
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLANATION-ASSISTED DATA AUGMENTATION FOR
GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This work introduces a novel class of Data Augmentation (DA) techniques in
the context of graph learning. In general, DA refers to techniques that enlarge
the training set using label-preserving transformations. Such techniques enable
increased robustness and generalization, especially when the size of the original
training set is limited. A fundamental idea in DA is that labels are invariant to
domain-specific transformations of the input samples. However, it is challenging
to identify such transformations in learning over graphical input domains due
to the complex nature of graphs and the need to preserve their structural and
semantic properties. In this work, we propose explanation-assisted DA (EA-DA)
for Graph Neural Networks (GNNs). A graph explanation is a subgraph which is
an ‘almost sufficient’ statistic of the input graph with respect to its classification
label. Consequently, the classification label is invariant, with high probability,
to perturbations of graph edges not belonging to its explanation subgraph. We
develop EA-DA techniques leveraging such perturbation invariances. First, we
show analytically that the sample complexity of explanation-assisted learning can
be arbitrarily smaller than explanation-agnostic learning. On the other hand, we
show that if the training set is enlarged using EA-DA techniques and the learning
rule does not distinguish between the augmented data and the original data, then
the sample complexity can be worse than that of explanation-agnostic learning.
We identify the main reason for the potential increase in sample complexity as the
out-of-distribution nature of graph perturbations. We conclude that theoretically
EA-DA may improve sample complexity, and that the learning rule must distinguish
between the augmented data and the original data. Subsequently, we build upon
these theoretical insights, introduce practically implementable EA-DA techniques
and associated learning mechanisms, and perform extensive empirical evaluations.

1 INTRODUCTION

Graphs are used to represent relationships between entities in a wide range of applications including
social networks, biology, and finance (Koller & Friedman, 2009; Barabási & Albert, 1999; de Dios Or-
túzar & Willumsen, 2011; Barabási et al., 2011; Newman, 2018). In order to effectively leverage the
rich relational information encoded in graphs, and inspired by conventional deep learning methods,
various graph neural network (GNN) architectures have been developed, such as methods based
on convolutional neural networks (Defferrard et al., 2016; Kipf & Welling, 2017), recurrent neural
networks (Li et al., 2016; Ruiz et al., 2020), and transformers (Yun et al., 2019; Rong et al., 2020).
Given the vast potential applications and use cases of GNNs, there is significant interest in developing
data augmentation (DA) techniques to enhance their generalization capabilities and avoid overfitting
during training (Kong et al., 2020; Han et al., 2022; Ling et al., 2023; Zhao et al., 2021; Rong et al.,
2019).

In general, DA refers to techniques that enlarge the training set through label-preserving transforma-
tions. These techniques enhance generalization, especially when the size of the original training set is
limited (Ding et al., 2022). A fundamental idea in DA is that labels are invariant to domain-specific
transformations. For instance, in many image classification tasks, it is expected that the output label
remains invariant to specific affine transformations of the original image, such as rotation and scaling.
Thus, the training set can be enlarged using artificially generated samples created through these
transformations. Building on the DA techniques used in non-graphical domains, techniques such

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

as Mixup (Han et al., 2022) and DropEdge (Rong et al., 2019) have been proposed for learning
over graphs. However, in contrast to DA in non-graphical domains, in graphs even slight edge
perturbations often lead to out-of-distribution samples. For instance, in molecular structures which
are modeled as graphs, any edge perturbation that connects a carbon atom to more than four other
atoms yields an out-of-distribution sample. Furthermore, classification labels are highly sensitive to
edge modifications, and a single edge removal or addition may significantly change the properties of
the molecular structure. As a result, it is challenging to identify label-preserving transformations in
learning over graphs due to the complex nature of graphs and the need to preserve their structural
and semantic properties and to ensure in-distribution augmentations. Moreover, it has been shown in
learning over non-graphical domains that out-of-distribution augmentations can even lead to increased
sample complexity (Shao et al., 2022).

In this work, we propose explanation-assisted data augmentation (EA-DA) for learning over graph-
structured inputs. We introduce DA techniques that leverage the notion of subgraph explainability
to enlarge the training set via label-preserving graph perturbations. This is based on the intuitive
assumption that the presence of certain structural patterns or motifs within the input graph plays a
critical role in the model’s decision-making process (Ying et al., 2019; Luo et al., 2020; Yuan et al.,
2021; Shan et al., 2021). Consequently, slight perturbations of the edges in the ‘non-explanation’
subgraph must be label-preserving. This assumption has been widely adopted in the literature of
explainable GNNs (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2022; Zheng et al., 2023). The
label invariance to perturbations of non-explanation edges resembles the transformation invariances
observed in various learning tasks on non-graphical data, such as invariance to scaling and rotation
in image classification tasks (Cohen & Welling, 2016; Bloem-Reddy et al., 2020; Chen et al., 2020;
Shao et al., 2022). To leverage this, we consider learning scenarios where each training sample,
in addition to its associated label, is accompanied by its ground-truth explanation subgraph. Such
ground-truth explanations may be produced at the time the training data is compiled. For example, in
a dataset of labeled radiology scans, the most informative sections of each scan could be identified
by the contributing physicians during the compilation phase of the training dataset. Alternatively,
an estimate of the explanation can be produced by joint training of the classifier and its explainer
on the original (unexplained) training data, as shown in the sequel. Consequently, we introduce
explanation-assisted learning rules and data augmentation methods.

Our main contributions are summarized as follows:

• To provide a rigorous theoretical formulation of EA-DA mechanisms, the explanation-assisted
graph learning problem, and the associated sample complexity.

• To introduce the explanation-assisted empirical risk minimization (EA-ERM) learning rule and to
derive an upper-bound to its sample complexity. (Theorem 5.4)

• To show that the EA-ERM sample complexity can be arbitrarily smaller than the (explanation-
agnostic) ERM sample complexity. (Example 5.3)

• To provide a theoretical justification, along with an example, showing that if EA-DA is used without
distinguishing between original and augmented samples, then the sample complexity may be worse
compared to that of the explanation-agnostic learners. (Example 6.2)

• To provide an implementable class of EA-DA mechanisms by building on the insights gained from
our theoretical analysis. (Section 7)

• To provide empirical simulations verifying the improved performance of the GNNs trained using
the EA-DA mechanisms when the necessary conditions in our theoretical derivations are satisfied,
and to provide empirical simulations illustrating potentially worse performance in scenarios not
satisfying the necessary conditions. (Section 8)

2 RELATED WORK

Explainable Graph Neural Networks. Prior works have introduced various methods for extracting
subgraph explanations using GNNs (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2020; 2022; 2021;
Lin et al., 2021; Wang & Shen, 2023; Miao et al., 2023; Fang et al., 2023a; Xie et al., 2022; Ma et al.,
2022). Traditional methods, such as SA (Baldassarre & Azizpour, 2019) and Grad-CAM (Pope et al.,
2019), use gradients to extract explanations. Model-agnostic methods include perturbation-based
methods, surrogate methods, and generation-based methods. Perturbation-based methods, including
GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), and ReFine (Wang et al., 2021a),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

generate perturbations to determine which features and subgraph structures are important. Surrogate
methods (Vu & Thai, 2020; Duval & Malliaros, 2021) use a surrogate model to approximate the local
prediction and use this surrogate model to generate explanations. Generation-based methods (Yuan
et al., 2020; Shan et al., 2021; Wang & Shen, 2023) adopt generative models to derive instance-level
and model-level explanations.

Data Augmentation. Data augmentation is widely used in self-supervised learning (You et al.,
2020; Zhu et al., 2020). A large class of graph augmentation methods can be categorized as
rule-based (Wang et al., 2021b; Rong et al., 2019; Gasteiger et al., 2019; Zhao et al., 2022a), learning-
based methods (Zhao et al., 2021; Wu et al., 2022; Zhao et al., 2022b), and explanation-assisted data
augmentation methods (Gu et al., 2023; Kwon & Lee, 2023; Wickramanayake et al., 2021; Tětková
& Hansen, 2023; Shi et al., 2023).

Rule-based methods include NodeDrop (Rong et al., 2019), EdgeDrop (Feng et al., 2020), and
MessageDrop (Fang et al., 2023b), which randomly drop a subset of features in the original graph.
GraphCrop (Wang et al., 2020) and MoCL (Sun et al., 2021) randomly crop and substitute the graphs.
Learning-based methods use GNNs to learn edge importance. For instance, ProGNN (Jin et al.,
2020) learns a structural graph from a poisoned graph. GraphAug (Luo et al., 2022) introduces a
reinforcement learning method to produce the label-invariant augmentations. Half-Hop (Azabou et al.,
2023) proposes a novel graph augmentations by inserting a slow node. In (Liu et al., 2022), a local
augmentation is proposed by learning the conditional distribution of the node under its neighbors.

EA-DA methods construct label-preserving transformations based on explainations. For instance,
in (Gu et al., 2023), given the ground-truth explanation, a generative adversarial network (GAN) is
used to generate image augmentations conditioned on the explanation sub-image. Other EA-DA
methods (also called explanation-guided DA) have been studied recently (Gao et al., 2024), including
in contrastive learning for sequential recommendation (Wang et al., 2022), image classification (Wick-
ramanayake et al., 2021), and security analysis and risk detection (He et al., 2023). Mixup (Zhang
et al., 2017) is a common strategy to generate explanation-assisted augmentations. In (Kwon & Lee,
2023), it is claimed that Mixup doesn’t reflect the importance of each token in natural language
processing, and a soft label assignment method is proposed. In the graph learning domain, (Shi
et al., 2023) proposed a framework, ENGAGE, to use explanations to enhance contrastive learning
representations.

3 PRELIMINARIES

3.1 THE GRAPH CLASSIFICATION PROBLEM

A graph G is parametrized by i) a vertex1 set V = {v1, v2, · · · , vn}, where n ∈ N, ii) an edge set
E ⊆ V × V , iii) a feature matrix X ∈ Rn×d, where the ith row Xi is associated with vi and d is the
feature dimension, and iv) an adjacency matrix A ∈ {0, 1}n×n, where Ai,j = 1((vi, vj) ∈ E). The
graph is associated with a label Y ∈ Y , where Y is a finite set. The graph parameters (A,X) and
label Y are generated based on the joint distribution PY,A,X . The notation PY,G and PY,A,X are
used interchangeably. A classification scenario is completely characterized by PY,G; consequently,
we refer to PY,G as the classification problem. A graph classifier is a function f : G → Y , where G is
the support of PG. Given ϵ ∈ [0, 1], the classifier is called ϵ-accurate if P (f(G) ̸= Y) ≤ ϵ.

A training set T is a collection of labeled graphs. The elements of the training set are generated
independently and according to PY,G. A learning rule is a procedure that takes the training set T as
input, and outputs a graph classifier f(·) belonging to an underlying hypothesis class H.

3.2 SUBGRAPH EXPLANATIONS

At a high level, for a given task, an explanation function (explainer) Ψ(·) map the input graph G to an
explanation subgraph Gexp. The subgraph is a good explanation if it is minimal and sufficient with
respect to G. The notions of minimality and sufficiency are rigorously quantified in the following.

