
Published as a conference paper at ICLR 2023

AUTOREGRESSIVE CONDITIONAL NEURAL
PROCESSES

Wessel P. Bruinsma∗12, Stratis Markou∗2, James Requiema∗2, Andrew Y. K. Foong∗1,
Tom R. Andersson3, Anna Vaughan2, Anthony Buonomo2, J. Scott Hosking34,

Richard E. Turner12
∗Equal contribution

1Microsoft Research AI4Science, 2University of Cambridge,
3British Antarctic Survey, 4The Alan Turing Institute

{wbruinsma,andrewfoong}@microsoft.com
{em626,jrr41,av555,ab2707,ret26}@cam.ac.uk

{tomand,jask}@bas.ac.uk

ABSTRACT

Conditional neural processes (CNPs; Garnelo et al., 2018a) are attractive meta-
learning models which produce well-calibrated predictions and are trainable via a
simple maximum likelihood procedure. Although CNPs have many advantages,
they are unable to model dependencies in their predictions. Various works propose
solutions to this, but these come at the cost of either requiring approximations or
being limited to Gaussian predictions. In this work, we instead propose to change
how CNPs are deployed at test time, without any modifications to the model or
training procedure. Instead of making predictions independently for every target
point, we autoregressively define a joint predictive distribution using the chain rule
of probability, taking inspiration from the neural autoregressive density estimator
(NADE) literature. We show that this simple procedure allows factorised Gaussian
CNPs to model highly dependent, non-Gaussian predictive distributions. Perhaps
surprisingly, in an extensive range of tasks with synthetic and real data, we show
that CNPs in autoregressive (AR) mode not only significantly outperform non-AR
CNPs, but are also competitive with more sophisticated models that are significantly
more expensive and challenging to train. This performance is remarkable since AR
CNPs are not trained to model joint dependencies. Our work provides an example
of how ideas from neural distribution estimation can benefit neural processes,
motivating research into the AR deployment of other neural process models.

1 INTRODUCTION

Conditional neural processes (CNPs; Garnelo et al., 2018a) are a family of meta-learning models
which combine the flexibility of deep learning with the uncertainty awareness of probabilistic models.
They are trained to produce well-calibrated predictions via a simple maximum-likelihood procedure,
and naturally handle off-the-grid and missing data, making them ideally suited for tasks in climate
science and healthcare. Since their introduction, attentive (ACNP; Kim et al., 2019) and convolutional
(ConvCNP; Gordon et al., 2020) variants have also been proposed. Unfortunately, existing CNPs do

Figure 1: A ConvCNP trained on random sawtooth functions and applied in standard mode (left) and in our
proposed autoregressive (AR) mode (right). The black crosses denote observed data points, the blue lines show
model samples, and the bottom plots show the marginal predictive distributions at the locations marked by
the dashed vertical lines. In standard mode, the CNP models each output with an independent Gaussian (left).
However, when run in AR mode, the same CNP can produce coherent samples and model multimodality (right).

1

Published as a conference paper at ICLR 2023

Class Consistent Dependencies Non-Gaussian Exact Training

AR CNPs (this work) ✗ ✓ ✓ ✓
CNPs (Garnelo et al., 2018a) ✓ ✗ ✓ ✓
GNPs (Markou et al., 2022) ✓ ✓ ✗ ✓
LNPs (Garnelo et al., 2018b) ✓ ✓ ✓ ✗

Table 1: Comparison of various classes of neural processes. Shows whether a class produces consistent predic-
tions, models dependencies, can produce non-Gaussian predictions, and can be trained without approximating
the objective function. For CNPs, even though the presentation by Garnelo et al. (2018a) assumes Gaussian
predictions, it is simple to relax this Gaussianity assumption; this is not the case for GNPs.

not model statistical dependencies (Figure 1; left). This harms their predictive performance and makes
it impossible to draw coherent function samples, which are necessary in downstream estimation tasks
(Markou et al., 2022). Various approaches have been proposed to address this. Garnelo et al. (2018b)
introduced the latent neural process (LNP), which uses a latent variable to induce dependencies and
model non-Gaussianity. However, this renders the likelihood intractable, necessitating approximate
inference. Another approach is the fully convolutional Gaussian neural process (FullConvGNP;
Bruinsma et al., 2021), which maintains tractability at the cost of only allowing Gaussian predictions.
It uses a neural network to define the mean and covariance function of a predictive Gaussian process
(GP) that models dependencies. However, it uses a much more complex architecture and is only
practically applicable to problems with one-dimensional inputs, limiting its adoption compared to the
more lightweight CNP. Recently, Markou et al. (2022) proposed the Gaussian neural process (GNP),
which is considerably simpler but sacrifices performance relative to the FullConvGNP.
In this paper we propose a much simpler method for modelling dependencies with neural processes
that has been largely overlooked: autoregressive (AR) sampling. AR sampling requires no changes
to the architecture or training procedure. Instead, we change how the CNP is deployed at test time,
extracting predictive information that would ordinarily be ignored. Instead of making predictions at
all target points simultaneously, we autoregressively feed samples back into the model. AR CNPs
trade the fundamental property of consistency under marginalisation and permutation, which is
foundational to many neural process models, for non-Gaussian and correlated predictions. In Table 1
we place AR CNPs within the framework of other neural process models. Our key contributions are:

• We show that CNPs used in AR mode capture rich, non-Gaussian predictive distributions
and produce coherent samples (Figure 1). This is remarkable, since these CNPs have
Gaussian likelihoods, are not trained to model joint dependencies or non-Gaussianity, and
are significantly cheaper to train than LNPs and FullConvGNPs (Figure 2).

• We prove that, given sufficient data and model capacity, the performance of AR CNPs is at
least as good as that of GNPs, which explicitly model correlations in their predictions.

• Viewing AR CNPs as a type of neural density estimator (Uria et al., 2016), we highlight
their connections to a range of existing methods in the deep generative modelling literature.

• In an extensive range of Gaussian and non-Gaussian regression tasks, we show that AR
CNPs are consistently competitive with, and often significantly outperform, all other neural
process models in terms of predictive log-likelihood.

• We deploy AR CNPs on a range of tasks involving real-world climate data. To handle the
high-resolution data in a computationally tractable manner, we introduce a novel multi-
scale architecture for ConvCNPs. We also combine AR ConvCNPs with a beta-categorical
mixture likelihood, producing strong results compared to other neural processes.

Our work represents a promising first application of this procedure to the simplest class of neural
processes, and motivates future work on applications of AR sampling to other neural process models.

2 AUTOREGRESSIVE CONDITIONAL NEURAL PROCESSES

Meta-learning. We first define the problem setup. Let X be a compact input space and let Y be
the output space. Let DN = (X × Y)N be the collection of all sets of N input–output pairs, and
let D =

⋃∞
N=0DN . We call elements D ∈ D data sets and denote D = (x,y) where x ∈ XN ,

y ∈ YN are the inputs and outputs respectively. In meta-learning we are given a collection of data
sets (Dm)Mm=1, called a meta–data set, with the individual data sets Dm called tasks (Vinyals et al.,
2016). Every task Dm is split up Dm = D(c)

m ∪D(t)
m into a context set D(c)

m = (x(c)
m ,y(c)

m) and a target
set D(t)

m = (x(t)
m,y(t)

m). Here x(c)
m are called the context inputs, y(c)

m the context outputs, x(t)
m the target

inputs, and y(t)
m the target outputs. Our goal is to devise an algorithm which takes in a context set

D(c)
m and produces the best possible prediction for the target outputs y(t)

m given target inputs x(t)
m.

2

Published as a conference paper at ICLR 2023

100 101 102 103

Wallclock training time (min.)

−2

−1

0

1

N
L

L
/

d
at

ap
oi

nt FullConvGNP

ConvLNP

ConvCNP

AR ConvCNP

Figure 2: Negative log-likelihoods on non-Gaussian
sawtooth data. Deploying the ConvCNP in AR mode
dramatically improves performance, and outperforms
state-of-the-art NPs with Gaussian (FullConvGNP)
and non-Gaussian (ConvLNP) predictive distribu-
tions, at a fraction of the training cost.

y(
x) x 1 x 2 x 3 x 4

Ground Truth (Top) & AR Predictions Left to Right (Bottom)

y(x1)

D
en

si
ty

y(x2) y(x3) y(x4)
True Ideal CNP AR Ideal CNP

Figure 3: Top: generative process: mixture model of three
deterministic functions with additive Gaussian noise. Bot-
tom: at the four target locations indicated by dashed lines,
the panes show the true distribution and predictions by the
ideal CNP and the ideal CNP applied autoregressively at
the targets from left to right. See Appendices D.3 and E.

Neural processes. Let P be the set of all Y-valued stochastic processes on X . Neural processes
(NPs) directly and flexibly parametrise a map πθ : D → Q where Q ⊆ P and where θ are learnable
parameters. CNPs set Q to be the collection of GPs f such that cov(f(x), f(y)) = 0 for x ̸= y.
GNPs let Q be the collection of continuous GPs. Latent NPs (LNPs; Garnelo et al., 2018b) let Q be a
collection of non-Gaussian processes by making use of a latent variable. Let Px(t)

m
π(D(c)

m) denote the
finite-dimensional distribution of the process π(D(c)

m) evaluated at inputs x(t)
m, and denote its density

by qθ(• |x(t)
m, D(c)

m). To learn the parameters θ, NPs seek to maximise

LM (π) = 1
M

∑M
m=1 log qθ(y

(t)
m |x(t)

m, D(c)
m). (1)

For CNPs and GNPs, LM can be computed exactly, since qθ is Gaussian.1. However, for LNPs, LM

must be approximated (Garnelo et al., 2018b; Foong et al., 2020), typically impacting performance.

Autoregressive CNPs. Our proposal is to take an existing CNP and run it in an autoregressive
fashion, feeding predictions for earlier outputs back into the model. Inspired by the product rule,
we define the joint predictive as a product of conditionals, modelling each conditional with a CNP.
For example, in the case of three target points, qθ(y

(t)
3 |y(t)

1:2, D
(c)
m)qθ(y

(t)
2 | y(t)

1 , D(c)
m)qθ(y

(t)
1 |D(c)

m). To
enable a theoretical analysis of this procedure, we now proceed to set up more formal notation.
Suppose that πθ : D → Q is an NP, and we wish to predict at some target inputs x(t) given a context
set D(c). Standard NPs would output the predictive Px(t)πθ(D

(c)) which, for CNPs, would be a
factorised Gaussian. We propose to instead roll out the NP autoregressively, as described in Proc. 2.1.
Procedure 2.1 (Autoregressive application of neural process). For a neural process πθ, context set
D(c) = (x(c),y(c)), and target inputs x(t), let ARx(t)(πθ, D

(c)) be the distribution defined as follows:
for i = 1, . . . , N , y(t)

i ∼ Px(t)
i
πθ(x

(c) ⊕ x(t)
1:(i−1), y

(c) ⊕ y(t)
1:(i−1)), (2)

where a⊕ b concatenates two vectors a and b. See Figure 7 in Appendix C for an illustration.

Since earlier samples y(t)
i feed back into later applications of πθ, the whole sample y(t) is correlated,

even if πθ does not model dependencies between target outputs, as with CNPs. At test time, when
evaluating the corresponding the density q

(AR)
θ of ARx(t)(πθ, D

(c)) at y(t), we use the formula

log q
(AR)
θ (y(t) |x(t), D(c)) =

∑N
i=1 log qθ(y

(t)
i |x(t)

i , D
(c) ⊕ (x(t)

1:(i−1),y
(t)
1:(i−1))). (3)

Whilst any NP can be used in AR, we focus on CNPs as they are the computationally cheapest class.

Understanding the infinite data limit. To better understand why AR CNPs successfully model
dependencies, we analyse the idealised case of infinite data and model capacity. Let p(f) be the law
of the data-generating stochastic process, and let p(ε) be the law of a stochastic process representing
observation noise, defined by letting ε(x) be a vector of i.i.d. noise variables for all x. We assume

y(c)
m = ym(x(c)

m) and y(t)
m = ym(x(t)

m) where ym(•) = fm(•) + εm(•), (4)

(fm)Mm=1 are i.i.d. draws from p(f), and (εm)Mm=1 are i.i.d. draws from p(ε). Define the prediction
map πy : D → P as the mapping from a data set to the posterior over y, πy(D) = p(y |D). Then
LM is a Monte Carlo approximation of the following infinite-sample objective (Foong et al., 2020):

L∞(π) = −Ep(D(c))p(x(t))[KL(Px(t)πy(D
(c)), Px(t)π(D(c)))] + const. (5)

1Unless otherwise specified, we assume CNPs use Gaussian likelihoods, as in Garnelo et al. (2018a).
However, it is straightforward to modify them to use non-Gaussian likelihoods, as we do in Section 4.4.

3

Published as a conference paper at ICLR 2023

Under appropriate regularity assumptions, L∞(π) is maximised over all π when the expected KL
divergence term is zero, which occurs if and only if π = πy . In practice, NPs do not maximise L∞(π)
over all π, but (i) use a finite-sized meta–data set and (ii) restrict Q ⊆ P:

what we compute in practice

πM ∈ argmax
all π : D→Q

LM (π)
(i)−−−−→

M→∞

ideal NP

π∞ ∈ argmax
all π : D→Q

L∞(π)
(ii)−−−−→

Q→P

exact prediction map

πy = argmax
all π : D→P

L∞(π) (6)

Here πM is an NP trained on the practical objective (1), which, in the limit of infinite data, approxi-
mates the so-called ideal NP π∞. The ideal NP depends on the choice of Q, i.e. the class of NPs under
consideration, and, in turn, approximates πy. For CNPs and GNPs, using the fact that minimising
KL(p, q) over q matches moments (Minka, 2001), we can readily determine and even practically
compute the ideal NP for these two classes of NPs. The ideal CNP predicts a diagonal-covariance
GP whose mean function and marginal variance function match πy: π∞(D) = GP(m, k) where
m(x) = E[y(x) |D], and k(x, x′) = V[y(x) |D] if x = x′ and k(x, x′) = 0 otherwise. On the other
hand, the ideal GNP predicts a GP whose mean function and full covariance function match πy:
π∞(D) = GP(m, k) where m(x) = E[y(x) |D], k(x, x′) = cov(y(x), y(x′) |D). The main result
of this subsection is that the ideal CNP, despite not modelling correlations, becomes superior to the
ideal GNP when deployed in AR mode:

Proposition 2.1 (Advantage of AR CNPs over GNPs). Assume appropriate regularity conditions on
y. Let πC be the ideal CNP and let πG be the ideal GNP. Then, for all inputs x and data sets D ∈ D,

KL(Pxπy(D),ARx(πC, D)) ≤ KL(Pxπy(D), PxπG(D)). (7)

We provide a proof in Appendix A. Intuitively, the advantage of AR CNPs comes from their ability to
model non-Gaussian dependencies. Proposition 2.1 shows that to outperform the GNP, it suffices to
train a CNP to model the marginals of πy , and rely on the AR procedure to induce dependencies. A
visualisation of the ideal CNP and the ideal CNP applied autoregressively can be seen in Figure 3.

Consistency and the AR design space. As shown in Table 1, AR CNPs give up the fundamental
property of consistency, since the distributions {ARx(πθ, D

(c)
m) : x ∈ XN , N ∈ N} are not

consistent under permutation or marginalisation: permuting x and introducing or marginalising target
points can change the distribution. This violates the conditions of the Kolmogorov extension theorem
(Oksendal, 2013), preventing the distributions from defining a consistent stochastic process. There is
thus a large design space involved when deploying AR CNPs, where choices that have no effect on
the predictions of other NPs can now significantly affect performance.

One such choice is how many points to sample at a time. Sampling one at a time induces dependencies
between all points, but requires N forward passes. Alternatively, we could divide the N inputs in x(t)

into blocks of K points each, and sample each block with a single CNP forward pass. This requires
N/K forward passes, with points in the same block conditionally independent. If K = N , this is
the standard CNP prediction; and if K = 1, we recover Procedure 2.1. This provides a knob for
practitioners to trade off between faster, consistent, but less expressive standard CNP predictions; and
slower, less consistent, but more expressive AR predictions. In this paper, we use full AR mode with
K = 1, and leave an investigation of block AR sampling to future work.

Obtaining smooth samples. Due to the lack of consistency in AR mode, the spacing chosen between
target points can significantly affect performance. For example, care must be taken so the number
of target points is not much greater than the size of the context sets seen during train time, to avoid
confronting the model with an out-of-distribution context set size at test time. This raises the question
of how to sample functions on a very fine grid. Furthermore, since CNPs do not differentiate between
epistemic and aleatoric uncertainty, it is not clear how to obtain smooth, noiseless samples, that is,
samples for f uncorrupted by the i.i.d. noise ε in (4). The following proposition shows that, for a
smooth sample corrupted by additive noise, the smooth component can be approximated with the
predictive mean conditioned on noisy observations:

Proposition 2.2 (Recovery of smooth samples). Let X ⊆ R be compact, and let f be a stochastic
process with surely continuous sample paths and supx∈X ∥f(x)∥L2 < ∞. Let (εn)n≥0 be i.i.d.
(potentially non-Gaussian) random variables such that E[ε0] = 0 and V[ε0] < ∞. Consider any
sequence (xn)n≥1 ⊆ X , and let x∗ ∈ X be a limit point of (xn)n≥1. If y(x∗) = f(x∗) + ε0 and
yn = f(xn) + εn are noisy observations of f , then

lim
n→∞

E[y(x∗) | y1, . . . , yn] = f(x∗) almost surely. (8)

4

Published as a conference paper at ICLR 2023

ConvCNP (AR) ConvCNP (AR)Ground Truth Ground Truth

Figure 4: Comparison of noiseless (left) and noisy (right) samples from an AR ConvCNP trained on data
sampled from a GP with an exponentiated-quadratic kernel, and the ground truth GP. The noiseless AR samples
were generated from the noisy AR samples using the procedure suggested by Proposition 2.2.

We provide a proof in Appendix B. Equation (8) suggests the following two-step procedure for
obtaining smooth samples from AR CNPs. Step 1: Let x1:n be a number of target inputs that does
not exceed the number of points seen during training. Sample y1:n ∼ ARx1:n

(πθ, D
(c)
m). This sample

includes observation noise. Step 2: Remove the noise from the sample by passing it through the
model once more: N (µ1:n,D) = Px1:n

πθ(D
(c)
m ⊕ (x1:n,y1:n)). Here the predictive mean µ1:n

forms the noiseless sample. To produce a sample at arbitrarily many inputs, one may also evaluate
N (µ′

1:n,D) = Px′
1:n

πθ(D
(c)
m ⊕ (x1:n,y1:n)) where x′

1:n is arbitrary. This result of this procedure
is illustrated in Figure 4, and was used to generate the noiseless samples shown in Figure 1 (right).
Figure 7 in Appendix C also illustrates this two-step procedure in a pictorial step-by-step fashion.

3 CONNECTIONS TO OTHER NEURAL DISTRIBUTION ESTIMATORS

Various paradigms have been developed for neural distribution estimators (NDEs): normalising flows
(Dinh et al., 2015), generative adversarial networks (GANs; Goodfellow et al., 2014), variational
autoencoders (VAEs; Kingma & Welling, 2014), autoregressive models (Uria et al., 2016), and
diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020). Figure 5 visualises the landscape of
NDEs. We argue that NPs and AR CNPs should be viewed as neural distribution estimators (NDEs)
and be placed in this landscape. AR CNPs inherit the strengths of AR models, such as the ability to
model complex dependencies with a tractable likelihood, but also some of their weaknesses, most
notably slow test-time sampling. Slow sampling is the main drawback of AR CNPs, though

Neu
ral

pro
ce

sse
s

Norm
ali

sin
g flow

s

Gen
era

tiv
e

ad
ve

rsa
ria

l n
etw

ork
s

Vari
ati

on
al

au
toe

nc
od

ers

Auto
reg

res
siv

e mod
els

1,2

3

4-6

7

8

9–15

16

17, 18

19

20

21

22–27

28, 29

30

31, 32

33, 34

3735, 36,

38

39

40–42

43–47

48–51

52–57

58

59

60, 61

62

MLP

Attention

Conv.

Finite

Countable

Uncountable

Neural processes
1. CNP (Garnelo et al., 2018a)
2. GNP (Markou et al., 2022)
3. ACNP (Kim et al., 2019)
4. ConvCNP Gordon et al. (2020)
5. ConvGNP (Markou et al., 2022)
6. FullConvGNP (Bruinsma et al.,

2021)

Normalising flows
7. NICE (Dinh et al., 2015)
8. Flow++ (Ho et al., 2019)
9. RealNVP (Dinh et al., 2017)

10. FFJORD (Grathwohl et al., 2019)
11. Glow (Kingma & Dhariwal, 2018)
12. i-ResNets (Behrmann et al., 2019)
13. Res. Flows (Chen et al., 2019)
14. IAF (Kingma et al., 2016)
15. NAF (Huang et al., 2018)
16. TGP (Maroñas et al., 2021)

17. BRUNO (Korshunova et al., 2020)
18. Copula GNP (Markou et al., 2022)
19. FlowGAN (Grover et al., 2018)

GANs
20. GAN (Goodfellow et al., 2014)
21. SAGAN (Zhang et al., 2019)
22. DCGAN (Radford et al., 2016)
23. WGAN (Arjovsky et al., 2017)
24. InfoGAN (Chen et al., 2016)
25. SNGAN (Miyato et al., 2018)
26. BigGAN (Brock et al., 2019)
27. StyleGAN (Karras et al., 2019)
28. Spatial GAN (Jetchev et al., 2016)
29. ∞-GAN (Lu et al., 2020)
30. PresGAN (Dieng et al., 2019)

Variational autoencoders
31. VAEs (Kingma & Welling, 2014)
32. IWAE (Burda et al., 2016)

33. Conv. VAE (Salimans et al., 2015)
34. VDVAE (Child, 2020)
35. GP-VAE (Fortuin et al., 2020)
36. SGP-VAE (Ashman et al., 2020)
37. LNP (Garnelo et al., 2018b)
38. ALNP (Kim et al., 2019)
39. ConvLNP (Foong et al., 2020)
40. VQ-VAE (Oord et al., 2017)
41. PixelVAE (Gulrajani et al., 2017)
42. VLAE (Chen et al., 2017)

Autoregressive models
43. RNADE (Uria et al., 2013)
44. NADE (Uria et al., 2016)
45. DeepNADE (Uria et al., 2014)
46. EoNADE (Uria et al., 2014)
47. MADE (Germain et al., 2015)
48. PixelSNAIL (Chen et al., 2018)
49. Sparse Transformer (Child et al.,

2019)

50. DEformer (Alcorn & Nguyen,
2021)

51. XLNet (Yang et al., 2019)
52. ConvNADE (Uria et al., 2016)
53. WaveNet (Oord et al., 2016a)
54. PixelCNN (Oord et al., 2016b)
55. PixelCNN++ (Salimans et al.,

2017)
56. Fast PixelCNN++ (Ramachandran

et al., 2017)
57. Scalable Pixel Net (Menick &

Kalchbrenner, 2019)
58. ARDMs (Hoogeboom et al., 2021)
59. AR CNP (this work)
60. AR ACNP (this work)
61. Transformer NP (Nguyen &

Grover, 2022)
62. AR ConvCNP (this work)

Figure 5: Conceptual diagram showing the relationships between AR CNPs and various neural distribution
estimators. The vertical axis denotes whether the model learns a distribution over a finite number of random
variables, a countably infinite number, or an uncountably infinite number. The axis into the page denotes whether
the architecture is MLP-based, or uses attention or convolutions. From left to right, we show different modelling
paradigms. Fruitful exchanges occur when NPs (highlighted in green) are introduced into other modelling
paradigms. Our proposed AR CNPs can be viewed as introducing NPs to the AR modelling paradigm.

