et al.
(2021) studied the use of pre-trained CLIP embeddings for
visual navigation tasks and reported improved results over
encoders trained from scratch. Similarly, Shah & Kumar
(2021) studied ImageNet pre-trained ResNet representations,
and found promising results in Adroit but negative results
in DeepMind control suite. Compared to these works, our
study is more exhaustive: it spans four visually diverse

domains, a larger collection of pre-trained representations,
and different forms of visual invariances stemming from
augmentations and layers. Ultimately, we find that a single
pre-trained representation can be successful for all the do-
mains we study despite their visual and task-level diversity.

3. Experiments Setup
3.1. Environments

Habitat (Savva et al., 2019) is a home assistant robotics
simulator showcasing the generality of our paradigm to a vi-
sually realistic domain. The agent is trained to navigate the
five Replica scenes (Straub et al., 2019) shown in Figure 3.
We consider the ImageNav task, where the agent is given
two images at each timestep corresponding to the agent’s
current view and the target location.
DeepMind Control (DMC) Suite (Tassa et al., 2018) is a
collection of environments simulated in MuJoCo (Todorov
et al., 2012), and a widely studied benchmark in con-
tinuous control. In our evaluation, we consider five
tasks from the suite: Finger-Spin, Reacher-Hard,
Cheetah-Run, Walker-Stand, and Walker-Walk.
These tasks are illustrated in Figure 4 and require the agent
to learn low-level locomotion and manipulation skills.
Adroit (Rajeswaran et al., 2018) is a suite of tasks where
the agent must control a 28-DoF anthropomorphic hand
to perform a variety of dexterous tasks. We study the two
hardest tasks from this suite: Relocate and Reorient
Pen, depicted in Figure 4. The policy is required to perform



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

The (Un)Surprising Effectiveness of Pre-Trained Vision Models for Control

Fusion

PVR MLP
Policy

Action

t

t-1

t-2

Concat

Obs

Goal

PVR LSTM
Policy

Action

Figure 5: Learning architecture for MuJoCo (top) and
Habitat (bottom). In the former, the last three frames
are fed to the vision model to obtain PVR embeddings.
These are then fused (Shang et al., 2021) and passed to the
control policy. In the latter, we embed two images –the
agent’s current view of the scene and the a view of the target
location. The PVR embeddings are concatenated and passed
to the control policy. See Appendix A for more details.

goal-conditioned behaviors where the goals (e.g., desired lo-
cation/orientation for the object) has to be inferred from the
scene. These environments are also simulated in MuJoCo,
and are known to be particularly challenging.
Franka Kitchen (Gupta et al., 2019) requires to control a
simulated Franka arm to perform various tasks in a kitchen
scene. In this domain, we consider five tasks: Microwave,
Left-Door, Right-Door, Sliding-Door, and
Knob-On. Consistent with use in other benchmarks like
D4RL (Fu et al., 2020), we randomize the pose of the arm
at the start of each episode, but not the scene itself.

3.2. Models

We investigate the efficacy of representations learned using
a variety of methods including approaches that rely on su-
pervised learning (SL) and self-supervised learning (SSL).

ResNet (RN) (He et al., 2016) refers to residual networks, a
class of models widely used in computer vision. Typically,
these networks are pre-trained using SL on ImageNet (Deng
et al., 2009), and can have different size. In our experiments,
we use ResNet-50 (RN50) and ResNet-34 (RN34).
Momentum Contrast (MoCo) (He et al., 2020) is a recently
proposed SSL method relying on the instance discrimination
task to learn representations. These representations have
shown competitive performance on numerous downstream
tasks in computer vision like image classification, object

