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ABSTRACT

Video generative models have been recently applied to robotic applications as vi-
sual planners. However, such visual planning models are generally trained on in-
domain expert data, which may potentially be expensive to collect. Recent work
has shown that instead, an in-domain video model trained on suboptimal data
can be composed with a video model trained on internet-scale data to produce a
performant video planner capable of generating high-quality trajectories during
interaction with the environment. In this work, we investigate if utilizing these
improved trajectories to update the in-domain model in a virtuous cycle can fa-
cilitate further downstream robotic task performance over multiple iterations. We
present the Self-Adapting Improvement Loop (SAIL), where an in-domain model
initially trained on only suboptimal demonstration data is iteratively adapted to the
trajectories synthesized when using it as an adapted visual planner, without any re-
ward annotation or heuristical data filtering. We apply SAIL on a large suite of
MetaWorld tasks unseen during initial in-domain training, and find that improve-
ments do continuously emerge over multiple iterations, thus demonstrating a way
to iteratively bootstrap a high-performance video model for solving novel robotic
tasks from cheap, suboptimal data through self-improvement.

1 INTRODUCTION

Advancements in video generative modeling capabilities have directly led to their increased appli-
cation as visual planners for robotic applications (Du et al., 2024b; Yang et al., 2023b; Ko et al.,
2024; Liang et al., 2024). Such visual planners are usually trained explicitly on expert in-domain
demonstrations, which communicate not only environment-specific visual characteristics, physics,
and interaction dynamics to the generative model during optimization, but also a notion of success
and optimal behavior. However, for arbitrary environments, in-domain data can be expensive to col-
lect and curate at scale, particularly when trajectories are required to be of expert quality. A potential
consequence of training on a small dataset is limited generalization capability. On the other hand,
suboptimal demonstration data, such as utilizing random actions during the collection procedure,
may generally be cheaper to gather at scale; however, training on a large dataset of poor-quality data
may not result in a performant visual planning model capable of generating plans worth following.

Recent work (Luo et al., 2025) has proposed a way to address these considerations on data quality
and dataset size simultaneously. They demonstrate that a powerful, generalizable visual planner can
be created by adapting a large-scale model pretrained on web-scale video data with a video model
trained on a small set of in-domain demonstrations via score composition. At a high level, the
adapted video model draws upon large-scale motion priors and powerful zero-shot text conditioning
capabilities from the web-pretrained video model to facilitate generalization. Simultaneously, it can
leverage the in-domain video model to better generate visual plans that respect the environment-
specific visual characteristics and dynamics of the robotic setting.

Crucially, in investigating the extent that integrating in large-scale motion priors benefits visual plan-
ning, it was discovered that adaptation reduces a reliance on expert-quality data. Combining an in-
domain model trained on suboptimal-only data with large-scale video model via score composition
adaptation was shown to still successfully generate performant video plans. As neither in-domain
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Figure 1: In the pretraining stage, a general text-to-video model is trained on web-scale text-
annotated video datasets, and an in-domain text-to-video model is trained on a small set of subopti-
mal demonstrations of task behavior. Composing these two components results in a visual planner,
which when utilized to interact with the environment, produces trajectories with improved success
rate. In the Self-Adapting Improvement Loop (SAIL), these trajectories are then fed back to finetune
the in-domain model, thus improving the overall quality of the adapted visual planner as a whole. In
such a way, performance on a novel task can be iteratively improved upon, bootstrapping from two
models that have never initially seen successful expert task demonstrations during the pretraining
stage.

model nor generally-pretrained model had observed successful task demonstrations during training,
this suggests that large-scale motion priors, and specified by text conditioning, may help to mitigate
the optimality gap.

In this work, we leverage this discovery to design a Self-Adapting Improvement Loop (SAIL) for
solving novel robotic tasks. As the resulting trajectories are of higher quality than the initial dataset
used to train the in-domain model, we propose using them to further finetune the in-domain model.
In such a way, the overall visual planner improves its performance by adapting itself to trajectories
collected through its application.