5

Published as a conference paper at ICLR 2023

it may be possible to adapt techniques for speeding up AR models (Ramachandran et al., 2017). One
major difference between AR CNPs and existing AR models is that AR CNPs decompose the joint
distribution of an uncountably infinite set of variables, allowing querying at arbitrary input locations
(Section 2). Like DEformer (Alcorn & Nguyen, 2021), EoNADE (Uria et al., 2014), and XLnet
(Yang et al., 2019), AR CNPs are trained to not prefer any particular order of decomposing the joint
distribution into conditionals. To achieve this goal, the AR CNP shares design choices with other AR
models: (i) a shared architecture is used to produce each conditional distribution, similar to WaveNet
(Oord et al., 2016a) and PixelCNN (Oord et al., 2016b); (ii) the data point index is given as input
to the network as in the DEformer model (Alcorn & Nguyen, 2021); and (iii) training maximises a
log-likelihood including all decompositions of the joint distribution, similar to EoNADE (Uria et al.,
2014) and XLnet (Yang et al., 2019).
Figure 5 also shows the connections between NPs, VAEs and normalising flows (NFs). Like VAEs,
LNPs use decoders that parametrise a factorised distribution and rely on the latent variable to induce
dependencies. Again, the key difference is that LNPs model a distribution over an uncountable set of
variables. Models like conditional BRUNO (Korshunova et al., 2020) and copula GNPs (Markou
et al., 2022) combine ideas from NPs and NFs, transforming a stochastic process with an invertible
transformation. Finally, GAN models such as Spatial GAN (Jetchev et al., 2016) and ∞−GAN (Lu
et al., 2020) model countable numbers of variables, such as images of arbitrary size. Inspecting
Figure 5, we see that GANs are the only class of models depicted that do not currently have an NP
version: a version that models an uncountable number of variables. This suggests adversarial training
of NPs as an interesting avenue for future investigation.
In recent work, Nguyen & Grover (2022) proposed the Transformer NP (TNPs), which uses a
causally-masked transformer architecture with an autoregressive likelihood. In contrast, rather than
proposing a new AR architecture, our work focuses on running existing CNPs in AR mode to obtain
coherent samples and improved likelihoods, without modifying the architecture or training procedure.
In prior work, Volpp et al. (2021) used AR sampling in order to visualise samples from CNPs.
However, their work focuses on proposing a novel context aggregation mechanism for NPs, and they
do not evaluate the likelihood of CNPs autoregressively or investigate any performance gains.

4 THE PERFORMANCE OF AUTOREGRESSIVE NEURAL PROCESSES
In this section we investigate the performance of AR CNPs on synthetic and real data. Across
a wide range of tasks, the AR CNP is competitive with much more sophisticated approaches.
Throughout, we train LNPs with both the ELBO (Garnelo et al., 2018b) and ML objective (Foong
et al., 2020). Code for implementations of NPs and reproducing our experiments can be found
at https://github.com/wesselb/neuralprocesses. For all experiments, we use a random
ordering of the target points in Proc. 2.1; see App. D for a justification.

4.1 SYNTHETICALLY GENERATED GAUSSIAN AND NON-GAUSSIAN DATA

Synthetic experiment setup. We evaluate an extensive collection of NP models on a wide range
of Gaussian and non-Gaussian synthetic regression tasks. We consider tasks with functions drawn
from (i) different GPs; (ii) a non-Gaussian sawtooth process (as in Figure 1); (iii) a non-Gaussian
mixture task, where, with equal probability, we sample the function from one of three possible GPs
or the sawtooth process. We also consider various versions of the tasks for different input and output
dimension dx, dy, with dependencies across the output channels. To ensure a fair comparison, we
configure the architectures to make the parameter counts comparable between all models.

Results. Table 2 highlights the best performing models on some representative tasks; for further
results across all twenty synthetic tasks and further experimental details, see Appendix H. The AR
procedure dramatically improves the performance of the ConvCNP, with the AR ConvCNP being the
best performing model for most tasks, except on the Gaussian EQ task where it performs marginally
worse than the FullConvGNP. In particular, the AR ConvCNP outperforms the FullConvGNP and
ConvGNP on non-Gaussian tasks, in agreement with Proposition 2.1, while having a faster training
time than the other convolutional models (Figure 2). For the sawtooth task, Figure 11 in Appendix H.2
illustrates that predictions by the AR ConvCNP can be multi-modal and non-Gaussian, even when us-
ing a Gaussian likelihood. Finally, we note that in tasks with dx = 2, where the FullConvGNP cannot
be used (as discussed in Section 1), the AR ConvCNP far outperforms all competing approaches.

4.2 SIM-TO-REAL TRANSFER WITH THE LOTKA–VOLTERRA EQUATIONS

Predator-prey data. We next investigate sim-to-real transfer, where the models are trained on
simulated data and tested on real data. NPs are well-suited to this setting, since a large meta-data set

6

https://github.com/wesselb/neuralprocesses

Published as a conference paper at ICLR 2023

EQ Sawtooth Mixture
Norm. KL to truth (↓ better) Norm. log-lik. (↑ better) Norm. log-lik. (↑ better)
dx, dy=1 dx, dy=2 dx, dy=1 dx, dy=2 dx, dy=1 dx, dy=2

ConvCNP 0.41±0.01 0.41±0.00 2.38±0.04 0.12±0.01 −0.23±0.04 −0.85±0.01

ConvCNP (AR) 0.01±0.00 0.03±0.00 3.60±0.01 0.38±0.00 0.45±0.04 −0.62±0.01

ConvGNP 0.01±0.00 0.19±0.00 2.62±0.05 0.26±0.01 −0.24±0.02 −0.74±0.01

FullConvGNP 0.00±0.00 2.16±0.04 −0.05±0.03

ConvLNP (ML) 0.25±0.01 0.39±0.00 3.06±0.04 0.31±0.01 −0.06±0.03 −0.78±0.02

ConvLNP (ELBO) 0.06±0.00 0.79±0.00 3.51±0.02 0.04±0.00 0.12±0.04 −0.92±0.01

Diagonal GP 0.40±0.01 0.40±0.00

Trivial 1.19±0.00 0.79±0.00 −0.18±0.00 −0.32±0.00 −1.32±0.00 −1.46±0.00

Table 2: Performance of NPs training on the GP EQ task, sawtooth task, and mixture task. Diagonal GP
denotes the exact GP predictive, but with correlations removed. Trivial denotes a model that predicts a Gaussian
distribution with the empirical mean and standard deviation of the context outputs. Significantly best models in
bold. Note that the FullConvGNP cannot be run on tasks where dx > 1.

Int. (S) For. (S) Rec. (S) Int. (R) For. (R) Rec. (R)

ConvCNP −3.47±0.02 −4.06±0.02 −4.85±0.02 −4.17±0.04 −4.70±0.06 −4.97±0.01

ConvCNP (AR) −3.30±0.02 −3.47±0.02 −3.60±0.02 −4.10±0.03 −4.27±0.03 −4.32±0.01

ConvGNP −3.47±0.02 −3.65±0.02 −4.15±0.02 −4.21±0.05 −4.82±0.13 −4.61±0.01

FullConvGNP −3.29±0.02 −3.46±0.02 −3.79±0.02 −4.16±0.04 −4.28±0.04 −4.45±0.00

ConvLNP (ML) −3.41±0.02 −3.84±0.02 −4.44±0.02 −4.13±0.04 −4.45±0.05 −4.54±0.01

ConvLNP (ELBO) −3.77±0.02 −3.83±0.02 −4.12±0.02 −5.45±0.05 −5.47±0.07 −6.39±0.05

Table 3: Normalised log-likelihoods in the predator–prey experiments, showing interpolation (int.), forecasting
(for.), and reconstruction (rec.) on simulated (S) and real (R) data. Significantly best results in bold.

can be easily generated to train them. We consider the hare–lynx data set, which is a population time
series of Snowshoe hares and Canadian lynx (MacLulich, 1937). To generate simulated data, we use
a stochastic version of the Lotka–Volterra equations (Lotka, 1910; Volterra, 1926):

dXt = αXt dt− βYtXt dt+ σXν
t dW

(1)
t , dYt = −γXt dt+ δYtXt dt+ σY ν

t dW
(2)
t . (9)

Under these equations, the prey population Xt grows exponentially with rate α, the predator pop-
ulation Yt decays exponentially with rate γ, and the predators hunt the prey. W (1) and W (2) are
independent Brownian motions introducing noisy behaviour. These equations generate non-Gaussian
data with both within-channel as well as cross-channel dependencies. We simulate the Lotka-Volterra
equations on a dense grid, and use them to generate meta–data sets in three different ways. Interpo-
lation: we randomly divide the data into context and target sets. Forecasting: we choose a random
time, before which all data are contexts, and all future data are targets. Reconstruction: we randomly
choose between the Xt or Yt, split the chosen series as in forecasting, and append the other series to
the context. In training, for every batch, we choose one of these tasks uniformly at random.
Results. Table 3 shows the results of the best performing models. The AR ConvCNP performs
best both on the simulated as well as the real data, again demonstrating that running CNPs in AR
mode improves performance and can even outperform strong GNP and LNP baselines. For full
experimental details and additional results see Appendix I.

4.3 ELECTROENCEPHALOGRAM EXPERIMENTS

Electroencephalogram data. We next trained various NPs on real time series data consisting of
electroencephalogram (EEG) measurements (Zhang et al., 1995), following Markou et al. (2022).
Each time series consists of 256 regularly spaced measurements across 7 correlated channels. For
each channel, we randomly select a number of the 256 points uniformly at random to be target points,
and use the remaining ones as context points, independently across the channels.
Results. After training, we test the models on this interpolation task and also on a reconstruction
task, where we set a part of a channel as target and the remainder as context. In Table 4, we observe
that the AR ConvCNP is competitive with the FullConvGNP, despite having significantly shorter
training times and fewer parameters. Both the AR ConvCNP and the FullConvGNP outperform the
ConvCNP and the ConvLNP. Full experimental detail are in Appendix J.

4.4 ENVIRONMENTAL MODELLING

Environmental datasets bring a range of modelling challenges. One example is fusing spatio-
temporal data from disparate sources (Chang & Bai, 2018; Lahat et al., 2015), which arises in diverse

7

Published as a conference paper at ICLR 2023

ConvCNP ConvCNP (AR) ConvGNP FullConvGNP ConvLNP (ML) ConvLNP (ELBO)

Int. −1.02±0.01 −0.34±0.01 −0.93±0.01 −0.35±0.01 −1.04±0.01 −1.20±0.01

Rec. −2.07±0.03 −0.63±0.01 −1.45±0.03 −0.57±0.01 −1.53±0.02 −2.00±0.06

Table 4: Normalised log-likelihoods on the EEG experiments. Significantly best results in bold.

GAUSSIAN BETA-CATEGORICAL
ConvGNP ConvLNP (ML) ConvCNP ConvCNP (AR) ConvLNP (ML) ConvCNP ConvCNP (AR)

Log-lik. 0.60±0.02 0.62±0.02 0.58±0.02 0.88±0.02 1.06±0.02 1.03±0.02 1.27±0.02

MAE (%) 13.05±0.17 12.98±0.16 13.01±0.16 13.01±0.16 12.99±0.16 13.13±0.16 13.13±0.16

Table 5: Normalised log-likelihoods and mean absolute errors (MAE, in units of cloud cover %), over the
2019-2019 test period for the cloud cover task. Note that log-likelihoods cannot be compared directly across the
Gaussian and beta-categorical models. Errors indicate standard errors. Significantly best results in bold.

environmental sciences applications from climate monitoring to hydrology (Gettelman et al., 2022;
Ferrer-Cid et al., 2020; Robinson et al., 2021; Lu et al., 2010; Hosseini & Kerachian, 2017). Another
challenge involves estimating the probability of events of interest, such as the compound risk of
both low wind speeds at an offshore wind farm and high cloud cover over a solar panel farm. To
obtain robust uncertainty estimates for such events, it is essential to model correlations as well as non-
Gaussian marginals (such as cloud cover). Current GAN-based approaches (e.g. Ravuri et al. 2021)
can capture both joint and non-Gaussian statistics, but they cannot perform data fusion or predict
at arbitrary off-grid locations. The AR ConvCNP can fuse data of on-grid and off-grid modalities
and make predictions at arbitrary locations while modelling arbitrary non-Gaussian likelihoods
and capturing statistical dependencies, thus achieving all the desiderata and filling a gap in the
environmental modelling toolbox. Here, we assess the AR ConvCNP on two common environmental
modelling tasks, namely data assimilation and statistical downscaling.
Data assimilation. Data assimilation is the task of combining observations of the Earth system to
produce predictions on a regular grid, called a reanalysis. Reanalyses are typically generated by fitting
the trajectories of physics-based climate models to observations (Hersbach et al., 2020; Gettelman
et al., 2022), but the potential for improving data assimilation with ML has drawn increasing attention
in recent years (Geer, 2021). To explore the AR ConvCNP’s data assimilation abilities for a non-
Gaussian variable, we train convolutional NP models to predict simulated daily-average cloud cover
fraction over Antarctica. We use reanalysis data from ECMWF ERA5 (Hersbach et al., 2020) as
ground truth. Cloud cover takes values in the interval [0, 1], with observations frequently taking
values of 0 or 1 (Figure 14). We evaluate the performance of NPs using either a Gaussian likelihood
or a beta-categorical mixture model with three components: two discrete delta components for values
of exactly 0 or 1, and a beta distribution capturing continuous values in (0, 1). This provides a robust
way of handling 0 and 1 values, unlike the existing copula GNP model (Markou et al., 2022) which
can have its output constrained in (0, 1) but places zero density at the endpoints.
Data assimilation results. In Table 5 we see that the AR ConvCNP significantly outperforms
competing NPs for both the Gaussian and beta-categorical likelihoods. Figure 6 shows samples drawn
from the models, after observing context points on half of the space. The AR ConvCNP displays
remarkable ability to extrapolate rich, non-stationary, multi-scale structure, such as sudden changes
in cloud cover over the Ross Ice Shelf coastline at the bottom of the figure. By comparison, the
ConvLNP and ConvGNP produce blurry, lower frequency samples. Unlike GPs, convolutional NP
models have a fixed receptive field induced by the CNN architecture used for the encoder, which is
computationally expensive to increase. Away from the context points on the left, samples from the
non-AR models will be independent of the observations, reverting to some mean representation of the
data (Fig. 6c-e). This highlights a further benefit of AR CNPs: successive AR applications increase
the receptive field, enabling rich, conditional sample structure to extrapolate far away from observed
data. See Appendix K for further commentary, sample figures, and details.
Environmental downscaling. The spatial resolutions of physics-based reanalyses are limited by
their vast computational demands, making them unsuitable for capturing local and extreme events
(Stocker et al., 2013; Maraun et al., 2017). Statistical downscaling addresses this issue by leveraging
additional information to produce fine-grained predictions (Maraun & Widmann, 2018). Recently,
NPs have been shown to outperform a large ensemble of existing climate downscaling approaches
(Vaughan et al., 2022). We compare the AR ConvCNP to the MLP ConvCNP of Vaughan et al. and
the MLP ConvGNP of (Markou et al., 2022) in a temperature downscaling task over Germany. In
this task, the context data consist of low-resolution ERA-Interim reanalysis data and high-resolution
topography, and the target data consist of weather station observations from the ECA&D dataset.
We also consider a second setup where we reveal some station observations to aid the downscaling

8

Published as a conference paper at ICLR 2023

Figure 6: (a) Ground truth simulated cloud cover fraction on 25/06/2018. (b-e), Sample draws from the AR
ConvCNP, ConvCNP, ConvLNP and ConvGNP with context points denoted by red dots. Context points were
removed from the right hand side of the 2D space to test the models’ abilities to extrapolate coherent function
samples far away from observations. The ConvCNP and ConvLNP models used a beta-categorical likelihood
while the ConvGNP uses a low-rank Gaussian likelihood.

process. As Appendix L.2 explains, the MLP ConvCNP and MLP ConvGNP cannot be extended to
include these station observations. We therefore introduce a novel multiscale architecture, which we
use to run the ConvCNP in AR mode. See Appendix L for full experimental details.
Environmental downscaling results. In Table 6 we observe that the AR ConvCNP matches the
performance of the ConvGNP, which is remarkable as the latter has been previously demonstrated
to outperform a range of state-of-the-art downscaling approaches (Markou et al., 2022; Vaughan
et al., 2022). When additional observations from weather stations are revealed, the AR ConvCNP
significantly outperforms the MLP ConvGNP in both metrics.

Downscaling Norm. log-lik. MAE (◦C)

ConvCNP (MLP) −1.55±0.01 0.94±0.03

ConvGNP (MLP) −1.36±0.01 1.09±0.09

ConvCNP (AR) −1.36±0.01 1.04±0.04

Down. + stations Norm. log-lik. MAE (◦C)

ConvCNP∗ (MLP) −1.55±0.01 0.94±0.03

ConvGNP∗ (MLP) −1.38±0.01 1.09±0.09

ConvCNP (AR) −1.31±0.01 0.85±0.05

Table 6: Normalised log-likelihoods and mean absolute errors (MAEs) in the downscaling experiments, without
(left) and with (right) assisting weather station observations. Significantly best results in bold. ∗Cannot use extra
weather station observations.

5 LIMITATIONS AND CONCLUSION

We have shown that the AR procedure can be readily applied to improve the performance of CNPs,
producing coherent samples and dramatically improved likelihoods. Surprisingly, in an extensive
range of experiments, this simple approach often outperforms more complicated methods which
rely on latent variables or which explicitly model correlations. We demonstrate the effectiveness
of our approach on data sets of real-world interest by applying AR CNPs on climate data fusion
tasks, modelling [0, 1]-constrained data with a beta-categorical likelihood and introducing a novel
multiscale architecture. Notably, AR CNPs fill a gap in the climate modelling toolbox by enabling
joint, non-Gaussian predictives, which could be used to better estimate the magnitude of compound
risks. We also position AR CNPs within the larger neural density estimator literature, showing the
fruitfulness of combining NPs with other modelling paradigms.
More generally, AR CNPs equip the NP framework with a new knob where modelling complexity
and computational expense at training time can be traded for computational expense at test time. In
particular, the higher quality samples and better likelihoods obtained by applying NPs autoregressively
come with the additional cost of performing a forward pass for every element in the target set. This
can be prohibitively expensive for large target sets, and constitutes the primary practical drawback of
using AR CNPs. In addition, since AR CNPs do not define a consistent stochastic process, design
choices for the AR procedure may affect the quality of the results. Thus practitioners need to avoid
choosing target sets that lead to pathological behaviour, such as when the spatial density of the target
inputs is too high. However, the flexibility of this design space also presents an opportunity: as
an example, in Appendix M we show that auxiliary target points can be used to further improve
predictions. Finally, promising avenues for future work include applying the AR procedure to other
NPs besides CNPs, and investigating the efficacy of the block sampling scheme presented in Section 2.

9

Published as a conference paper at ICLR 2023

6 REPRODUCIBILITY STATEMENT

All our experiments are carried out using either synthetic or publicly available datasets. The EEG
data set is available through the UCI database,2 and the environmental data are also publicly available
through the European Climate Data Service.3

We make publicly available all code necessary to reproduce our experiments4 as well as instructions
for downloading, preprocessing, and modelling the Antarctic cloud cover data5. Proofs for Propo-
sitions 2.1 and 2.2 are given in Appendix A and Appendix B respectively. Details on the model
architectures and the experimental setup can be found in Appendices F to H for the synthetic datasets,
Appendix I the sim-to-real transfer experiments, Appendix J for the EEG experiments, Appendix K
for the data assimilation experiment, and Appendix L for the downscaling experiment.

7 ETHICS STATEMENT

Training CNPs autoregressively improves their performance dramatically, but we do not foresee ad-
verse societal impacts as a result of this work. That being said, the problem of capturing the statistical
trends present in a dataset must be performed with care, especially in safety critical applications,
where the stakes of making incorrect and confident predictions can have severe consequences. We
view the AR procedure as a useful tool, rather than a panacea, for capturing such behaviours, and
hope this work encourages further research into building effective but reliable models to this end.

We also note that while training CNPs is computationally cheaper than alternative NP models, AR
sampling itself incurs a substantial computational cost, and thus energy cost, at test time. Running
AR sampling on a large scale could lead to greater power demands for these models, resulting
in larger carbon footprints which are undesirable. However, we believe the potential benefits for
environmental modelling could outweigh this cost, while leveraging methods to make AR CNPs
more computationally efficient should help alleviate this issue.

8 ACKNOWLEDGEMENTS

This research was conducted while WPB and AYKF were students at the University of Cambridge.
During that time, WPB was supported by the Engineering and Physical Research Council (studentship
number 10436152), and AYKF was supported by the Trinity Hall Studentship and the George and
Lilian Schiff Foundation. SM acknowledges funding from the Vice Chancellor’s & George and Marie
Vergottis scholarship and the Qualcomm Innovation Fellowship. TRA and JSH are supported by
Wave 1 of The UKRI Strategic Priorities Fund under the EPSRC Grant EP/W006022/1, particularly
the AI for Science theme within that grant & The Alan Turing Institute. RET is supported by Google,
Amazon, ARM, Improbable and EPSRC grant EP/T005386/1.

REFERENCES

Michael A. Alcorn and Anh Nguyen. The DEformer: An order-agnostic distribution estimating
transformer. ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit
Likelihood Models (INNF+), 2021.

Martin Arjovsky, Soumith Chintala, and Leon Bottou. Wasserstein generative adversarial networks. In
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 214–223. PMLR, 2017.

Matthew Ashman, Jonathan So, Will Tebbutt, Vincent Fortuin, Michael Pearce, and Richard E. Turner.
Sparse Gaussian process variational autoencoders. arXiv preprint arXiv:2010.10177, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. Neural Information
Processing Systems Deep Learning Symposium, 2016.

2https://kdd.ics.uci.edu/databases/eeg/eeg.data.html.
3https://cds.climate.copernicus.eu/#!/home.
4https://github.com/wesselb/neuralprocesses.
5https://github.com/tom-andersson/iclr2023-antarctic-arconvcnp.

10

https://kdd.ics.uci.edu/databases/eeg/eeg.data.html
https://cds.climate.copernicus.eu/#!/home
https://github.com/wesselb/neuralprocesses
https://github.com/tom-andersson/iclr2023-antarctic-arconvcnp

Published as a conference paper at ICLR 2023

Henri Begleiter. EEG database data set, 2022. URL https://archive.ics.uci.edu/ml/
datasets/eeg+database.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen. In-
vertible residual networks. In Proceedings of 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research. PMLR, 2019.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural
image synthesis. In Proceedings of the 7th International Conference on Learning Representations,
2019.