detection, and instance segmentation. MoCo uses multiple
artificial augmentations like cropping, horizontal flipping,
and color jitter in order to synthesize multiple views for a
single image. The combination of all these augmentations
is referred to as ‘Aug+’.
Contrastive Language-Image Pretraining (CLIP) (Rad-
ford et al., 2021) jointly trains a visual and textual represen-
tation using a collection of image-text pairs from the web.
The learned representation has demonstrated impressive se-
mantic discriminative power, zero-shot learning capabilities,
and generalization across numerous domains of visual data.
Random Features. As baseline, we consider a randomly
initialized convolutional neural network of five layers (each
with 32 filters, 3×3 kernel, stride 2, and padding 1) with
ELU activation at each layer. Similarly to previous models,
this network is frozen and not updated during learning.
From Scratch. We also compare with the classic end-to-
end policy learning approach, where the perception module
is also trained as part of the policy. We argue that this is
an inefficient approach to learning visuo-motor policies, as
learning good visual encoders is known to be data-hungry.
Ground-Truth Features. Simulators can provide compact
ground-truth features describing the full state of the agent
and environment. Such features are hard to estimate in real-
world tasks, especially in unstructured environments. Thus,
we can view these features as an “oracle” baseline that we
strive to compete with.

3.3. Policy Learning and Evaluation with PVRs

The aforementioned models are used as frozen perception
modules for the control policy. The policy is trained by imi-
tating optimal trajectories, and the performance is estimated
using evaluation rollouts in the environments.

• In Habitat, training trajectories are generated using its
native solver that returns the shortest path between two
locations. We collect 10,000 trajectories per scene, for a
total of ∼2.1 million data points. A policy is successful if
the agent reaches the destination within the steps limit.

• In MuJoCo, training trajectories are collected using a
state-based optimal policy trained using RL. We collect
different trajectories for the domains based on our esti-
mate of task difficulty and horizon. In the case of Adroit
and Kitchen, we report policy success percentage pro-
vided by the environments. For DMC, we report the
policy return rescaled to be in the range of [0, 100].

The learning setup is summarized in Figure 5. In line with
standard design choices, we use an LSTM policy to in-
corporate trajectory history in case of Habitat (Raileanu &
Rocktäschel, 2020; Parisi et al., 2021) and use an MLP with
fixed history window in case of MuJoCo tasks (Yarats et al.,
2021b; Laskin et al., 2020).
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Figure 6: Success rate of off-the-shelf PVRs. Numbers at the top of the bar report mean values over five seeds, while thin
black lines denote 95% confidence intervals. Any PVR is better than training the perception and control network end-to-end
from scratch. In Habitat, MoCo matches the performance of ground-truth features. In MuJoCo, these PVRs are unable to
match the ground-truth features off the shelf.

Figure 7: In-domain vs. out-of-domain training datasets. Training PVRs on in-domain data does not help achieving
better performance. In MuJoCo it even worsen it. If not the domain gap, what is the primary reason of PVRs failures?

4. Experiments Results and Discussion
In the previous sections, we explained the experimental
setup for training control policies using behavior cloning,
and the testing environments from Habitat and MuJoCo.
In this section, we experimentally study the performance
of PVRs outlined in Section 3. In particular, we study
how well these representations perform out of the box, and
how we could potentially improve or customize them, with
the ultimate goal of better understanding the relationship
between visual perception and control policies. For hyper-
parameter details see Appendix A.

4.1. How do Off-the-shelf Vision Models Perform for
Control Tasks?

We first study how the pre-trained vision models presented
in Section 3.2 perform off-the-shelf for our control task
suite. That is, we download these models –pre-trained on
ImageNet (Deng et al., 2009)– and pass their output as repre-
sentations to the control policy. The results are summarized
in Figure 6. Firstly, we find that any PVR is clearly better
than both frozen random features and learning the percep-
tion module from scratch, in the small-dataset regime we
study. This is perhaps not too surprising, considering that
representation learning is known to be data intensive.

However, Figure 6 also provides mixed results as no PVR
is clearly superior to any other across all four domains.
Nonetheless, on average, SSL models (MoCo) are better
than SL models (RN50, CLIP). In particular, MoCo is com-
petitive with ground-truth features in Habitat, but no off-the-
shelf PVR can match the ground-truth features in MuJoCo.