We perform extensive evaluations of SAIL on the MetaWorld task suite, including on novel tasks
unseen during initial training of the in-domain model. We discover that the success rate of following
such visual adapted plans indeed improves over iterations. We highlight that this is accomplished
without requiring any data filtering or task-reward labeling; the in-domain model is bootstrapped
purely from a set of suboptimal demonstration data and improved using the trajectories it collects
from its own performance as an adapted visual planner. Our work therefore highlights how a robotic
planner can iteratively adapt to its own collected samples, and learn to improve its task performance
without expensive human curation or overhead.

2 RELATED WORK

Video Models for Decision Making. A large body of recent work has explored how video models
may be used for decision making (Yang et al., 2024; McCarthy et al., 2024). One line of work ex-
plores how video generative models can provide rewards, particularly through a pixel interface (Ser-
manet et al., 2016; Ma et al., 2022). In VIPER (Escontrela et al., 2024), a video model is trained
on expert in-domain demonstrations; it is then utilized to provide dense rewards to supervise down-
stream policies by evaluating the likelihood of achieved frames during interaction. Similarly, expert
demonstrations are also used in Diffusion-Reward (Huang et al., 2023), but a diffusion model is
trained instead. Rewards are once again provided through achieved frames, but through a novel
cross-entropy computation.

A separate line of work utilizes video models as pixel-based planners (Ko et al., 2024; Du et al.,
2024a;b; Ajay et al., 2023; Wen et al., 2023; Liang et al., 2024; Yang et al., 2023b; Zhou et al.,
2024b; Wang et al., 2024; Zhou et al., 2024a). In such works, the video model can be directly used to
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generate a visual plan to solve a task, which can be converted into actions using an inverse dynamics
model (Du et al., 2024a) or through dense 3D correspondences (Ko et al., 2024). Alternatively,
the video model can also be used as a visual dynamics model as part of a more complex planning
routine (Ajay et al., 2023; Du et al., 2024b), to form more complex, long horizon video plans. We
utilize video models as visual planners for solving robotic control tasks and evaluate whether a high-
performing visual planner can be bootstrapped from a suboptimal visual planner via a self-adapting
improvement loop.

Adaptation Techniques for Video Diffusion Models. Although many large-scale pretrained text-
to-video models (Ho et al., 2022b; Guo et al., 2023; Ramesh et al., 2022; Brooks et al., 2024; Xing
et al., 2023; Ho et al., 2022a; Villegas et al., 2022; Singer et al., 2022; Khachatryan et al., 2023) have
demonstrated strong capabilities of synthesizing high-quality videos following the given prompts, it
is often desirable to perform adaptation for specialized tasks, such as customizing video generation
with specific subjects or styles. DreamVideo (Wei et al., 2024) learns subject customization for
a pretrained video diffusion model through a few provided static images, which is achieved by
combining textual inversion with finetuning an identity adapter.

Prior work on large-to-small adaptation of video models, through composing predicted scores, has
demonstrated successful transfer of artistic styles while maintaining powerful text-conditioning be-
havior (Yang et al., 2023a). Furthermore, a variant of the probabilistic adaptation technique is pro-
posed by (Luo et al., 2025) to perform score composition in an inverted direction from that presented
in (Yang et al., 2023a). In this work, we evaluate probabilistic adaptation and its inverse to explore
the degree to which a suboptimal in-domain video model can be improved iteratively through a
self-adaptation loop.

3 METHOD

We introduce Self-Adapting Improvement Loop (SAIL), in which we iteratively improve a visual
planning model initially trained on suboptimal in-domain demonstrations to a performant one in a
self-adaptive manner. In Section 3.1, we first introduce how video models can be used as visual
planners for solving decision making problems. In Section 3.2, we describe the probabilistic adap-
tation techniques that integrate a small in-domain video model with one generally pretrained on
web-scale data to produce a strong, generalizable in-domain visual planner. Finally, we demonstrate
how, through an iterative fine-tuning loop, we can bootstrap a suboptimal in-domain video model
into a high-performing visual planner that is able to solve novel robotic control tasks in Section 3.3.

