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Abstract

Entity retrieval—retrieving information about001
entities in a query—is a core step in open-002
domain tasks, such as question answering or003
fact checking. However, state-of-the-art entity004
retrievers struggle to retrieve rare entities in005
queries. There are two key challenges: (1) most006
retrievers are trained on unstructured text about007
entities and ignore structured data about enti-008
ties that can be challenging to learn from text,009
such as entity types, and (2) methods that lever-010
age structured types are not designed for end-011
to-end retrieval, which is necessary for open-012
domain tasks. In this work, we introduce TABi,013
a method to jointly train bi-encoders on unstruc-014
tured text and structured types for end-to-end015
retrieval. TABi uses a type-enforced contrastive016
loss to encode type information in the embed-017
ding space and trains over datasets from multi-018
ple open-domain tasks to learn to retrieve enti-019
ties. We demonstrate that this simple method020
can improve retrieval of rare entities on the Am-021
bER sets, while maintaining strong overall per-022
formance on retrieval for open-domain tasks023
when compared to state-of-the-art retrievers.024
We also find that TABi produces embeddings025
that better capture types on a nearest neighbor026
type classification and an entity similarity task.027

1 Introduction028

Entity retrieval (ER) is the process of finding the029

most relevant entities in a knowledge base for a030

natural language query.1 Entity retrieval is crucial031

for open-domain tasks, where systems are provided032

with a query without the context needed to answer033

the query (Karpukhin et al., 2020). For example, to034

answer the query, “What team does George Wash-035

ington play for?” an open-domain system can use036

an entity retriever to find information about George037

Washington in a knowledge base. Retrieving the038

1Following Chen et al. (2021), we focus on the page-level
document retrieval setting—where the the mention bound-
aries are unknown and documents correspond to entities (e.g.
Wikipedia pages).

correct George Washington—George Washington 039

the baseball player, rather than George Washington 040

the president—requires the retriever to recognize 041

that keywords “team” and “play” imply George 042

Washington is an athlete. However, recent work 043

has shown that state-of-the-art retrievers struggle 044

to resolve ambiguous mentions of rare “tail" enti- 045

ties (Chen et al., 2021). 046

A key challenge is that most entity retrievers are 047

trained on unstructured text about entities, such as 048

mention contexts and entity descriptions (Wu et al., 049

2020; Cao et al., 2021). These methods overlook 050

structured data about entities that can be challeng- 051

ing to learn from unstructured text alone—such as 052

entity types, which group similar entities together 053

under a category (e.g. athlete). As a result, retriev- 054

ers make mistakes even when the type is clear from 055

the query, e.g. retrieving George Washington the 056

president when the query is asking about an athlete. 057

While several works (e.g. Gupta et al., 2017; 058

Onoe and Durrett, 2020; Orr et al., 2021) have 059

successfully leveraged types to improve tail perfor- 060

mance, they require mention boundaries indicating 061

the location of the mention in the query. How- 062

ever, mention boundaries are usually unknown in 063

open-domain tasks. Thus, using these methods on 064

open-domain tasks requires a mention detection 065

stage, which can introduce additional errors.2 066

In this work, we introduce TABi, a simple 067

method for training entity retrievers on structured 068

types and unstructured text for end-to-end retrieval 069

without mention boundaries. TABi uses a bi- 070

encoder model, building on dense retrieval meth- 071

ods (Wu et al., 2020; Karpukhin et al., 2020) (Fig- 072

ure 1). Bi-encoders learn embeddings of queries 073

and entities contrastively: query embeddings are 074

pulled close to their ground truth entity embedding 075

and pushed away from other entity embeddings. 076

TABi adds a type-enforced loss term that pulls 077

2We find retrieval performance can drop up to 40% (rela-
tive) by using mention detection v. gold mention boundaries.
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Figure 1: TABi uses a query and entity encoder to embed queries and entities in the same space. To encourage
embeddings of the same type (e.g. athlete) to be close, TABi introduces a type-enforced contrastive loss that pulls
query embeddings of the same type together and pushes query embeddings of different types apart.