Wessel P. Bruinsma, James Requeima, Andrew Y. K. Foong, Jonathan Gordon, and Richard E. Turner.
The Gaussian neural process. In Proceedings of the 3rd Symposium on Advances in Approximate
Bayesian Inference, 2021.

Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. In Advances in
Neural Information Processing Systems 29. Curran Associates, Inc., 2016.

Ni-Bin Chang and Kaixu Bai. Multisensor data fusion and machine learning for environmental
remote sensing. CRC Press, 2018.

Ricky T. Q. Chen, Jens Behrmann, David K. Duvenaud, and Jörn-Henrik Jacobsen. Residual flows
for invertible generative modeling. Advances in Neural Information Processing Systems, 32, 2019.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN: Interpretable
representation learning by information maximizing generative adversarial nets. In Advances in
Neural Information Processing Systems 29. Curran Associates, Inc., 2016.

X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and P. Abbeel.
Variational lossy autoencoder. In Proceedings of the 5th International Conference on Learning
Representations, 2017.

Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. PixelSNAIL: An improved
autoregressive generative model. In International Conference on Machine Learning, pp. 864–872.
PMLR, 2018.

Rewon Child. Very deep VAEs generalize autoregressive models and can outperform them on images.
In Proceedings of the 9th International Conference on Learning Representations, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Franccois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A.
Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bor-
mann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach,
E. V. Holm, L. Isaksen, P. Kållberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz,
J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thepaut, and F. Vitart. The
ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly
Journal of the Royal Meteorological Society, 137(656):553–597, 2011. doi: 10.1002/qj.828.

Adji B Dieng, Francisco JR Ruiz, David M Blei, and Michalis K Titsias. Prescribed generative
adversarial networks. arXiv preprint arXiv:1910.04302, 2019.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. In Proceedings of the
5th International Conference on Learning Representations, 2017.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components
estimation. In International Conference on Learning Representations, 2015.

Richard Durrett. Probability: Theory and Examples. Cambridge University Press, 4 edition, 2010.

11

https://archive.ics.uci.edu/ml/datasets/eeg+database
https://archive.ics.uci.edu/ml/datasets/eeg+database

Published as a conference paper at ICLR 2023

Earth Resources Observation and Science Center, U.S. Geological Survey, U.S. Department of the
Interior. USGS 30 arc-second global elevation data, GTOPO30, 1997. URL https://doi.
org/10.5065/A1Z4-EE71.

Pau Ferrer-Cid, Jose M Barcelo-Ordinas, Jorge Garcia-Vidal, Anna Ripoll, and Mar Viana. Multisen-
sor data fusion calibration in IoT air pollution platforms. IEEE Internet of Things Journal, 7(4):
3124–3132, 2020.

Andrew Y. K. Foong, Wessel P. Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and
Richard E. Turner. Meta-learning stationary stochastic process prediction with convolutional neural
processes. In Advances in Neural Information Processing Systems 33. Curran Associates, Inc.,
2020.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. GP-VAE: Deep probabilistic
time series imputation. In International conference on artificial intelligence and statistics, pp.
1651–1661. PMLR, 2020.

M. Garnelo, D. Rosenbaum, C. J. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. Whye Teh, D. J.
Rezende, and S. M. A. Eslami. Conditional neural processes. In Proceedings of 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research.
PMLR, 2018a.

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. Whye
Teh. Neural processes. In Theoretical Foundations and Applications of Deep Generative Models
Workshop, 35th International Conference on Machine Learning, 2018b.

A. J. Geer. Learning earth system models from observations: machine learning or data assimilation?
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 379(2194):20200089, February 2021. Publisher: Royal Society.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked autoencoder
for distribution estimation. In International conference on machine learning, pp. 881–889. PMLR,
2015.

Andrew Gettelman, Alan J Geer, Richard M Forbes, Greg R Carmichael, Graham Feingold, Derek J
Posselt, Graeme L Stephens, Susan C van den Heever, Adam C Varble, and Paquita Zuidema.
The future of earth system prediction: Advances in model-data fusion. Science Advances, 8(14):
eabn3488, 2022.

I. J. Goodfellow, J. Pouget Abadie, M. Mirza, B. Xu, D. Warde Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. In Advances in Neural Information Processing
Systems 27, volume 27. Curran Associates, Inc., 2014.

Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois,
and Richard E. Turner. Convolutional conditional neural processes. In Proceedings of the 8th
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=Skey4eBYPS.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
Free-form continuous dynamics for scalable reversible generative models. In Proceedings of the
7th International Conference on Learning Representations, 2019.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-GAN: Combining maximum likelihood and
adversarial learning in generative models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin, David Vazquez,
and Aaron Courville. PixelVAE: A latent variable model for natural images. In Proceedings of the
5th International Conference on Learning Representations, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016.

12

https://doi.org/10.5065/A1Z4-EE71
https://doi.org/10.5065/A1Z4-EE71
https://openreview.net/forum?id=Skey4eBYPS
https://openreview.net/forum?id=Skey4eBYPS

Published as a conference paper at ICLR 2023

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cornel Soci,
Saleh Abdalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati, Jean Bidlot,
Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Diamantakis, Rossana
Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer, Leo Haimberger, Sean
Healy, Robin J. Hogan, Elias Holm, Marta Janiskova, Sarah Keeley, Patrick Laloyaux, Philippe
Lopez, Cristina Lupu, Gabor Radnoti, Patricia de Rosnay, Iryna Rozum, Freja Vamborg, Sebastien
Villaume, and Jean-Noël Thépaut. The ERA5 global reanalysis. 146(730):1999–2049, 2020. ISSN
1477-870X. doi: 10.1002/qj.3803.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
Conference on Machine Learning, pp. 2722–2730. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and Tim
Salimans. Autoregressive diffusion models. In Proceedings of the 10th International Conference
on Learning Representations, 2021.

Marjan Hosseini and Reza Kerachian. A data fusion-based methodology for optimal redesign of
groundwater monitoring networks. Journal of Hydrology, 552:267–282, 2017.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning, pp. 2078–2087. PMLR, 2018.

Douglas R. Hundley. Introduction to mathematical modelling. URL http://people.whitman.
edu/~hundledr/courses/M250F03/M250.html.

Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. Texture synthesis with spatial generative
adversarial networks. In Workshop on Adversarial Training of Advances, Neural Information
Processing Systems 29, 2016.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and Y. Whye
Teh. Attentive neural processes. In Proceedings of the 7th International Conference on Learning
Representations, 2019.

D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. In Proceedings of the 3rd
International Conference on Learning Representations, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Proceedings of the 2rd Interna-
tional Conference on Learning Representations, 2014.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improving varia-
tional inference with inverse autoregressive flow. In Advances in Neural Information Processing
Systems 29. Curran Associates, Inc., 2016.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

Iryna Korshunova, Yarin Gal, Arthur Gretton, and Joni Dambre. Conditional BRUNO: A neural
process for exchangeable labelled data. Neurocomputing, 416:305–309, 2020.

Dana Lahat, Tülay Adali, and Christian Jutten. Multimodal data fusion: An overview of methods,
challenges, and prospects. Proceedings of the IEEE, 103(9):1449–1477, 2015.

Alfred J. Lotka. Contribution to the theory of periodic reactions. The Journal of Physical Chemistry,
14(3):271–274, 1910. ISSN 0092-7325. doi: 10.1021/j150111a004. URL https://doi.org/
10.1021/j150111a004.

13

http://people.whitman.edu/~hundledr/courses/M250F03/M250.html
http://people.whitman.edu/~hundledr/courses/M250F03/M250.html
https://doi.org/10.1021/j150111a004
https://doi.org/10.1021/j150111a004

Published as a conference paper at ICLR 2023

Chaochao Lu, Richard E. Turner, Yingzhen Li, and Nate Kushman. Interpreting spatially infinite
generative models. In ICML Workshop on Human Interpretability in Machine Learning, 2020.

Zhenyu Lu, Jungho Im, Lindi Quackenbush, and Kerry Halligan. Population estimation based on
multi-sensor data fusion. International Journal of Remote Sensing, 31(21):5587–5604, 2010.

D. A. MacLulich. Fluctuations in the Numbers of the Varying Hare (Lepus Americanus). University
of Toronto Press, 1937. doi: 10.3138/9781487583064.

Douglas Maraun and Martin Widmann. Statistical Downscaling and Bias Correction for Climate
Research. Cambridge Uiversity Press, 2018. doi: 10.1017/9781107588783.

Douglas Maraun, Martin Widmann, José M. Gutiérrez, Sven Kotlarski, Richard E. Chandler, Elke
Hertig, Joanna Wibig, Radan Huth, and Renate A. I. Wilcke. VALUE: A framework to validate
downscaling approaches for climate change studies. Earth’s Future, 3(1):1–14, 2015. doi:
10.1002/2014EF000259. URL https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1002/2014EF000259.

Douglas Maraun, Theodore G. Shepherd, Martin Widmann, Giuseppe Zappa, Daniel Walton, José M.
Gutiérrez, Stefan Hagemann, Ingo Richter, Pedro M. M. Soares, Alex Hall, and Linda O. Mearns.
Towards process-informed bias correction of climate change simulations. Nature Climate Change,
7(11):764–773, 2017. ISSN 1758-6798. doi: 10.1038/nclimate3418.

Stratis Markou, James Requeima, Wessel P. Bruinsma, and Richard E. Turner. Efficient Gaussian
neural processes for regression. In Workshop on Uncertainty & Robustness in Deep Learning, 39th
International Conference on Machine Learning, 2021.

Stratis Markou, James Requeima, Wessel P. Bruinsma, Anna Vaughan, and Richard E. Turner.
Practical conditional neural processes via tractable dependent predictions. In Proceedings of the
10th International Conference on Learning Representations, 2022.

Juan Maroñas, Oliver Hamelijnck, Jeremias Knoblauch, and Theodoros Damoulas. Transforming
gaussian processes with normalizing flows. In International Conference on Artificial Intelligence
and Statistics, pp. 1081–1089. PMLR, 2021.

Jacob Menick and Nal Kalchbrenner. Generating high fidelity images with subscale pixel networks
and multidimensional upscaling. In Proceedings of the 7th International Conference on Learning
Representations, 2019.

Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Conference in
Uncertainty in Artificial Intelligence, volume 17, pp. 362–369. Morgan Kaufmann Publishers Inc.,
2001.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In Proceedings of the 6th International Conference on Learning
Representations, 2018.

M. Morlighem. Measures bedmachine antarctica, version 2, 2020. URL https://nsidc.org/
data/NSIDC-0756/versions/2.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning via
sequence modeling. In International Conference on Machine Learning, pp. 16569–16594. PMLR,
2022.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and Checkerboard Artifacts.
Distill, 1(10):e3, October 2016. ISSN 2476-0757. doi: 10.23915/distill.00003. URL http:
//distill.pub/2016/deconv-checkerboard.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016a.

14

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014EF000259
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014EF000259
https://nsidc.org/data/NSIDC-0756/versions/2
https://nsidc.org/data/NSIDC-0756/versions/2
http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard

Published as a conference paper at ICLR 2023

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with PixelCNN decoders. Advances in neural information processing systems,
29, 2016b.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks, 2016.

Prajit Ramachandran, Tom Le Paine, Pooya Khorrami, Mohammad Babaeizadeh, Shiyu Chang, Yang
Zhang, Mark A. Hasegawa-Johnson, Roy H. Campbell, and Thomas S. Huang. Fast generation for
convolutional autoregressive models. In Workshop Track, International Conference on Learning
Representations, 2017.

Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, Rachel Prudden, Amol
Mandhane, Aidan Clark, Andrew Brock, Karen Simonyan, Raia Hadsell, Niall Robinson,
Ellen Clancy, Alberto Arribas, and Shakir Mohamed. Skilful precipitation nowcasting using
deep generative models of radar. Nature, 597(7878):672–677, September 2021. ISSN 1476-
4687. doi: 10.1038/s41586-021-03854-z. URL https://www.nature.com/articles/
s41586-021-03854-z. Number: 7878 Publisher: Nature Publishing Group.

Caleb Robinson, Kolya Malkin, Nebojsa Jojic, Huijun Chen, Rongjun Qin, Changlin Xiao, Michael
Schmitt, Pedram Ghamisi, Ronny Hänsch, and Naoto Yokoya. Global land-cover mapping with
weak supervision: Outcome of the 2020 IEEE GRSS data fusion contest. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 14:3185–3199, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Tim Salimans, Diederik Kingma, and Max Welling. Markov chain Monte Carlo and variational
inference: Bridging the gap. In International Conference on Machine Learning, pp. 1218–1226.
PMLR, 2015.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. PixelCNN++: Improving the
PixelCNN with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256–2265. PMLR, 2015.

Thomas F. Stocker, Dahe Qin, Gian-Kasper Plattner, Melinda M.B. Tignor, Simon K. Allen, Judith
Boschung, Alexander Nauels, Yu Xia, Vincent Bex, and Pauline M. Midgley. Climate change
2013: The physical science basis. Technical report, Cambridge University Press, 2013.

A. M. G. Klein Tank, J. B. Wijngaard, G. P. Können, R. Böhm, G. Demarée, A. Gocheva, M. Mileta,
S. Pashiardis, L. Hejkrlik, C. Kern-Hansen, R. Heino, P. Bessemoulin, G. Müller-Westermeier,
M. Tzanakou, S. Szalai, T. Pálsdóttir, D. Fitzgerald, S. Rubin, M. Capaldo, M. Maugeri, A. Leitass,
A. Bukantis, R. Aberfeld, A. F. V. van Engelen, E. Forland, M. Mietus, F. Coelho, C. Mares,
V. Razuvaev, E. Nieplova, T. Cegnar, J. Antonio López, B. Dahlström, A. Moberg, W. Kirch-
hofer, A. Ceylan, O. Pachaliuk, L. V. Alexander, and P. Petrovic. Daily dataset of 20th-
century surface air temperature and precipitation series for the european climate assessment.
International Journal of Climatology, 22(12):1441–1453, 2002. doi: 10.1002/joc.773. URL
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.773.

Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive
density-estimator. Advances in Neural Information Processing Systems, 26, 2013.

15

https://www.nature.com/articles/s41586-021-03854-z
https://www.nature.com/articles/s41586-021-03854-z
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.773

Published as a conference paper at ICLR 2023

Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator. In
International Conference on Machine Learning, pp. 467–475. PMLR, 2014.

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
autoregressive distribution estimation. Journal of Machine Learning Research, 17(205):1–37,
2016. URL http://jmlr.org/papers/v17/16-272.html.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 2017.

A. Vaughan, W. Tebbutt, J. S. Hosking, and R. E. Turner. Convolutional conditional neural processes
for local climate downscaling. Geoscientific Model Development, 15(1):251–268, 2022. doi: 10.
5194/gmd-15-251-2022. URL https://gmd.copernicus.org/articles/15/251/
2022/.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Advances in Neural Information Processing Systems 29.
Curran Associates, Inc., 2016.

Michael Volpp, Fabian Flürenbrock, Lukas Grossberger, Christian Daniel, and Gerhard Neumann.
Bayesian context aggregation for neural processes. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=ufZN2-aehFa.

V. Volterra. Variazioni e fluttuazioni del bumero d’ondividui in specie animali conviventi. Memoria
della Reale Accademia Nazionale dei Lincei, 2:31–113, 1926.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
XLNet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. In International conference on machine learning, pp. 7354–7363. PMLR,
2019.

X. L. Zhang, H. Begleiter, B. Porjesz, W. Wang, and A. Litke. Event related potentials during object
recognition tasks. Brain Research Bulletin, 38(6):531–538, 1995.

16

http://jmlr.org/papers/v17/16-272.html
https://gmd.copernicus.org/articles/15/251/2022/
https://gmd.copernicus.org/articles/15/251/2022/
https://openreview.net/forum?id=ufZN2-aehFa

Published as a conference paper at ICLR 2023

A PROOF OF PROPOSITION 2.1

Additional notation. If y1 ⊕ y2 ∼ Px1⊕x2
π(D), then denote the distribution of y1 |y2 by

Px1 |x2
π(D). Note that Px1 |x2

π(D) depends on y2, because it is the distribution of y1 |y2, even
though the notation does not make this dependence explicit.

The “appropriate regularity conditions”. Let PN
λ be the collection of distributions on RN that (a)

have a density with respect to the Lebesgue measure and (b) have a covariance matrix which is strictly
positive definite. Let PN

λ,G ⊆ PN
λ be the subcollection of distributions which are Gaussian. Then, by

Corollary B.1 by Bruinsma et al. (2021), for all µ ∈ PN
λ such that infν∈PN

λ,G
KL(µ, ν) < ∞,

argminν∈PN
λ,G

KL(µ, ν) = N (µ) (10)

where N (µ) denotes the Gaussian distribution with mean vector and covariance matrix equal to those
of µ.

In the proposition, by appropriate regularity conditions on y, we mean the assumption that, for all
inputs x and D ∈ D, Pxπy(D) is in P |x|

λ and such that inf
ν∈P|x|

λ,G
KL(Pxπy(D), ν) < ∞.

Assume the appropriate regularity conditions on y. We now list three technical observations.
(1) Note that Px1 |x2

πy(D) is the distribution of y(x1) |D, (x2,y2), so we have the identity
Px1 |x2

πy(D) = Px1
πy(D⊕ (x2,y2)). Therefore, for all inputs x1, inputs x2, and D ∈ D,

Px1 |x2
πy(D) is in P |x1|

λ and such that infν KL(Px1 |x2
πy(D), ν) < ∞.

(2) The ideal CNP πC matches the means and marginal variances of the true posterior predictives
(Section 2). Hence, for all x ∈ X and D ∈ D, PxπC(D) is in P1

λ,G.

(3) The ideal GNP πG matches the mean vectors and covariance matrices of the true posterior
predictives (Section 2). Hence, for all inputs x and D ∈ D, PxπG(D) is in P |x|

λ,G; which
means that, for all x1 ∈ X , inputs x2, and D ∈ D, Px1 |x2

πG(D) is in P1
λ,G.

In the proof, to apply and use (10), we implicitly use these observations.

Proposition 2.1 (Advantage of AR CNPs over GNPs). Assume appropriate regularity conditions on
y. Let πC be the ideal CNP and let πG be the ideal GNP. Then, for all inputs x and data sets D ∈ D,

KL(Pxπy(D),ARx(πC, D)) ≤ KL(Pxπy(D), PxπG(D)). (7)

Proof of Proposition 2.1. Let x be some inputs and let D ∈ D be some data set. We will argue that,
for all n = 1, . . . , |x|,

KL(Pxn |x1:(n−1)
πy(D), PxnπC(D ⊕ (x1:(n−1),y1:(n−1))))

≤ KL(Pxn |x1:(n−1)
πy(D), Pxn |x1:(n−1)

πG(D)). (11)
Assuming this inequality, the result follows directly from the chain rule for the KL divergence in
combination with the definition of ARx (Procedure 2.1):

KL(Pxπy(D),ARx(πC, D))

=
∑|x|

n=1 Ey1:(n−1)
[KL(Pxn |x1:(n−1)

πy(D), Pxn
πC(D ⊕ (x1:(n−1),y1:(n−1))))] (12)

≤∑|x|
n=1 Ey1:(n−1)

[KL(Pxn |x1:(n−1)
πy(D), Pxn |x1:(n−1)

πG(D))] (13)

= KL(Pxπy(D), PxπG(D)) (14)
where the expectations are over y1:(n−1) ∼ Px1:(n−1)

πy(D). To prove the inequality, note that,
conditional on y1:(n−1), using (10),

argminν∈P1
λ,G

KL(Pxn |x1:(n−1)
πy(D), ν) = N (Pxn |x1:(n−1)

πy(D)). (15)

By the property of πC that it matches the mean and marginal variance of the true posterior (Section 2),
N (Pxn |x1:(n−1)

πy(D)) = N (Pxn
πy(D ⊕ (x1:(n−1),y1:(n−1)))) (16)

= Pxn
πC(D ⊕ (x1:(n−1),y1:(n−1))). (17)

Therefore,
argmin
ν∈P1

λ,G

KL(Pxn |x1:(n−1)
πy(D), ν) = PxnπC(D ⊕ (x1:(n−1),y1:(n−1))). (18)

Noting that Pxn |x1:(n−1)
πG(D) ∈ P1

λ,G, we obtain the desired inequality.

17

Published as a conference paper at ICLR 2023

B PROOF OF PROPOSITION 2.2

Proposition 2.2 (Recovery of smooth samples). Let X ⊆ R be compact, and let f be a stochastic
process with surely continuous sample paths and supx∈X ∥f(x)∥L2 < ∞. Let (εn)n≥0 be i.i.d.
(potentially non-Gaussian) random variables such that E[ε0] = 0 and V[ε0] < ∞. Consider any
sequence (xn)n≥1 ⊆ X , and let x∗ ∈ X be a limit point of (xn)n≥1. If y(x∗) = f(x∗) + ε0 and
yn = f(xn) + εn are noisy observations of f , then

lim
n→∞

E[y(x∗) | y1, . . . , yn] = f(x∗) almost surely. (8)

Proof of Proposition 2.2. Consider the increasing filtration Fn = σ(y1, . . . , yn) with limit F∞ =
σ(
⋃∞

n=1Fn). Also let Tn = σ(εn+1, εn+2, . . .) and consider the tail σ-algebra T =
⋂∞

n=1 Tn. Let
(xni

)∞i=1 be a subsequence of (xn)
∞
n=1 such that xni

→ x∗. Let gn = 1
n

∑n
i=1 yi. Since gn is a

function of y1, . . . , yn, it is Fn–measurable and therefore F∞–measurable. Note that

gn =
1

n

n∑
i=1

f(xni) +
1

n

n∑
i=1

εi. (19)

By sure continuity of f , the first term converges to f(x∗) surely. By the strong law of large numbers
(Example 5.6.1; Durrett, 2010), the second term converges to zero on a tail event A ∈ T of probability
one. We conclude that 1Af(x

∗) is σ(F∞, T)–measurable. Therefore, by almost sure convergence of
L2–bounded martingales (Theorem 5.4.5; Durrett, 2010),

lim
n→∞

E[y(x∗) | y1, . . . , yn] = lim
n→∞

E[f(x∗) | y1, . . . , yn] (E[ε0] = 0) (20)

= lim
n→∞

E[f(x∗) | Fn] (definition of Fn) (21)

= lim
n→∞

E[f(x∗) | Fn, T] (σ(f(x∗),Fn) ⊥ T) (22)

= lim
n→∞

E[1Af(x
∗) | Fn, T] (P(A) = 1) (23)

= E[1Af(x
∗) | F∞, T] (L2–mart. convergence) (24)

= 1Af(x
∗) (1Af(x

∗) ∈ σ(F∞, T)) (25)

= f(x∗), (P(A) = 1) (26)

where all equalities hold almost surely.

18

Published as a conference paper at ICLR 2023

C ILLUSTRATION OF THE AR PROCEDURE

Figure 7 depicts the AR sampling procedure (Procedure 2.1) and procedure to produce smooth
samples (Proposition 2.2) using the ConvCNP trained on the EQ data process from Section 4.1.

Model fit

Step 1: Draw noisy samples using AR sampling (Procedure 2.1)

...