3.1 VIDEO MODELS AS VISUAL PLANNERS

Synthesizing a visual plan in imagination and then executing it by converting it into actions is an
intuitive and effective way to utilize video generative models for decision making. Prior work has
applied text-guided video generation successfully for task planning (Du et al., 2024a;b; Ajay et al.,
2023), across a variety of robot configurations and environment settings.

Specifically, we base our implementation on the UniPi framework (Du et al., 2024a), in which the
text-to-video model is used to synthesize a text-conditioned sequence of future frames as a task
plan. To physically realize the plan, we use an inverse dynamics model to translate sequential pairs
of visual frames into executable robotic actions, which are then directly performed in interaction
with the environment.

3.2 PROBABILISTIC ADAPTATION AND ITS INVERSE

Probabilistic Adaptation (Yang et al., 2023a) is a training-free approach that adapts generally pre-
trained text-to-video models for domain-specific video generation. To perform adaptation, the score
predicted by an in-domain video model ϵθ trained on a small sample of demonstrations, is composed
with the score prediction of a web-scale pretrained model ϵgeneral during the sampling procedure, as
depicted in the function below:

ϵ̃ = ϵθ(τt, t) + α
(
ϵθ(τt, t | text) + γϵgeneral(τt, t | text)− ϵθ(τt, t)

)
(1)
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where γ is the prior strength, and α is the guidance scale of text-conditioning. Intuitively, the general
text-to-video model serves as a probabilistic knowledge prior that guides the generation process of
the small in-domain model during sampling. Moreover, Probabilistic Adaptation has been extended
to its inverse version (Luo et al., 2025) by inverting the adaptation direction:

ϵ̃inv = ϵgeneral(τt, t) + α
(
ϵgeneral(τt, t | text) + γϵθ(τt, t | text)− ϵgeneral(τt, t)

)
(2)

where the small video model now serves as the probabilistic prior to facilitate adapted video genera-
tion. While Probabilistic Adaptation is initially proposed for generating high-quality yet specialized
videos, prior work (Luo et al., 2025) has adopted this technique and its inverse to construct vi-
sual planners for solving robotic control tasks. When using expert demonstrations for in-domain
training, these adapted video planners exhibit both strong generalization capability and in-domain
understanding, allowing them to effectively solve even tasks unseen during the training of the video
models.

3.3 SELF-ADAPTING IMPROVEMENT LOOP

Collecting expert demonstrations for robotic control tasks can often be costly in many scenarios,
making it difficult to scale up the in-domain training process. On the other hand, although sub-
optimal demonstrations lack the expert examples that visual planners can copy from to solve the
task directly, they still contain valuable in-domain information, such as visual characteristics and
environment dynamics, which remain crucial for visual planning.

More importantly, prior work (Luo et al., 2025) discovered that probabilistic adaptation techniques
are able to mitigate this data optimality gap by leveraging the large-scale pre-trained video prior,
and consistently improve visual planning performance even when only suboptimal demonstrations
are available for in-domain training. Inspired by this, we propose Self-Adapting Improvement Loop
(SAIL), where we can iteratively improve a suboptimal in-domain model via a self-adaptive manner
(as in Figure 1 right).