Why is this so, and can we customize the PVRs to perform
better for all control tasks? We investigate different hypothe-
ses and customizations in the following sub-sections.

4.2. Datasets and Domain Gap

The PVRs evaluated above were the representations of
vision models trained on ImageNet (Deng et al., 2009).
Clearly, the visual characteristics of ImageNet is very dif-
ferent from Habitat and MuJoCo domains. Could this do-
main gap be the reason why PVRs are not competitive with
ground-truth features in all domains? To investigate this, we
introduce new datasets for pre-training the vision models.
The first is Places (Zhou et al., 2017), another out-of-domain
dataset like ImageNet that is widely used in computer vi-
sion. While ImageNet is more object-centric, Places is more
scene-centric, as it was developed for scene recognition.
The other datasets are in-domain frames from Habitat and
MuJoCo, i.e., they each contain only images from the de-
ployment environment.

For the Places dataset, we pre-train both supervised and
self-supervised vision models. For the Habitat and MuJoCo
datasets, we only pre-train self-supervised models since no
direct supervision is available. Furthermore, pre-training
models using environment data (Habitat, MuJoCo) requires
design decisions like data collection policy and dataset size.
For sake of simplicity, we collect trajectories using the same
expert policies used for IL. Larger or more diverse datasets
from these environments may further improve the quality
of the pre-trained representations, but run contrary to the
motivation of simple and data-efficient learning for control.

Figure 7 summarizes the results for the aforementioned rep-
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Figure 8: Invariances comparison in MoCo. Color aug-
mentation performs worse in all environments except for
DMC, while crop augmentation performs the best on aver-
age. This suggests that color invariance, commonly used in
semantic recognition, is not always suited for control.

resentations. While in-domain pre-training helps compared
to training from scratch, it is surprisingly not much bet-
ter than pre-training on ImageNet or Places. For Habitat,
pre-training on Habitat leads to similar performance as pre-
training on ImageNet and Places. However, in the case of
MuJoCo, PVRs trained on the MuJoCo expert trajectories
are not competitive with representations trained on Ima-
geNet or Places. As mentioned earlier, training on larger
and more diverse datasets may potentially bridge the gap,
but is not a pragmatic solution, since we ultimately desire
data efficiency in the deployment environment.

This suggests that the key to representations that work on
diverse control domains does not lie only in the training
dataset. Our next hypothesis is that it perhaps lies in the
invariances captured by the model.

4.3. Recognition vs. Control: Two Tales of Invariances

Most off-the-shelf vision models have been designed for
semantic recognition. Next, we investigate if representa-
tions for control tasks should have different characteristics
than representations for semantic recognition. Intuitively,
this does seem obvious. For example, semantic recognition
requires invariances to poses/viewpoints, but poses provide
critical information to action policies. To investigate this
aspect, we conduct the following experiment on MoCo. By
default, MoCo learns invariances through various data aug-
mentation schemes: crop augmentation provides translation
and occlusion invariance, while color jitter augmentation
provides illumination and color invariance. In this experi-
ment, we isolate such effects by training MoCo with only
one augmentation at a time. In semantic recognition, both
color and crop augmentations appear to be critical (Chen
et al., 2020). Does this hold true in control as well?

Results in Figure 8 indicate that different augmentations
have dramatically different effects in control. In particular,
in all domains other than DMC, color-only augmentations
significantly under-perform. Furthermore, crop-only aug-
mentations lead to representations that are as good or even

better than all other representations. The importance of
crop-only augmentations is consistent with prior works as
well (Srinivas et al., 2020; Yarats et al., 2021b). We hypothe-
size that crop augmentations highlight relative displacement
between the agent and different objects, as opposed to their
absolute spatial locations in the image observation, thus
providing a useful inductive bias. Overall, our experiment
suggests that control may require a different set of invari-
ances compared to semantic understanding.