Step 2: Denoise sample by passing it through the model (Proposition 2.2)

Multiple samples

Figure 7: Illustration of the AR procedure with a random AR ordering and the de-noising step (Procedure 2.1
and Proposition 2.2), to produce smooth samples. Given a context set (black crosses), we can use the CNP to get
marginal predictions at arbitrary input locations (first figure). We choose a randomly sampled input location,
draw a corresponding output sample from the model’s predictive (blue dots in the second plot), append this to the
context set, and pass the augmented context set through the model again. We repeat this step a number of times
(third and fourth figures), until all function (epistemic) uncertainty has been removed and all that remains is
irreducible noise (aleatoric) uncertainty (fifth figure). This procedure yields noisy function samples (blue dots in
the sixth plot), which we pass one last time through the model to obtained a denoised sample, treating the mean
prediction as an approximate noiseless sample (seventh figure). Repeating this procedure yields high-quality
samples from the model predictive (eighth figure).

19

Published as a conference paper at ICLR 2023

D NUMBER AND ORDER OF TARGET POINTS

When deploying a conditional neural process (CNP) autoregressively (AR; Procedure 2.1), the
number and ordering of the target points matters. In this appendix, we describe our observations of
the effects of the number and ordering of the target points on the quality of the predictions. In short,
our recommendation is to choose a different random ordering for every sample, and to not let the
number/density of target points exceed that at training time.

D.1 EFFECTS OF THE NUMBER OF TARGET POINTS

During the AR sampling procedure, the AR CNP is evaluated at context sets of increasing size. Our
experience is that, as long as the sizes of these context sets do not exceed the sizes seen at training
time, the predictions should not be significantly affected by changes in the number of target points.
However, if the AR sampling procedure evaluates the model at context sets of larger sizes than seen
during training time, then that presents the model with an out-of-distribution situation. What happens
then comes down to how well the neural networks generalise. Our experience is that the predictions
quickly start to break down.

A notable exception of this rule of thumb are convolutional-deep-set–based models, such as the
Convolutional Conditional Neural Process (ConvCNP; Gordon et al., 2020). For these models, the
magnitude of the density channel is what determines whether the models generalises or not. This
means that it is not the total number of points that matters, but rather the density of the points.
Therefore, the AR ConvCNP can be evaluated at arbitrarily many target points, as long as the density
of these points does not significantly exceed the density of context points seen at training time. Once
the density exceeds the density of the training data, the model is presented with an out-of-distribution
situation, and what happens then again comes down to how well neural networks generalise.

Figure Appendix D.1 illustrates this observation. When the density target points does not exceed the
training data (50 and 100 points), the predictions look calibrated. However, once the density of target
points comes close or exceed the training data (200, 500, and 1000 points), bias starts to creep into
the predictions.

Although the number/density of points in the AR sampling procedure should not exceed that at
training time, AR CNPs can still produce high-quality samples at arbitrarily many target points by
following the trick outlined at the end of the two-step procedure below Proposition 2.2.

D.2 EFFECTS OF THE ORDERING OF TARGET POINTS

Our experience is that, as long as the number of target points (or density) does not exceed that at
training time, the ordering of the target point does not really matter. Appendix D.1 also demonstrates
this. When the density of the target points does not exceed the training data (50 and 100 points),
sampling randomly or left to right does not really matter. However, once the density of the target
points comes close to or exceeds the training data (200, 500, and 1000 points), we observe a difference
in performance between sampling randomly and sampling left to right. Across all numbers of target
points, a random ordering seems to perform most robustly. Our recommendation is therefore to
choose a different random ordering of the target points for every sample.

D.3 ANALYSIS OF AR CNPS FOR CNPS WITH GAUSSIAN MARGINALS

In this subsection, we argue that, for CNPs with Gaussian marginals, predictions in the first few AR
steps might be poor, but predictions in later AR steps tend to be more accurate. Choosing a different
random ordering for every sample therefore “averages out” the effects from these first few AR steps.

When evaluating a CNP with Gaussian marginals in AR mode, every conditional prediction in the
AR process is Gaussian. Let us consider the process of producing an AR sample. For the first target
input x1, we run the CNP forward to obtain a distribution for the corresponding target output y1. In
reality, the true posterior most likely is non-Gaussian, which means that the prediction for the first
target point may be poor. Nevertheless, we sample this Gaussian, append the sample (x1, y1) to the
context set, and run the CNP forward again. Because we now feed the earlier sample y1 through the
non-linear network, the marginal predictive for the next target output y2 (having integrated out y1)

20

Published as a conference paper at ICLR 2023

−2

0

2

50 Points Random

−2

0

2

50 Points Left to Right

−2

0

2

100 Points Random

−2

0

2

100 Points Left to Right

−2

0

2

200 Points Random

−2

0

2

200 Points Left to Right

−2

0

2

500 Points Random

−2

0

2

500 Points Left to Right

−2 −1 0 1 2

−2

0

2

1000 Points Random

−2 −1 0 1 2

−2

0

2

1000 Points Left to Right

Figure 8: Samples and predictions for an AR ConvCNP with various numbers of target points ordered randomly
(left column) and ordered left to right (right column). When the density of the target points does not exceed the
training data (50 and 100 points), ordering the target points randomly or left to right does not matter. When
the density of the target points comes close to the training data or exceeds it (200, 500, and 1000 points), bias
creeps into the predictions. The random ordering appears to perform more robustly than left to right. The data is
sampled from the EQ data process from the synthetic experiments (Section 4.1), and the trained model is also
taken from the synthetic experiments. The predictions by the model are shown in solid blue and the marginals by
the ground-truth EQ process are shown in dot-dashed purple.

is non-Gaussian. As we perform more AR steps, the marginal predictions of later points become
increasingly non-Gaussian, increasing the model’s flexibility.

We see that, for a given ordering of the target inputs, the prediction for the first target input is likely
poor (because it is Gaussian), and (in the best case) the predictions become more and more accurate
as we take more AR steps (because they become more and more non-Gaussian). This is exactly
what is happening in Figure 3: the left prediction is Gaussian and therefore a poor approximation,
and, as we go to the right and take more and more AR steps, the prediction becomes more and more
non-Gaussian and therefore more accurate. If we were to feed the target inputs in right to left, then
the same phenomenon would happen. The right prediction would be a Gaussian and a very poor

21

Published as a conference paper at ICLR 2023

approximation, and, as we go to the left and take more AR steps, the prediction would become more
non-Gaussian and therefore more accurate.

More generally, for a given ordering of the target points, the ordering will produce high quality
predictions if the conditional distributions of the AR factorisation match the corresponding conditional
distributions of the true posterior. Since the conditionals of the AR CNP are typically Gaussian by
design, this means that the ordering is “good” if the corresponding conditionals of the true posterior
are close to Gaussian.

So when is a conditional of the posterior close to Gaussian? Let us assume that the true underlying
process is a sum of a non-Gaussian process (constituting epistemic uncertainty) and independent
Gaussian noise (constituting aleatoric uncertainty). Generally, a conditional will have both epistemic
and aleatoric uncertainty, so a Gaussian will be a bad fit. However, as we condition the conditionals
of the true generative process on more and more data, the underlying function will be pinned down
more and more accurately, meaning that the conditional will consist mostly of aleatoric uncertainty,
which is Gaussian. Therefore, as we condition on more and more data, we expect the conditionals
to become more and more Gaussian. This again suggests that the samples in the first few AR steps
might be a poor fit (because the corresponding conditionals of the true posterior are not yet Gaussian),
but that samples in later AR steps should be a better fit (because the corresponding conditionals are
then close to Gaussian).

To summarise, an ordering of the target points is “good” if the corresponding conditionals of the
true posterior are also close to Gaussian. Under the assumption that the ground-truth process is a
non-Gaussian process with additive Gaussian noise, conditionals tend to be close to Gaussian if
they are conditioned on many data points. As a consequence, the earlier conditionals in the AR
factorisation tend to be poor fits to the ground-truth posterior, whereas later conditionals tend to
produce better fits. Choosing a different random ordering for every sample therefore “averages out”
the effects from the first few AR steps.

D.4 EFFECT OF THE RANDOM ORDERING ON THE SPREAD OF THE LOG-LIKELIHOOD

We have thus far argued for the benefit of using random ordering in AR, due to the robustness
it provides. However, one issue with random orderings is that, since different random orderings
do not in general give rise to the same predictive distribution, we may obtain different predictive
log-likelihoods in practice, depending on the exact random ordering that we sample. Ideally, we
would like not only the mean predictive log-likelihood (averaged out over orderings) to be high, but
also the standard deviation of the log-likelihood (due to, again, different random orderings) to be
small. In other words, we would like the model to perform well regardless of the random ordering
which we happen to sample.

At this point, note that if the true underlying process is Gaussian, then a sufficiently well-trained
AR CNP with Gaussian marginals would have a small such spread in the log-likelihood, because
all conditional predictions of the model will be close to the ground truth conditional predictions.
Consequently the order with which we make predictions will have a small effect on the log-likelihood,
resulting in a small spread of predictive log-likelihood values. Consider for example the case where
the conditionals of the CNP exactly match the conditionals of the true process. In this case, there will
be zero variance in the predictive log-likelihood of the process under different orderings. However,
the situation is different when the ground truth is non-Gaussian. In this case, as we explained in
the previous section, the conditionals of the first few target points may be highly non-Gaussian
under the true process, while those of the AR CNP are Gaussian. In this case, we may get different
log-likelihoods depending on the random order that we happen to sample.

Figure 9 provides a quantitative illustration of the above point. In this figure, we show the standard
deviation in the per datapoint predictive log-likelihood of an AR CNP (due to different random
orderings) on two variants of a task with sawtooth data. On the first variant, we always pass an empty
context set to the model (blue), and on the other task, we pass non-empty context sets with randomly
sampled number of context points, uniformly distributed between 0 and 100 (red). We observe that for
empty contexts (blue), we get a relatively large standard deviation in predictive log-likelihood for the
first few target points. This likely happens because, initially, the model may randomly pick a target
input where the conditional of the true process is highly non-Gaussian (making a poor prediction), or
it might pick a target input where the true conditional is Gaussian (making a good prediction). This

22

Published as a conference paper at ICLR 2023

101 102

target points

0.00

0.25

0.50
S

td
.

in
lo

g-
lik

.
p

er
d

at
ap

oi
nt

Standard deviation in log-likelihood per datapoint
(sawtooth data, random ordering)

|x(c)| = 0

|x(c)| ∼ U [10, 100]

Figure 9: Plot of the standard deviation, due to different random orderings, of the per-data-point predictive
log-likelihood (in nats) of an AR ConvCNP on one-dimensional sawtooth data, as a function of the number of
target set size. For each point in the plot, we have used 210 randomly sampled and fixed tasks, on each of which
we apply the AR ConvCNP with 100 different randomly sampled orderings.

results in a larger variance in performance for the first few target points. However, as more target
points are introduced, the standard deviation shrinks. This is because the conditionals of the true
process become increasingly Gaussian, which means that no matter which target input is picked next,
the model will approximate the true conditional accurately using a Gaussian, thereby reducing the
impact of the ordering of subsequent points on the variance of the log likelihood. Further, introducing
a relatively modest number of initial context points (red) in a second variant of the task, substantially
reduces the spread in the predictive log-likelihoods. This is again because conditioning on a context
set means that the conditionals of the true process are better approximated by Gaussians, reducing
the impact that different random orderings have on the spread of the log-likelihood. In practice, in
our experiments, we have found the variance in the log-likelihood to be near-zero for Gaussian or
Gaussian-like ground truth processes, and larger, but acceptable, for non-Gaussian tasks.

23

Published as a conference paper at ICLR 2023

E DETAILS FOR FIGURE 3

The generative process visualised in the top panel of figure 3 is defined by the following mixture
distribution:

ptrue(y |x) = a1N (f1(x), 1) + a2N (f2(x), 1) + a3N (f3(x), 1). (27)

Given this mixture distribution, the (Gaussian) ideal CNP can be computed in closed form by
computing the first two moments of ptrue:

pCNP(y |x) = N (µ(x), σ2(x)) (28)

where

µ(x) =

3∑
i=1

aifi(x), (29)

σ2(x) =

3∑
i=1

ai
(
1 + fi(x)

2
)
−
(

3∑
i=1

aifi(x)

)2

. (30)

The updated mixture weights for the posterior distribution ptrue(y |x,D(c)) given a context set D(c)

can be computed via Bayes rule and pCNP(y |x,D(c)) can be computed given the updated mixture
weights. Note that in Figure 3 the prior mixture weights are a1 = a3 = 0.25 and a2 = 0.5, means
are given by

f1(x) = x2 + 1, (31)
f2(x) = x, (32)
f3(x) = −x, (33)

and the target locations are x = 1, 2, 4, and 6. The bottom four panels of Figure 3 show ker-
nel density estimates (Gaussian kernel) of 30 000 samples drawn from the generative distribution
ptrue(y1, y2, y4, y6), the ideal CNP pCNP(y1, y2, y4, y6), and the ideal CNP applied in AR mode from
left to right:

pAR CNP(y1, y2, y4, y6) = pCNP(y1)pCNP(y2 | y1)pCNP(y4 | y1, y2)pCNP(y6 | y1, y2, y4). (34)

24

Published as a conference paper at ICLR 2023

F DESCRIPTION OF MODELS

The architectures follow the descriptions from the respective papers they are introduced. Although
these descriptions are for one-dimensional inputs and outputs, the architectures are readily generalised
to multidimensional inputs and outputs; we will explicitly mention wherever that generalisation
requires extra care. All architectures use ReLU activation functions. All GNPs, in addition to a
covariance matrix over the target points, also output heterogeneous observation noise along the
marginal means; the total covariance over the target points is thus the sum of the covariance by the
model and a diagonal matrix formed from these observation noises.

Conditional neural process (CNP; Garnelo et al., 2018a). Set the dimensionality of the encoding to
K = 256. Parametrise the encoder with a three-hidden-layer multi-layer perceptron (MLP) of width
256; and parametrise the decoder with a six-hidden-layer MLP of width 256. For multidimensional
outputs, let the decoder have width 512. For multidimensional outputs where outputs can have
context points at different inputs, produce a separate encoding for every output and concatenate these
into one big encoding. These encoders may or may not share parameters. In our experiments, for
two-dimensional outputs, parametrise separate encoders; for higher-dimensional outputs, apply the
same encoder.

Gaussian neural process (GNP; Markou et al., 2022). Use the same choices for K, the encoder, and
the decoder as the CNP. Set the rank of the kernel map to R = 64. As mentioned in the introduction,
let the decoder produce one extra dimension which forms heterogeneous observation noise. For
multidimensional outputs, the same caveats as for the CNP apply.

Latent neural process (LNP; Garnelo et al., 2018b). The LNP builds off the CNP. Call the
existing encoder the deterministic encoder. The NP adds one more encoder called the stochastic
encoder. The stochastic encoder mimics the deterministic encoder, but outputs a K-dimensional
vector of means and a K-dimensional vector of marginal variances. These are used to sample a
K-dimensional Gaussian latent variable (the stochastic encoding). The decoder now additionally
takes in the stochastic encoding. For multidimensional outputs, the same caveats as for the CNP
apply.

Attentive conditional neural process (ACNP; Kim et al., 2019). The ACNP builds off the CNP. It
replaces the deterministic encoder encθ : D → RK with an eight-head attentive encoder enc(att)

θ : D×
X → RK (Vaswani et al., 2017). Unlike the original deterministic encoder encθ, the new attentive
encoder enc(att)

θ also takes in the target input. Let D(c) = (x(c),y(c)) ∈ D be a context set of size N

and let x(t) ∈ X be a target input. We now descibe the computation of enc(att)
θ (D(c), x(t)). Parametrise

ϕx : X → (R32)8 and ϕxy : X × Y → (R32)8 both with three-hidden-layer MLPs of width 256.
Compute

the keys: (kh,n)
8
h=1 = ϕx(x

(c)
n) for n = 1, . . . , N, (35)

the values: (vh,n)
8
h=1 = ϕxy(x

(c)
n , y(c)

n) for n = 1, . . . , N, (36)

the query: (qh)
8
h=1 = ϕx(x

(t)). (37)

Then compute

v(q)
h =

N∑
n=1

e⟨qh,kh,n⟩∑N
n′=1 e

⟨qh,kh,n′ ⟩
vh,n ∈ R256 (38)

Concatenate v(q) = (v(q)
1 , . . . ,v(q)

8) ∈ R256 and q = (q1, . . . ,q8) ∈ R256. Let L : R256 → R256 be
a linear layer; let ϕ(res) : R256 → R256 be a one-hidden-layer MLP of width 256; and let norm1 and
norm2 be two layer normalisation layers with learned pointwise transformations (Ba et al., 2016).
Then

enc(att)
θ (D(c), x(t)) = norm2(z+ ϕ(res)(z)) where z = norm1(v

(q) + Lq). (39)
For multidimensional outputs, the same caveats as for the CNP apply.

Attentive Gaussian neural process (AGNP). The AGNP build off the GNP. It replaces the determin-
istic encoder with the same eight-head attentive deterministic encoder of the ACNP.

Attentive neural process (ALNP; Kim et al., 2019). The ALNP build off the LNP. It replaces the
deterministic encoder with the same eight-head attentive deterministic encoder of the ACNP.

25

Published as a conference paper at ICLR 2023

Convolutional Conditional Neural Process (ConvCNP; Gordon et al., 2020). Set the discretisation
to an evenly spaced grid at a certain density (the points per unit) spanning a bit more (the margin) than
the most extremal context and target inputs. The points per unit and margin are specified separately
for every experiment. Initialise the length scales of all Gaussian kernels to twice the interpoint
spacing of the discretisation. Divide the data channel by the density channel. Parametrise decθ with a
U-Net (Ronneberger et al., 2015). Before the U-turn, let the U-Net have six convolutional layers with
kernel size five, stride two, and 64 output channels; and six more such layers, but using transposed
convolutions, after the U-turn. The layers after the U-turn additionally take in the outputs of the layers
before the U-turn in reversed order; this is the U-net structure (Figure 1; Ronneberger et al., 2015).
For multidimensional outputs where outputs can have context points at different inputs, produce a
separate data and density channel for every output and concatenate these into one big encoding; use
separate length scales for every application of encθ.

Convolutional Gaussian neural process (ConvGNP; Markou et al., 2022). Use the same choices
for the discretisation, length scales, and CNN architecture as for the ConvCNP. Set the rank of the
kernel map to R = 64. As mentioned in the introduction, let the decoder produce one extra channel
which forms heterogeneous observation noise. For multidimensional outputs, the same caveat as for
the ConvCNP applies.

Fully convolutional Gaussian neural process (FullConvGNP; Bruinsma et al., 2021). For the
mean architecture and the kernel architecture, use the same choices for the discretisation, length
scales, and CNN architecture as for the ConvCNP. Implement the source channel with the identity
matrix and apply the matrix transform Z 7→ ZZT to ensure positive definiteness. Let the decoder
produce one extra channel which forms heterogeneous observation noise. For multidimensional
outputs, in addition to the caveat for the ConvCNP, two additional caveats apply. First, for Do-
dimensional outputs, let the decoder produce D2

o channels rather than just one. These channels should
be interpreted as all covariance and cross-covariance matrices between all outputs. Second, when
applying the matrix transform Z 7→ ZZT, these channels should first be assembled into one total
covariance matrix.

Convolutional latent neural process (ConvLNP; Foong et al., 2020). The ConvLNP builds off the
ConvCNP. The ConvLNP replaces the CNN architecture by two copies of this architecture placed in
sequence. In between the two architectures, there is a sampling step: the first architecture outputs 32
channels, comprising 16 means and 16 marginal variances, which are used to sample a 16-dimensional
Gaussian latent variable; and the second architecture then takes in this sample.

Autoregressive Conditional Neural Processes (AR CNPs). The AR CNP, AR ACNP, and AR
ConvCNP use the architectures described above. Rolling out an AR CNP according to Procedure 2.1
requires an ordering of the target points. In all experiments, we choose a random ordering of the
target points.

26

Published as a conference paper at ICLR 2023

G TRAINING, CROSS-VALIDATION, AND EVALUATION PROTOCOLS

The following description applies to the synthetic experiments (Section 4.1), the predator–prey
experiments (Section 4.2), the EEG experiments (Section 4.3), and the environmental downscaling
experiments (Section 4.4). For the environmental data assimilation experiments, a different protocol
was used; we refer the reader to Appendix K for full details of the environmental data assimilation
experiments.

A task consists of a context set and target set. How precisely the context and target sets are generated
is specific to an experiment. To train a model, we consider batches of 16 tasks at a time, compute an
objective function value, and update the model parameters using ADAM (Kingma & Ba, 2015). The
learning rate is specified separately for every experiment. We define an epoch to consist of 214 ≈
16 k tasks. We typically train a model for between 100 and 1000 epochs.

For an experiment, we split up the meta–data set into a training set, a cross-validation set, and an
evaluation set. The model is trained on the training set. During training, after every epoch, the
model is cross-validated on the cross-validation set. Cross-validation uses 212 fixed tasks. These
212 are fixed, which means that cross-validation always happens with exactly the same data. The
cross-validation objective is a confidence bound computed from the model objective. Suppose that
model objective over all 212 cross-validation tasks has empirical mean µ̂ and empirical variance σ̂2.
If a higher model objective is better, then the cross-validation objective is given by µ̂−1.96 · σ̂/

√
212.

The model with the best cross-validation objective is selected and used for evaluation. Evaluation is
performed with the evaluation set and also uses 212 tasks.

Conditional neural processes and Gaussian neural processes are trained, cross-validated, and evaluated
with the neural process ELBO objective proposed by Garnelo et al. (2018a). We normalise the terms
in the neural process objective by the target set sizes. Latent-variable neural processes (LNPs) are
trained, cross-validated, and evaluated with the ELBO objective proposed by Garnelo et al. (2018b)
using five samples, also normalised by the target set size. When training LNPs with the ELBO
objective, but not when cross-validating and evaluating, the context set is subsumed in the target
set. Additionally, LNPs are trained, cross-validated, and evaluated with the ML objective proposed
by Foong et al. (2020), again normalised by the target set size. When training and cross-validating
LNPs with the ML objective, we use twenty samples; and when evaluating, we use 512 samples. For
completeness, LNPs trained with the ELBO objective are also evaluated with the ML objective using
512 samples.

To stabilise the numerics for GNPs, we increase the regularisation of covariance matrices for one
epoch. To encourage LNPs to fit, we fix the variance of the observation noise of the decoder to 10−4

for the first three epochs.

27

Published as a conference paper at ICLR 2023

H DETAILS OF SYNTHETIC EXPERIMENTS

H.1 DESCRIPTION OF EXPERIMENTS

We synthetically generate data sets by randomly sampling from five different choices for the ground-
truth stochastic process f . Let the inputs be dx-dimensional. Then define the following stochastic
processes:

EQ: a Gaussian process with an exponentiated quadratic (EQ) kernel:

f ∼ GP(0, exp(− 1
2ℓ2 ∥x− x′∥22)) (40)

where ℓ > 0 is a length scale;
Matérn– 5

2 : a Gaussian process with a Matérn– 5
2 kernel:

f ∼ GP(0, k(1ℓ ∥x− x′∥2)) (41)

where k(r) = (1 +
√
5r + 5

3r
2)e−r and ℓ > 0 is a length scale;

weakly periodic: a Gaussian process with a weakly periodic kernel:

f ∼ GP(0, exp(− 1
2ℓ2d

∥x− x′∥22 − 2
ℓ2p
∥sin(πp (x− x′))∥22)) (42)

where ℓd > 0 is a length scale specifying how quickly the periodic pattern
changes, ℓp > 0 a length scale of the periodic pattern, and p > 0 the period; and
where the application of sin is elementwise;

sawtooth: a sawtooth process with a random frequency, direction, and phase:

f = ω⟨x,u⟩2 + ϕ mod 1 (43)

where ω ∼ Unif(Ω) is the frequency of the sawtooth wave, u ∼ Unif({x ∈
Rdx : ∥x∥2 = 1}) the direction, and ϕ ∼ Unif([0, 1]) the phase;

mixture: with equal probability, sample f from the EQ process, Matérn– 5
2 process, weakly

periodic process, or sawtooth process.