query embeddings of the same type together and078

pushes query embeddings of different types apart.079

Additionally, motivated by “universal” dense re-080

trievers (Maillard et al., 2021), TABi trains over081

multiple open-domain datasets to support end-to-082

end retrieval. Finally, while the type-enforced loss083

improves performance over rare entities by encour-084

aging the retriever to pay attention to type context,085

it may compromise performance over popular en-086

tities. We find that a simple re-ranker with two087

non-learned components—a sparse retriever and088

popularity statistics—helps maintain performance089

over popular entities.090

We demonstrate that TABi can improve rare en-091

tity retrieval for three open-domain tasks (question092

answering, fact checking, and slot filling), while093

still performing strongly overall. TABi improves094

the top-1 retrieval accuracy by 7.5 points on av-095

erage on the tail AmbER sets (Chen et al., 2021)096

when mention boundaries are known and by 32.1097

when they are unknown, while performing com-098

parably to the state-of-the-art GENRE (Cao et al.,099

2021) retriever on the open-domain tasks in the100

KILT benchmark (Petroni et al., 2021). Our method101

achieves this lift without hard negative sampling,102

which is commonly thought to be critical for bi-103

encoders (Gillick et al., 2019; Karpukhin et al.,104

2020) but increases training time3 and can degrade105

rare entity performance (Botha et al., 2020).106

We also validate that TABi better encodes types107

in the dense embedding space than baseline dense108

entity retrievers through embedding visualization,109

nearest neighbor type classification, and a novel en-110

3We find that adding just one hard negative for each exam-
ple increases the time per epoch by 1.7×.

tity similarity task. Surprisingly, on the entity sim- 111

ilarity task, which requires learning finer-grained 112

type hierarchies, TABi is even competitive with 113

knowledge graph embedding methods. Code will 114

be released upon publication. 115

To summarize, our contributions are as follows: 116

• We introduce TABi, a simple method that jointly 117

uses structured types and unstructured text to 118

train bi-encoders for end-to-end retrieval through 119

a new type-enforced contrastive loss. 120

• We demonstrate that TABi can improve retrieval 121

of rare entities for open-domain NLP tasks, while 122

maintaining strong overall performance. 123

• We validate that our approach can better capture 124

types in query and entity embeddings than base- 125

line dense entity retrievers. 126

2 Preliminaries 127

We review the problem setup (§2.1), entity retrieval 128

task (§2.2), and bi-encoder model (§2.3). 129

2.1 Problem setup 130

Let q ∈ Q be a query, e ∈ E be an entity de- 131

scription, y ∈ Y be the entity label from the 132

knowledge base, and t ∈ T be the type la- 133

bel.4 We assume as input a labeled dataset D = 134

{(qi, ei, yi, ti)}ni=1. Similar to augmentations in 135

contrastive learning (Chen et al., 2020), for a query- 136

entity pair (q, e), we consider the query q as a 137

"view" of the entity description e. 138

4To simplify notation, we define a single type label. In ex-
periments, we define the type label as the set of types assigned
to the entity and type equivalence as all types matching.
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2.2 Entity retrieval task139

Given a query q as input, the task of entity retrieval140

is to return the top-K entity candidates relevant to141

the query from Y . As |Y| is often on the order of142

millions, it is important for entity retrieval systems143

to be scalable. Since our primary motivation is144

open-domain NLP tasks, we focus on the page-145

level document retrieval setting, where we assume146

that each document corresponds to an entity (e.g.147

Wikipedia page) and that no mention boundaries148

are provided as input.149

2.3 Bi-encoders for entity retrieval150

The bi-encoder model consists of a query encoder151

f : Q → Rd and an entity encoder g : E →152

Rd. Most bi-encoders (e.g. Gillick et al., 2019;153

Wu et al., 2020) are trained with the InfoNCE154

loss (van den Oord et al., 2018), in which “pos-155

itive” pairs of examples are pulled together and156

“negative” pairs of examples are pushed apart. For157

a particular query q, let its positive example e+ be158

the entity description for the respective gold entity159

and its negative examples Ne(q) be the set of all160

other entity descriptions in the batch. For a batch161

with queries Q and entity descriptions E, the loss162

is defined as:163

LNCE(Q,E) =
−1

|Q|
∑
q∈Q

164

log
ψ(q, e+)