4.4. Feature Hierarchies for Control

The previous experiment indicates that invariances for se-
mantic recognition may not be ideal for control. So far, we
have leveraged the features obtained at the last layer (after
final spatial average pooling) of pre-trained models. This
layer is known to encode high-level semantics (Selvaraju
et al., 2017; Zeyu et al., 2019). However, control tasks
could benefit from access to a low-level representation that
encodes spatial information. Furthermore, studies in vision
have shown that last layer features are the most invariant
and early layer features are less invariant to low-level per-
turbations (Zeiler & Fergus, 2014), which have resulted in
the use of feature pyramids and hierarchies in several vision
tasks (Lin et al., 2017). Inspired by these observations, we
next investigate the use of early layer features for control.
We note that intermediate layers (third, fourth) have more
activations than the last layer (fifth). To ease computations
and perform fair comparisons, we compress these repre-
sentations to the size of the representation at the last layer
(more details in Appendix A.4). To the best of our knowl-
edge, the use of early layer features is still unexplored in
policy learning for control.

Figure 9 shows that early convolution layer features are
more effective for fine-grained control tasks (MuJoCo). In
fact, they are so effective that they even match or outper-
form ground-truth features. While the ground-truth state
features we use contain complete information –i.e., can
function as Markov states– they may not be the ideal rep-
resentation from a learning viewpoint2. Indeed, not only
are state features known to impact policy learning perfor-
mance (Brockman et al., 2016; Ahn et al., 2019), but dif-
ferent representations of the same information –e.g., Euler
angles and quaternions– may perform differently (Gaudet &
Maida, 2018). At the same time, visual representations may
capture higher-level information that makes it easier for the
agent to behave optimally.

Furthermore, earlier layer features work better for MuJoCo
but not for Habitat. This is perhaps not surprising since
navigation in Habitat requires semantic understanding of

2We emphasize that the ground-truth features used in our ex-
periments are the default choices provided by the environments
and have been used in many prior works.
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Figure 9: Success rate when using representations from different layers. There is a clear trend in Habitat showing that
PVRs from later layers (opaque colors) perform better. In contrast, early layer features (transparent colors) perform better in
the MuJoCo tasks. The same trends hold across both ImageNet and Places.

Figure 10: Single-layer vs. full-hierarchy features of MoCo with crop augmentation. The latter are competitive in all
the domains, and in the case of Kitchen even outperform ground-truth features.

the environment. For instance, the agent needs to detect if
there is a wall or an obstacle in front of itself to avoid it.
This kind of information may be present in the last layer of
vision model trained for semantic recognition.

4.5. Full-Hierarchy Models

The experiment in Section 4.4 motivates two new questions.
First, can we design PVRs combining features from multiple
layers of vision models? Ideally, the policy should learn to
use the best features required to solve the task. Second, since
PVRs work even when pre-trained on out-of-domain data,
could such new full-hierarchy features be “near-universal”,
i.e., work for any control task –at least those studied here?

Figure 10 shows the performance of PVRs using all combi-
nations of the last three layers of MoCo with crop augmen-
tation, the best model so far. In MuJoCo, any PVR using
the third layer features –the best single-layer features– per-
forms competitively with ground-truth features. Similarly,
in Habitat any PVR using the fifth layer performs extremely
well. This suggests that the policy can indeed exploit the
best features from the full-hierarchy to solve the task.

Overall, the PVR using all the three layers (3, 4, 5) performs
best on average, and the same PVR is able to solve all
the four domains, sometimes even better than ground-truth

features. This is an important result, considering that our
four control domains are very diverse and span low-level
locomotion, dexterous manipulation, and indoor navigation
in very diverse environments. Furthermore, this PVR is
trained entirely using out-of-domain data and has never
seen a single frame from any of these environments. This
presents a very promising case for using PVRs for control.