The minimality of the subgraph is measured in terms of its number of edges (size). That is, Ψ(G) is
minimal if E(|Ψ(G)|) is as small as possible. Sufficiency means that the posterior distribution of the

1We use node and vertex interchangeably.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

label Y does not change significantly if we are given that Ψ(G) is a subgraph of G instead of the
complete realization of G. That is, the explanation subgraph is sufficient if dTV (PY |G=g, PY |Ψ(g)⊆G)
is small for all g ∈ G, where dTV denotes the total variation distance. Consequently, for given
parameters s ∈ N and κ > 0, we say that the mapping Ψ(·) is an (s, κ)-explainer for the task PY,G if:

dTV (PY |G=g, PY |Ψ(g)⊆G) ≤ κ,∀g ∈ G and E(|Ψ(G)|) ≤ s. (1)

If an (s, κ)-explainer exists, we say that the task is (s, κ)-explainable.

Note that for any κ ≥ 0 and any given classification task PY,G, the task is trivially (E(|G|), κ)-
explainable since the graph itself can be taken as its explanation, i.e., Ψ(G) = G. Furthermore,
in most practical scenarios, input graphs contain redundant edges, and consequently, the tasks are
(s, κ)-explainable for an s which is strictly smaller than E(|G|). In the subsequent sections, we
leverage such redundancies to design EA-DA methods for graph learning.

3.3 EXPLANATION-ASSISTED LEARNING RULES

As described in the introduction, in our theoretical analysis, we consider learning rules that jointly
operate on labeled training samples and their associated subgraph explanations. Formally, given a
hypothesis class H, an explanation-assisted learning rule is a mapping LEA : (T ,Ψ|T (·)) 7→ f(·),
where T is the training set, Ψ(·) is an explainer, and Ψ|T (·) is its restriction to the training set2. The
sample complexity of explanation-assisted learning rules is defined as follows.
Definition 3.1 (Explanation-Assisted Sample Complexity). Let ϵ, δ, κ, γ ∈ (0, 1). The sample
complexity of (ϵ, δ, κ, γ)-PAC learning of H with respect to the explanation function Ψ(·), denoted by
mEA(ϵ, δ, κ, γ;H,Ψ), is defined as the smallest number of training samples m ∈ N for which there
exists an explanation-assisted learning rule L such that, for every s ∈ N and (s, κ)-explainable task
PY,G with Bayes error rate less than or equal to γ, we have:

P

(
errPY,G

(L(T)) ≤ inf
f∈H

errPY,G
(f) + ϵ

)
≥ 1− δ,

where we have defined errPY,G
(f) as the statistical error of f(·) for the task PY,G, and |T | = m. If

no such m exists, then we say the sample complexity is infinite.

Note that in addition to the parameters (ϵ, δ) used in the standard PAC formulation, and the explain-
ability parameter κ, the sample complexity is parameterized by an upper-bound on the Bayes error
rate γ. If γ = 1, we recover the agnostic PAC settings; if γ = 0 the task is deterministic, and if the
optimal (zero-error) classifier is in the hypothesis class, we recover the realizable PAC settings. The
explicit dependence on γ is needed to derive the bounds on EA-DA sample complexity in the sequel.

4 EXPLAINABLE TASKS AND PERTURBATION-INVARIANCE

The fundamental idea in DA techniques is that in many application domains, there are label-preserving
transformations that can be applied to enlarge the training set and facilitate generalization. We
argue that for certain classes of graph learning tasks, graph transformations that only alter the non-
explanation subgraphs are label-preserving with high probability. To elaborate, let us consider a
task with small Bayes error rate, so that the input graph G accurately captures the label Y . Then,
if the task is explainable, from equation 1 it follows that for two input graphs G and G′, if the
explanation Ψ(G) is a subgraph of G′, then G and G′ have the same label, with high probability.
Thus, such (almost) label-preserving transformations can be used for EA-DA. It should be noted
that the label-preserving property depends on the Bayes error rate, and if the error rate is high, then
such transformations may not be label-preserving. The relationship between the Bayes error rate,
explainability, and perturbation invariance is formally quantified in the following proposition.
Proposition 4.1 (Perturbation Invariance and Explainability). Let κ, γ ≥ 0 such that γ + 2κ ≤ 1
and let s ∈ N. Then, for any (κ, s)-explainable task PY,G with Bayes error γ, the following holds:∑

gexp

P (Ψ(G) = gexp)P (Y ̸= Y ′|Ψ(G) = gexp, gexp ⊆ G′) ≤ −γ2 − 2κ2 + 2γ + 3κ− 3γκ.

2There is a slight abuse of notation as the domain of Ψ(·) is restricted to the graphs samples in the training
set, however, we denote the restriction by Ψ|T (·) to avoid unnecessary introduction of new notation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where Ψ(·) is a (κ, s)-explanation function for PY,G, Y and Y ′ are the labels associated with G and
G′, respectively, and (G, Y) and (G′, Y ′) are generated independently and according to PY,G.

The proof follows directly from the definition of explainability in equation 1 (Appendix A.1).

5 PAC LEARNABILITY OF EXPLANATION-ASSISTED LEARNERS

The notion of perturbation invariance is analogous to transformation invariances, such as rotation and
scaling invariances, observed in image classification. Prior works on sequential data have shown that
invariance-aware learning rules can achieve improved sample complexity, e.g., (Shao et al., 2022).
Building on this, we introduce the explanation-assisted ERM (EA-ERM) and derive an upper-bound
on its sample complexity. We provide an example where this sample complexity can be arbitrarily
smaller than that of (explanation-agnostic) ERM. We conclude that for explainable classification
tasks, there may be significant benefits in using explanation-assisted learning rules, in terms of sample
complexity. This is further verified via empirical analysis in the subsequent sections. It should be
noted that while our observations in this section regarding the improved sample complexity of EA-DA
methods align with those of prior works including (Shao et al., 2022), and the proof techniques build
upon prior known methods, there are several crucial differences which merit a separate treatment.
First, the label-preserving transformation considered in prior works, such as rotations and color
translations of images, form closed groups, which facilitate analysis. In contrast, the transformations
considered in this work, which include graph perturbations by addition and omission of edges in the
non-explanation subgraph, do not form closed groups. Second, the transformations considered in
prior works are assumed to be completely label-preserving, whereas the graph perturbation operations
considered in this work are almost label-preserving and probabilistic. This introduces new challenges
in evaluating the resulting sample complexity, which are addressed in the following sections.
Definition 5.1 (Explanation-Assisted ERM (EA-ERM)). Given a hypothesis class H, training set
T , and explanation function Ψ(·), the EA-ERM learning rule produces LEA-ERM(T) ≜ f̃(·), where:

f̃(G) ≜

{
Yexp ∃i ∈ [t] : Ψ(Gi) ⊆ G,

f(G) Otherwise
, f(·) ≜ LERM (T), (2)

where Yexp is chosen randomly and uniformly from the set {Yi|Ψ(Gi) ⊆ G, i ∈ |T |}, and LERM

denotes the (explanation-agnostic) ERM learning rule.

Note that Definition 5.1 implies a two-step learning procedure. First, given a training set T , a
classifier f(·) is trained by applying the ERM learning rule LERM . Then, f̃(·) is constructed from
f(·) using equation 2. We will show that the sample complexity of EA-ERM can be expressed in
terms of the explanation-assisted VC dimension defined in the following.
Definition 5.2 (Explanation-Assisted VC Dimension). Given an explanation function Ψ(·) and
hypothesis class H, the explanation-assisted VC dimension V CEA(H,Ψ) is defined as the largest
integer k for which there exists a collection of graphs G = {g1, g2, · · · , gk} such that Ψ(gi) ̸= Ψ(gj)
for all i ̸= j, and every labeling of G is realized by the hypothesis class H.

Let us define I(G) = G as the identity function. We call V C(H) ≜ V CEA(H, I) the standard VC
dimension, as it aligns with the notion of VC dimension considered in traditional PAC learnability
analysis. The following provides a simple example in which the standard VC dimension, V C(H),
can be arbitrarily larger than the explanation-assisted VC dimension V CEA(H,Ψ(·)).
Example 5.3. Let Ci, i ∈ N denote the single-cycle graph with i vertices, where the vertex set
is3 V = [i] and the edge set is E = {(j, j + 1), j ∈ [i − 1]} ∪ {(i, 1)}. We construct a binary
classification problem as follows. Let the graphs associated with label zero belong to the collection
B0 = {Ci ∪ C3, i > 5} and those associated with label one belong to B1 = {Ci ∪ C4, i > 5}. Let

Ψ(G) =

{
C3 if G ∈ B0

C4 otherwise
.

Clearly, κ = 0. Let PY (0) = PY (1) = 1
2 , and assume that for a given label Y = y, the graphs

belonging to By are equally likely, i.e., PG|Y (·|y) is uniform. Let H consist of all possible classifiers

3For conciseness, we denote the set {1, 2, · · · , i} by [i].

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

on the set B0 ∪ B1. So that V C(H) = ∞. It is straightforward to see that V CEA(H,Ψ(·)) = 2
since there are only two explanation graphs, namely C3 and C4.

Next, we show that the sample complexity of explanation-assisted learning rules is expressed in terms
of V CEA(H,Ψ(·)) as opposed to V C(H) achieved by generic learning rules.
Theorem 5.4 (Sample Complexity of Explainable Tasks). Let ϵ, δ, κ, γ ∈ (0, 1) such that

−γ2 − 2κ2 + 2γ + 3κ− 3γκ ≤ ϵ

32
,

then, for any hypothesis class H and explanation function Ψ(·), the following holds:

mEA(ϵ, δ, κ, γ;H,Ψ) = O

(
d

ϵ2
log2 d+

1

ϵ2
ln(

1

δ
)

)
,

where we have defined d ≜ V CEA(H,Ψ(·)).

The proof is provided in Appendix A.2. An important implication of the proof steps is that EA
learning rules may significantly improve sample complexity if the Bayes error rate of the task is small
enough. In the subsequent sections, we show that the learning rule should distinguish between the
original training data and its EA perturbations to achieve the potential improvements.

6 PAC LEARNABILITY OF EXPLANATION-ASSISTED DATA AUGMENTATION

In the previous section, we showed that explanations can potentially be leveraged to improve sample
complexity. One method for utilizing the explanation subgraphs is to perform EA-DA, by artificially
producing training inputs via edge additions and omissions in the non-explanation subgraph. In this
section, we show through a simple example that this approach may lead to worse sample complexity
compared to generic explanation-agnostic learning rules if the learning rule does not distinguish
between the original data and the augmented data. This observation aligns with recent observations
in (Shao et al., 2022) in the context of other transformation invariances such as rotations and scalings.
The phenomenon is also observed in our empirical observations in the subsequent sections.
Definition 6.1 (Explanation-Preserving Perturbation). Consider a task PY,G, an explainer Ψ(·),
and a parameter α > 0. An explanation-preserving perturbation Sα(G) is a mapping 4

Sα(G) ≜ {G′
∣∣∣Ψ(G) ⊆ G′, |E∆E ′| ≤ α|E|},

where E and E ′ are the edge sets of G and G′, respectively, and ∆ denotes the symmetric difference.

Given training set T , explainer Ψ(·), and α > 0, we define the EA augmented training set as:

Taug ≜ T ∪
(⋃

(G,Y)∈T

{(G′, Y)|G′ ∈ Sα(G)}
)
.