ψ(q, e+) +
∑

e−∈Ne(q)

ψ(q, e−)
, (1)165

where ψ(v, w) = exp(f(v)⊤g(w)/τ) is the simi-166

larity score between the embeddings of v and w,167

and τ is a temperature hyperparameter. Intuitively,168

LNCE pulls each query embedding close to the169

entity embedding for its gold entity and pushes it170

away from all other entity embeddings in the batch.171

Note that batches are often constructed with hard172

negative samples to improve overall quality (e.g.173

Gillick et al., 2019). In this work, we introduce174

a new loss for training bi-encoders and compare175

against the InfoNCE loss in §4 and §5.176

3 Approach177

TABi jointly leverages structured types and unstruc-178

tured text to train bi-encoders for end-to-end entity179

retrieval. TABi is a bi-encoder that takes as input180

queries and entity descriptions (§3.1) and uses a181

type-enforced contrastive loss (§3.2). At inference,182

TABi uses nearest neighbor search to retrieve enti- 183

ties followed by an inexpensive re-ranker (§3.3). 184

3.1 Input 185

The query q is represented as the WordPiece (Wu 186

et al., 2016) tokens in the query, with special tokens 187

[Ms] and [Me] around the mention if the mention 188

boundaries are known and simply the query tokens 189

if they are unknown (matching the input of Wu et al. 190

(2020) with mention boundaries and Karpukhin 191

et al. (2020) without). The entity description e is 192

represented as the WordPiece tokens of the entity’s 193

title, types, and a description, with each compo- 194

nent separated by an [Es] token (following Wu 195

et al. (2020) and additionally including types in 196

the input). We fine-tune the standard BERT-base 197

pretrained model (Devlin et al., 2019) for both the 198

query and entity encoders and take the final hidden 199

layer representation corresponding to the [CLS] 200

token as the query and entity embeddings. Similar 201

to work in contrastive learning (Chen et al., 2020), 202

we then apply L2 normalization to the embeddings. 203

3.2 Type-Enforced Contrastive Loss 204

We propose a contrastive loss that incorporates 205

structured types and builds on the supervised con- 206

trastive loss from Khosla et al. (2020). Our goal 207

is to encode types in the embedding space, such 208

that the embeddings of queries and entities of the 209

same type are closer together than those of differ- 210

ent types. Types are usually not sufficient to distin- 211

guish an entity, so we also want to embed queries 212

and entities with similar names close together. 213

To achieve these two goals, our loss is a weighted 214

sum of two supervised contrastive loss terms, Ltype 215

and Lent. For a randomly-sampled batch from 216

dataset D with queries Q and entity descriptions 217

E, TABi’s loss LTABi is given by: 218

LTABi(Q,E) = 219

αLtype(Q) + (1− α)Lent(Q,E), (2) 220

where α ∈ [0, 1] (we use α = 0.1 in our experi- 221

ments). Ltype(Q) uses type labels to form positive 222

and negative pairs over queries.5 Let Ptype(q) be 223

the set of all queries in a batch that share the same 224

type as a query q and Ntype(q) be the set of all 225

queries in a batch with a different type than q. Then 226

5We contrast queries in Ltype because we find it is more
difficult to learn the query type than the entity type.
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Figure 2: t-SNE visualizations of BLINK and TABi entity embeddings.

Ltype(Q) is:227

Ltype(Q) =
−1

|Q|
∑
q∈Q

1

|Ptype(q)|
228

∑
q+∈Ptype(q)

log
ψ(q, q+)

ψ(q, q+) +
∑

q−∈Ntype(q)

ψ(q, q−)
. (3)229

Next, Lent(Q,E) uses entity labels to form pos-230

itive and negative pairs over queries and entity de-231

scriptions.6 Let x be a query or entity description,232

and Pent(x) be the set of all queries and entity de-233

scriptions in a batch that share the same gold entity234

as x (excluding x itself). Let Nent(x) be the set of235

all queries and entity descriptions in a batch with a236

different gold entity from x. Then Lent(Q,E) is:237

Lent(Q,E) =
−1

|Q ∪ E|
∑

x∈Q∪E

1

|Pent(x)|
238

∑
x+∈Pent(x)

log
ψ(x, x+)