Specifically, we initialize SAIL with an in-domain video model ϵθ pre-trained on suboptimal demon-
strations. In each iteration, the in-domain video model is adapted with a large-scale pretrained video
model ϵgeneral through probabilistic adaptation techniques. The adapted video model serves as a vi-
sual planner to interact with the environment and solve novel tasks that are not observed in the initial
training stage. During visual planning, we collect a small dataset of trajectories rendered by the en-
vironment for further in-domain finetuning. Based on the discovery in (Luo et al., 2025), the adapted
video model can achieve better task performance than the unadapted in-domain video model when
functioning as a visual planner, indicating more performant trajectories are collected when using
the adapted visual planner. We then leverage these high-performing trajectories to refine the in-
domain video model and eventually bootstrap a strong in-domain model through the self-adapting
improvement cycle.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND EVALUATION

Benchmarks: We evaluate to what degree SAIL can improve the in-domain video model initially
trained on suboptimal demonstrations and further solve novel robotic control tasks. We choose
MetaWorld-v2 (Yu et al., 2020) as our evaluation benchmark, which offers a suite of robotic ma-
nipulation tasks with different levels of complexity. This benchmark allows us to thoroughly assess
visual planning performance with SAIL across a wide selection of tasks. We curate a small dataset
of in-domain demonstrations from 7 MetaWorld tasks (denoted with an asterisk in Table A1) for
initial in-domain training, in which 25 suboptimal videos are used for each task. During inference,
we evaluate the adapted visual planners on 9 tasks, 7 of which are novel tasks that are not exposed
during initial in-domain training (denoted with no asterisk in Table A1). In each SAIL iteration, we
collect 25 trajectories rendered from the environment during visual planning for further in-domain
finetuning.
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Implementation details of adaptation: In our experiments, we use AnimateDiff (Guo et al., 2023)
(∼1.5B parameters) as our pretrained text-to-video model, which combines StableDiffusion with a
motion module pretrained on WebVid-10M (Bain et al., 2021) for high-quality video generation.
We implement our small in-domain video model based on AVDC (Ko et al., 2024), a text-to-video
model that diffuses over pixel space; implemented using ∼109M parameters, this is comparable
in size to that of the small models used in prior work (Yang et al., 2023a). To enable direct score
composition between the in-domain model and AnimateDiff, we modify the AVDC model to diffuse
over the same latent space used by StableDiffusion.

Evaluation metrics: For robotic manipulation tasks in MetaWorld, we report the “success rate”,
computed as the proportion of evaluation rollouts in which the agent successfully completes the
given task.

In-Domain Only Iteration 0 Iteration 1 Iteration 2

Door-Close* 98.7 ± 2.3 100 ± 0 96.0 ± 4.0
Door-Open 0 ± 0 0 ± 0 0 ± 0
Drawer-Close 13.3 ± 8.3 13.3 ± 10.6 28.0 ± 14.4
Drawer-Open 1.3 ± 2.3 2.6 ± 2.3 1.3 ± 2.3
Window-Close 53.3 ± 16.7 52.0 ± 16.0 46.7 ± 9.2
Window-Open 16.0 ± 8.0 9.3 ± 4.6 13.3 ± 8.3
Coffee-Push* 0 ± 0 0 ± 0 0 ± 0
Button-Press 0 ± 0 2.7 ± 2.3 6.7 ± 2.3
Soccer 0 ± 0 0 ± 0 0 ± 0

Average 20.3 20.0 21.3

Table 1: SAIL without Adaptation We report the mean success rate via visual planning across 9
tasks, aggregated over 3 seeds each. No apparent improvement over average performance can be
observed across iterations.

Prob. Adaptation Iteration 0 Iteration 1 Iteration 2

Door-Close* 98.7 ± 2.3 93.3 ± 4.6 96.0 ± 4.0
Door-Open 0 ± 0 0 ± 0 0 ± 0
Drawer-Close 21.3 ± 2.3 48.0 ± 13.8 41.3 ± 11.5
Drawer-Open 0 ± 0 2.7 ± 2.3 0 ± 0
Window-Close 49.3 ± 6.1 65.3 ± 8.3 68.0 ± 6.9
Window-Open 6.7 ± 6.1 5.3 ± 6.1 9.3 ± 2.3
Coffee-Push* 0 ± 0 0 ± 0 0 ± 0
Button-Press 0 ± 0 2.7 ± 4.6 1.3 ± 2.3
Soccer 0 ± 0 0 ± 0 0 ± 0

Average 19.6 24.1 24.0

Table 2: SAIL with Probabilistic Adaptation We report the mean success rate via visual planning
across 9 tasks, aggregated over 3 seeds each. Performance on Window-Close continuously improves
over iterations, whereas the average performance shows improvement over the first few iterations
and quickly saturates in the last iteration.