We define the DA-ERM learning rule as an ERM learning rule that is applied to the augmented
training set without distinguishing between the original and augmented data. For α = 0, DA-ERM is
the same as ERM and there is no data augmentation. The following example shows that in general,
for α > 0, DA-ERM may have worse sample complexity than the explanation-agnostic ERM.
Example 6.2. Consider the hypothesis class H which consists of all classifiers that classify their
input only based on the number of edges in the graph. That is,

H = {f(·)|∀G,G′ : |G| = |G′| → f(G) = f(G′)}.
Furthermore, let us consider the following binary classification problem. Let PY (0) = PY (1) =

1
2 ,

and let the graphs associated with label zero consist of the collection

B0={G
∣∣|G| = n, ∃i ∈ [n] :Ci⊆G and ∄j ⊆ [n] :Dj⊆G},

where n > 10 is fixed, Ci, i ∈ [n] denotes a cycle of size i, and Di denotes a star of size i, where a
star is a subgraph where all vertices are connected to a specific vertex called the center, and there

4Sα(G) is defined with respect to Ψ(·). This dependence is not made explicit in our notation to avoid clutter.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

are no edges between the rest of the vertices. Thus, B0 consists of all graphs with exactly n edges
and at least one cycle but no stars. Similarly, let the graphs associated with label one be given by

B0={G
∣∣|G| = n+ 1,∄i ∈ [n+ 1] :Ci ⊆ G and ∃j ∈ [n+ 1] :Dj⊆G}.

That is, B1 consists of all graphs with exactly n+ 1 edges that do not contain a cycle but contain a
star. Let α = 1

n , and define

Ψ(G) ≜

{
Ci if ∃i : Ci ⊆ G,

Di if ∃i : Di ⊆ G,
.

Clearly κ = γ = 0. It is straightforward to see that ERM and EA-ERM both achieve zero error after
observing at least one sample per label since all graphs of size n have label 0 and all graphs of size
n+1 have label 1, and the hypothesis class decides based only on the number of edges. On the other
hand, for DA-ERM to achieve zero error it needs to observes all possible explanation outputs, as it
cannot distinguish between the augmented elements of B0 and the original elements of B1 and vice
versa since they may have the same number of edges. Thus, data augmentation has sample complexity
that can grow arbitrarily large, whereas ERM and EA-ERM have sample complexity equal to two.

The issue illustrated in the previous example appears to be a fundamental issue. To explain further,
note that DA-ERM empirically minimizes the risk over the augmented dataset. If the elements of
the augmented dataset are in-distribution with respect to PY,G, this also guarantees that the risk is
minimized with respect to the original dataset, hence achieving similar performance as that of EA-
ERM. However, if the elements of the augmented dataset are out-of-distribution with respect to PG,
then it may be the case that the output of DA-ERM performs well on the out-of-distribution elements
but has high error on the in-distribution elements (which are dominated by the out-of-distribution
elements). Hence, DA-ERM may achieve high error probability on the original data distribution. This
is exactly the phenomenon observed in the previous example. We show this phenomenon empirically
and further explain it in our empirical evaluations in the subsequent sections.

7 EXPLANATION-ASSISTED GNN ARCHITECTURES

In this section, we introduce a practically implementable EA-DA method and GNN training pro-
cedure. Given a labeled training sample (G, Y) and explanation function Ψ(·), we first compute
an explanation subgraph Gexp = Ψ(G). Then, we use an explanation-preserving, non-parametric
perturbation operator Π(·) to produce perturbations Gi of the original input graph G, such that
Gexp ⊆ Gi. Then, G and Gi are passed through the GNN f(·) to produce the output labels Ŷ and Ŷi,
respectively.

Algorithm 1 Explanation-Assisted Training Algorithm
1: Input: Training set T , balancing coefficient λ, GNN pre-train

epoch ew, train epoch es, sampling number M
2: Output: Trained model f
3: Initiate f , Ψ, j = 0
4: for j ≤ ew do
5: Update f via ET (CE(Y, f(G)))
6: j = j + 1
7: end for
8: Train the explainer Ψ(·) on T
9: Initiate empty set T ′

10: for each (G,Y) ∈ T do
11: Gexp = Ψ(G)
12: for m in [1, 2, ...M] do
13: T ′ = T ′ + {(Π(Gexp), Y)}.
14: end for
15: end for
16: Initialize f , j = 0
17: for j ≤ es do
18: Train f with ET (CE(Y, f(G)) + λET ′CE(Y, f(G)))
19: j = j + 1
20: end for

For a fixed parameter λ > 0, the loss
is defined as:
Loss = CE(Y, Ŷ) + λ

∑
i

CE(Y, Ŷi).

(3)
As shown in Section 6, if the per-
turbed graphs are out-of-distribution,
then the performance may be worse
than explanation-agnostic methods.
To address this, first, we follow an
existing work to implement the per-
turbation function Π(·) which ran-
domly removes a small number of
non-explanation edges (Zheng et al.,
2023) (Algorithm 2). As shown in pre-
vious studies, this method is effective
in generating in-distribution graphs.
Second, to further alleviate the nega-
tive effects of out-of-distributed aug-
mentations, we choose the hyperpa-
rameter λ (in Eq. 3) small enough, so that the loss on the (potentially out-of-distribution) augmented
data does not dominate the loss on the original data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance comparisons with 3-layer GNNs trained on 50 samples. The metric is classifi-
cation accuracy. The best results are shown in bold font and the second best ones are underlined.

MUTAG Benzene Fluoride Alkane D&D PROTEINS

Method GCN GIN GCN GIN GCN GIN GCN GIN GCN GIN GCN GIN

Vanilla 84.3±3.2 82.5±3.7 73.9±5.2 67.5±5.9 62.1±4.3 68.6±5.2 93.7±3.2 85.1±10.3 63.2±6.6 65.1±4.3 68.1±6.1 66.5±4.0
EI 85.6±2.0 82.8±3.2 75.3±5.1 71.6±2.8 59.3±3.2 66.8±4.0 92.2±4.9 87.5±10.3 63.6±6.2 64.7±5.4 69.6±4.0 65.5±5.8
ED 84.7±3.4 81.6±3.7 73.2±4.1 70.5±4.3 58.4±3.7 62.9±5.1 94.4±1.8 90.3±6.4 64.0±6.0 66.7±3.8 70.0±4.0 62.7±5.3
ND 83.6±3.5 82.2±4.0 74.0±3.8 71.3±2.7 58.7±3.0 64.9±4.6 92.7±3.4 88.9±7.0 65.2±4.2 66.7±2.9 68.8±3.3 65.6±5.4
FD 84.7±3.4 82.7±2.9 75.2±4.8 70.7±2.8 57.6±3.6 67.6±5.1 93.8±3.1 83.1±11.7 62.5±3.3 68.2±4.3 68.6±3.8 65.6±5.0
Mixup 67.4±3.2 74.5±1.6 53.9±1.9 59.0±3.4 52.5±1.5 51.6±2.6 64.3±0.7 65.8±4.1 56.0±1.9 58.6±3.5 60.8±2.9 62.2±2.9
AugGE 87.2±1.4 86.0±2.4 76.2±1.3 75.4±0.8 66.6±3.4 76.3±2.1 96.3±1.3 94.9±1.1 66.1±5.1 69.3±5.2 70.4±5.9 68.5±5.9
AugPE 87.2±2.6 86.9±1.8 76.5±0.8 75.4±1.0 65.3±5.0 76.5±1.7 96.4±1.1 94.8±1.1 67.7±4.3 67.4±2.8 71.2±6.3 68.1±5.5

It should be noted that the ground-truth explanation Ψ(G) may not be available beforehand in real-
world applications. In such scenarios, we pre-train the graph classifier f(·) and Ψ(·). This two-step
training procedure is described in Algorithm 1. The proposed method is a general framework that can
be employed for training various GNN architectures and explainers, such as GIN (Xu et al., 2019),
PNA (Corso et al., 2020), GNNExplaier (Ying et al., 2019) and PGExplainer (Luo et al., 2020).

8 EMPIRICAL VERIFICATION

Algorithm 2 Explanation-preserving perturbation Π(·)
1: Input: a graph G, explainer Ψ(·), hyper-parameter α1.
2: Gc = G−Ψ(G) # Compute the non-explanation subgraph
3: Eα1(G

c) = sample α1 edges from Gc

4: Return Eα1(G
c) + Ψ(G)

We utilize a benchmark synthetic
dataset, BA-2motifs (Luo et al., 2020),
and five real-world datasets, MU-
TAG (Luo et al., 2020), Benzene, Flu-
oride, Alkane (Agarwal et al., 2023),
D&D (Dobson & Doig, 2003) and
PROTEINS (Dobson & Doig, 2003;
Borgwardt et al., 2005). We consider four GNN models: Graph Convolutional Network (GCN),
Graph Isomorphism Network (GIN), Principal Neighbourhood Aggregation (PNA) (Corso et al.,
2020) and GraphSage(Hamilton et al., 2017). Full experimental setups are shown in the Appendix B.

8.1 COMPARISON TO BASELINE DATA AUGMENTATIONS

With this set of experiments, we aim to verify the effectiveness of our EA-DA methods.

Experiment Design. We consider 3 GNN layers. For each dataset, 50 labeled graphs are randomly
sampled for training and 10% of the graphs for testing. Experiments with smaller training sizes
and lightweight GNN models can be found in Appendix C.5 and C.6, respectively. We compare
with representative structure-oriented augmentations, Edge Inserting (EI), Edge Dropping (ED),
Node Dropping (ND), and Feature Dropping(FD) (Ding et al., 2022). Recently, mixup operations
have been introduced in the graph domain for DA, such as M -mixup (Wang et al., 2021b) and
G-mixup (Han et al., 2022). However, M -mixup operates on the embedding space and cannot be
fairly compared, and G-mixup does not apply to graphs with node type/features. Instead, we
use a normal Mixup as an additional baseline. To generate Ψ(·) in our method, we consider
two representative explainers, GNNExplainer (Ying et al., 2019) and PGExplainer (Luo et al.,
2020), whose corresponding augmentations are denoted by AugGE and AugPE, respectively. More
comprehensive results on different settings and full experimental results are shown in Appendix C.

Experimental Results. From Tables 1 and 3 (in the Appendix), we have the following observations.
First, our explanation-assisted learning methods consistently outperform the vanilla GNN models as
well as the ones trained with structure-oriented augmentations by large margins. Utilizing the GCN
as the backbone, our methods, AugGE and AugPE, exhibit significant enhancements in classification
accuracy—2.40% and 2.75%, on average—when compared to the best-performing baselines across
six datasets. With GIN, the improvements are 5.04% and 4.69%, respectively. Secondly, we observe
that traditional structure-based augmentation methods yield comparatively less effectiveness. For
example, in the Fluoride dataset, all baseline augmentation methods achieve negative effects, while
our methods can still beat the backbone significantly.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

8.2 EFFECTS OF AUGMENTATION DISTRIBUTION

In Section 6, we investigated EA-DA, and argued that performance improvements are contingent on
in-distribution generation of augmented data. In this section, we analyze the effects of augmentation
distributions on the model accuracy. With this set of experiments on a synthetic dataset and a real-
world dataset, we aim to explore two questions: (RQ1) Can in-distribution augmentations lead to
better data efficiency in graph learning? (RQ2) What are the effects of out-of-distribution (OOD)
augmentations on graph learning?