ψ(x, x+) +
∑

x−∈Nent(x)

ψ(x, x−)
. (4)239

Note that we tie the weights of the query and240

entity encoders such that f(·) ≡ g(·) so that ψ is241

well-defined for all pairs of queries/entities.7 We242

also normalize embeddings before computing ψ.243

TABi only forms negative pairs over examples in244

a random batch and does not use hard negative245

sampling.246

The key difference between Ltype and Lent is247

the set of positive and negative pairs. Ltype forms248

pairs by type, which clusters queries of the same249

type in the embedding space. Lent forms pairs by250

gold entity, which clusters queries and entities with251

6In contrast, LNCE only compares query-entity pairs. We
find that additionally comparing query-query and entity-entity
pairs for Lent helps in §4.4.

7Both encoders take a list of tokens as input.

similar names in the embedding space. Figure 2 252

shows that LTABi produces embeddings that clus- 253

ter better by types than those produced by LNCE 254

(BLINK) or Lent on its own (even when the entity 255

input includes types). 256

3.3 Inference 257

We precompute entity embeddings and use nearest 258

neighbor search to retrieve the top-K most similar 259

entity embeddings to a query embedding. Prior 260

work has shown that a hybrid model that combines 261

sparse retrievers (e.g. TF-IDF) and dense retrievers 262

can improve performance (Karpukhin et al., 2020; 263

Luan et al., 2021) and that entity popularity can 264

help disambiguation (Ganea and Hofmann, 2017). 265

Similarly, TABi linearly combines the top-K entity 266

scores from the bi-encoder with the top-K entity 267

scores of a sparse retriever using a tunable weight λ. 268

It then linearly combines these scores with their cor- 269

responding global entity popularity (e.g. Wikipedia 270

page views) using a tunable weight κ. While this 271

introduces two hyperparameters (λ and κ), they are 272

inexpensive to tune since the bi-encoder does not 273

depend on them. 274

4 Retrieval Experiments 275

Our experiments find that TABi can improve rare 276

entity retrieval for open-domain NLP tasks while 277

maintaining strong overall quality. 278

4.1 Experimental setup 279

We describe the baselines, evaluation datasets, 280

knowledge base, and training data. We include 281

additional setup details in Appendix A. 282

Baselines We compare against eight baselines. 283

Two baselines are non-learned: Alias Table (prior), 284

an alias table which sorts candidates by their prior 285

probability with the mention computed over the 286
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BLINK training dataset, and TF-IDF, which uses287