We will call these stochastic processes the data processes. The data processes are stochastic processes
with dx-dimensional inputs and one-dimensional outputs. We will turn them into processes with dy-
dimensional outputs according to the following procedure: sample from the one-dimensional-output
prior dy times; and, for these dy samples, take dy different linear combinations.

We choose the parameters of the data processes based on the input dimensionality dx:

ℓ = c · 1
4 , ℓd = c · 1

2 , ℓs = c, p = c · 1
4 , Ω = [c−1 · 2, c−1 · 4] (44)

with c =
√
dx. Scaling with the input dimensionality aims to roughly ensure that data with one-

dimensional inputs and data with two-dimensional inputs are equally difficult. Figure 10 illustrates
the sawtooth data process in all four configurations.

We will construct data sets by sampling inputs uniformly at random from X = [−2, 2]dx and then
sampling outputs from one of the data processes. We will colloquially call X the training range.
For the EQ, Matérn– 5

2 , and weakly periodic process, but not for the sawtooth process6, we also add
independent Gaussian noise with variance 0.05. The numbers of context and target points are as
follows. For the EQ, Matérn– 5

2 , and weakly periodic process, the number of context points is chosen
uniformly at random from {0, . . . , 30 · dx} and the number of targets points is fixed to 50 · dx. For
the sawtooth and mixture process, the number of context points is chosen uniformly at random from
{0, . . . , 30} if dx = 1 and {0, . . . , 75 · dx} otherwise; and the number of targets points is fixed to
100 · dx. In the case of a multidimensional-output data process, we separately sample the number and
positions of the context and target inputs for every output dimension.

For every data process and each of the four configurations, we evaluate every model in three different
ways. First, we evaluate the model on data generated exactly like the training data. This task is
called interpolation and abbreviated “int.” in the tables of results. The interpolation task measures
how well a model fits the data and is the primary measure of performance. Second, we evaluate the
model on data with inputs sampled from [2, 6]dx . This task is called out-of-input-distribution (OOID)

6The sawtooth process is already challenging enough.

28

Published as a conference paper at ICLR 2023

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x
)

(a) dx = 1, dy = 1

2 1 0 1 2
x

1.0

0.5

0.0

0.5

f(
x
)

2 1 0 1 2
x

1.25

1.00

0.75

0.50

0.25

(b) dx = 1, dy = 2

2 1 0 1 2
x1

2

1

0

1

2

x
2

0.0

0.2

0.4

0.6

0.8

1.0

f(
x
)

(c) dx = 2, dy = 1

2 1 0 1 2
x1

x
2

2 1 0 1 2
x1

1.5

1.0

0.5

0.0

0.5

f(
x
)

(d) dx = 2, dy = 2

Figure 10: Samples from the sawtooth data process with one and two-dimensional inputs (dx = 1 and dx = 2)
and one and two-dimensional outputs (dy = 1 and dy = 2)

interpolation and abbreviated “OOID” in the tables of results. OOID interpolation measures how
well a model generalises to data sampled from other regions of the input space. Third, we evaluate the
model on data with context inputs sampled from [−2, 2]dx and target inputs sampled from [2, 6]dx .
This task is called extrapolation and abbreviated “ext.” in the tables of results. The extrapolation task
measures how well predictions based on data in the training range generalise to other regions of the
input space.

For this experiment, the learning rate is 3 · 10−4, the margin is 0.1, and the points per unit is 64. We
trained the models for 100 epochs. Due to an error in the cross-validation procedure, we did not use
cross-validation, but used the model at epoch 100.

For the kernel architecture of the FullConvGNP, we reduce the points per unit and the number of
channels in the U-Net by a factor two. For the ConvLNP with two-dimensional inputs, we reduce the
number of outputs channels in the U-Net by a factor

√
2; and, for training and cross-validation, we

reduce the number of samples of the ELBO objective to one and the number of samples for the ML
objective to five.

H.2 MULTI-MODALITY OF PREDICTIONS BY AR CONVCNP

Figure 11 demonstrates multi-modality of predictions by the AR ConvCNP trained on the sawtooth
process. Note that the prediction is bimodal for one and two observations, and collapses to a single
mode upon observing the third observation.

H.3 FULL RESULTS

We the show the full results for all data sets and tasks in Tables 7 to 18. The AR ConvCNP consistently
shows very strong performance compared to other NP models. Note that the FullConvGNP takes
much longer to train than the ConvCNP (Figure 2), and cannot be applied to tasks with 2-dimensional
input spaces.

29

Published as a conference paper at ICLR 2023

0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

Prediction at x = 0

0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

Figure 11: Multi-modality of predictions by the AR ConvCNP. Shows four observations sampled from the
sawtooth process. In the four rows, these four observations are revealed one data point at a time. Every row also
shows a kernel density estimate of the prediction at x = 0. Filled regions are central 95%-credible regions.

30

Published as a conference paper at ICLR 2023

Table 7: For the Gaussian experiments, average Kullback–Leibler divergences of the posterior prediction map
πy with respect to the model normalised by the number of target points. Shows for one-dimensional inputs (1D;
dx = 1) and two-dimensional inputs (2D; dy = 2) the performance for interpolation within the range [−2, 2]dx

where the models were trained (“Int.”); interpolation within the range [2, 6]dx which the models have never seen
before (“OOID”); and extrapolation from the range [−2, 2]dx to the range [2, 6]dx (“Ext.”). Models are ordered
by interpolation performance for one-dimensional inputs. The latent variable models are trained and evaluated
with the ELBO objective (E); trained and evaluated with the ML objective (M); and trained with the ELBO
objective and evaluated with the ML objective (E–M). Diagonal GP refers to predictions by the ground-truth
Gaussian processes without correlations. Trivial refers to predicting the empirical means and standard deviation
of the test data. Errors indicate the central 95%-confidence interval. Numbers which are significantly best
(p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”. Numbers which are
missing could not be run.

Model Int. (1D) OOID (1D) Ext. (1D) Int. (2D) OOID (2D) Ext. (2D)

FullConvGNP 0.01±0.00 0.01±0.00 0.00±0.00

ConvCNP (AR) 0.03±0.00 0.03±0.00 0.02±0.00 0.03±0.00 0.03±0.00 0.02±0.00

ConvGNP 0.04±0.00 0.04±0.00 1.75±0.12 0.12±0.00 0.12±0.00 0.71±0.03

AGNP 0.10±0.00 4.34±0.17 5.45±0.23 0.17±0.00 0.62±0.01 0.39±0.01

ConvLNP (E) 0.19±0.01 0.19±0.01 0.29±0.03 0.39±0.01 0.39±0.01 0.36±0.01

ACNP (AR) 0.24±0.01 1.08±0.02 0.86±0.01 0.13±0.00 0.57±0.01 0.40±0.01

GNP 0.25±0.01 F F 0.25±0.01 0.75±0.01 0.57±0.00

ConvLNP (M) 0.31±0.01 0.31±0.01 0.64±0.01 0.28±0.01 0.28±0.01 0.36±0.01

Diagonal GP 0.42±0.02 0.42±0.02 0.84±0.01 0.29±0.01 0.29±0.01 0.40±0.01

ALNP (M) 0.43±0.01 1.03±0.02 0.78±0.01 0.31±0.01 0.55±0.01 0.39±0.01

ConvCNP 0.43±0.02 0.43±0.02 0.84±0.01 0.30±0.01 0.30±0.01 0.40±0.01

CNP (AR) 0.46±0.01 F F 0.36±0.01 F F
LNP (E) 0.51±0.01 F 4.34±0.76 0.40±0.01 3.03±1.68 0.60±0.01

LNP (E–M) 0.52±0.02 F 2.39±0.33 0.39±0.01 2.35±1.06 0.57±0.01

ALNP (E–M) 0.53±0.01 1.12±0.03 0.85±0.02 0.42±0.01 0.78±1.72 0.41±0.01

ACNP 0.54±0.02 1.11±0.02 0.84±0.01 0.34±0.01 0.57±0.01 0.40±0.01

ALNP (E) 0.54±0.01 1.60±0.06 1.25±0.03 0.43±0.01 1.06±3.04 0.42±0.01

LNP (M) 0.59±0.01 F 1.13±0.01 0.41±0.01 0.88±0.03 0.52±0.01

CNP 0.63±0.01 F 1.08±0.02 0.43±0.01 1.16±0.45 0.52±0.01

Trivial 1.08±0.01 1.08±0.01 0.85±0.01 0.57±0.01 0.57±0.01 0.40±0.00

ConvLNP (E–M) 2.01±0.11 2.01±0.11 5.95±0.16 0.44±0.01 0.44±0.01 0.47±0.01

31

Published as a conference paper at ICLR 2023

Table 8: For the non-Gaussian experiments, average log-likelihoods normalised by the number of target points.
Shows for one-dimensional inputs (1D; dx = 1) and two-dimensional inputs (2D; dy = 2) the performance
for interpolation within the range [−2, 2]dx where the models were trained (“Int.”); interpolation within the
range [2, 6]dx which the models have never seen before (“OOID”); and extrapolation from the range [−2, 2]dx

to the range [2, 6]dx (“Ext.”). Models are ordered by interpolation performance for one-dimensional inputs. The
latent variable models are trained and evaluated with the ELBO objective (E); trained and evaluated with the
ML objective (M); and trained with the ELBO objective and evaluated with the ML objective (E–M). Trivial
refers to predicting the empirical means and standard deviation of the test data. Errors indicate the central
95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are
very large are marked as failed with “F”. Numbers which are missing could not be run.

Model Int. (1D) OOID (1D) Ext. (1D) Int. (2D) OOID (2D) Ext. (2D)

ConvCNP (AR) 1.52±0.04 1.53±0.04 1.32±0.04 0.56±0.03 0.56±0.03 0.29±0.03

ConvLNP (E) 1.40±0.05 1.40±0.05 0.82±0.05 0.06±0.03 0.06±0.03 −0.62±0.04

ConvLNP (M) 1.08±0.06 1.08±0.06 −0.36±0.03 0.26±0.04 0.26±0.04 −0.70±0.02

ConvGNP 0.79±0.06 0.79±0.06 −1.03±0.07 0.23±0.04 0.23±0.04 −0.79±0.02

FullConvGNP 0.71±0.08 0.72±0.06 −0.20±0.02

ConvCNP 0.57±0.07 0.57±0.07 −0.73±0.02 0.18±0.05 0.18±0.05 −0.86±0.03

ACNP (AR) 0.07±0.03 −0.85±0.03 −0.84±0.02 −0.53±0.02 −1.52±0.10 −1.51±0.09

AGNP −0.31±0.03 −1.22±0.07 −1.58±0.11 −0.55±0.02 −0.79±0.02 −0.76±0.03

ALNP (E–M) −0.33±0.03 −0.91±0.03 −0.80±0.04 −0.67±0.03 −1.06±0.62 −0.70±0.03

ALNP (E) −0.35±0.03 −5.00±0.17 −3.37±0.06 −0.68±0.03 −2.59±7.64 −0.75±0.03

ALNP (M) −0.36±0.02 −0.68±0.02 −0.68±0.02 −0.53±0.02 −0.74±0.04 −0.69±0.02

GNP −0.38±0.02 F F −0.69±0.02 −0.74±0.04 −0.70±0.03

LNP (E–M) −0.43±0.02 F −3.34±0.53 −0.66±0.02 F −0.96±0.03

LNP (E) −0.44±0.02 F F −0.66±0.02 F F
ACNP −0.50±0.03 −0.83±0.03 −0.85±0.03 −0.60±0.02 −1.50±0.10 −0.73±0.03

LNP (M) −0.53±0.02 −1.28±0.05 −0.80±0.03 −0.62±0.02 −1.50±0.11 −0.75±0.03

CNP (AR) −0.65±0.02 −1.14±0.19 −0.98±0.06 −0.69±0.02 −1.05±0.07 −0.72±0.03

CNP −0.68±0.02 −0.79±0.04 −0.73±0.03 −0.69±0.02 −1.05±0.08 −0.71±0.03

Trivial −0.82±0.00 −0.82±0.00 −0.82±0.00 −0.82±0.00 −0.82±0.00 −0.82±0.00

ConvLNP (E–M) F F F −0.04±0.05 −0.04±0.05 −1.47±0.87

32

Published as a conference paper at ICLR 2023

Table 9: For the EQ synthetic experiments with one-dimensional inputs, average Kullback–Leibler divergences
of the posterior prediction map πy with respect to the model normalised by the number of target points. Shows
for one-dimensional outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance for interpolation
within the range [−2, 2] where the models where trained (“Int.”); interpolation within the range [2, 6] which the
models have never seen before (“OOID”); and extrapolation from the range [−2, 2] to the range [2, 6] (“Ext.”).
Models are ordered by interpolation performance. The latent variable models are trained and evaluated with the
ELBO objective (E); trained and evaluated with the ML objective (M); and trained with the ELBO objective
and evaluated with the ML objective (E–M). Diagonal GP refers to predictions by the ground-truth Gaussian
processes without correlations. Trivial refers to predicting the empirical means and standard deviation of the
test data. Errors indicate the central 95%-confidence interval. Numbers which are significantly best (p < 0.05)
are boldfaced. Numbers which are very large are marked as failed with “F”. Numbers which are missing could
not be run.

EQ Int. OOID Ext.
dx=1, dy=1

FullConvGNP 0.00±0.00 0.00±0.00 0.00±0.00

ConvGNP 0.01±0.00 0.01±0.00 3.46±0.08

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

AGNP 0.03±0.00 4.28±0.08 7.38±0.13

ConvLNP (E) 0.06±0.00 0.06±0.00 0.11±0.01

ACNP (AR) 0.07±0.00 1.19±0.01 0.98±0.01

GNP 0.08±0.00 F F
ConvLNP (M) 0.25±0.01 0.25±0.01 0.67±0.01

CNP (AR) 0.28±0.00 F F
ALNP (M) 0.31±0.01 1.04±0.01 0.84±0.01

LNP (E) 0.34±0.01 F 1.34±0.01

LNP (E–M) 0.37±0.01 F 1.27±0.01

Diagonal GP 0.40±0.01 0.40±0.01 0.95±0.01

ConvCNP 0.41±0.01 0.41±0.01 0.95±0.01

ANP (E–M) 0.42±0.01 1.18±0.01 0.94±0.01

ANP (E) 0.44±0.01 1.32±0.01 1.25±0.01

ACNP 0.45±0.01 1.22±0.01 0.95±0.01

LNP (M) 0.49±0.01 1.54±0.01 1.45±0.01

CNP 0.54±0.01 F 1.41±0.01

ConvLNP (E–M) 0.90±0.04 0.90±0.04 4.05±0.06

Trivial 1.19±0.00 1.19±0.00 0.96±0.00

EQ Int. OOID Ext.
dx=1, dy=2

FullConvGNP 0.00±0.00 0.00±0.00 0.00±0.00

ConvGNP 0.01±0.00 0.01±0.00 1.73±0.05

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

AGNP 0.04±0.00 7.71±0.10 7.87±0.10

ACNP (AR) 0.07±0.00 1.31±0.01 1.09±0.01

ConvLNP (E) 0.08±0.00 0.08±0.00 0.13±0.00

GNP 0.13±0.00 F F
ConvLNP (M) 0.36±0.01 0.36±0.01 0.88±0.00

ALNP (M) 0.41±0.01 1.23±0.01 0.99±0.00

CNP (AR) 0.42±0.00 F F
Diagonal GP 0.47±0.01 0.47±0.01 1.06±0.00

ConvCNP 0.48±0.01 0.48±0.01 1.06±0.00

ACNP 0.51±0.01 1.38±0.01 1.06±0.01

ALNP (E–M) 0.52±0.01 1.47±0.02 1.07±0.01

ALNP (E) 0.53±0.01 3.79±0.05 2.84±0.02

LNP (E) 0.54±0.01 F 1.47±0.01

LNP (E–M) 0.56±0.01 F 1.42±0.01

LNP (M) 0.64±0.00 F 1.52±0.00

CNP 0.66±0.01 F 1.28±0.00

Trivial 1.31±0.00 1.31±0.00 1.07±0.00

ConvLNP (E–M) 2.14±0.06 2.14±0.06 9.30±0.08

33

Published as a conference paper at ICLR 2023

Table 10: For the EQ synthetic experiments with two-dimensional inputs, average Kullback–Leibler divergences
of the posterior prediction map πy with respect to the model normalised by the number of target points. Shows
for one-dimensional outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance for interpolation
within the range [−2, 2]2 where the models where trained (“Int.”); interpolation within the range [2, 6]2 which
the models have never seen before (“OOID”); and extrapolation from the range [−2, 2]2 to the range [2, 6]2

(“Ext.”). Models are ordered by interpolation performance. The latent variable models are trained and evaluated
with the ELBO objective (E); trained and evaluated with the ML objective (M); and trained with the ELBO
objective and evaluated with the ML objective (E–M). Diagonal GP refers to predictions by the ground-truth
Gaussian processes without correlations. Trivial refers to predicting the empirical means and standard deviation
of the test data. Errors indicate the central 95%-confidence interval. Numbers which are significantly best
(p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”. Numbers which are
missing could not be run.

EQ Int. OOID Ext.
dx=2, dy=1

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

ConvGNP 0.08±0.00 0.08±0.00 1.92±0.02

AGNP 0.09±0.00 0.70±0.00 0.50±0.00

ACNP (AR) 0.09±0.00 0.72±0.00 0.51±0.00

GNP 0.19±0.00 1.01±0.00 0.80±0.00

ConvLNP (M) 0.34±0.00 0.34±0.00 0.47±0.00

ALNP (M) 0.34±0.00 0.70±0.00 0.51±0.00

Diagonal GP 0.36±0.00 0.36±0.00 0.51±0.00

ConvCNP 0.37±0.00 0.37±0.00 0.51±0.00

ACNP 0.40±0.00 0.72±0.00 0.51±0.00

ConvLNP (E) 0.41±0.00 0.41±0.00 0.46±0.00

CNP (AR) 0.41±0.00 0.90±0.00 0.71±0.00

LNP (E–M) 0.46±0.00 0.99±0.01 0.65±0.00

LNP (E) 0.48±0.00 1.04±0.01 0.67±0.00

ConvLNP (E–M) 0.48±0.00 0.48±0.00 0.59±0.01

ALNP (E–M) 0.49±0.01 0.72±0.00 0.51±0.00

ALNP (E) 0.50±0.01 0.73±0.00 0.52±0.00

LNP (M) 0.51±0.00 0.92±0.00 0.72±0.00

CNP 0.52±0.00 0.92±0.00 0.72±0.00

Trivial 0.72±0.00 0.72±0.00 0.51±0.00

FullConvGNP

EQ Int. OOID Ext.
dx=2, dy=2

ConvCNP (AR) 0.03±0.00 0.03±0.00 0.02±0.00

ACNP (AR) 0.11±0.00 0.79±0.00 0.56±0.00

ConvGNP 0.19±0.00 0.19±0.00 0.74±0.01

AGNP 0.22±0.00 0.87±0.01 0.57±0.00

GNP 0.38±0.00 1.06±0.00 0.75±0.00

ConvNP (M) 0.39±0.00 0.39±0.00 0.52±0.00

Diagonal GP 0.40±0.00 0.40±0.00 0.56±0.00

ConvCNP 0.41±0.00 0.41±0.00 0.56±0.00

ANP (M) 0.42±0.00 0.79±0.00 0.54±0.00

ACNP 0.44±0.00 0.79±0.00 0.56±0.00

CNP (AR) 0.52±0.00 F F
NP (E–M) 0.56±0.00 1.95±0.03 0.72±0.00

ANP (E–M) 0.56±0.00 1.90±1.72 0.55±0.00

NP (E) 0.57±0.00 1.99±0.03 0.72±0.00

ANP (E) 0.57±0.00 3.51±3.04 0.56±0.00

NP (M) 0.59±0.00 1.17±0.01 0.75±0.00

CNP 0.60±0.00 3.08±0.42 0.66±0.00

Trivial 0.79±0.00 0.79±0.00 0.56±0.00

ConvNP (E–M) 0.79±0.00 0.79±0.00 0.56±0.00

ConvNP (E) 0.79±0.00 0.79±0.00 0.56±0.00

FullConvGNP

34

Published as a conference paper at ICLR 2023

Table 11: For the Matérn– 5
2

synthetic experiments with one-dimensional inputs, average Kullback–Leibler
divergences of the posterior prediction map πy with respect to the model normalised by the number of target
points. Shows for one-dimensional outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance
for interpolation within the range [−2, 2] where the models where trained (“Int.”); interpolation within the
range [2, 6] which the models have never seen before (“OOID”); and extrapolation from the range [−2, 2] to
the range [2, 6] (“Ext.”). Models are ordered by interpolation performance. The latent variable models are
trained and evaluated with the ELBO objective (E); trained and evaluated with the ML objective (M); and trained
with the ELBO objective and evaluated with the ML objective (E–M). Diagonal GP refers to predictions by
the ground-truth Gaussian processes without correlations. Trivial refers to predicting the empirical means
and standard deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers which
are significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”.
Numbers which are missing could not be run.