(a) BA-2motifs (b) Benzene

Figure 1: Original input, in-distribution, and OOD augmenta-
tion embeddings generated by T-SNE.

To evaluate the data efficiency
of graph learning methods,
we vary the number of train-
ing samples in the range
[4, 8, 20, 40, 100, 300, 500, 700].
We sufficiently train GNN models
with three settings: 1) training
with the vanilla training samples,
2) training with in-distribution
EA-DA, and 3) training with OOD
EA-DA. For setting 2, we use the
proposed augmentation method
on the ground truth explanations.
For setting 3, to generate OOD
augmentations, we randomly add 100% edges from the BA graph for each instance on the BA-2motifs
dataset. On the Benzene dataset, we randomly remove 30% edges from the non-explanation
subgraphs. Visualization results on three sets of graphs are shown in Figure 1, which shows that our
methods are able to generate both in-distributed and OOD augmentations for further analysis.

4 8 20 40 100 300 500 700
Training Samples

50

60

70

80

90

100

Ac
cu

ra
cy

Original
In-dist. Aug.
OOD Aug.

(a) GCN on BA-2motifs

4 8 20 40 100 300 500 700
Training Samples

55

60

65

70

75

80

Ac
cu

ra
cy

Original
In-dist. Aug.
OOD Aug.

(b) GCN on Benzene

4 8 20 40 100 300 500 700
Training Samples

70

75

80

85

90

95

100

Ac
cu

ra
cy

Original
In-dist. Aug.
OOD Aug.

(c) GIN on BA-2motifs

4 8 20 40 100 300 500 700
Training Samples

55

60

65

70

75
Ac

cu
ra

cy

Original
In-dist. Aug.
OOD Aug.

(d) GIN on Benzene

Figure 2: Effects of in-distributed and OOD augmentations on the accuracy of GCN and GIN on
BA-2motifs and Benzene datasets.

We answer our research questions with accuracy performances in Figure 2. From these figures, we
have the following observations. First, in-distribution augmentations significantly and consistently
improve the data efficiency of both GCN and GIN in two datasets. For example, with explanation-
preserving augmentations, GIN can achieve over 90% accuracy with only 4 samples in the synthetic
dataset, while the performance of GIN trained with original datasets is around 75%. Second, OOD
augmentations fail to improve data efficiency in most cases. Moreover, for GCN on Benzene, the
OOD augmentation worsens the performance, which is aligned with our theoretical analysis.

9 CONCLUSION

Explanation-assisted learning rules were considered, where in additional to labeled training samples,
the learning rule has access to explanation subgraphs. The sample complexity was characterized and
was shown to be arbitrarily smaller than the explanation-agnostic sample complexity. Subsequently,
explanation-assisted data augmentation methods were considered, followed by a generic learning
rule applied to the augmented dataset. It was shown both theoretically and empirically that this may
sometimes lead to better and sometimes to worse performance in terms of sample complexity, where
gains are contingent on producing in-distribution augmented samples.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

IMPACT STATEMENTS

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

REFERENCES

Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik. Evaluating explainability
for graph neural networks. Scientific Data, 10(1):144, 2023.

Mehdi Azabou, Venkataramana Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran
Liu, Michal Valko, Petar Veličković, and Eva L Dyer. Half-hop: A graph upsampling approach for
slowing down message passing. In International Conference on Machine Learning, pp. 1341–1360.
PMLR, 2023.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional
networks. arXiv preprint arXiv:1905.13686, 2019.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999.

Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. Network medicine: a network-based
approach to human disease. Nature reviews genetics, 12(1):56, 2011.

Benjamin Bloem-Reddy, Yee Whye, et al. Probabilistic symmetries and invariant neural networks.
Journal of Machine Learning Research, 21(90):1–61, 2020.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):
i47–i56, 2005.

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation.
The Journal of Machine Learning Research, 21(1):9885–9955, 2020.

Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James Cheng. Does invariant
graph learning via environment augmentation learn invariance? Advances in Neural Information
Processing Systems, 36, 2024.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990–2999. PMLR, 2016.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Juan de Dios Ortúzar and Luis G Willumsen. Modelling transport. John wiley & sons, 2011.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin
Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34
(2):786–797, 1991.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph learning: A
survey. ACM SIGKDD Explorations Newsletter, 24(2):61–77, 2022.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph
neural networks. In Machine Learning and Knowledge Discovery in Databases. Research Track:
European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings,
Part II 21, pp. 302–318. Springer, 2021.

Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, and Tat-Seng Chua. Cooperative
explanations of graph neural networks. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, pp. 616–624, 2023a.

Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. Dropmessage:
Unifying random dropping for graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 4267–4275, 2023b.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in neural information processing systems, 33:22092–22103, 2020.

Yuyang Gao, Siyi Gu, Junji Jiang, Sungsoo Ray Hong, Dazhou Yu, and Liang Zhao. Going beyond
xai: A systematic survey for explanation-guided learning. ACM Computing Surveys, 56(7):1–39,
2024.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

Siyi Gu, Yifei Zhang, Yuyang Gao, Xiaofeng Yang, and Liang Zhao. Essa: Explanation iterative
supervision via saliency-guided data augmentation. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 567–576, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
graph classification. In International Conference on Machine Learning, pp. 8230–8248. PMLR,
2022.

Yiling He, Jian Lou, Zhan Qin, and Kui Ren. Finer: Enhancing state-of-the-art classifiers with feature
attribution to facilitate security analysis. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pp. 416–430, 2023.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 66–74, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. 2020.

Soonki Kwon and Younghoon Lee. Explainability-based mix-up approach for text data augmentation.
ACM transactions on knowledge discovery from data, 17(1):1–14, 2023.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated
graph sequence neural networks. In Proceedings of ICLR’16, April 2016.
URL https://www.microsoft.com/en-us/research/publication/
gated-graph-sequence-neural-networks/.

Wanyu Lin, Hao Lan, and Baochun Li. Generative causal explanations for graph neural networks. In
International Conference on Machine Learning, pp. 6666–6679. PMLR, 2021.

11

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/
https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hongyi Ling, Zhimeng Jiang, Meng Liu, Shuiwang Ji, and Na Zou. Graph mixup with soft alignments.
In International Conference on Machine Learning, pp. 21335–21349. PMLR, 2023.

Songtao Liu, Rex Ying, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou
Huang, and Dinghao Wu. Local augmentation for graph neural networks. In International
Conference on Machine Learning, pp. 14054–14072. PMLR, 2022.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in neural information processing
systems, 33:19620–19631, 2020.

Youzhi Luo, Michael McThrow, Wing Yee Au, Tao Komikado, Kanji Uchino, Koji Maruhashi,
and Shuiwang Ji. Automated data augmentations for graph classification. arXiv preprint
arXiv:2202.13248, 2022.

Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. Clear: Generative
counterfactual explanations on graphs. Advances in Neural Information Processing Systems, 35:
25895–25907, 2022.

Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic attention
mechanism. In International Conference on Machine Learning, pp. 15524–15543. PMLR, 2022.

Siqi Miao, Yunan Luo, Mia Liu, and Pan Li. Interpretable geometric deep learning via learnable
randomness injection. In Proceedings of the International Conference on Learning Representations
(ICLR), 2023.

Mark Newman. Networks. Oxford University Press, 2nd edition, 2018.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann.
Explainability methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10772–10781, 2019.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convo-
lutional networks on node classification. In International Conference on Learning Representations,
2019.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Gated graph recurrent neural networks. IEEE
Transactions on Signal Processing, 68:6303–6318, 2020.

Benjamín Sánchez-Lengeling, Jennifer N. Wei, Brian K. Lee, Emily Reif, Peter Wang, Wesley Wei
Qian, Kevin McCloskey, Lucy J. Colwell, and Alexander B. Wiltschko. Evaluating attribution
for graph neural networks. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. Reinforcement learning enhanced
explainer for graph neural networks. Advances in Neural Information Processing Systems, 34:
22523–22533, 2021.

Han Shao, Omar Montasser, and Avrim Blum. A theory of pac learnability under transformation
invariances. Advances in Neural Information Processing Systems, 35:13989–14001, 2022.

Yucheng Shi, Kaixiong Zhou, and Ninghao Liu. Engage: Explanation guided data augmentation for
graph representation learning. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 104–121. Springer, 2023.

Teague Sterling and John J. Irwin. ZINC 15 - ligand discovery for everyone. J. Chem. Inf. Model., 55
(11):2324–2337, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: data-driven molecular
fingerprint via knowledge-aware contrastive learning from molecular graph. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3585–3594, 2021.

Lenka Tětková and Lars Kai Hansen. Robustness of visual explanations to common data augmen-
tation methods. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3714–3719, 2023.

Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural
networks. Advances in neural information processing systems, 33:12225–12235, 2020.

Lei Wang, Ee-Peng Lim, Zhiwei Liu, and Tianxiang Zhao. Explanation guided contrastive learning
for sequential recommendation. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 2017–2027, 2022.

Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, and Tat-Seng Chua. Towards multi-grained
explainability for graph neural networks. Advances in Neural Information Processing Systems, 34:
18446–18458, 2021a.

Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic generative model-level expla-
nation for graph neural networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Graphcrop: Subgraph cropping
for graph classification. arXiv preprint arXiv:2009.10564, 2020.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference 2021, pp. 3663–3674, 2021b.

Sandareka Wickramanayake, Wynne Hsu, and Mong Li Lee. Explanation-based data augmentation
for image classification. Advances in Neural Information Processing Systems, 34:20929–20940,
2021.

Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. arXiv preprint arXiv:2201.12872, 2022.

Yaochen Xie, Sumeet Katariya, Xianfeng Tang, Edward Huang, Nikhil Rao, Karthik Subbian, and
Shuiwang Ji. Task-agnostic graph explanations. Advances in Neural Information Processing
Systems, 35:12027–12039, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 430–438, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In Proceedings of the aaai conference on artificial
intelligence, volume 35, pp. 11015–11023, 2021.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
links for link prediction. In International Conference on Machine Learning, pp. 26911–26926.
PMLR, 2022a.

Tong Zhao, Xianfeng Tang, Danqing Zhang, Haoming Jiang, Nikhil Rao, Yiwei Song, Pallav Agrawal,
Karthik Subbian, Bing Yin, and Meng Jiang. Autogda: Automated graph data augmentation for
node classification. In Learning on Graphs Conference, pp. 32–1. PMLR, 2022b.