4.2 VISUAL PLANNING WITH SAIL

We implement video models as visual planners following the framework in UniPi (Du et al., 2024a).
To generate a plan, we synthesize a sequence of 8 future frames conditioned on both the current
visual observation from the environment and the text prompt specifying the task. This is then trans-
lated into an executable action sequence via an inverse dynamics model. To mitigate the potential
error accumulation problem, we evaluate our visual planner in a closed-loop manner, in which we
only execute the first inferred action for every environment step. We provide detailed hyperparame-
ters for video planning, and the implementation of the inverse dynamics model, in Appendix B.

We evaluate SAIL with three settings: Probabilistic Adaptation, Inverse Probabilistic Adaptation
and no adaptation. For each setting, we initialize with the same in-domain video model, perform
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Inverse Prob. Adaptation Iteration 0 Iteration 1 Iteration 2

Door-Close* 100 ± 0 100 ± 0 100 ± 0
Door-Open 0 ± 0 0 ± 0 0 ± 0
Drawer-Close 22.6 ± 4.6 36.0 ± 14.4 56.0 ± 18.3
Drawer-Open 1.3 ± 4.3 1.3 ± 2.3 1.3 ± 2.3
Window-Close 34.7 ± 2.3 66.7 ± 14.8 68.0 ± 10.6
Window-Open 24.0 ± 8.0 10.7 ± 10.1 10.7 ± 2.3
Coffee-Push* 0 ± 0 0 ± 0 0 ± 0
Button-Press 0 ± 0 5.3 ± 2.3 8.0 ± 4.0
Soccer 2.6 ± 4.6 1.3 ± 2.3 1.3 ± 2.3

Average 20.6 24.6 28.4

Table 3: SAIL with Inverse Probabilistic Adaptation We report the mean success rate via visual
planning across 9 tasks, aggregated over 3 seeds each. Continuous improvements are observed
in Drawer-Close, Window-Close, Button-Press as well as the average performance over multiple
iterations. Furthermore, it achieves the best visual planning performance in the last SAIL iteration
across all evaluation settings.

three SAIL iterations, and report the visual planning performance in every iteration in the tables be-
low. While improvements can be barely observed across iterations without any adaptation in Table 1,
Table 2 and Table 3 consistently show an improving trend over average performance, highlighting
the effectiveness of self-adaptation. From Table 3, we discover that Inverse Probabilistic Adapta-
tion enables a continuously improving behavior over iterations on three unseen tasks and average
performance, and achieves the highest success rate in Iteration 2. On the other hand, in Table 2,
only one unseen task shows a similar improving behavior with probabilistic adaptation, and the av-
erage performance also quickly saturates after Iteration 1. Compared to probabilistic adaptation, we
believe its inverse variant serves as a more robust adaptation technique, especially with suboptimal
in-domain initialization, which allows more performant trajectories to be collected through visual
planning, constantly improving the in-domain video model through the self-adaptation loop.

5 CONCLUSION AND FUTURE WORK

In this work, we propose SAIL, a self-adapting improvement loop for solving novel robotic tasks
via visual planning. SAIL initially starts from an in-domain video model pretrained on a small
set of suboptimal data, as well as a large-scale video model pretrained on general internet data.
By utilizing the composition of these two models as a visual planner, then executing synthesized
visual plans in an environment for a desired task, performant trajectories can be generated. SAIL
utilizes these improved trajectories to further finetune the indomain model, and repeats this sequence
of interactions and updates over multiple iterations. We evaluate SAIL on an extensive suite of
MetaWorld tasks, with task performance increasing with iteration count in particular for inverse
probabilistic adaptation. Notably, we successfully deploy SAIL to novel robotic tasks, where even
suboptimal demonstrations are not provided during in-domain model training. Furthermore, no
human data filtering is applied on the trajectories produced by following the visual planner, and
reward information from the environment is not utilized in any capacity. We therefore highlight how
SAIL can be used to iteratively adapt itself to solve novel robotic tasks, starting from a model trained
on cheaply generated suboptimal data.
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A TEXT PROMPTS