Matérn– 5
2 Int. OOID Ext.

dx=1, dy=1

FullConvGNP 0.00±0.00 0.00±0.00 0.00±0.00

ConvCNP (AR) 0.00±0.00 0.00±0.00 0.00±0.00

ConvGNP 0.01±0.00 0.01±0.00 2.32±0.06

AGNP 0.03±0.00 4.53±0.08 7.22±0.12

ACNP (AR) 0.04±0.00 1.08±0.01 0.87±0.01

GNP 0.09±0.00 F F
ConvLNP (E) 0.13±0.00 0.13±0.00 0.31±0.02

ConvLNP (M) 0.26±0.01 0.26±0.01 0.58±0.00

ALNP (M) 0.30±0.00 0.98±0.01 0.78±0.01

CNP (AR) 0.34±0.01 1.81±0.04 1.32±0.02

LNP (E) 0.36±0.00 F 1.31±0.01

LNP (E–M) 0.37±0.01 F 1.14±0.00

Diagonal GP 0.40±0.01 0.40±0.01 0.84±0.01

ConvCNP 0.40±0.01 0.40±0.01 0.84±0.01

ALNP (E–M) 0.41±0.01 1.13±0.01 0.84±0.01

ACNP 0.42±0.01 1.10±0.01 0.84±0.01

ALNP (E) 0.43±0.01 1.15±0.01 0.87±0.01

LNP (M) 0.51±0.00 1.87±0.02 1.30±0.01

CNP 0.54±0.01 1.47±0.02 1.11±0.01

Trivial 1.08±0.00 1.08±0.00 0.85±0.00

ConvLNP (E–M) 1.37±0.04 1.36±0.04 4.30±0.06

Matérn– 5
2 Int. OOID Ext.

dx=1, dy=2

FullConvGNP 0.00±0.00 0.00±0.00 0.00±0.00

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

ConvGNP 0.02±0.00 0.02±0.00 1.71±0.04

AGNP 0.04±0.00 6.14±0.08 7.03±0.09

ACNP (AR) 0.05±0.00 1.18±0.01 0.96±0.01

GNP 0.13±0.00 F F
ConvLNP (E) 0.16±0.00 0.16±0.00 0.29±0.00

ConvLNP (M) 0.36±0.00 0.36±0.00 0.76±0.00

ALNP (M) 0.40±0.00 1.10±0.01 0.88±0.00

CNP (AR) 0.45±0.00 F F
Diagonal GP 0.46±0.01 0.46±0.01 0.93±0.00

ConvCNP 0.46±0.01 0.46±0.01 0.93±0.00

ACNP 0.49±0.01 1.23±0.01 0.93±0.00

ALNP (E–M) 0.51±0.01 1.28±0.01 0.99±0.01

ALNP (E) 0.51±0.01 1.43±0.02 1.10±0.01

LNP (E–M) 0.54±0.00 F 1.24±0.00

LNP (E) 0.54±0.00 F 1.79±0.01

LNP (M) 0.63±0.00 2.33±0.02 1.23±0.00

CNP 0.65±0.00 7.72±0.69 1.23±0.00

Trivial 1.18±0.00 1.18±0.00 0.94±0.00

ConvLNP (E–M) 3.07±0.06 3.06±0.06 9.83±0.09

35

Published as a conference paper at ICLR 2023

Table 12: For the Matérn– 5
2

synthetic experiments with two-dimensional inputs, average Kullback–Leibler
divergences of the posterior prediction map πy with respect to the model normalised by the number of target
points. Shows for one-dimensional outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance
for interpolation within the range [−2, 2]2 where the models where trained (“Int.”); interpolation within the
range [2, 6]2 which the models have never seen before (“OOID”); and extrapolation from the range [−2, 2]2 to
the range [2, 6]2 (“Ext.”). Models are ordered by interpolation performance. Diagonal GP refers to predictions
by the ground-truth Gaussian processes without correlations. Trivial refers to predicting the empirical means
and standard deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers which
are significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”.
Numbers which are missing could not be run.

Matérn– 5
2 Int. OOID Ext.

dx=2, dy=1

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.00±0.00

ACNP (AR) 0.05±0.00 0.54±0.00 0.38±0.00

AGNP 0.08±0.00 0.83±0.01 0.37±0.00

ConvGNP 0.08±0.00 0.08±0.00 0.60±0.01

GNP 0.16±0.00 0.90±0.00 0.75±0.00

ConvLNP (M) 0.25±0.00 0.25±0.00 0.34±0.00

ALNP (M) 0.26±0.00 0.51±0.00 0.37±0.00

Diagonal GP 0.28±0.00 0.28±0.00 0.39±0.00

ConvCNP 0.28±0.00 0.28±0.00 0.39±0.00

ACNP 0.29±0.00 0.54±0.00 0.39±0.00

CNP (AR) 0.31±0.00 0.69±0.00 0.52±0.00

ConvLNP (E) 0.32±0.00 0.32±0.00 0.30±0.00

LNP (E–M) 0.34±0.00 1.07±0.01 0.69±0.00

LNP (E) 0.35±0.00 1.25±0.01 0.72±0.00

ConvLNP (E–M) 0.36±0.00 0.36±0.00 0.43±0.00

LNP (M) 0.37±0.00 0.75±0.01 0.51±0.00

ALNP (E–M) 0.39±0.00 0.65±0.01 0.43±0.00

CNP 0.39±0.00 0.67±0.00 0.54±0.00

ALNP (E) 0.41±0.01 0.67±0.01 0.44±0.00

Trivial 0.55±0.00 0.55±0.00 0.39±0.00

FullConvGNP

Matérn– 5
2 Int. OOID Ext.

dx=2, dy=2

ConvCNP (AR) 0.01±0.00 0.01±0.00 0.01±0.00

ACNP (AR) 0.06±0.00 0.58±0.00 0.41±0.00

ConvGNP 0.14±0.00 0.14±0.00 0.64±0.01

AGNP 0.17±0.00 0.58±0.00 0.40±0.00

GNP 0.28±0.00 0.78±0.00 0.60±0.00

ConvLNP (M) 0.29±0.00 0.29±0.00 0.38±0.00

ALNP (M) 0.29±0.00 0.56±0.00 0.40±0.00

Diagonal GP 0.30±0.00 0.30±0.00 0.41±0.00

ConvCNP 0.30±0.00 0.30±0.00 0.41±0.00

ACNP 0.32±0.00 0.58±0.00 0.41±0.00

ConvLNP (E) 0.36±0.00 0.36±0.00 0.37±0.00

CNP (AR) 0.37±0.00 F 0.88±0.17

LNP (E–M) 0.41±0.00 2.29±0.05 0.59±0.00

LNP (E) 0.41±0.00 2.36±0.05 0.60±0.00

ALNP (E–M) 0.42±0.00 0.61±0.00 0.41±0.00

ALNP (E) 0.42±0.00 0.61±0.00 0.41±0.00

LNP (M) 0.43±0.00 0.68±0.00 0.53±0.00

CNP 0.44±0.00 0.86±0.17 0.59±0.00

ConvLNP (E–M) 0.49±0.00 0.49±0.00 0.61±0.00

Trivial 0.58±0.00 0.58±0.00 0.41±0.00

FullConvGNP

36

Published as a conference paper at ICLR 2023

Table 13: For the weakly periodic synthetic experiments with one-dimensional inputs, average Kullback–Leibler
divergences of the posterior prediction map πy with respect to the model normalised by the number of target
points. Shows for one-dimensional outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance
for interpolation within the range [−2, 2] where the models where trained (“Int.”); interpolation within the
range [2, 6] which the models have never seen before (“OOID”); and extrapolation from the range [−2, 2] to
the range [2, 6] (“Ext.”). Models are ordered by interpolation performance. The latent variable models are
trained and evaluated with the ELBO objective (E); trained and evaluated with the ML objective (M); and trained
with the ELBO objective and evaluated with the ML objective (E–M). Diagonal GP refers to predictions by
the ground-truth Gaussian processes without correlations. Trivial refers to predicting the empirical means
and standard deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers which
are significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”.
Numbers which are missing could not be run.

Weakly Periodic Int. OOID Ext.
dx=1, dy=1

FullConvGNP 0.02±0.00 0.02±0.00 0.00±0.00

ConvCNP (AR) 0.05±0.00 0.05±0.00 0.04±0.00

ConvGNP 0.05±0.00 0.05±0.00 0.56±0.02

AGNP 0.22±0.00 1.25±0.02 1.25±0.02

ConvLNP (M) 0.28±0.00 0.28±0.00 0.43±0.00

ConvLNP (E) 0.34±0.00 0.33±0.00 0.45±0.02

Diagonal GP 0.38±0.01 0.38±0.01 0.59±0.01

ConvCNP 0.40±0.01 0.40±0.01 0.60±0.01

ALNP (M) 0.53±0.00 0.77±0.01 0.57±0.01

ACNP (AR) 0.57±0.01 0.82±0.01 0.61±0.01

GNP 0.59±0.01 1.31±0.02 0.62±0.01

CNP (AR) 0.59±0.01 2.33±0.27 1.46±0.05

LNP (E–M) 0.60±0.01 F 4.09±0.28

ALNP (E–M) 0.60±0.01 0.78±0.01 0.59±0.01

LNP (M) 0.60±0.01 0.80±0.01 0.62±0.01

LNP (E) 0.61±0.01 F 9.91±0.70

ALNP (E) 0.62±0.01 1.01±0.01 0.71±0.01

ACNP 0.65±0.01 0.82±0.01 0.61±0.01

CNP 0.67±0.01 1.45±0.03 0.68±0.01

Trivial 0.82±0.00 0.82±0.00 0.61±0.00

ConvLNP (E–M) 1.58±0.03 1.57±0.03 2.85±0.04

Weakly Periodic Int. OOID Ext.
dx=1, dy=2

FullConvGNP 0.03±0.00 0.03±0.00 0.00±0.00

ConvCNP (AR) 0.09±0.00 0.09±0.00 0.06±0.00

ConvGNP 0.12±0.00 0.12±0.00 0.72±0.01

AGNP 0.25±0.00 2.17±0.02 1.95±0.02

ConvLNP (M) 0.38±0.00 0.38±0.00 0.54±0.00

ConvLNP (E) 0.39±0.00 0.39±0.00 0.44±0.00

Diagonal GP 0.42±0.00 0.42±0.00 0.65±0.00

ConvCNP 0.46±0.00 0.46±0.00 0.65±0.00

GNP 0.50±0.00 1.02±0.01 0.76±0.00

ALNP (M) 0.62±0.00 1.04±0.01 0.64±0.00

ACNP (AR) 0.63±0.00 0.89±0.01 0.66±0.00

CNP (AR) 0.67±0.00 2.52±0.07 1.21±0.01

LNP (E–M) 0.68±0.00 F 5.18±0.18

LNP (M) 0.69±0.00 1.26±0.01 0.68±0.01

LNP (E) 0.69±0.00 F F
ALNP (E–M) 0.70±0.00 0.85±0.01 0.64±0.00

ACNP 0.71±0.00 0.89±0.01 0.66±0.00

ALNP (E) 0.72±0.00 0.93±0.01 0.72±0.00

CNP 0.74±0.00 1.27±0.01 0.77±0.01

Trivial 0.89±0.00 0.89±0.00 0.67±0.00

ConvLNP (E–M) 3.02±0.03 3.02±0.03 5.40±0.04

37

Published as a conference paper at ICLR 2023

Table 14: For the weakly periodic synthetic experiments with two-dimensional inputs, average Kullback–Leibler
divergences of the posterior prediction map πy with respect to the model normalised by the number of target
points. Shows for one-dimensional outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance
for interpolation within the range [−2, 2]2 where the models where trained (“Int.”); interpolation within the
range [2, 6]2 which the models have never seen before (“OOID”); and extrapolation from the range [−2, 2]2

to the range [2, 6]2 (“Ext.”). Models are ordered by interpolation performance. The latent variable models
are trained and evaluated with the ELBO objective (E); trained and evaluated with the ML objective (M); and
trained with the ELBO objective and evaluated with the ML objective (E–M). Diagonal GP refers to predictions
by the ground-truth Gaussian processes without correlations. Trivial refers to predicting the empirical means
and standard deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers which
are significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as failed with “F”.
Numbers which are missing could not be run.

Weakly Periodic Int. OOID Ext.
dx=2, dy=1

ConvCNP (AR) 0.05±0.00 0.05±0.00 0.03±0.00

ConvGNP 0.10±0.00 0.10±0.00 0.19±0.00

ConvLNP (M) 0.18±0.00 0.18±0.00 0.21±0.00

Diagonal GP 0.19±0.00 0.19±0.00 0.27±0.00

ConvCNP 0.20±0.00 0.20±0.00 0.27±0.00

ConvLNP (E) 0.22±0.00 0.22±0.00 0.22±0.00

AGNP 0.23±0.00 0.35±0.00 0.26±0.00

ACNP (AR) 0.23±0.00 0.37±0.00 0.26±0.00

ConvLNP (E–M) 0.23±0.00 0.23±0.00 0.29±0.00

GNP 0.23±0.00 0.35±0.00 0.24±0.00

CNP (AR) 0.25±0.00 0.82±0.01 0.72±0.01

ALNP (M) 0.25±0.00 0.36±0.00 0.25±0.00

LNP (M) 0.26±0.00 1.32±0.03 0.33±0.00

LNP (E–M) 0.26±0.00 6.28±1.06 0.44±0.01

LNP (E) 0.27±0.00 9.91±1.68 0.52±0.01

ACNP 0.28±0.00 0.37±0.00 0.27±0.00

CNP 0.29±0.00 0.81±0.01 0.29±0.00

ALNP (E–M) 0.31±0.00 0.39±0.00 0.26±0.00

ALNP (E) 0.32±0.00 0.42±0.00 0.29±0.00

Trivial 0.38±0.00 0.38±0.00 0.27±0.00

FullConvGNP

Weakly Periodic Int. OOID Ext.
dx=2, dy=2

ConvCNP (AR) 0.08±0.00 0.08±0.00 0.05±0.00

ConvGNP 0.13±0.00 0.13±0.00 0.18±0.00

Diagonal GP 0.20±0.00 0.20±0.00 0.28±0.00

ConvLNP (M) 0.21±0.00 0.21±0.00 0.25±0.00

ConvCNP 0.23±0.00 0.23±0.00 0.28±0.00

AGNP 0.24±0.00 0.39±0.00 0.27±0.00

ACNP (AR) 0.25±0.00 0.40±0.00 0.28±0.00

GNP 0.25±0.00 0.38±0.00 0.25±0.00

ConvLNP (E) 0.26±0.00 0.26±0.00 0.27±0.00

CNP (AR) 0.27±0.00 3.21±0.14 0.77±0.02

ALNP (M) 0.28±0.00 0.39±0.00 0.28±0.00

LNP (M) 0.29±0.00 0.42±0.00 0.31±0.00

LNP (E–M) 0.29±0.00 1.52±0.04 0.36±0.00

LNP (E) 0.30±0.00 1.60±0.05 0.39±0.00

ConvLNP (E–M) 0.30±0.00 0.30±0.00 0.34±0.00

ACNP 0.30±0.00 0.40±0.00 0.29±0.00

CNP 0.31±0.00 0.63±0.01 0.33±0.00

ALNP (E–M) 0.36±0.00 0.43±0.00 0.28±0.00

ALNP (E) 0.36±0.00 0.44±0.00 0.29±0.00

Trivial 0.40±0.00 0.40±0.00 0.28±0.00

FullConvGNP

38

Published as a conference paper at ICLR 2023

Table 15: For the sawtooth synthetic experiments with one-dimensional inputs, average log-likelihoods nor-
malised by the number of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional
outputs (dy = 2) the performance for interpolation within the range [−2, 2] where the models where trained
(“Int.”); interpolation within the range [2, 6] which the models have never seen before (“OOID”); and extrapola-
tion from the range [−2, 2] to the range [2, 6] (“Ext.”). Models are ordered by interpolation performance. The
latent variable models are trained and evaluated with the ELBO objective (E); trained and evaluated with the
ML objective (M); and trained with the ELBO objective and evaluated with the ML objective (E–M). Trivial
refers to predicting the empirical means and standard deviation of the test data. Errors indicate the central
95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are
very large are marked as failed with “F”. Numbers which are missing could not be run.

Sawtooth Int. OOID Ext.
dx=1, dy=1

ConvCNP (AR) 3.60±0.01 3.60±0.01 3.34±0.01

ConvLNP (E) 3.51±0.02 3.52±0.02 2.68±0.02

ConvLNP 3.06±0.04 3.06±0.04 0.64±0.01

ConvGNP 2.62±0.05 2.61±0.08 −0.04±0.01

ConvCNP 2.38±0.04 2.37±0.04 −0.00±0.01

FullConvGNP 2.16±0.04 2.15±0.04 0.18±0.01

ALNP (E–M) 0.27±0.01 −0.18±0.00 −0.31±0.02

ALNP (E) 0.27±0.01 −15.96±0.17 −9.14±0.04

ALNP 0.20±0.00 −0.18±0.00 −0.18±0.00

LNP (E–M) 0.07±0.01 F −8.67±0.53

LNP (E) 0.06±0.01 F F
Trivial −0.18±0.00 −0.18±0.00 −0.18±0.00

LNP −0.18±0.00 −0.18±0.00 −0.18±0.00

CNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00

CNP −0.18±0.00 −0.18±0.00 −0.18±0.00

GNP −0.18±0.00 −0.18±0.00 −0.18±0.00

AGNP −0.18±0.00 −0.18±0.00 −0.18±0.00

ACNP −0.18±0.00 −0.18±0.00 −0.18±0.00

ACNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00

ConvLNP (E–M) F F F

Sawtooth Int. OOID Ext.
dx=1, dy=2

ConvCNP (AR) 2.22±0.01 2.22±0.01 1.91±0.01

ConvLNP (E) 2.01±0.01 2.01±0.01 1.47±0.01

ConvLNP 1.73±0.03 1.73±0.03 −0.12±0.01

ACNP (AR) 1.01±0.01 −0.47±0.01 −0.45±0.01

FullConvGNP 0.99±0.06 1.04±0.03 0.11±0.00

ConvCNP 0.83±0.03 0.84±0.02 −0.29±0.00

ConvGNP 0.82±0.03 0.82±0.03 −0.29±0.00

GNP −0.03±0.00 F F
ALNP (E–M) −0.06±0.01 −0.75±0.01 −0.35±0.00

ALNP (E) −0.07±0.01 −0.78±0.02 −0.35±0.00

AGNP −0.07±0.01 −0.37±0.00 −0.48±0.07

ACNP −0.08±0.01 −0.41±0.01 −0.42±0.01

LNP (E–M) −0.20±0.00 F −1.33±0.00

LNP (E) −0.20±0.00 F −1.33±0.00

ALNP −0.28±0.00 −0.33±0.00 −0.33±0.00

CNP (AR) −0.29±0.00 −1.96±0.19 −1.43±0.06

CNP −0.30±0.00 −0.51±0.01 −0.34±0.00

LNP −0.32±0.00 −0.32±0.00 −0.32±0.00

Trivial −0.33±0.00 −0.33±0.00 −0.33±0.00

ConvLNP (E–M) −2.98±0.10 −2.98±0.10 −6.74±0.04

39

Published as a conference paper at ICLR 2023

Table 16: For the sawtooth synthetic experiments with two-dimensional inputs, average log-likelihoods nor-
malised by the number of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional
outputs (dy = 2) the performance for interpolation within the range [−2, 2]2 where the models where trained
(“Int.”); interpolation within the range [2, 6]2 which the models have never seen before (“OOID”); and extrapo-
lation from the range [−2, 2]2 to the range [2, 6]2 (“Ext.”). Models are ordered by interpolation performance.
The latent variable models are trained and evaluated with the ELBO objective (E); trained and evaluated with the
ML objective (M); and trained with the ELBO objective and evaluated with the ML objective (E–M). Trivial
refers to predicting the empirical means and standard deviation of the test data. Errors indicate the central
95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are
very large are marked as failed with “F”. Numbers which are missing could not be run.

Sawtooth Int. OOID Ext.
dx=2, dy=1

ConvCNP (AR) 2.59±0.01 2.59±0.01 2.10±0.01

ConvLNP (M) 2.07±0.02 2.08±0.02 −0.17±0.00

ConvCNP 1.93±0.04 1.94±0.03 −0.18±0.00

ConvGNP 1.90±0.04 1.91±0.03 −0.18±0.00

ConvLNP (E) 1.77±0.02 1.77±0.02 0.33±0.02

ConvLNP (E–M) 1.71±0.04 1.72±0.04 −2.30±0.87

Trivial −0.18±0.00 −0.18±0.00 −0.18±0.00

CNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00

CNP −0.18±0.00 −0.18±0.00 −0.18±0.00

GNP −0.18±0.00 −0.18±0.00 −0.18±0.00

LNP (M) −0.18±0.00 −0.18±0.00 −0.18±0.00

AGNP −0.18±0.00 −0.18±0.00 −0.18±0.00

ALNP (M) −0.18±0.00 −0.18±0.00 −0.18±0.00

ACNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00

ACNP −0.18±0.00 −0.18±0.00 −0.18±0.00

LNP (E–M) −0.19±0.00 F −0.86±0.02

LNP (E) −0.19±0.00 F F
ALNP (E–M) −0.20±0.01 −0.18±0.00 −0.18±0.00

ALNP (E) −0.20±0.01 −0.71±0.00 −0.33±0.00

FullConvGNP

Sawtooth Int. OOID Ext.
dx=2, dy=2

ConvCNP (AR) 0.38±0.00 0.38±0.00 0.18±0.00

ConvLNP (M) 0.31±0.01 0.31±0.01 −0.32±0.00

ConvGNP 0.26±0.01 0.26±0.01 −0.33±0.00

ConvCNP 0.12±0.01 0.12±0.01 −0.32±0.00

ConvLNP (E) 0.04±0.00 0.04±0.00 −0.30±0.00

ConvLNP (E–M) −0.07±0.01 −0.07±0.01 −0.48±0.00

Trivial −0.32±0.00 −0.32±0.00 −0.32±0.00

ALNP (M) −0.32±0.00 −0.32±0.00 −0.32±0.00

CNP (AR) −0.32±0.00 −0.32±0.00 −0.32±0.00

CNP −0.32±0.00 −0.32±0.00 −0.32±0.00

LNP (M) −0.32±0.00 −0.32±0.00 −0.32±0.00

ACNP −0.32±0.00 −0.32±0.00 −0.32±0.00

ACNP (AR) −0.32±0.00 −0.32±0.00 −0.32±0.00

GNP −0.32±0.00 −0.32±0.00 −0.32±0.00

AGNP −0.32±0.00 −0.32±0.00 −0.32±0.00

LNP (E–M) −0.33±0.00 −0.54±0.00 −0.34±0.00

LNP (E) −0.33±0.00 −0.54±0.00 −0.34±0.00

ALNP (E–M) −0.36±0.00 −0.33±0.00 −0.33±0.00

ALNP (E) −0.36±0.00 −0.33±0.00 −0.33±0.00

FullConvGNP

40

Published as a conference paper at ICLR 2023

Table 17: For the mixture synthetic experiments with one-dimensional inputs, average log-likelihoods normalised
by the number of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional outputs
(dy = 2) the performance for interpolation within the range [−2, 2] where the models where trained (“Int.”);
interpolation within the range [2, 6] which the models have never seen before (“OOID”); and extrapolation
from the range [−2, 2] to the range [2, 6] (“Ext.”). Models are ordered by interpolation performance. The
latent variable models are trained and evaluated with the ELBO objective (E); trained and evaluated with the
ML objective (M); and trained with the ELBO objective and evaluated with the ML objective (E–M). Trivial
refers to predicting the empirical means and standard deviation of the test data. Errors indicate the central
95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are
very large are marked as failed with “F”. Numbers which are missing could not be run.