Xu Zheng, Farhad Shirani, Tianchun Wang, Wei Cheng, Zhuomin Chen, Haifeng Chen, Hua Wei, and
Dongsheng Luo. Towards robust fidelity for evaluating explainability of graph neural networks.
arXiv preprint arXiv:2310.01820, 2023.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF PROPOSITION 4.1

We have the following:∑
gexp

P (Ψ(G) = gexp)P (Y ̸= Y ′|Ψ(G) = gexp, gexp ⊆ G′)

=
∑
gexp

P (Ψ(G) = gexp)
∑

y,y′∈Y
y ̸=y′

P (Y = y, Y ′ = y′|Ψ(G) = gexp, gexp ⊆ G′)

(a)
=
∑
gexp

P (Ψ(G) = gexp)
∑

y,y′∈Y
y ̸=y′

P (Y = y|Ψ(G) = gexp)P (Y ′ = y′|gexp ⊆ G′)

(b)
=
∑
gexp

P (Ψ(G) = gexp)
∑

y,y′∈Y
y ̸=y′

P (Y = y|Ψ(G) = gexp)P (Y = y′|gexp ⊆ G)

=
∑
gexp

P (Ψ(G) = gexp)
∑
y∈Y

P (Y = y|Ψ(G) = gexp)
∑
y′ ̸=y

P (Y = y′|gexp ⊆ G)


=
∑
gexp

P (Ψ(G) = gexp)
∑
y∈Y

P (Y = y|Ψ(G) = gexp)(1− P (Y = y|gexp ⊆ G))

= 1−
∑
gexp

P (Ψ(G) = gexp)
∑
y∈Y

P (Y = y|Ψ(G) = gexp)P (Y = y|gexp ⊆ G)

where in (a) we have used the independence of (G, Y) and (G′, Y ′), and in (b) we have used the fact
that (G, Y) and (G′, Y ′) are identically distributed. Furthermore:∑

gexp

P (Ψ(G) = gexp)
∑
y∈Y

P (Y = y|Ψ(G) = gexp)P (Y = y|gexp ⊆ G)

=
∑
gexp

(∑
g

P (G = g,Ψ(G) = gexp)

)∑
y∈Y

P (Y = y|Ψ(G) = gexp)P (Y = y|gexp ⊆ G)

=
∑
g

∑
gexp

PG(g)1(Ψ(g) = gexp)
∑
y∈Y

P (Y = y|Ψ(G) = gexp)P (Y = y|gexp ⊆ G)

=
∑
g

PG(g)
∑
y∈Y

P (Y = y|Ψ(G) = Ψ(g))P (Y = y|Ψ(g) ⊆ G)

≥
∑
g

PG(g)P (Y = f∗(g)|Ψ(G) = Ψ(g))P (Y = f∗(g)|Ψ(g) ⊆ G)

where f∗(·) denotes the Bayes decision rule and we have used the fact that probability is non-negative
to remove the y ̸= f∗(g) terms in the summation over y ∈ Y . Hence, we have5∑

gexp

P (Ψ(G) = gexp)
∑
y∈Y

P (Y = y|Ψ(G) = gexp)P (Y = y|gexp ⊆ G)

≥
∑
g

PG(g)P (Y = f∗(g)|Ψ(G) = Ψ(g))P (Y = f∗(g)|Ψ(g) ⊆ G)

(a)

≥
∑
g

PG(g)P (Y = f∗(g)|Ψ(G) = Ψ(g))(P (Y = f∗(g)|G = g)− κ) (4)

5Note that we have defined total variation distance as dTV (PG, QG) ≜
∑

g |PG(g)−QG(g)|. An alternative
definition in some textbooks contains a factor of 1

2
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where in (a) we have used equation 1 and the definition of total variation distance. On the other hand:

P (Y = f∗(g)|Ψ(G) = Ψ(g))

=
∑

g′:Ψ(g′)=Ψ(g)

P (Y = f∗(g), G = g′|Ψ(G) = Ψ(g))

=
∑

g′:Ψ(g′)=Ψ(g)

P (G = g′|Ψ(G) = Ψ(g))P (Y = f∗(g)|G = g′)

(a)

≥
∑

g′:Ψ(g′)=Ψ(g)

P (G = g′|Ψ(G) = Ψ(g))(P (Y = f∗(g)|Ψ(g′) ⊆ G)− κ)

(b)

≥
∑

g′:Ψ(g′)=Ψ(g)

P (G = g′|Ψ(G) = Ψ(g))(P (Y = f∗(g)|G = g)− 2κ)

(c)
= P (Y = f∗(g)|G = g)− 2κ (5)

where in (a) we have used the fact that G = g′ implies that Ψ(g′) ⊆ G along with equation 1, in (b)
we have used the fact that Ψ(g′) = Ψ(g) to conclude that Ψ(g) ⊆ G and used equation 1, and in (c)
we have used the law of total probability. Consequently, from equation 4 and equation 5, we have:∑

gexp

P (Ψ(G) = gexp)
∑
y∈Y

P (Y = y|Ψ(G) = gexp)P (Y = y|gexp ⊆ G)

≥
∑
g

PG(g)P (Y = f∗(g)|Ψ(G) = Ψ(g))(P (Y = f∗(g)|G = g)− κ)

≥
∑
g

PG(g)(P (Y = f∗(g)|G = g)− 2κ)(P (Y = f∗(g)|G = g)− κ)

= EG((P (Y = f∗(G))− 2κ)(P (Y = f∗(G))− κ))

≥ (1− γ − κ)(1− γ − 2κ),

where we have used the definition of the Bayes error rate and the assumption that 1 ≥ γ + 2κ. As a
result, ∑

gexp

P (Ψ(G) = gexp)P (Y ̸= Y ′|Ψ(G) = gexp, gexp ⊆ G′)

≤ 1− (1− γ − κ)(1− γ − 2κ)

= −γ2 − 2κ2 + 2γ + 3κ− 3γκ.

A.2 PROOF OF THEOREM 5.4

Proof. The proof builds upon the techniques developed for evaluating the sample complexity under
transformation invariances in (Shao et al., 2022). However, there are several key differences in
the setting under consideration in this work which merits a separate treatment of the problem.
First, transformations such as rotation and color translations, considered in prior works on DA in
non-graphical domains, form closed groups which facilitate the analysis by focusing on the orbits
generated by the group operations. In contrast, the transformations considered in this work perturb
the non-explanation subgraph while preserving the explanation subgraph. This does not form a
closed group. Second, in prior works, it is assumed that the transformation leads to a similarly
labeled samples with probability one, whereas in our setting, the label preservation is probabilistic
and depends on the explainability parameters as quantified in Proposition 4.1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Let us fix m ∈ N. Let d = V CEA(H,Ψ). Consider two sets T and T ′ of m independently generated
graph and label pairs generated according to PG,Y . We first note that:

P (errPG,Y
(f̃) ≥ errPG,Y

(f∗) + 2ϵ)

≤ P (errPG,Y
(f̃) ≥ errT (f) + ϵ or errT (f) > errT (f

∗) or errT (f∗) ≥ errPG,Y
(f∗) + ϵ)

≤ P (errPG,Y
(f̃) ≥ errT (f) + ϵ)

+ P (errT (f) > errT (f
∗))

+ P (errT (f
∗) ≥ errPG,Y

(f∗) + ϵ)

where errT (·) denotes the empirical error over the set T , errPG,Y
denotes the statistical error with

respect to PG,Y , f(·) and f̃(·) are defined as in equation 2, and f∗ is the optimal classifier in the
hypothesis class in terms of statistical error rate. We bound each of the three terms separately. We
first bound

P (errPG,Y
(f̃) ≥ errT (f) + ϵ)

Let us denote the event
ET ,ϵ ≜ {∃f ∈ H : errPG,Y

(f̃) ≥ errT (f) + ϵ}.

We provide sufficient conditions on m under which P (ET ,ϵ) ≤ δ
2 . To this end, let us define

ET ,T ′,ϵ = {∃f ∈ H : errT ′(f̃) ≥ errT (f) +
ϵ

2
}.

Note that:
P (ET ,T ′,ϵ) ≥ P (ET ,ϵ, ET ,T ′,ϵ) = P (ET ,ϵ)P (ET ,T ′,ϵ|ET ,ϵ), (6)

Consequently, to derive an upper-bound on P (ET ,ϵ) it suffices to derive a lower-bound
on P (ET ,T ′,ϵ|ET ,ϵ) and an upper-bound on P (ET ,T ′,ϵ). We first derive a lower-bound on
P (ET ,T ′,ϵ|ET ,ϵ). Note that:

P (ET ,T ′,ϵ|ET ,ϵ) = P (∃f ′ ∈ H : errT ′(f̃ ′) ≥ errT (f
′) +

ϵ

2

∣∣∃f ∈ H : errPG,Y
(f̃) ≥ errT (f) + ϵ)

≥ P (errT ′(f̃) ≥ errT (f) +
ϵ

2

∣∣errPG,Y
(f̃) ≥ errT (f) + ϵ)

=
∑

(gi,yi),i∈[m]

P (T = {(gi, yi)|i ∈ [m]})×

P (errT ′(f̃) ≥ errT (f) +
ϵ

2

∣∣errPG,Y
(f̃) ≥ errT (f) + ϵ, T = {(gi, yi)|i ∈ [m]})

For a given realization of the training set T = {(gi, yi), i ∈ [m]}, let errT (f) + ϵ be denoted by the
(constant) variable cT . Then, we have:

P (ET ,T ′,ϵ|ET ,ϵ) =
∑

(gi,yi),i∈[m]

P (T = {(gi, yi)|i ∈ [m]})×

P (errT ′(f̃)− cT ≥ − ϵ

2
|E(errT ′(f̃)) ≥ cT)

where we have used the fact that T ′ is a collection of independent and identically distributed (IID)
samples to conclude that errPG,Y

(f̃) = E(errT ′(f̃)). Consequently,

P (ET ,T ′,ϵ

∣∣ET ,ϵ) ≥ P (errT ′(f̃)− E(errT ′(f̃)) ≥ − ϵ

2

)
,

where we have dropped the condition E(errT ′(f̃)) ≥ cT since errT ′(f̃) − E(errT ′(f̃)) is inde-
pendent of T , and used the fact that

∑
(gi,yi),i∈[m] P (T = {(gi, yi)|i ∈ [m]}) = 1. Note that

errT ′(f̃) = 1
m

∑
(Gi,Yi)∈T ′ 1(f̃(Gi) ̸= Yi) and E(errT ′(f̃)) = P (f̃(Gi) ̸= Yi), i ∈ [m], where

we have used the linearity of expectation. So,

P (ET ,T ′,ϵ|ET ,,ϵ) ≥ P (
∑

(Gi,Yi)∈T ′

(1(f̃(Gi) ̸= Yi)− P (f̃(Gi) ̸= Yi)) ≥
−mϵ

2
)

≥ 1− e−
2m2ϵ2

m = 1− e−2mϵ2 ,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where we have used the Hoeffding’s inequality and the fact that 1(f̃(Gi) ̸= Yi) ∈ [0, 1]. Hence, if
m ≥ 2

ϵ2 , then:

P (ET ,T ′,ϵ|ET ,ϵ) ≥ 1− 1

e
≥ 1

2
. (7)

Combining equation 6 and equation 7, we get:

P (ET ,T ′,ϵ) ≥
1

2
P (ET ,ϵ).

Hence, to prove P (ET ,ϵ) ≤ δ
2 , it suffices to provide sufficient conditions on m such that P (ET ,T ′,ϵ) ≤

δ
4 .

We first introduce the notion of perturbed subset. For a given set of labeled graphs U and an element
(G, Y) in U , let us define the perturbed set of G in U as O(G|U) ≜ {(G′, Y) ∈ U|Ψ(G) ∈ G

′}, i.e.,
as the set of all elements of U that can be produced via explanation-preserving edge additions and
omissions in G. Furthermore, let nO(G|U) ≜ |O(G|U)| be the number of explanation-preserving
perturbations of G in U .