5. Discussion and Conclusion
Freezing vs Fine-Tuning PVR. Our primary motivation
in this work was to study the use of representations from
pre-trained vision models for control tasks. Consistent with
this, our experiments freeze the vision models to directly
test the quality of pre-trained representations, and to prevent
any “on-the-fly” representation learning. This is similar in
spirit to the linear classification (probe) protocol used to
evaluate representations in computer vision. Fine-tuning
of pre-trained models have been found to be challenging
in both computer vision and NLP, especially in the sparse
data regime, but may result in marginally improved perfor-
mance (Hénaff et al., 2020; Peters et al., 2019). Further
investigations on fine-tuning, and development of targeted
fine-tuning approaches for control, could make for interest-
ing future work.
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Imitation Learning vs Reinforcement Learning. In this
work, we focused on learning policies using imitation learn-
ing (specifically behavior cloning) as opposed to RL. De-
spite significant advances in learning visuo-motor policies
with RL (Yarats et al., 2021a; Wijmans et al., 2020; Hafner
et al., 2020), the best algorithms are still data-intensive
requiring millions of samples. The use of pre-trained rep-
resentations are particularly important in the sparse data
regime, and thus we choose to train policies with imitation
learning. Furthermore, our work required the evaluation
of a large collection of pre-trained models across a diverse
suite of environments, which was prohibitively expensive
with current RL algorithms. We hope that our insights on
important considerations for PVRs in the context of control
can be used for RL in future work.

Summary of Our Contibutions. The use of off-the-shelf
vision models as perception modules for control policies is
a relatively new area of research, trying to bridge the gap
between advances in computer vision and control. This is
a departure from the current dominant paradigm in control,
where visual encoders are initialized randomly and trained
from scratch using environment interactions.

In this paper, we took a step back and asked fundamental
questions about representations and control, in the hope
of making a single off-the-shelf vision model –trained on
out-of-domain datasets– work for different control tasks.
Through extensive experiments, we find that off-the-shelf
PVRs trained on completely out-of-domain data can be
competitive with ground-truth features for training policies.
Overall, we identified three major components that are cru-
cial for successful PVRs. First, SSL models provide better
features for control than supervised models. Second, trans-
lation and occlusion invariance, provided by crop augmen-
tation, is more relevant for control than other invariances
like illumination and color. Third, early convolution layer
features are better for fine-grained control tasks (MuJoCo)
while later convolution layer features are better for semantic
tasks (Habitat).

Towards Universal Representations for Control. Based
on these findings, we proposed a novel PVR combining
features from multiple layers of a crop-augmented MoCo
model trained on out-of-domain data. Our PVR was com-
petitive with or outperformed ground-truth features on all
four evaluation domains.

Motivated by these results, we believe that research should
focus more on learning control policies directly from vi-
sual input using pre-trained perception modules, rather than
using hand-designed ground-truth features. While such fea-
tures may be available in simulation or specialized motion
capture systems, they are hard to estimate in unstructured
real-world environments. Yet, training an end-to-end visuo-
motor policy has difficulties as well. The visual encoders

increase the complexity of the policies, and might require a
significantly larger amount of training data. In this context,
the use of pre-trained vision modules can offer substantial
benefits by dramatically reducing the data requirement and
improving the policy performance. Furthermore, using a
frozen PVR simplifies the control policy architecture and
training pipeline.

We hope that the promising results presented in this paper
will inspire our research community to focus more on de-
veloping a universal representation for control –one single
PVR pre-trained on out-of-domain data that can be used as
perception module for any control task.
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A. Training Details
A.1. Habitat Details

Visual Input. PVR models are fed with two 64×64 RGB
images, one for the view of the scene from the agent’s per-
spective, and one for the target location. Each image is
encoded independently by the model, and the two encod-
ings are concatenated before being passed to the policy.
Policy Architecture. The PVR passes through a batch nor-
malization layer and then through a 2-layer MLP (ReLU
activation), followed by a 2-layer LSTM and then a 1-layer
MLP (softmax activation). All hidden layers have 1,024
units. Ground-truth features do not use batch-normalization,
as it significantly harmed the performance.
Policy Optimization. Following Parisi et al. (2021), we
update the policy with 16 mini-batches of 100 consecutive
steps with the RMSProp optimizer (Tieleman & Hinton,
2017) (learning rate 0.0001). Gradients are clipped to have
max norm 40. Learning lasts for 125,000 policy updates.
Imitation Learning Data. We collect 50,000 optimal tra-
jectories (10,000 per scene) using Habitat’s native solver,
for a total of ∼2,100,000 samples.
Success Rate. The policy success rate is estimated over
50 trajectories, and further averaged over the last six policy
updates, for a total of 300 trajectories per seed.