Mixture Int. OOID Ext.
dx=1, dy=1

ConvCNP (AR) 0.45±0.04 0.45±0.04 0.30±0.04

ConvLNP (E) 0.12±0.04 0.12±0.04 −0.37±0.03

FullConvGNP −0.05±0.03 −0.05±0.03 −0.49±0.01

ConvLNP −0.06±0.03 −0.06±0.03 −0.88±0.02

ACNP (AR) −0.19±0.02 −1.32±0.01 −1.32±0.01

ConvCNP −0.23±0.04 −0.24±0.04 −1.23±0.01

ConvGNP −0.24±0.02 −0.23±0.02 −1.00±0.02

AGNP −0.41±0.02 −1.03±0.03 −2.61±0.06

ALNP −0.61±0.02 −1.01±0.02 −1.03±0.02

ALNP (E–M) −0.63±0.02 −1.24±0.01 −1.10±0.02

ALNP (E) −0.67±0.02 −1.52±0.02 −2.25±0.03

LNP (E–M) −0.68±0.01 −3.05±0.04 −1.75±0.01

GNP −0.70±0.02 −2.22±0.05 −1.62±0.04

LNP (E) −0.71±0.01 −3.71±0.05 −2.08±0.01

LNP −0.72±0.01 −1.46±0.01 −1.29±0.02

ACNP −0.79±0.02 −1.31±0.01 −1.25±0.01

CNP (AR) −1.00±0.02 −1.15±0.02 −1.09±0.02

CNP −1.05±0.02 −1.14±0.02 −1.15±0.02

ConvLNP (E–M) −1.41±0.15 −1.43±0.13 −3.40±0.06

Trivial −1.32±0.00 −1.32±0.00 −1.32±0.00

Mixture Int. OOID Ext.
dx=1, dy=2

ConvLNP (E) −0.05±0.03 −0.05±0.03 −0.50±0.02

ConvCNP (AR) −0.17±0.02 −0.17±0.02 −0.29±0.02

FullConvGNP −0.27±0.01 −0.27±0.01 −0.63±0.01

ConvGNP −0.29±0.02 −0.29±0.02 −2.59±0.06

ACNP (AR) −0.35±0.02 −1.43±0.02 −1.43±0.02

ConvLNP −0.39±0.03 −0.40±0.03 −1.10±0.02

AGNP −0.57±0.02 −3.29±0.07 −3.05±0.06

GNP −0.60±0.01 −1.70±0.03 −1.67±0.03

ConvCNP −0.68±0.02 −0.68±0.02 −1.39±0.01

ALNP −0.76±0.02 −1.19±0.02 −1.19±0.02

LNP −0.89±0.01 −3.18±0.05 −1.40±0.02

LNP (E–M) −0.89±0.01 −4.43±0.07 −1.62±0.02

ALNP (E–M) −0.92±0.02 −1.47±0.03 −1.46±0.03

LNP (E) −0.92±0.01 −4.71±0.07 −1.86±0.01

ACNP −0.93±0.02 −1.42±0.02 −1.53±0.03

ALNP (E) −0.95±0.02 −1.75±0.04 −1.73±0.04

CNP (AR) −1.15±0.02 −1.27±0.02 −1.21±0.02

CNP −1.18±0.02 −1.32±0.03 −1.27±0.02

ConvLNP (E–M) −3.45±0.07 −3.40±0.07 −5.30±0.07

Trivial −1.46±0.00 −1.46±0.00 −1.46±0.00

41

Published as a conference paper at ICLR 2023

Table 18: For the mixture synthetic experiments with two-dimensional inputs, average log-likelihoods normalised
by the number of target points. Shows for one-dimensional outputs (dy = 1) and two-dimensional outputs
(dy = 2) the performance for interpolation within the range [−2, 2]2 where the models where trained (“Int.”);
interpolation within the range [2, 6]2 which the models have never seen before (“OOID”); and extrapolation
from the range [−2, 2]2 to the range [2, 6]2 (“Ext.”). Models are ordered by interpolation performance. The
latent variable models are trained and evaluated with the ELBO objective (E); trained and evaluated with the
ML objective (M); and trained with the ELBO objective and evaluated with the ML objective (E–M). Trivial
refers to predicting the empirical means and standard deviation of the test data. Errors indicate the central
95%-confidence interval. Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are
very large are marked as failed with “F”. Numbers which are missing could not be run.

Mixture Int. OOID Ext.
dx=2, dy=1

ConvCNP (AR) −0.10±0.03 −0.10±0.03 −0.34±0.03

ConvCNP −0.49±0.03 −0.49±0.03 −1.45±0.02

ConvGNP −0.50±0.02 −0.50±0.02 −1.24±0.02

ConvLNP (M) −0.57±0.02 −0.57±0.02 −1.07±0.02

ConvLNP (E) −0.63±0.02 −0.63±0.02 −1.08±0.02

ALNP (M) −0.73±0.02 −1.04±0.02 −1.05±0.02

ConvLNP (E–M) −0.76±0.02 −0.76±0.02 −1.37±0.02

ACNP (AR) −0.77±0.01 −1.28±0.01 −1.30±0.01

AGNP −0.78±0.01 −1.32±0.02 −1.32±0.02

ACNP −0.91±0.02 −1.29±0.01 −1.17±0.02

LNP (M) −0.91±0.02 −1.44±0.04 −1.19±0.02

LNP (E–M) −0.92±0.02 −1.51±0.02 −1.38±0.02

LNP (E) −0.93±0.02 −1.74±0.03 −1.44±0.02

ALNP (E–M) −1.00±0.02 −1.07±0.02 −1.08±0.02

ALNP (E) −1.03±0.02 −1.08±0.02 −1.09±0.02

CNP (AR) −1.06±0.02 −1.07±0.02 −1.08±0.02

GNP −1.06±0.02 −1.09±0.02 −1.08±0.02

CNP −1.07±0.02 −1.09±0.02 −1.10±0.02

Trivial −1.32±0.00 −1.32±0.00 −1.32±0.00

FullConvGNP

Mixture Int. OOID Ext.
dx=2, dy=2

ConvCNP (AR) −0.62±0.01 −0.62±0.01 −0.79±0.01

ConvGNP −0.74±0.01 −0.74±0.01 −1.43±0.02

ConvLNP (M) −0.78±0.02 −0.79±0.02 −1.25±0.02

ConvCNP −0.85±0.01 −0.85±0.01 −1.50±0.02

ACNP (AR) −0.85±0.01 −4.30±0.09 −4.24±0.09

ALNP (M) −0.88±0.01 −1.41±0.03 −1.21±0.02

ConvLNP (E) −0.92±0.01 −0.92±0.01 −1.41±0.02

AGNP −0.93±0.01 −1.34±0.01 −1.21±0.02

ACNP −0.99±0.02 −4.19±0.10 −1.27±0.02

ConvLNP (E–M) −1.05±0.01 −1.05±0.01 −1.73±0.03

LNP (M) −1.07±0.01 −4.04±0.11 −1.31±0.02

ALNP (E–M) −1.11±0.02 −2.65±0.62 −1.23±0.02

ALNP (E) −1.12±0.02 −8.22±7.64 −1.26±0.02

GNP −1.20±0.02 −1.39±0.03 −1.21±0.02

CNP (AR) −1.20±0.02 −2.61±0.07 −1.32±0.02

CNP −1.20±0.02 −2.60±0.08 −1.23±0.02

LNP (E–M) −1.20±0.02 −3.23±0.10 −1.24±0.02

LNP (E) −1.20±0.02 −3.25±0.10 −1.24±0.02

Trivial −1.46±0.00 −1.46±0.00 −1.46±0.00

FullConvGNP

42

Published as a conference paper at ICLR 2023

I DETAILS OF SIM-TO-REAL TRANSFER EXPERIMENTS

I.1 DESCRIPTION OF EXPERIMENT

Our goal will be to make predictions for the famous hare–lynx data set. The hare–lynx data set is
a time series from 1845 to 1935 recording yearly population counts of a population of Snowshoe
hares and a population of Canadian lynx (MacLulich, 1937). A digital version extracted from the
original graph by MacLulich (1937) is available by Hundley.7 Hundley, the author of this digital
source, says that other authors caution that the hare–lynx data is actually a composition of multiple
time series, and presents the data with that caution. We, therefore, also present the data with this
caution. Figure 12a visualises the hare–lynx data set.

To make predictions for the hare–lynx data set, we use the Lotka–Volterra equations (Lotka, 1910;
Volterra, 1926), also called the predator–prey equations. The Lotka–Volterra equations are an idealised
mathematical model for the population counts of a prey population and a predator population:

prey population: x′(t) = αx(t)− βx(t)y(t), (45)

predator population: y′(t) = −δy(t) + γx(t)y(t). (46)

These differential equations say that the prey population naturally grows exponentially with rate α,
and that the predator population naturally decays exponentially with rate δ. In addition, the predators
hunt the prey. The resulting additional growth in the predator population and the resulting additional
decrease in the prey population are both proportional to the product of the densities. In this idealised
mathematical form, the population counts converge to a smooth, noiseless limit cycle and then
perfectly track this limit cycle ever after. This is unlike real-world predator–prey population counts,
which exhibit noisy behaviour and imperfect cycles. We therefore consider a stochastic version of the
Lotka–Volterra equations, given by the following two coupled stochastic differential equations:

dXt = αXt dt− βYtXt dt+ σXν
t dW

(1)
t , (47)

dYt = −γXt dt+ δYtXt dt+ σY ν
t dW

(2)
t (48)

where W (1) and W (2) are two independent Brownian motions. Compared to the Lotka–Volterra
equations, (47) and (48) have two additional terms, σXν

t dW
(1)
t and σY ν

t dW
(2)
t , which introduce

noisy behaviour. In these terms, multiplying by Xν
t and Y ν

t makes the noise go to zero when Xt and
Yt become small, ensuring that Xt and Yt remain positive. In addition, we multiply by a parameter
σ > 0 to control the magnitude of the noise, and we raise Xt and Yt to a power ν > 0 to control how
quickly the noise grows as Xt and Yt grow. Namely, Xt naturally grows exponentially, so, by adding
noise of magnitude proportional to Xt, we risk large spikes in the prey population. To moderate this
behaviour, we choose ν to be strictly less than one. Finally, to obtain a variety of magnitudes of
population counts, we multiply the realisation with a scale η.

After simulating from (47) and (48) a few times, we settle on ν = 1
6 . For the remainder of the

parameters, we simply manually play around with (47) and (48), settle on parameter ranges that look
reasonable, and randomly sample parameters from those intervals. Table 19 summarises the sampling
distributions for all parameters of (47) and (48). Figure 12b shows four samples from the proposed
stochastic model.

To generate a meta–data set, we simulate (47) and (48) on a dense grid spanning 110 years, throw
away the first 10 years, and retain between 150 and 250 data points for Xt and Yt. The numbers of
data points and the locations of the data points are sampled separately for Xt and Yt. Hence, whereas
the hare–lynx data is regularly spaced and the populations are always simultaneously observed, our
simulator generates data at arbitrary and nonsimultaneous points in time. We split these data sets into
context and target sets in three different ways. To train the models, for every batch, we randomly
choose one of the interpolation, forecasting or reconstruction tasks by rolling a three-sided die. We
will also perform these tasks on the real hare–lynx data; in that case, for interpolation, we let the
number of target points per output be between one and fifteen. The tasks on simulated and real data
are similar, but slightly differ in the number of context and target points.

To deal with the positivity of population counts, we transform the marginals of all models to
distributions on (0,∞) by pushing the marginals through x 7→ log(1 + x).

7See http://people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt.

43

http://people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt

Published as a conference paper at ICLR 2023

1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940
Year

0

50

100

150

P
op

ul
at

io
n

(×
1k

)

Hares
Lynx

(a) Illustration of the hare–lynx data set

0

50

100

150

0

200

400 Hares
Lynx

0 20 40 60 80 100

0

100

200

0 20 40 60 80 100

0

50

100

(b) Four samples from the proposed stochastic version of the Lotka–Volterra equations (47) and (48). The
parameters of (47) and (48) are sampled according to Table 19.

Figure 12: Hare–lynx data set and proposed stochastic simulator

Parameter Distribution

Initial condition X−10 Unif([5, 100])
Initial condition Y−10 Unif([5, 100])
α Unif([0.2, 0.8])
β Unif([0.04, 0.08])
γ Unif([0.8, 1.2])
δ Unif([0.04, 0.08])
ν Fixed to 1/6
σ Unif([0.5, 10])
η Unif([1, 5])

Table 19: Sampling distributions for the parameters of the stochastic version of the Lotka–Volterra equations
(47) and (48). These equations are simulated on a dense grid spanning [−10, 100]. The table also shows the
distribution for the initial conditions at t = −10. To not depend too heavily on these initial conditions, the
simulation results on [−10, 0] are discarded.

For this experiment, the learning rate is 1 · 10−4, the margin is 1, and the points per unit is 4. We
trained the models for 200 epochs.

The convolutional models use a U-Net architecture with seven layers instead of six where, in the first
layer, the stride is one instead of two. For the kernel architecture of the FullConvGNP, we reduce the
points per unit and the number of channels in the U-Net by a factor two.

44

Published as a conference paper at ICLR 2023

Int. (S) For. (S) Rec. (S) Int. (R) For. (R) Rec. (R)

FullConvGNP −3.29±0.02 −3.46±0.02 −3.79±0.02 −4.16±0.04 −4.28±0.04 −4.45±0.00

ConvCNP (AR) −3.30±0.02 −3.47±0.02 −3.60±0.02 −4.10±0.03 −4.27±0.03 −4.32±0.01

ConvNP (ML) −3.41±0.02 −3.84±0.02 −4.44±0.02 −4.13±0.04 −4.45±0.05 −4.54±0.01

ConvGNP −3.47±0.02 −3.65±0.02 −4.15±0.02 −4.21±0.05 −4.82±0.13 −4.61±0.01

ConvCNP −3.47±0.02 −4.06±0.02 −4.85±0.02 −4.17±0.04 −4.70±0.06 −4.97±0.01

ConvNP (ELBO) −3.77±0.02 −3.83±0.02 −4.12±0.02 −5.45±0.05 −5.47±0.07 −6.39±0.05

ANP (ML) −4.09±0.02 −4.32±0.02 −4.55±0.02 −4.31±0.03 −4.43±0.04 −4.49±0.01

ANP (ELBO–ML) −4.22±0.02 −4.54±0.02 −4.80±0.02 −4.58±0.11 −4.58±0.04 −4.68±0.01

ACNP (AR) −4.23±0.02 −4.44±0.02 −4.58±0.02 −4.40±0.03 −4.55±0.04 −4.59±0.02

ANP (ELBO) −4.32±0.03 −4.58±0.02 −4.82±0.02 −4.71±0.15 −4.63±0.05 −4.70±0.01

ACNP −4.34±0.02 −4.65±0.02 −4.88±0.02 −4.43±0.04 −4.58±0.04 −4.74±0.00

ConvNP (E.–M.) −6.71±0.05 −8.44±0.11 F −7.20±0.31 F F

Table 20: Normalised log-likelihoods in the predator–prey experiments. Shows the performance for interpolation
(“Int.”), forecasting (“For.”), and reconstruction (“Rec.”) on simulated (“S”) and real (“R”) data. Models are
ordered by interpolation performance on simulated data. The latent variable models are trained and evaluated
with the ELBO objective (E); trained and evaluated with the ML objective (M); and trained with the ELBO
objective and evaluated with the ML objective (E–M). Errors indicate the central 95%-confidence interval.
Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

I.2 FULL RESULTS

In Table 20, we present the full results for the sim-to-real experiments.

45

Published as a conference paper at ICLR 2023

−10
0

10

F
Z

−10
0

10
F

1

−10
0

F
2

−10
0

10

F
3

−20

0

F
4

0

20

F
5

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

−20

0

F
6

Figure 13: Example of trial in the EEG data set. Note that the signals for all electrodes appear correlated, but are
subtly different.

J DETAILS OF ELECTROENCEPHALOGRAPHY EXPERIMENTS

We explore an electroencephalography data set collected from 122 subjects (Begleiter, 2022). There
are two groups of subjects: alcoholic and control. Every subject was subjected to a single stimulus
or two stimuli, and their response was measured with 64 electrodes placed on a subject’s scalp.
These measurements are in terms of trials, where a trial consists of 256 samples of the electrodes
spanning one second. The data sets contains up to 120 trials for each subject. The data is available
at https://archive.ics.uci.edu/ml/datasets/eeg+database and the collection
is described in detail by Zhang et al. (1995). In this experiment, we focus only on seven frontal
electrodes: FZ, F1, F2, F3, F4, F5, and F6. Figure 13 illustrates a trial of a subject, showing the
samples for these seven electrodes.

We randomly split all subjects into three sets: an evaluation set consisting of ten subjects, a cross-
validation set consisting of ten other subjects, and a training set consisting of all remaining subjects.
For each of these sets, we create a meta–data set by aggregating the trials for all subjects. We split
every trial into a context and target set in the same three ways as for the predator–prey experiment.
First, for all seven electrodes separately, randomly designate between 50 and 256 points to be the
target points and let the remainder (between 0 and 206) be the context points. This task is called
interpolation and is the primary measure of performance. Additionally, randomly choose one of
the seven electrodes and, for that choice, split the data in two exactly like for forecasting. For all
other electrodes, append all data to the context set. This task is called reconstruction and measures
the model’s ability to infer a signal for one electrode from the others. We train all models on the
interpolation task, and evaluate the models on the interpolation and reconstruction task.

For this experiment, the learning rate is 5 · 10−5, the margin is 0.1, and the points per unit is 256. We
trained the models for 1000 epochs. For the FullConvGNP, the learning rate is 2 · 10−4. The training
run for the FullConvGNP was terminated after 84 hours, reaching epoch 127.

The convolutional models use a U-Net architecture where, in the first layer, the stride is one instead
of two. In addition, the number of channels are adjusted as follows: the ConvCNP and ConvGNP use
128 channels, the ConvLNP uses 96 channels, and the FullConvGNP uses 64 channels. The length
scales of the Gaussian kernels of the convolutional model is initialised to 0.77/256. To scale to seven
outputs, the deep set–based and attentive models reuse the same encoder for every output dimension.

46

https://archive.ics.uci.edu/ml/datasets/eeg+database

Published as a conference paper at ICLR 2023

K DETAILS OF ENVIRONMENTAL DATA ASSIMILATION EXPERIMENT

In this section we provide further details on the Antarctic cloud cover data assimilation experiment
described in Section 4.4.

K.1 DATA CONSIDERATIONS

Data sources. Daily-averaged cloud cover reanalysis data was obtained from ERA5 (Hersbach
et al., 2020). An Antarctic land mask and elevation field was obtained from the BedMachine dataset
(Morlighem, 2020).

Figure 14 shows an empircal density of the ERA5 cloud cover values calculated over the models’
training period of 2000-2013. The spikes at 0 and 1 correspond largely to values of exactly 0 and
exactly 1. This motivates the beta-categorical likelihood described in Section 4.4.

Figure 14: Empirical density of ERA5 cloud cover fraction computed over the period 2000-2013.

Data preprocessing. The cloud cover data and land/elevation auxiliary data were regridded from
lat/lon to a Southern Hemisphere Equal Area Scalable Earth 2 (EASE2) grid at 25 km resolution and
cropping to a size of 280 × 280. This centres the data on the South Pole.

Data normalisation. We normalised the data before passing it to the convolutional NP models. The
cloud cover and land mask data already took appropriate normalised values in [0, 1]. The elevation
field was normalised from metres to values in [0, 1].

The input coordinates x were normalised from metres to take values in [−1, 1].

K.2 MODEL CONSIDERATIONS

Here we provide details on the training procedure and architectures for each of the convolutional NP
models in the Antarctic data assimilation experiment.

Generating the training, validation, and test tasks. Following meta-learning principles, we collect
data from day τ into a task Dτ . Each task Dτ was generated by first drawing the integer number of
simulated cloud cover context points N (c) ∼ Unif{1, 2, . . . 500}. Letting N (c) vary encourages the
model to learn to deal with both data-sparse and data-rich scenarios. The number of target points N (t)

was fixed to a value of 2,000.

Next, the input locations x(c)
τ and x(t)

τ were sampled uniformly at random across the entire 280× 280
input space and the corresponding yτ values were sampled without observation noise.

For the training dates, the random seed used for generating Dτ is updated every epoch, allowing
for an infinitely growing simulated training data set. In contrast, for the validation and test dates,

47

Published as a conference paper at ICLR 2023

the random seeds were held fixed so that metrics computed over the validation and test sets are not
stochastic.

Training procedure. Each model was trained for 150 epochs on 14 years of data from 2000–2013.
An Adam optimiser was used with a learning rate of 5 × 10−5 and a batch size of 2. For the loss
functions we use a negative log-likelihood loss function for the ConvCNP and ConvGNP. For the
ConvLNP we use the ELBO objective and fix the variance of the observation noise to 0.01 for the first
four epochs. Validation data from 2014–2017 was used for checkpointing the model weights using
the per-datapoint predictive log-likelihood. The two year period of 2018–2019 data was reserved for
the test set.

The time taken to train each model on a Tesla V100 GPU is as follows:

• ConvCNP: 25.0 hours,
• ConvGNP: 27.5 hours,
• ConvLNP: 43.6 hours.

Architectures. For each model, the U-Net component of the encoder uses 5×5 convolutional kernels
with the following sequence of channel numbers (d.s. = 2×2 downsample layer, u.s. = 2×2 upsample
layer): 16 d.s.−−→ 32

d.s.−−→ 64
d.s.−−→ 128

u.s.−−→ 64
u.s.−−→ 32

u.s.−−→ 16. We use bilinear resize operators for the
upsampling layers to fix checkerboard artifacts that we encountered when using standard zero-padding
upsampling (Odena et al., 2016). We use a margin of 0.1 and 150 points per unit for the encoder’s
internal discretisation. The length scales of the Gaussian kernels for both the encoder and decoder
SetConv layers are set to 1/150 and held fixed during training. These architecture choices result in a
receptive field of 0.433 in normalised input space, or roughly 1.500 km in raw input space, spanning
around 20% of the region in Figure 6 in either dimension.

For the ConvGNP we use 128 basis functions for the low-rank covariance parameterisation described
in Markou et al. 2021.

For the ConvLNP we use an 8-dimensional latent variable and evaluate the ML objective (Foong
et al., 2020) using 8 latent samples.

The number of learnable parameters for each model is as follows:

• ConvCNP: 618 k,
• ConvGNP: 621 k,
• ConvLNP: 1.234 k (increase due to second UNet architecture after the latent variable).

The difference in parameters from switching to a beta-categorical likelihood from a Gaussian likeli-
hood is negligible.

Input data. Each model receives two context sets as input. The first contains observations of the
simulated ERA5 daily-average cloud cover. The second contains a set of 6 gridded auxiliary variables.
These are elevation, land mask, cos(2π × day of year/365), sin(2π × day of year/365), x1, and x2.
The elevation and land mask auxiliary fields allow the models to predict spatial non-stationarity. For
example, the convolutional filters of the model’s encoder could learn how cloud cover around the
Antarctic coastline behaves differently to the centre of the continent. The cos and sin variables inform
the model at what time of year Dτ corresponds to, helping with learning seasonal variations in the
data. The x1 and x2 inputs again help with breaking translation equivariance in the convolutional
filters by informing the model where in input space the data corresponds to.

K.3 ANTARCTIC CLOUD COVER MODEL SAMPLES

Figure 15 gives a detailed breakdown of sample extrapolation ability, showing seven samples from
the four Antarctic cloud cover models. The AR ConvCNP samples display remarkable structure and
variation while still closely interpolating the context points. The samples also provide interesting
scenarios in the gaps between the context points on the left hand side.

In contrast, the ConvCNP samples are incoherent, underestimating the probability of joint events.

The ConvLNP samples were generated by sampling from the latent variable and then computing the
mean of the marginal distributions. As is visible in Figure 15, the ConvLNP displays low sample
variance with respect to the latent variable. However, to the best of our knowledge we used a

48

Published as a conference paper at ICLR 2023

faithful reproduction of the original ConvLNP model, so we leave a more rigorous treatment of this
undesirable behaviour to future work.