Next, let us define T ′′ = T ∪ T ′. Let G1, G2, · · · , G2m be the elements of T ′′ sorted such that
nO(Gi|T ′′) ≥ nO(Gj |T ′′), j ≤ i, i.e. sorted in a non-decreasing order with respect to nO(·|T ′′) so
that there are a larger or equal number of samples which are perturbations of Gi in T ′′ than that of Gj

for all j ≤ i. We construct the sets R1 and R2 partitioning T ′′ as follows. Initiate R1 = R2 = ϕ and
T ′′
1 = T ′′. If nO(G1|T ′′

1) > log2 m, we add O(G1|T ′′
1) to R1 and construct T ′′

2 = T ′′−O(G1|T ′′).
We define G(1) = G1 and call it the subset representative for O(G1|T ′′). Next, we arrange the
elements of T ′′

2 in a non-decreasing order with respect to nO(·|T ′′
2) similar to the previous step. Let

G(2) denote the sample with the largest nO(·|T ′′
1) value. If nO(G

(2)|T ′′
2) ≥ log2 m, its corresponding

set O(G(2)|T ′′
2) is added to R1. This process is repeated until the ℓth step when nO(G

(ℓ)|Tℓ) is
less than log2 m. Then, we set R2 = Tℓ, thus partitioning T ′′ into two sets. Loosely speaking, R1

contains the samples which have more than log2 m of their explanation-preserving perturbations in
non-overlapping subsets of T ′′, and R2 contains the samples which, after removing elements of R1,
do not have more that log2 m of their perturbations in the other remaining samples.

We further define Si = T ∩ Ri and S ′
i = T ∩ R′

i, i ∈ {1, 2}. For any collection A = {(gi, yi), i ∈
[|A|]} of graphs and classification function f ′(·), let MA(f

′) ≜ 1
|A|
∑

(gi,yi)∈A 1(f ′(gi) ̸= yi) be
the fraction of missclassifed elements of A by f ′(·). Then,

P (ET ,T ′,ϵ) = P (∃f ∈ H : errT ′(f̃) ≥ errT (f) +
ϵ

2
)

≤ P (∃f ∈ H : MS′
1
(f̃) ≥ MS1

(f̃) +
ϵ

4
or MS′

2
(f̃) ≥ MS2

(f̃) +
ϵ

4
)

≤ P (∃f ∈ H : MS′
1
(f̃) ≥ MS1

(f̃) +
ϵ

4
) + P (∃f ∈ H : MS′

2
(f̃) ≥ MS2

(f̃) +
ϵ

4
). (8)

We upper-bound each term in equation 8 separately.
Step 1: Finding an upper-bound for the term P (∃f ∈ H : MS′

1
(f̃) ≥ MS1 +

ϵ
4):

We first find an upper bound for ℓ. Note that by construction
i) R1 =

⋃
i∈[ℓ] O(G(i)|Ti),

ii) nO(G
(i)|Ti) ≥ log2 m, i ∈ [ℓ],

iii) O(G(i)|Ti) are disjoint, and
iv) |R1| ≤ |T ′′| = 2m.
From i) and iv), we have

⋃
i∈[ℓ] O(G(i)|Ti) ≤ 2m, and from iii), we have

∑
i∈[ℓ] |O(G(i)|Ti)| =∑

i∈ℓ nO(G
(i)|Ti) ≤ 2m, and from ii), we conclude that ℓ ≤ 2m

log2 m
.

Next, we bound the expected number of missclassified elements of R1 for which there is at least one
training sample in T with the same explanation subgraph. To this end, let us define:

errO ≜
1

m

∑
(G,Y)∈T ′′

1(f̃(G) ̸= Y ∧ ∃(G′, Y ′) ∈ T : Ψ(G′) ⊆ G),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

that is, errO is the fraction of elements of T ′′ which are missclassified despite the existence of at
least one training sample whose explanation subgraph is a subgraph of the missclassfied graph. Let
Gexp be the image of Ψ(·), and for any gexp ∈ Gexp define

errO,gexp ≜
1

m

∑
(G,YG)∈T ′′

1(f̃(G) ̸= YG ∧ ∃(G′, Y ′) ∈ T : Ψ(G′) = gexpand gexp ⊆ G).

Note that errO =
∑

gexp∈Gexp
errO,gexp . Furthermore,

E(errO,gexp) ≤
1

m
|T ′′|P (Ψ(G′) = gexp)P (YG′ ̸= YG|Ψ(G′) = gexp and gexp ⊆ G).

Consequently, from Proposition 4.1, we have

E(errO) ≤
1

m
|T ′′|

∑
gexp

P (Ψ(G′) = gexp)P (YG′ ̸= YG|Ψ(G′) = gexp and gexp ⊆ G) ≤ 2ζ,

where ζ ≜ −γ2 − 2κ2 + 2γ + 3κ− 3γκ.

Consequently, from Hoeffding’s inequality, we have P (errO ≥ 4ζ) ≤ 2−mζ2

. So,

P (∃f ∈ H : MS′
1
(f̃) ≥ MS1

(f̃) +
ϵ

4
)

≤ P (∃f ∈ H : MS′
1
(f̃) ≥ MS1

(f̃) +
ϵ

4
, errO ≤ 4ζ) + P (errO ≥ 4ζ)

≤ P (∃f ∈ H : MS′
1
(f̃) ≥ MS1(f̃) +

ϵ

4
, errO ≤ 4ζ) + 2−mζ2

≤ P (∃f ∈ H : MS′
1
(f̃) ≥ ϵ

4
, errO ≤ 4ζ) + 2−mζ2

Let A be the set of indices of O(G(i)|Ti) which contain at least one sample which is missclassified
by f̃ . Note that since errO(T) ≤ 4ζ, at most 4ζm of the elements in ∪i∈[ℓ]O(G(i)|Ti) can be in T
and the rest must be in T ′. Since T and T ′ are generated identically, each element of T ′′ is in T or
T ′ with equal probability, i.e., with probability equal to 1

2 .

Let I ⊆ [ℓ] be the set of indices of O(G(i)|Ti) which have at least one missclassified element. If
|I| = i, then |∪j∈I O(G(j)|Tj)| ≥ max(i log2 m, mϵ

4), by construction. The probability that at most
4ζm of these elements are in T is upper bounded by:

P (∃f ∈ H : MS′
1
(f̃) ≥ ϵ

4
, errO ≤ 4ζ)

= P (
∣∣ ∪j∈I O(G(j)|Tj) ∩ T

∣∣ ≤ 4ζm,
∣∣ ∪j∈I O(G(j)|Tj) ∩ T ′∣∣ ≥ mϵ

4
)

(a)

≤
ℓ∑

i=1

(2m
log2 m

i

) 4ζm∑
j=1

(
max(i log2 m, mϵ

4)

j

)
2−max(i log2 m,mϵ

4)

≤
ℓ∑

i=1

(2m
log2 m

i

)
4ζm

(
max(i log2 m, mϵ

4)

4ζm

)
2−max(i log2 m,mϵ

4)

≤
ℓ∑

i=1

(2m
log2 m

i

)
2−max(i log2 m,mϵ

4)+4ζm logmax(i log2 m,mϵ
4)+logm

=
∑

i∈[1, mϵ
4 log2 m

]

(2m
log2 m

i

)
2−

mϵ
4 +4ζm log mϵ

4 +logm

+
∑

i∈[mϵ
4 log2 m

,ℓ]

(2m
log2 m

i

)
2−i log2 m+4ζm log (i log2 m)+logm

(b)

≤ mϵ

4 log2 m

(2m
log2 m
mϵ

4 log2 m

)
2−

mϵ
8 + ℓmax

i∈[ℓ]

(2m
log2 m

i

)
2−

1
2 i log

2 m,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where in (a) we have used the union bound and in (b) we have used the fact that ϵ ≥ 32ζ. Conse-
quently,

P (∃f ∈ H : MS′
1
(f̃) ≥ MS1

(f̃) +
ϵ

4
) ≤ mϵ

4 log2 m

(2m
log2 m
mϵ

4 log2 m

)
2−

mϵ
8 + ℓmax

i∈[ℓ]

(2m
log2 m

i

)
2−

1
2 i log

2 m

≤ 2
−mϵ
16 +

2m

log2 m
max
i∈[ℓ]

2
−1
2 i log2 m+i log 2m ≤ 2

−mϵ
16 +

2m

log2 m
2−

mϵ
32 log2 m ≤ 2−

mϵ
32 .

So,

P (∃f ∈ H : MS′
1
(f̃) ≥ ϵ

4
, errO ≤ 4ζ) ≤ 2

−ϵm
32 + 2−mζ2

≤ 2 · 2
−ϵm
32 ,

where we have used the fact that 1 ≥ ϵ ≥ 32ζ.
Step 2: Finding an upper-bound for the term P (∃f ∈ H : MS′

2
(f̃) ≥ MS2(f̃) +

ϵ
4):

By definition of V CEA(H,Ψ), the number of points in R2 which can be shattered by H is at most
d log2 m, where d ≜ V CEA(H,Ψ). Let K be the set of all possible ways to labeling T ′′ by H. Then,
|K| ≤

∑d log2 (m)
i=0

(
2m
i

)
≤ (2emd)d log2(m) by Sauer’s lemma. On the other hand:

P (∃f ∈ H : MS′
2
(f̃) ≥ MS2(f̃) +

ϵ

4
)

≤
∑
K∈K

P (MS′
2
≥ E(MS′

2
) +

ϵ

8
or MS2 ≤ E(MS2)−

ϵ

8
|K)

≤ (
2em

d
)d log2(m)(P (MS′

2
≥ E(MS′

2
) +

ϵ

8
|K) + P (MS2

≤ E(MS2
)− ϵ

8
|K))

(a)

≤ 2(
2em

d
)d log2(m)e−2m(ϵ

8
2) ≤ e−

mϵ2

32 +d log2 (m) ln 2em
d ,

where we have used Hoeffding’s inequality in (a). Taking m > 32
ϵ2

(
d log2 (m)ln(2emd) + ln(8δ)

)
+

32
ϵ log(

8
δ), we get P (ET , ϵ2

) ≤ 2P (ET ,T ′, 12 ϵ
) ≤ 2(δ8 + δ

8) =
δ
2 . Then, as described at the beginning

of the proof,

P (errPG
(f̃) ≥ errPG

(f∗) + ϵ) (9)

≤ P (errPG
(f̃) ≥ errT (f) +

1

2
ϵ or errT (f) > errT (f

∗) or errT (f∗) ≥ errPG
(f∗) +

1

2
ϵ)

(10)

≤P (errPG
(f̃) ≥ errT (f) +

1

2
ϵ) + P (errT (f) > errT (f

∗)) + P (errT (f
∗) ≥ errPG

(f∗) +
1

2
ϵ)

(11)

≤ P (ET , ϵ2
) + 0 +

δ

2
≤ δ

2
+

δ

2
= δ, (12)

where in equation 11 we have used the union bound, and in equation 12 we have used Hoeffding’s
inequality to conclude that P (errT (f

∗) ≥ errPG
(f∗) + 1

2ϵ) ≤
δ
2 and the definition of EA-ERM to

conclude that P (errT (f) > errT (f
∗)) = 0. Consequently,

mEA(ϵ, δ, κ, γ;H,Ψ) = O

(
d

ϵ2
log2 d+

1

ϵ2
ln(

1

δ
)

)

B DETAILED EXPERIMENTAL SETUP

Our experiments were conducted on a Linux system equipped with eight NVIDIA A100 GPUs,
each possessing 40GB of memory. We use CUDA version 11.3, Python version 3.7.16, and Pytorch
version 1.12.1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.1 DATASETS

In our empirical experiments, we use a benchmark synthetic dataset and 6 real-life datasets.