sparse embeddings of normalized word frequen-288

cies. We compare against BLINK (Wu et al.,289

2020), the state-of-the-art dense entity retriever,290

and GENRE (Cao et al., 2021), an autoregressive291

retriever that generates the full entity name from the292

mention. We also compare against ELQ (Li et al.,293

2020), which finetunes the BLINK bi-encoder294

jointly with mention detection and entity disam-295

biguation tasks, and DPR (Karpukhin et al., 2020),296

which mirrors our query input when there are no297

mention boundaries. Finally, we include two re-298

rankers: BLINK with a cross-encoder to re-rank the299

top 10 candidates from the bi-encoder, and Boot-300

leg (Orr et al., 2021), a Transformer-based model301

that re-ranks candidates from an alias table using302

types and knowledge graph relations. BLINK uses303

Flair (Akbik et al., 2019) for mention detection and304

Bootleg uses a heuristic n-gram method for men-305

tion detection. We use pretrained models for base-306

lines and include more details in Appendix A.1.307

Evaluation datasets We use 14 datasets from308

two benchmarks: Ambiguous Entity Retrieval309

(AmbER) (Chen et al., 2021) and Knowledge310

Intensive Language Tasks (KILT) (Petroni et al.,311

2021). AmbER evaluates retrieval of rare entities312

in the challenging setting where mentions are313

ambiguous, and KILT evaluates overall retrieval314

performance. See Appendix A for dataset statistics.315

316

AmbER. AmbER (Chen et al., 2021) spans three317

tasks in open-domain NLP—fact checking, slot318

filling, and question answering—and is divided319

into human and non-human subsets, for a total of 6320

datasets. AmbER tests the ability to retrieve the cor-321

rect entity when at least two entities share a name322

(i.e. are ambiguous). The queries are designed to323

be resolvable, such that each query should contain324

enough information to retrieve the correct entity.325

AmbER also comes with "head" (i.e. popular) and326

"tail" (i.e. rare) labels, using Wikipedia page views327

for popularity. We split AmbER into dev and test328

(5/95 split), tune our re-ranker on each dev set, and329

report on the test set.330

We create a variant of this dataset–AmbER331

(GOLD)–with gold mention boundaries. While332

we focus on open-domain tasks, where mention333

boundaries are often unknown, AmbER (GOLD)334

enables us to evaluate disambiguation in isolation.335

Following Chen et al. (2021), we report336

accuracy@1 (i.e. top-1 retrieval accuracy), which337

is the percentage of queries where the top-ranked 338

entity is the gold entity. As multiple entities share 339

a name with the query mention (by the dataset 340

definition), this metric captures how well a model 341

can use context to disambiguate. 342

343

KILT. We consider 8 standard evaluation datasets 344

across the four open-domain tasks in the 345

KILT (Petroni et al., 2021) benchmark (fact check- 346

ing (FC), question answering (QA), slot filling (SF), 347

and dialogue). All examples have been annotated 348

with the Wikipedia page(s) that help complete the 349

task (e.g. provide evidence for FC or contain the 350

answer for QA). 351

Following Petroni et al. (2021), we report R- 352

precision (Beitzel et al., 2009). Given R gold enti- 353

ties, R-precision is equivalent to the proportion of 354

relevant entities in the top-R ranked entities. With 355

the exception of FEVER and HotPotQA, which 356

may require multiple entities, R-precision is equiva- 357

lent to accuracy@1. We compare against published 358

numbers for KILT baselines and refer the reader to 359

Petroni et al. (2021) for details on the baselines. 360

Knowledge base We create a filtered version of 361

the KILT knowledge base (Petroni et al., 2021) 362

with 5.45M entities that correspond to English 363

Wikipedia pages. We remove Wikimedia inter- 364

nal items (e.g., disambiguation pages, list articles) 365

from the KILT knowledge base, since they do not 366

refer to real-world entities. We refer to our knowl- 367

edge base as KILT-E (KILT-Entity) and use it for 368

all models at inference time for fair comparison.8 369

Training data We train two versions of TABi. 370

For retrieval experiments with mention boundaries 371

and embedding quality experiments, we train on 372

the BLINK (Wu et al., 2020) training data, which 373

consists of 8.9M Wikipedia sentences.9 For end- 374

to-end retrieval experiments, we follow Cao et al. 375

(2021) and train on all KILT training data (which 376

includes data for open-domain tasks) and contains 377

11.7M sentences (Petroni et al., 2021). 378

For type labels, we use the FIGER (Ling and 379

Weld, 2012) type system with 113 types. Similar 380

to Ling and Weld (2012), we add the types of the 381

gold entity for each example as the type labels. 382

While types can be incomplete and may not occur 383

8As an exception, we report existing numbers for baselines
with the full KILT knowledge base (5.9M entities) on the KILT
benchmark test sets due to a benchmark submission limit. See
Appendix B.2 for dev results with KILT-E knowledge base.

9We remove examples with gold entities not in KILT-E.
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Fact Checking Slot Filling Question Answering
H N H N H N Average