For all the non-AR models, the limited receptive field size leads to samples on the right hand side
becoming independent of the context observations on the left hand side after roughly 750 km of
distance from them. This results in the models defaulting to some mean representation of the data. It
is interesting to see that all the non-AR models display similar marginal mean structure, with greater
cloud cover towards the centre of the continent and lower cloud cover towards the coastline, followed
by increased cloud levels over the Southern Ocean.

The AR samples were drawn on a sparse 70x70 grid spanning the entire input space to save compute
time. The ConvCNP model was then conditioned on these AR samples and the predictive mean was
computed over the dense 280x280 target space. It took 14 minutes to generate these AR ConvCNP
samples on a Tesla V100 GPU.

49

Published as a conference paper at ICLR 2023

Figure 15: Seven samples from each model in the Antarctic cloud cover sample extrapolation task for 25/06/2018.

50

Published as a conference paper at ICLR 2023

L DETAILS OF CLIMATE DOWNSCALING EXPERIMENTS

L.1 DESCRIPTION OF EXPERIMENT

The MLP ConvGNP (Markou et al., 2022) can be used to successfully model dependencies between
outputs in a statistical downscaling task, improving log-likelihoods over the MLP ConvCNP (Vaughan
et al., 2022) and enabling coherent samples. In this experiment, we demonstrate that the AR ConvCNP
can also be used for this purpose.

The goal of this experiment is to estimate the maximum daily temperature at 589 weather stations
around Germany. To estimate these temperatures, we follow Vaughan et al. (2022) and use 25 coarse-
grained ERA-Interim reanalysis variables (Dee et al., 2011) in combination with 1 km–resolution
elevation data (Earth Resources Observation and Science Center, U.S. Geological Survey, U.S.
Department of the Interior, 1997). We also consider a second setup where we reveal some of the
weather station observations. These revealed weather station observations can be used by the models
to aid downscaling performance.

The ERA-Interim reanalysis variables considered are tabulated in Table 21. In contrast to previous
downscaling work, which degrade reanalysis data to between 2◦ and 2.5◦, we opt to use the ERA-
Reanalysis data at the native 0.75◦ resolution, consistent with the latest high-resolution climate
models with horizontal resolution ranging from 0.5◦ to 1.0◦. All variables are spatially subset to
between 6◦ to 16◦ longitude and 47◦ to 55◦ latitude, covering Germany. The weather station data
are a subselection from of the European Climate Assessment & Dataset (Tank et al., 2002) and
are available at https://www.ecad.eu; we use the blended data. Like for the ERA-Reanaysis
variables, we take the weather stations located within the aforementioned square. The locations of
the weather stations around Germany are visualised in Figure 16. The 1 km–resolution elevation
data is taken from the United States Geological Survey GTOPO30 elevation data set available
at https://doi.org/10.5066/F7DF6PQS. This provides global elevation data at 30-arc
second resolution, which is approximately 1 km.

Following the VALUE framework (Maraun et al., 2015), we consider all days of the years 1979–2008
and split these years into five folds. We use the first four folds (spanning 1979–2003) for training,
holding out the last 1000 days for cross-validation; and use the fifth fold (spanning 2003–2008) for
evaluation.

L.2 MULTISCALE CONVOLUTIONAL ARCHITECTURE

Deploying the AR ConvCNP in this downscaling experiment comes with a significant challenge.
Because the elevation data has a fine resolution of 1 km, we expect that predictions by the AR
ConvCNP will vary roughly also on this length scale. In the autoregressive sampling procedure
(Procedure 2.1), samples from the model will be fed back into the model. Therefore, the AR ConvCNP
must handle context data which varies on a 1 km spatial scale, which means that the discretisation of
the AR ConvCNP must roughly be a 1 km–resolution grid. Unfortunately, making the discretisation
this fine is prohibitively expensive and imposes prohibitive memory requirements. It is this limitation
that prevents us from extending the Vaughan et al. (2022)’s MLP ConvCNP and Markou et al. (2022)’s
MLP ConvGNP to include additional weather station observations. We must therefore innovate on
the AR ConvCNP design to come up with a convolutional architecture that can handle such a fine
discretisation at reasonable computational expense.

The architecture that we propose is a multiscale architecture operating on multiple spatial length
scales. Let us divide the context set D = Dlr ∪Dmr ∪Dhr into a low-resolution component Dlr, a
medium-resolution component Dmr, and a high-resolution component Dhr. Let the low-resolution
component Dlr consist of features of the context set that vary on a long spatial length scale, the
medium-resolution component Dmr of features that vary on a medium-range spatial length scale, and
the high-resolution component Dhr of features that vary on a short spatial length scale. The central
assumption of the architecture is that predictions for target points depend on precise short-length-scale
details Dhr nearby, but that this dependence weakens as we move away from the target point, starting
to depend more on broad-stroke long-length-scale components Dlr. For example, predictions might
depend on detailed orographic information nearby, but more on general orographic shapes farther
away.

51

https://www.ecad.eu
https://doi.org/10.5066/F7DF6PQS

Published as a conference paper at ICLR 2023

Figure 16: Locations of the 589 weather stations around Germany in the downscaling experiments.

Variable Level Units

Surface

Maximum temperature 2 m degrees Celsius
Mean temperature 2 m degrees Celsius
Northward wind 10 m knots
Eastward wind 10 m knots

Upper atmosphere

Specific humidity 850, 700, and 500 hPa g/kg
Mean temperature 850, 700, and 500 hPa degrees Celsius
Northward wind 850, 700, and 500 hPa knots
Eastward wind 850, 700, and 500 hPa knots

Invariant

Angle of sub-grid-scale orography surface
Anisotropy of sub-grid-scale orography surface
Standard deviation of filtered sub-grid-scale orography surface
Standard deviation of orography surface
Geopotential surface J/kg
Longitude surface degrees
Latitude surface degrees

Temporal

Fractional position in the year t transformed with t 7→ (cos(2πt), sin(2πt))

Table 21: ERA-Interim reanalysis predictors.

Figure 17 depicts the multiscale architecture. The architecture is a cascade of three convolutional
deep sets, parametrised by three CNNs; please see the caption. The low-resolution CNN handles the
context data Dlr with a long spatial length scale. Because these features have a long spatial length
scale, the CNN can get away with a low-resolution discretisation. The output of the low-resolution
CNN then feeds into a medium-resolution CNN. The medium-resolution CNN handles the context
data Dmr with a medium spatial length scale and has a medium-resolution discretisation. Finally,
the output of the medium-resolution CNN feeds into a high-resolution CNN. This CNN handles the
context data Dhr with a short spatial length scale and has a high-resolution discretisation.

The key to the computational efficiency of this architecture is that we construct the high-resolution
discretisation only locally to the target points: a small square covering 0.25◦ more than the most
extremal target points. If the target points are confined to a small region, then the high-resolution
grid will also be small, covering only 0.25◦ more than that region. Crucially, the high-resolution

52

Published as a conference paper at ICLR 2023

zhr(•) = CNNhr

([
zmr(•)

data(Dhr)
density(Dhr)

])

zmr(•) = CNNmr

([
zlr(•)

data(Dmr)
density(Dmr)

])

zlr(•) = CNNlr

([
data(Dlr)

density(Dlr)

])

0.01◦ (✓), local to target points (✗)

0.75◦ (✗), covering all of Germany (✓)

0.1◦ (✓), covering a medium-sized square (✓)

resolution of discretisation

positioning of discretisation

Figure 17: Multiscale architecture for the AR ConvCNP. A cascade of three convolutional deep sets (Gordon et al.,
2020) representing a low-resolution, medium-resolution, and high-resolution component. Shows the resolution
and positioning of the internal discretisation for every convolutional deep set. The context set D = Dlr∪Dmr∪Dhr
is also divided into a low-resolution Dlr, medium-resolution Dmr, and high-resolution component Dhr. The
low-resolution context data Dlr consists of the 25 coarse-grained ERA-Interim reanalysis variables. The
medium-resolution Dmr and high-resolution context data Dhr both consist of the station observations and the
1 km–resolution elevation data. The functions data(D) and density(D) produce respectively the data channel
and density channel for context data D; see Gordon et al. (2020). The variables zlr(•), zmr(•), and zhr(•)
represent intermediate representations as continuous functions, and the maps CNNlr, CNNmr, and CNNhr are
translation-equivariant maps between functions on X . Following the construction of the ConvCNP (Gordon
et al., 2020), these maps are all implemented with convolutional neural networks (CNN) using a discretisation.
For CNNlr, the internal discretisation is the 0.75◦-resolution grid corresponding to the 25 coarse-grained ERA-
Interim reanalysis variables. For CNNmr, the internal discretisation is a 0.1◦-resolution grid spanning 5◦ more
than the most extremal target inputs; the discretisation does not depend on the context set. For CNNhr, the
internal discretisation is a 0.01◦-resolution grid spanning 0.25◦ more than the most extremal target inputs; the
discretisation also does not depend on the context set.

grid will not be constructed over all of Germany, like it would if we were to more naively apply
the ConvCNP with a high-resolution discretisation, incurring prohitive computational cost. Even
though the high-resolution grid is only constructed locally to the target points, the model can still
capture long-range dependencies via the medium-resolution and low-resolution grids. Namely, the
medium-resolution grid is a square covering 5◦ more than the most extremal target points, and the
low-resolution grid covers all of Germany; see Figure 17. To utilise this computational gain, the
target points must be confined to a small region. This perfectly synergises with the autoregressive
sampling procedure (Procedure 2.1), because this procedure evaluates the model one target point
at a time. The training procedure, however, must be adapted. During training, we subsample the
target points to ensure that the target set is always confined to a small square, which is described in
Appendix L.4.

During the autoregressive sampling procedure, the AR ConvCNP takes in earlier AR samples from
the model. In the architectures of the MLP ConvCNP and MLP ConvGNP, these is no natural context
data to which these samples can be appended. Therefore, in addition to the ERA-Interim reanalysis
variables and the elevation data, we also let the AR ConvCNP take in observed weather stations as
context data. We will append the earlier AR samples to these weather station context data. To have
the model make appropriate use of the weather station context set, we must randomly divide the
weather stations observations over the context and target set, which we describe in Appendix L.4.
We let the low-resolution context data Dlr consist of the 25 coarse-grained ERA-Interim reanalysis
variables, and let the medium-resolution Dmr and high-resolution context data Dhr both consist of the
weather station observations (and earlier AR samples) and the 1 km–resolution elevation data. When

53

Published as a conference paper at ICLR 2023

the 1 km–resolution data is fed to the medium-resolution CNN, the data loses some detail, because
the internal discretisation of the medium-resolution CNN is coarser than the data; however, when it is
fed to the high-resolution CNN, the data retains its detail. The same holds for the weather station
observations (and earlier AR samples).

L.3 ARCHITECTURES

MLP ConvCNP and MLP ConvGNP (Vaughan et al., 2022; Markou et al., 2022). The MLP
ConvCNP and MLP ConvGNP are a respectively a ConvCNP and ConvGNP where the decoder
decθ = fuseθ ◦ dec′θ is decomposed into a convolutional architecture dec′θ followed by a pointwise
MLP fuseθ:

fuseθ(z(•)) = MLPθ(z(•), elevation(•)). (49)
In this architecture, the ERA-Interim variables are incorporated via the convolutional architecture,
producing the encoding z(•). On the other hand, as (49) shows, the 1 km–resolution elevation data is
included via the pointwise MLP fuseθ.

Parametrise dec′θ with a seven-layer residual convolutional neural network (He et al., 2016). Every
residual layer involves one depthwise-separable convolutional filter (Chollet, 2017) with kernel size
three followed by a pointwise MLP. Every layer has 128 channels, and the network also outputs 128
channels. The discretisation for dec′θ is the grid of the ERA-Interim reanalysis variables. Parametrise
fuseθ with a three-hidden-layer MLP of width 128.

AR ConvCNP. The AR ConvCNP does not use the pointwise MLP fuseθ to incorporate the 1 km–
resolution elevation data. Instead, it is a normal ConvCNP where the convolutional architecture is
implemented by the multi-scale architecture described in Figure 17.

Parametrise CNNlr with a depthwise-separable residual convolutional neural network like in the MLP
ConvCNP and MLP ConvGNP, but use six layers instead of seven. Let CNNlr output 64 channels.
The discretisation for CNNlr is the grid of the ERA-Interim reanalysis variables. Parametrise CNNmr
with a U-Net (Ronneberger et al., 2015) using an architecture similar to what we have been using.
Before the U-turn, let the U-Net have five convolutional layers with kernel size five, stride one
for the first layer and stride two afterwards, 64 output channels for the first three layers and 128
output channels afterwards. After the U-turn, instead of using transposed convolutions, use regular
convolutions combined with an upsampling layer using bilinear interpolation. Let CNNmr output
64 channels. The receptive field of CNNmr is approximately 10◦. The discretisation for CNNmr is
centred around the target points with margin 5◦. Parametrise CNNhr with a U-Net like for CNNhr, but
with four convolutional layers before the U-turn. The receptive field of CNNhr is approximately 0.5◦.
The discretisation for CNNhr is centred around the target points with margin 0.25◦.

L.4 TRAINING DETAILS

MLP ConvCNP and MLP ConvGNP. The MLP ConvCNP and MLP ConvGNP are trained with
learning rate 2.5 · 10−5 for 500 epochs. For the MLP ConvGNP, to encourage the covariance to fit,
we fix the variance of the decoder to 10−4I for the first ten epochs.

AR ConvCNP. The AR ConvCNP is trained with learning rate 1 · 10−5 for 500 epochs. During
training and cross-validation, the target points are subsampled to lie in a 3◦ × 3◦ square. For training,
the number of target points is ensured to be at least ten; and for cross-validation, at least one. The
size of the cross-validation set is increased ten fold.

Sampling of data. For the MLP ConvCNP and MLP ConvGNP, since these architectures cannot take
in weather station observations, all weather stations are used as context data. For the AR ConvCNP,
a data set is split into a context and target set by randomly selecting n points as context points and
letting the remainder be target points. Specifically, the number of context points n is sampled from
p(n) ∝ e−0.01n. This splitting is done after subsampling the 3◦ × 3◦ square.

54

Published as a conference paper at ICLR 2023

M ALTERNATE AR PROCEDURE WITH AUXILIARY DATA

We propose an additional procedure which uses autoregressive sampling with auxiliary data to
generate more expressive marginal predictives. The input points of the auxiliary data are chosen
randomly, and then sampled autoregressively before sampling the target points. Finally, we discard
the sampled values for the auxiliary data, but retain the samples for the target points. Adding auxiliary
points in this way allows the model to roll out autoregressively with more steps, even if the target set
is small (or just a single point). We describe the procedure below:
Procedure M.1 (Autoregressive application of neural process with auxiliary data). For a neural
process πθ, context set D(c) = (x(c),y(c)), a target input x(t), a distribution r over X , a number of
auxiliary data points R ∈ N, and a number of trajectories M ∈ N, let AuxARx(t)(πθ, D

(c), r, R,M)
be the distribution defined as follows. We first autoregressively sample the auxiliary data trajectories
at random locations sampled from r:

for j = 1, . . . ,M and ℓ = 1, . . . , R, x(aux,j)
ℓ ∼ r, (50)

for j = 1, . . . ,M, y(aux,j) ∼ ARx(aux,j)(πθ, D
(c)). (51)

Next, conditioned on the auxiliary data, we sample the target point of interest to make predictions.
We then marginalise out the auxiliary data by averaging over the M trajectories:

y(t) ∼ 1
M

∑M
j=1 Px(t)(x(c) ⊕ x(aux,j), y(c) ⊕ y(aux,j)). (52)

This procedure introduces three hyperparameters: the distribution from which to draw inputs r, the
length of trajectories R, and the number of trajectories to sample M .

In the following experiments, we set the distribution r to be uniform over the training domain with
no dependence on the context set or target point of interest: r = Uniform([b, h]), where b and h are
the lower and upper bounds of the training domain, respectively. One could experiment with other
choices for the distribution r. The trajectory length R is chosen between 08 and 8, and the number of
trajectories M is chosen between 1 and 128.

M.1 GENERATED DATA

We create three data generating processes for our experiments: a mixture of functions, random
sawtooth functions, and random audio-like functions. The first two experiments have multi-modal
true marginals, whereas the last has heavy-tailed marginals.

Function mixture. The function mixture data are generated by choosing one of the following three
functions, the first with a probability of 1

4 , the second with a probability of 1
2 , and the third with a

probability of 1
4 :

y = x2 + ϵ, ϵ ∼ N (0, 0.25), (53)
y = x+ ϵ, ϵ ∼ N (0, 0.0625), (54)
y = −x+ ϵ, ϵ ∼ N (0, 0.25). (55)

Sawtooth. The sawtooth data are generated from the following function:
y(x) = [ω(dx− ϕ)] mod 1 (56)

We sample the frequency ω ∼ Unif([3, 5]), the direction d as either −1 or 1 with equal probability,
and the shift as ϕ ∼ Unif([1ω , 1]).

Synthetic Audio. Synthetic audio data are generated by convolving a Dirac comb9 with a truncated
decaying sum of sinusoids:

s(t) =

{
e−

t
τ [sin(ω1t) + sin(ω2t)] for 0 ≤ t < T,

0 otherwise,
(57)

f(x) = CombT (x) ∗ s(x), (58)
y = f(x) + ϵ where ϵ ∼ N (0, 0.001) (59)

8A trajectory length of 0 is equivalent to the standard test-time procedure.
9The Dirac comb is defined as CombT (t) :=

∑∞
k=−∞ δ(t− kT) for given period P .

55

Published as a conference paper at ICLR 2023

Experiment ConvCNP ConvCNP (AuxAR)

Function Mixture −0.63± 0.20 −0.46± 0.15
Sawtooth 1.46± 0.30 1.64± 0.28
Synthetic Audio 0.12± 0.14 0.55± 0.10

Table 22: Using autoregressive sampling for marginal approximation improves held-out log-likelihoods on
all experiments. Values are normalized by the number of target points. Values which are significantly best
(p < 0.05) are shown in bold.

where
ω1, ω2 ∼ Unif([50, 70]), T ∼ Unif([0.75, 1.25]), τ ∼ Unif([0.1, 0.3]). (60)

We truncate the waves up to the period length, because otherwise the convolution with the Dirac
comb would lead to increasing amplitude, resulting in a non-stationary process.

M.2 TRAINING

For the function mixture experiment, no training is required because we use the analytically derived
ideal CNP π∞ as our model. See Section 2.

For the sawtooth and synthetic audio experiments, we train ConvCNP models. We train each model
for 100 epochs using 1024 batches per epoch with a batch size of 16. We discretise the encoder
by evaluating 64 points per unit. We use a margin of 0.1, and a stride length of 2 for each of the 6
layers of the U-Net. Each layer has 64 channels. The receptive field size from this combination of
parameters is 6.953.

During training, we sample a number of context points between uniformly at random from {0,. . . ,75},
and we sample exactly 100 target points. The context points and target points are sampled uniformly
from [−2, 2]. We use the Adam optimizer with a learning rate of 3× 10−4.

M.3 RESULTS

Model 0 1 2 4 8 16

ConvCNP −0.47±0.07 −0.45±0.18 −0.24±0.12 −0.12±0.12 0.36±0.15 1.07±0.18

ConvCNP (AuxAR) 0.02±0.11 0.19±0.11 0.24±0.12 0.31±0.11 0.74±0.10 1.27±0.12

Table 23: Log likelihood values for varying context sizes using ConvCNP and ConvCNP (AuxAR) using the
function mixture data generator. Column headers indicate the context set size. Log-likelihoods are shown in
bold when they are significantly best (p < 0.05). Column headers are context sizes. Errors indicate central 95%
confidence interval.

Model 0 1 2 4 8 16 32

ConvCNP −0.18±0.00 −0.14±0.02 −0.02±0.05 0.42±0.19 1.89±0.23 3.06±0.13 3.54±0.08

ConvCNP (AuxAR) −0.21±0.02 −0.09±0.04 0.08±0.08 0.95±0.16 2.37±0.15 3.03±0.13 3.51±0.08

Table 24: Log likelihood values for varying context sizes using ConvCNP and ConvCNP (AuxAR) using the
sawtooth data generator. Column headers indicate the context set size.. Log-likelihoods are shown in bold when
they are significantly best (p < 0.05). Column headers are context sizes. Errors indicate central 95% confidence
interval.

In Table 22, we see that using this procedure improves the held-out log-likelihoods for all of the
experiments. We can better understand the utility of this method by observing the performance for

56

Published as a conference paper at ICLR 2023

Model 0 1 2

ConvCNP −1.40±0.11 −0.91±0.28 −0.36±0.20

ConvCNP (AuxAR) −1.05±0.11 −0.63±0.23 −0.29±0.17

Table 25: Log likelihood values for varying context sizes using ConvCNP and ConvCNP (AuxAR) using the
function mixture data generator. Column headers indicate the context set size. Log-likelihoods are shown in
bold when they are significantly best (p < 0.05). Column headers are context sizes. Errors indicate central 95%
confidence interval.

different context sizes in Tables 24 and 23. For example, the sawtooth data results in Table 24 show
that, for context set sizes 16, the AR method provides no benefits. The increased flexibility of this
AR method is not needed in this case — a Gaussian predictive models the marginal sufficiently well.
For context set sizes of 4 and 8, on the other hand, we see significant improvements using the AR
method. Similarly, for the synthetic audio data results in Table 23, we see improvements using the
ConvCNP (AuxAR) for all context set sizes except 16.

The autoregressive sampling with auxiliary data method shown here shows promise for improving
modeling of processes with multi-modal and heavy-tailed marginal distributions — all with no
changes to the training procedure. The scenarios where this method are most useful are highly
contingent upon the context set size, because of its impact how well the marginals are modeled by
Gaussians.

57

	Introduction
	Autoregressive Conditional Neural Processes
	Connections to Other Neural Distribution Estimators
	The Performance of Autoregressive Neural Processes
	Synthetically Generated Gaussian and Non-Gaussian Data
	Sim-to-Real Transfer with the Lotka–Volterra Equations
	Electroencephalogram experiments
	Environmental Modelling

	Limitations and Conclusion
	Reproducibility Statement
	Ethics Statement
	Acknowledgements
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Illustration of the AR procedure
	Number and Order of Target Points
	Effects of the Number of Target Points
	Effects of the Ordering of Target Points
	Analysis of AR CNPs for CNPs with Gaussian Marginals
	Effect of the random ordering on the spread of the log-likelihood

	Details for Figure 3
	Description of Models
	Training, Cross-Validation, and Evaluation Protocols
	Details of Synthetic Experiments
	Description of Experiments
	Multi-Modality of Predictions by AR ConvCNP
	Full Results

	Details of Sim-to-Real Transfer Experiments
	Description of Experiment
	Full Results

	Details of Electroencephalography Experiments
	Details of Environmental Data Assimilation Experiment
	Data considerations
	Model considerations
	Antarctic cloud cover model samples

	Details of Climate Downscaling Experiments
	Description of Experiment
	Multiscale Convolutional Architecture
	Architectures
	Training Details

	Alternate AR Procedure with Auxiliary Data
	Generated Data
	Training
	Results