A.2. MuJoCo Details

Visual Input. Consistent with prior works, the visual input
takes the last three 256×256 RGB image observations of the
environment. Each image is encoded independently by the
PVR model. These three PVRs are fused together by using
latent differences following the work of Shang et al. (2021).
We do not use any other proprioceptive observations like
joint encoders for hands, and our policies are based solely
on embeddings of the visual inputs.
Policy Architecture. The fused PVR passes through a batch
normalization layer and then through a 3-layer MLP with
256 hidden units each and ReLU activation.
Policy Optimization. We update the policy with mini-
batches of 256 samples for 100 epochs with the Adam opti-
mizer (Kingma & Ba, 2014) (learning rate 0.001).
Imitation Learning Data. We collect trajectories using an
optimal policy trained with RL (Rajeswaran et al., 2017;
2018). The amount of data depends on the task difficulty.

• Adroit: 100 trajectories per task with 100- and 200-step
horizon for Reorient Pen and Relocate, respec-
tively. The total number of samples is 30,000.

• DeepMind Control: 100 trajectories per task. We use
an action repeat of 2, resulting in a 500-step horizon per
trajectory. The total number of samples is 250,000.

• Franka Kitchen: 25 trajectories per task with 50-step hori-
zon for all tasks. The total number of samples is 25,000.

Success Rate. We evaluate the policy every two epochs
over 100 trajectories, and report the average performance
over the three best epochs over the course of learning. This
way we ensure that each representation is given sufficient
time to learn, and that the best performance is reported.

A.3. PVRs Details

Datasets
• ImageNet: 1.2 million images.
• Places: 1.8 million images.
• Habitat: ∼2.4 million images. We collect 20,000 optimal

trajectories from all the 18 Replica scenes, keeping only
one frame every three for the sake of diversity.

• MuJoCo: we use the same aforementioned trajectories, for
a total of 30,000 (Adroit), 250,000 (DeepMind Control)
and 25,000 (Kitchen) images.

Vision Models
• ResNet: github.com/pytorch/vision.
• MoCo: github.com/facebookresearch/moco

(v2 version).
• CLIP: github.com/openai/CLIP (ViT-B/32 and

RN50 versions).

A.4. Intermediate Layers Compression

In Section 4.4 we discussed the use of features from in-
termediate layers of vision models. However, the number
of activations in these layers (third, fourth) is significantly
higher compared to the representation at the last layer (fifth).
To avoid prohibitively expensive compute requirements and
perform fair comparisons across layers, we compress these
representations to a common size, i.e., the size of the repre-
sentation at the fifth layer. This is accomplished by adding
two residual blocks to the model at the chosen intermediate
layer. Similar to an autoencoder model, the first residual
block compresses the number of channels, while the second
residual block expands the number of channels back to the
original. With these additional layers randomly initialized,
the model is fine-tuned on the original pre-training task. The
output of the first residual block provides the compressed
features which are then used in our experiments.

A.5. Compute Details

Vision models pre-training and layer compression was dis-
tributed over two nodes of a SLURM-based cluster. Each
node used four NVIDIA GeForce GTX 1080 Ti GPUs. Pre-
training one PVR model took between 1-3 days depending
on the training method, size of the model, and dataset used.
Policy imitation learning was performed on a SLURM-
based cluster, using a NVIDIA Quadro GP100 GPU. Train-
ing one policy took between 8-24 hours (including policy
evaluation) depending on the PVR and the environment.

github.com/pytorch/vision
github.com/facebookresearch/moco
github.com/openai/CLIP
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