• BA-2motifs (Luo et al., 2020) dataset includes 1,000 synthetic graphs created from the basic
Barabasi-Albert (BA) model. This dataset is divided into two different categories: half of the
graphs are associated with ‘house ’motifs, while the other half are integrated with five-node circular
motifs. The labels of these graphs depends on the specific motif they incorporate.

• MUTAG (Debnath et al., 1991) dataset comprises 2,951 molecular graphs, divided into two classes
according to their mutagenic effects on the Gram-negative bacterium S. Typhimurium. Functional
groups NO2 and NH2 are considered as ground truth explanations for positive samples (Luo et al.,
2020).

• Benzene (Sánchez-Lengeling et al., 2020) is a dataset of 12,000 molecular graphs from the
ZINC15 database(Sterling & Irwin, 2015). The graphs are divided into two classes based on
whether they have a benzene ring or not. If a molecule has more than one benzene ring, each ring
is a separate explanation.

• Fluoride (Sánchez-Lengeling et al., 2020) dataset contains 8,671 molecular graphs, divided into
two classes based on whether they have both a fluoride and a carbonyl group or not. The ground
truth explanations are based on the specific combinations of fluoride atoms and carbonyl functional
groups found in each molecule.

• Alkane (Sánchez-Lengeling et al., 2020) is a dataset of 4,326 molecular graphs, divided into two
classes. A positive sample is a molecule with an unbranched alkane and a carbonyl group.

• D&D (Dobson & Doig, 2003) comprises 1,178 protein structures. proteins are depicted as graphs
where each node represents an amino acid. Nodes are interconnected by an edge if the amino
acids are within 6 Angstroms of each other. Protein structures into binary classes: enzymes and
non-enzymes.

• PROTEINS (Dobson & Doig, 2003; Borgwardt et al., 2005) consists of 1,113 protein graphs which
are generated in the same way as D&D.

The statistics of datasets are shown in Table 2. The # of explanations denotes the number of graphs
with ground truth explanations.

Table 2: The detailed information of graph datasets
Dataset #graphs #nodes #edges #explanations #classes
BA-2motifs 1,000 25 50-52 1,000 2
MUTAG 2,951 5-417 8-224 1,015 2
Benzene 12,000 4-25 6-58 6,001 2
Fluoride 8,671 5-25 8-58 1,527 2
Alkane 4,326 5-25 8-58 375 2
D&D 1,178 30-5,748 126 -28,534 0 2
PROTEINS 1,113 4-620 10-2,098 0 2

B.2 GNN MODELS

We use the same GCN model architectures and hyperparameters as (Luo et al., 2020). Specifically,
For the GCN model, we embed the nodes with two GCN-Relu-BatchNorm blocks and one GCN-Relu
block to learn node embeddings. Then, we adopt readout operations (Xu et al., 2019) to get graph
embeddings, followed by a linear layer for graph classification. The number of neurons is set to 20
for hidden layers. For the GIN model, we replace the GCN layer with a Linear-Relu-Linear-Relu GIN
layer. For the PNA model, we adopt a similar architecture in (Miao et al., 2022). We initialize the
variables with the Pytorch default setting and train the models with Adam optimizer with a learning
rate of 1.0× 10−3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.3 DATA AUGMENTATION BASELINES

• Edge Inserting: We randomly select 10% unconnected node pairs to generate the augmentation
graph.

• Edge Dropping: We generate a graph by randomly removing 10% edges in the original graph.

• Node Dropping: We generate a graph by randomly dropping 10% nodes from the input graph,
together with their associated edges

• Feature Dropping: We generate a graph by randomly dropping 10% features.

• Mixup: Given a labeled graph (Gi, Yi), we randomly sample another labelled graph (Gj , Yj).
There adjacency matrices are denoted by Ai and Aj , respectively. We generate a block diagonal
matrix diag(Ai,Aj):

diag(Ai,Aj) =

[
Ai 0
0 Aj

]
. (13)

The corresponding graph is denoted as G(diag) We obtain the mixup augmentation graph by
randomly adding two cross-graph edges, i.e., one node from Gi and the other from Gj , to G(diag).

C EXTRA EXPERIMENTS

In this section, we provide extensive experiments to further verify the effectiveness of our method
and support our theoretical findings.

C.1 ANALYSIS ON DISTRIBUTION OF OUR METHOD

As described in Section 7, we generate augmentations by an in-distributed perturbation function
Π(·) (Algorithm 2). In this part, we empirically verify the effectiveness of our implementation
in generating in-distributed augmentations. We use both GNNExplainer (Ying et al., 2019) and
PGExplainer (Luo et al., 2020) to generate explanations. Two real-life datasets, Fluoride and Alkane
are utilized here. For each dataset, we first pad each graph by inserting isolated nodes such that
all graphs have the same size of nodes. Then, for each graph, we concatenate its adjacency matrix
with the node matrix followed by a flatten operation to get a high-dimensional vector. We adopt an
encoder network to embed high-dimensional vectors into a 2-D vector space. The encoder network
consists of two fully connected layers, the same as the decoder network. Cross Entropy is used as
the reconstruction error to train the Autoencoder model. The original graphs and augmentations are
used for training. The visualization results of these original and augmentation graphs are shown in
Figure 3. We observe that augmentation graphs are in-distributed in both datasets.

(a) AugGE on Fluoride (b) AugGE on Alkane (c) AugPE on Fluoride (d) AugPE on Alkane

Figure 3: Visualization results of augmentations generated by AugPE and AugPE (best viewed in
color).

C.2 DEALING WITH OOD AUGMENTATIONS

In this section, we conduct experiments to verify the effectiveness of our strategy that includes a
hyperparameter λ in alleviating the negative effects of OOD graph augmentations. We select 500,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

100, and 100 samples in BA-2motifs dataset as the training set, valid set, and test set, respectively.
To obtain OOD augmentations, we add edges to the non-explanation subgraphs until the average node
degree is not less than 17. Each training instance has 2 augmentations, and we use 3 layers GCN
as the backbone. As Figure C.2 shows, in general, the accuracy decreases as the hyperparameter λ
rises. The results show that with out-of-distribution graph augmentations, a small λ can alleviate the
negative effects.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

55

60

65

70

75

80

85

Ac
cu

ra
cy

Figure 4: The effects of λ in tackling OOD augmentations on BA-2motifs dataset.

C.3 HYPER-PARAMETER SENSITIVITY STUDIES

In this section, we show the robustness of our method with a set of hyper-parameter sensitivity studies.
Two real datasets, MUTAG and Benzene, are used in this part. We choose PGExplainer to generate
explanations.

As shown in Algorithm 1, M denotes the number of augmentation samples per instance. We range
the values of M from 1 to 30 and show the accuracy performances of GNN models in Figure 5. Our
method is robust to the selection of M .

1 3 5 7 9 15 20 30
Augmentation Samples

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Ac
cu

ra
cy

GCN
GIN
PNA

(a) MUTAG

1 3 5 7 9 15 20 30
Augmentation Samples

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Ac
cu

ra
cy

GCN
GIN
PNA

(b) Benzene

Figure 5: Hyper-parametey study of sampling number M by using PGExplainer.

C.4 COMPARISON TO BASELINE DATA AUGMENTATIONS WITH 3 LAYER PNA.

In this part, we provide the comparison of our methods to baseline data augmentations with the
3-layer PNA and GraphSage as the classifier. As shown in Table 3. we have similar observations
with results on GCN and GIN. Our method consistently outperforms other baselines. Specifically, the
improvements of AugGE and AugPE over the best of others are 1.99% and 1.01% on PNA and 4.91%
and 5.35% on GraphSage, respectively.

C.5 COMPARISON TO BASELINE DATA AUGMENTATIONS WITH SMALLER TRAINING SIZES

We show the performances of GNNs with smaller training sizes to further verify the effectiveness of
our methods in improving data efficiency. We consider training sizes with 10 samples and 30 samples
in this part. We use GIN in this part and keep other settings the same as Section 8.1. We also include
the default setting with 50 samples for comparison.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 3: Performance comparisons with 3-layer PNA and GraphSage trained on 50 samples. The
metric is classification accuracy. The best results are shown in bold font and the second best ones are
underlined.

Dataset MUTAG Benzene Fluoride Alkane D&D PROTEINS
PN

A

Vanilla 83.61±4.13 76.72±3.28 64.90±6.88 93.60±1.72 61.29±5.38 64.91±5.62

Edge Inserting 82.35±3.31 78.70±2.29 64.17±3.76 89.66±4.55 61.81±4.35 61.91±4.44

Edge Dropping 82.18±2.68 77.72±1.14 62.78±1.76 92.31±2.94 61.64±6.22 60.45±4.35

Node Dropping 81.60±2.39 78.02±1.46 61.59±3.15 90.77±3.54 62.67±4.28 61.64±5.30

Feature Dropping 81.46±3.44 79.01±1.74 66.63±3.62 90.94±2.94 62.59±4.53 61.18±3.35

Mixup 72.21±4.20 75.05±0.93 61.10±1.18 89.31±2.37 57.45±2.07 53.71±3.36

AugGE 84.73±2.04 80.61±0.65 68.72±1.55 94.97±1.46 65.43±6.44 64.64±5.21

AugPE 84.15±2.25 80.47±0.82 68.60±1.96 93.14±2.52 63.19±5.23 65.09±4.62

G
ra

ph
Sa

ge

Vanilla 88.03±2.18 68.56±6.99 63.96±3.10 93.40±4.16 64.83±3.75 66.82±4.09

Edge Inserting 86.70±2.68 76.06±3.34 62.09±2.36 94.29±3.06 61.90±4.81 66.18±5.62

Edge Dropping 87.00±1.58 74.50±3.16 62.52±2.34 93.80±3.41 64.83±4.67 67.36±5.55

Node Dropping 86.87±1.98 75.00±3.27 62.26±2.43 93.46±3.47 66.03±5.48 68.36±3.94

Feature Dropping 87.38±1.56 74.76±3.20 63.12±3.08 93.60±3.26 63.36±5.89 66.27±5.60

Mixup 78.71±1.77 52.97±2.12 54.48±1.26 75.23±3.38 62.50±4.25 60.64±1.68

AugGE 88.47±1.15 78.69±2.88 67.10±1.07 95.03±1.02 67.84±4.41 70.27±5.49

AugPE 88.47±1.52 78.30±2.64 67.38±1.57 94.91±1.00 68.53±3.58 70.82±4.71

From Table 4, we observe that AugGE and AugPE improves the accuracy performances by similar
margins with smaller training sizes. Specifically, the improvements are 4.38% and 4.45% with 10
training samples, and 5.75% and 5.83% training samples. The results are consistent with Section 8.2,
which further verify the effectiveness of our method in boosting the data efficiency for GNN training.