Model Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

TF-IDF 27.8 29.3 23.0 21.8 26.7 23.5 17.3 13.7 24.2 22.6 18.2 13.9 22.9 20.8
DPR 25.3 14.3 47.7 23.7 13.9 5.1 48.6 22.2 21.0 8.8 52.1 23.4 34.8 16.3
BLINK (Bi-encoder) 56.4 52.0 24.8 10.5 76.8 55.7 30.7 13.5 78.3 55.7 67.3 33.8 55.7 36.9
BLINK 55.8 45.8 7.4 3.9 74.7 30.3 32.1 16.1 83.8 43.8 71.3 44.5 54.2 30.7
ELQ 43.5 37.4 5.3 2.2 74.4 44.1 59.5 27.1 77.5 47.2 62.0 30.7 53.7 31.4
Bootleg† 48.7 37.0 3.7 2.5 65.1 48.0 47.5 26.7 74.8 48.0 60.5 44.2 50.0 34.4
GENRE 59.9 30.7 32.6 19.9 67.1 52.6 72.9 59.5 62.9 28.4 61.1 32.4 59.4 37.2
TABi 75.0 76.5 38.5 41.9 72.8 82.9 80.0 77.3 74.5 80.5 79.5 56.7 70.0 69.3

Table 1: Accuracy@1 on AmbER. H refers to the human subset and N refers to the non-human subset. †Models
with an alias table. Best score bolded and second best underlined.

Fact Checking Slot Filling Question Answering
H N H N H N Average

Model Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

Alias Table (Prior)† 45.9 6.6 45.8 7.9 45.9 6.5 45.7 7.8 45.7 6.5 45.3 7.9 45.7 7.2
TF-IDF 27.8 29.3 23.0 21.8 26.7 23.5 17.3 13.7 24.2 22.6 18.2 13.9 23.4 20.8
BLINK (Bi-encoder) 77.5 66.5 77.0 46.0 76.9 55.9 63.8 29.9 78.4 55.8 71.0 34.8 74.5 48.2
BLINK 81.8 61.0 81.6 58.5 75.4 30.5 64.8 35.7 83.8 43.9 74.9 45.7 76.8 45.9
Bootleg† 83.0 70.7 82.1 56.6 84.9 58.8 76.1 54.7 86.3 51.2 79.2 56.5 82.4 58.1
GENRE 70.9 44.5 72.9 40.6 70.6 39.0 64.8 33.1 71.1 40.6 70.3 40.0 70.2 39.6
TABi 81.7 84.4 79.9 64.2 77.4 79.0 66.0 36.5 75.6 79.0 69.8 50.4 75.4 65.6

Ablations
TABi (α = 0) 82.1 81.3 72.2 53.2 72.6 77.8 61.8 26.6 75.2 77.4 58.7 35.1 70.8 58.6
TABi (LNCE) 81.6 84.4 79.1 63.6 76.8 77.6 65.0 34.4 75.5 79.2 67.7 47.5 74.7 64.5
TABi (no re-ranker) 77.7 85.6 77.0 59.5 72.9 80.6 60.7 40.7 77.0 80.8 68.7 50.5 72.4 66.3

Table 2: Accuracy@1 on AmbER (GOLD) (includes mention boundaries). All models are trained on Wikipedia
data. H refers to the human subset and N refers to the non-human subset. †Models with an alias table. Best score
bolded and second best underlined (excluding ablations).