Task In-Domain Prompts AnimateDiff Prompts

Assembly∗ assembly a robot arm placing a ring over a peg
Dial Turn∗ dial turn a robot arm turning a dial
Reach∗ reach a robot arm reaching a red sphere
Peg Unplug Side∗ peg unplug side a robot arm unplugging a gray peg
Lever Pull∗ lever pull a robot arm pulling a lever
Coffee Push∗ coffee push a robot arm pushing a white cup towards a coffee machine
Door Close∗ door close a robot arm closing a door
Door Open door open a robot arm opening a door
Window Close window close a robot arm closing a window
Window Open window open a robot arm opening a window
Drawer Close drawer close a robot arm closing a drawer
Drawer Open drawer open a robot arm open a drawer
Soccer soccer a robot arm pushing a soccer ball into the net
Button Press button press a robot arm pushing a button

Table A1: Task-Prompt Pairs. We include a comprehensive list of tasks and their text prompts for
adaptation and evaluation. “∗” denotes tasks seen during adaptation.

B IMPLEMENTATION DETAILS

Component # Parameters (Millions)

VAE (Encoder) 34.16
VAE (Decoder) 49.49
U-Net 865.91
Text Encoder 340.39

Table A2: StableDiffusion Components. For
completeness, we list sizes of the components
of the StableDiffusion v2.1 checkpoint used in
Video-TADPoLe experiments. The checkpoint
is used purely for inference, and is not modified
or updated in any way. Note that the VAE De-
coder is not utilized in our framework.

Component # Parameters (Millions)

VAE (Encoder) 34.16
VAE (Decoder) 49.49
U-Net 1312.73
Text Encoder 123.06

Table A3: AnimateDiff Components. For
completeness, we list sizes of the components
of the AnimateDiff checkpoint used in Video-
TADPoLe experiments. The checkpoint is used
purely for inference, and is not modified or up-
dated in any way. Note that the VAE Decoder is
not utilized in our framework.

Hyperparameter Value

Training Objective pred noise
Number of Training Steps 60000
Loss Type L2
Learning Rate 1e-4
Beta Schedule Linear schedule (0.0085, 0.012)
Timesteps 1000
EMA Decay 0.99
EMA Update Steps 10

Table A4: Hyperparameters for In-Domain
Model Training.

Hyperparameter Value

Input Dimension 1536
Output Dimension 4
Training Epochs 20
Learning Rate 3e-5
Optimizer AdamW

Table A5: Hyperparamters of Inverse Dy-
namics Model Training

Visual Planning Hyperparameters: To generate a video plan with adapted video models, we per-
form DDIM (Song et al., 2021) sampling for 25 steps. We use 2.5 as the text-conditioning guidance
scale. Additionally, we use 0.1 as the prior strength for probabilistic adaptaion and 0.5 for its inverse
version.
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Inverse Dynamics: We employ a small MLP network as our inverse dynamics model. The model
takes in the embeddings of two consecutive video frames, which are extracted using VC-1 (Majum-
dar et al., 2023), and predicts the action that enables the transition between the provided frames.
We train the inverse dynamics model on a dataset comprising a mixture of expert and suboptimal
trajectories rendered from the environment, using the same set of tasks and data volumn as used for
adaptation. For fairness, we reuse the same dynamics model across all adaptation techniques during
evaluation. We provide the detailed hyperparameters of inverse dynamics training in Table A5.
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