C.6 COMPARISON TO BASELINE DATA AUGMENTATIONS WITH 1 LAYER GNNS

In this set of experiments, we analyze the effectiveness of our methods on less powerful GNNs.
We reduce the GNN layers to 1 for GCN, GIN, and PNA. Other settings are kept the same as in
Section 8.1. As the results are shown in Table 5, our methods with GNNExplainer and PGExplainer
occupy the best and second-best positions than other six baselines, respectively. Specifically, our
methods achieve 3.69%, 3.99%, 4.04% improvements with GNNExplainer and 3.89%, 3.65%, 3.27%
improvements with PGExplainer on average with GCN, GIN, and PNA backbones. Similar to the
results of Section 8.1, these results show that our methods can enhance the GNN performance on
both powerful and less powerful GNNs.

C.7 COMPARISON TO INVARIANT METHODS WITH 3 LAYER GCNS

We compare our method with invariant methods including GSAT(Miao et al., 2022), DIR(Wu et al.,
2022), and GALA(Chen et al., 2024). As the results show in Table 6, our method achieves the best
results in most cases. Notably, our method is a kind of data augmentation operation by using the
explanation subgraphs as domain invariant variables rather than capturing the invariant subgraphs and
optimizing the parameters. From Table 6, our method achieves better results than vanilla consistently
but invariant methods achieve worse results than vanilla in most cases.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 4: Performance comparisons with 3-layer GIN trained on 10/30/50(default) samples. The
metric is classification accuracy. The best results are shown in bold font and the second best ones are
underlined.

Dataset MUTAG Benzene Fluoride Alkane D&D PROTEINS

10
tr

ai
ni

ng
sa

m
pl

es Vanilla 80.14±5.03 60.42±6.10 61.62±2.65 74.78±9.24 60.18±5.89 60.52±9.50

Edge Inserting 79.05±3.85 64.37±4.44 60.07±4.84 67.89±12.85 55.45±6.62 58.62±4.06

Edge Dropping 74.80±3.97 65.13±2.64 60.20±4.10 74.65±10.97 59.27±4.65 59.05±5.96

Node Dropping 76.90±4.74 64.88±2.63 59.87±4.45 80.14±10.98 58.27±5.07 58.71±7.95

Feature Dropping 75.51±3.98 60.95±5.27 61.27±5.50 67.08±12.35 56.64±5.16 58.97±6.30

Mixup 74.35±2.09 51.29±1.36 52.25±2.12 62.76±2.51 62.27±3.60 64.66±3.74

AugGE 83.47±2.89 69.55±0.91 66.54±1.96 83.24±5.82 65.45±3.47 63.62±5.48

AugPE 87.48±2.26 69.55±0.91 63.00±3.49 84.54±6.14 64.91±2.34 63.88±3.07

30
tr

ai
ni

ng
sa

m
pl

es Vanilla 81.09±3.58 64.37±6.14 66.03±2.61 81.41±12.50 62.36±4.85 65.00±7.29

Edge Inserting 82.07±3.87 68.92±3.07 64.92±3.60 86.08±8.59 61.91±5.63 64.40±4.03

Edge Dropping 80.41±4.02 67.48±4.05 61.12±4.10 88.00±7.09 64.09±4.01 62.41±5.82

Node Dropping 81.02±4.90 67.93±3.50 60.57±4.66 87.61±7.39 64.36±3.14 64.22±3.32

Feature Dropping 81.60±4.25 63.88±5.67 64.85±6.23 85.28±6.12 62.09±5.14 63.79±3.99

Mixup 72.24±2.55 54.28±2.06 52.06±3.14 68.31±3.98 56.00±2.04 60.95±3.32

AugGE 84.90±1.29 70.69±1.66 71.56±4.59 94.50±1.32 68.55±5.64 69.05±4.23

AugPE 84.73±1.45 70.81±2.30 71.48±3.64 94.28±1.42 68.00±6.26 70.17±3.50

50
tr

ai
ni

ng
sa

m
pl

es Vanilla 82.52±3.71 67.48±5.93 68.55±5.18 85.06±10.27 65.14±4.26 66.45±4.01

Edge Inserting 82.79±3.21 71.58±2.77 66.78±4.04 87.54±10.32 64.74±5.38 65.45±5.82

Edge Dropping 81.63±3.65 70.46±4.34 62.91±5.06 90.29±6.39 66.72±3.76 62.73±5.29

Node Dropping 82.18±3.99 71.31±2.71 64.86±4.55 88.89±7.00 66.72±2.89 65.64±5.38

Feature Dropping 82.72±2.92 70.66±2.80 67.58±5.12 83.09±11.73 68.19±4.34 65.55±5.00

Mixup 74.52±1.61 59.00±3.43 51.58±2.59 65.80±4.13 58.55±3.48 62.16±2.92

AugGE 85.99±2.41 75.41±0.82 76.29±2.05 94.89±1.11 69.31±5.19 68.45±5.86

AugPE 86.87±1.79 75.39±1.03 76.49±1.68 94.77±1.14 67.41±2.75 68.09±5.52

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 5: Accuracy performance comparison using 1 layer GNNs among datasets with 50 samples.
We highlight the best and second performance by bold and underlining.

Dataset MUTAG Benzene Fluoride Alkane D&D PROTEINS

G
C

N

Vanilla 79.83±3.21 61.46±4.39 56.77±4.46 94.89±1.65 61.38±6.70 66.45±6.95

Edge Inserting 79.42±3.95 65.36±4.91 54.84±3.55 92.71±3.79 65.26±7.58 62.18±4.69

Edge Dropping 78.10±4.50 66.02±4.13 54.92±3.47 94.40±1.76 66.12±7.20 62.18±4.57

Node Dropping 78.54±4.24 66.19±4.04 54.49±3.43 93.54±2.96 66.21±6.11 63.00±5.65

Feature Dropping 79.56±3.80 63.92±4.68 54.46±3.55 93.11±2.79 66.55±3.93 62.91±4.30

Mixup 56.67±2.11 50.11±0.42 51.94±0.53 61.71±0.00 59.09±0.00 56.12±0.46

AugGE 84.63±1.65 69.63±2.03 61.81±1.54 95.69±1.19 66.98±5.38 66.82±4.98

AugPE 85.17±1.63 69.64±2.07 61.34±1.41 95.86±1.14 67.67±5.82 66.91±4.83

G
IN

Vanilla 81.39±1.71 63.71±3.33 60.31±4.52 87.60±5.40 66.21±8.48 66.45±3.85

Edge Inserting 81.39±2.54 65.95±4.06 60.06±3.21 85.46±9.23 65.34±5.57 66.18±5.22

Edge Dropping 81.29±1.57 66.03±4.06 59.86±3.66 88.31±5.95 66.98±3.97 66.09±4.81

Node Dropping 81.33±1.84 65.58±3.46 60.55±2.78 88.06±7.20 65.78±4.50 67.00±5.69

Feature Dropping 81.12±1.78 65.87±3.33 60.45±2.36 85.51±9.41 67.07±4.86 62.64±4.21

Mixup 70.03±3.99 50.19±0.31 51.26±1.16 70.29±0.00 54.18±3.26 68.53±0.88

AugGE 82.45±1.18 66.52±1.55 64.80±1.28 95.09±0.98 72.33±3.71 68.09±4.09

AugPE 83.16±2.10 66.55±1.31 65.10±1.39 95.09±0.98 69.22±4.28 68.91±4.18

PN
A

Vanilla 83.67±4.78 73.74±4.57 60.76±4.57 87.77±9.73 62.07±3.60 67.18±3.76

Edge Inserting 82.07±2.68 75.66±2.02 59.55±3.35 89.00±4.40 64.22±4.58 65.00±5.71

Edge Dropping 82.48±2.97 74.75±2.46 59.15±3.71 91.74±3.02 64.22±5.76 62.00±8.01

Node Dropping 82.45±2.36 75.11±1.62 58.72±3.38 91.37±2.54 61.81±7.44 63.91±8.29

Feature Dropping 82.65±3.27 75.60±2.22 61.20±4.55 91.03±2.43 65.26±3.56 64.64±6.28

Mixup 50.00±0.00 70.57±1.30 55.30±4.20 38.29±0.00 55.45±2.73 50.52±3.37

AugGE 84.39±1.55 77.91±1.54 67.32±2.68 94.60±1.10 63.10±3.65 69.36±4.90

AugPE 84.35±1.32 78.12±1.37 66.41±2.43 93.74±1.12 66.03±3.66 68.55±6.03

G
ra

ph
Sa

ge

Vanilla 86.09±2.62 62.58±4.76 57.19±4.87 92.60±5.85 63.45±4.79 66.73±5.37

Edge Inserting 85.17±2.53 66.57±3.94 55.01±4.26 94.77±1.28 65.95±5.76 63.73±5.46

Edge Dropping 85.03±2.69 66.43±3.67 55.30±3.89 94.69±1.35 67.16±2.71 63.82±5.23

Node Dropping 84.35±2.58 67.67±3.56 55.18±3.63 94.00±2.08 66.98±4.51 63.36±4.69

Feature Dropping 85.10±2.28 66.37±4.36 54.71±3.63 93.97±2.57 65.17±4.31 62.09±5.11

Mixup 57.14±0.00 50.00±0.00 50.00±0.00 61.71±0.00 51.64±1.12 40.00±0.00

AugGE 88.50±1.55 67.69±1.29 60.64±1.47 95.20±1.33 68.10±4.51 70.09±5.35

AugPE 87.86±2.39 67.86±1.47 63.38±1.09 95.23±1.33 68.28±4.41 70.00±5.30

Table 6: Performance comparisons with invariant methods 3-layer GCN trained on 50 samples. The
metric is classification accuracy. The best results are shown in bold font and the second best ones are
underlined.

Dataset MUTAG Benzene Fluoride Alkane D&D PROTEINS

Vanilla 84.29±3.18 73.86±5.20 62.07±4.32 93.66±3.22 63.19±6.55 68.09±6.12

GSAT 85.44±2.52 60.99±6.19 58.96±5.87 89.46±12.21 64.14±6.58 68.27±6.25

DIR 65.54±4.56 64.47±12.22 58.71±6.13 76.46±16.84 69.91±5.50 55.64±3.79

GALA 65.31±7.89 56.90±5.53 54.16±3.92 61.77±18.65 60.34±3.45 58.91±7.11

AugGE 87.17±1.44 76.20±1.31 66.55±3.44 96.31±1.29 66.12±5.14 70.45±5.90

AugPE 87.24±2.56 76.52±0.76 65.33±4.96 96.43±1.12 67.67±4.31 71.18±6.34

26

	Introduction
	Related Work
	Preliminaries
	The Graph Classification Problem
	Subgraph Explanations
	Explanation-Assisted Learning Rules

	Explainable Tasks and Perturbation-Invariance
	PAC Learnability of Explanation-Assisted Learners
	PAC Learnability of Explanation-Assisted Data Augmentation
	Explanation-Assisted GNN Architectures
	Empirical Verification
	Comparison to Baseline Data Augmentations
	Effects of Augmentation Distribution

	Conclusion
	Proofs
	Proof of Proposition 4.1
	Proof of Theorem 5.4

	Detailed Experimental Setup
	Datasets
	GNN Models
	Data Augmentation Baselines

	Extra Experiments
	Analysis on Distribution of Our Method
	Dealing with OOD Augmentations
	Hyper-parameter Sensitivity Studies
	Comparison to Baseline Data Augmentations with 3 layer PNA.
	Comparison to Baseline Data Augmentations with Smaller Training Sizes
	Comparison to Baseline Data Augmentations with 1 Layer GNNs
	Comparison to invariant methods with 3 Layer GCNs