in the query, we find the type labels are sufficient384

for improving the type embedding quality in §5.385

4.2 Results on rare entities386

We find TABi can improve retrieval of rare entities387

for ambiguous mentions. On AmbER, TABi im-388

proves average tail accuracy@1 by 32.1 points in389

the end-to-end setting compared to baselines (Ta-390

ble 1). Note that GENRE and TABi are trained391

on KILT data (which includes open-domain tasks),392

while BLINK, ELQ, and Bootleg are trained on393

Wikipedia entity linking data, and DPR is trained394

on question answering data. We then compare on395

AmbER (GOLD) where all models are trained on396

Wikipedia entity linking data and mention bound-397

aries are available (Table 2). TABi outperforms398

baselines on average tail accuracy@1 by 7.5 points.399

BLINK and Bootleg perform much better on Am-400

bER (GOLD) than on AmbER, suggesting that401

mention detection introduces significant error.402

4.3 Overall performance results 403

We find that TABi has strong overall performance. 404

On AmbER, TABi outperforms all retrievers for 405

accuracy@1 over the head (Table 1). On Am- 406

bER (GOLD), TABi outperforms GENRE and the 407

BLINK (bi-encoder) on the head, despite not using 408

hard negative sampling (Table 2). Bootleg, which 409

leverages an alias table, has the top performance on 410

the head on AmbER (GOLD). On KILT, we find 411

that TABi nearly matches GENRE across the tasks, 412

outperforming GENRE on three tasks (Table 3). 413

Appendix B.2 reports results for our baselines on 414

the KILT dev set and shows similar trends. 415

4.4 Ablations 416

Table 2 reports three ablations. First, we evaluate 417

the impact of the type-based loss term (Ltype) by 418

setting α = 0. We find that accuracy@1 drops by 419

7.0 points on the tail and 4.6 points on the head, 420

even though types are still in the input. Second, we 421

evaluate the impact of comparing all pairs of enti- 422
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Fact Check. Slot Filling Question Answering Dial.
FEV T-REx zsRE NQ HoPo TQA ELI5 WoW

TF-IDF* 50.9 44.7 60.8 28.1 34.1 46.4 13.7 49.0
DPR-BERT* 72.9 - 40.1 60.7 25.0 43.4 - -
DPR* 55.3 13.3 28.9 54.3 25.0 44.5 10.7 25.5
Multi-task DPR* 74.5 69.5 80.9 59.4 42.9 61.5 15.5 41.1
RAG* 61.9 28.7 53.7 59.5 30.6 48.7 11.0 57.8
BLINK* 63.7 59.6 78.8 24.5 46.1 65.6 9.3 38.2
GENRE† 83.6 79.4 95.8 60.3 51.3 69.2 15.8 62.9
TABi 85.4 78.1 91.6 59.3 52.7 67.9 18.8 60.5

Table 3: R-precision on KILT open-domain tasks (test data). *Numbers from Petroni et al. (2021). †Numbers from
Cao et al. (2021). Best score bolded and second best underlined.

ties and mentions by using the standard InfoNCE423

loss instead of Lent. We find that using LNCE re-424

sults in an accuracy@1 drop of 0.7 and 1.1 points425

over the head and tail, respectively. Finally, we426

evaluate the impact of the re-ranker (which is used427

to maintain head performance) by only using the428

scores of the bi-encoder. Using only the bi-encoder429

results in an accuracy@1 drop of 3.0 points over430

the head and slightly improves the tail.431

5 Embedding Quality Analysis432

We evaluate how well our method captures types433

through embedding visualization (§5.1) and near-434

est neighbor type classification (§5.2). We also435

evaluate how well TABi learns fine-grained type436

hierarchies with an entity similarity task (§5.3).437

5.1 Embedding visualization438

We use t-SNE to qualitatively evaluate how well439

bi-encoders cluster entity embeddings by type. We440

select five types and sample entities that belong441

to each type from the KILT-E knowledge base. In442

Figure 2, we see TABi forms tighter type clusters443

than BLINK. We observe that types are not cap-444

tured as well when the types are not included in the445

loss—even when the type is present in the input.446

This suggests that our type-based loss term helps447

encode types in embedding space.448

5.2 Type classification449

To better understand how well embeddings are clus-450

tered by type, we evaluate query and entity embed-451

dings on two nearest neighbor type classification452

tasks. Given an embedding, the model retrieves453

the 10 nearest embeddings and predicts the types454

as the majority types of the neighbors.10 We use455

strict accuracy, loose micro F1, and loose macro F1456

metrics for evaluation (Zhang et al., 2019).457

10As a query or entity can have multiple types, we cast type
classification as a multi-label classification problem.

Dataset Model Acc. Micro F1 Macro F1

FIGER BLINK 15.8 40.5 25.1
TABi 51.2 74.4 77.6

OntoNotes BLINK 21.5 34.2 42.3
TABi 36.8 54.8 60.4

Table 4: Mention type classification using a nearest
neighbor classifier over query embeddings.

We first evaluate the query type by sampling 458

10k training examples from the FIGER (Ling and 459

Weld, 2012) and OntoNotes (Gillick et al., 2014) 460

training sets and evaluating on the test sets with 461

query embeddings. We find that TABi outperforms 462

BLINK by 33.9 micro F1 points on FIGER and 463

20.6 micro F1 points on OntoNotes, confirming 464

that our loss encourages nearby query embeddings 465

to share the same type (Table 4). Next, we sample 466

entities from our knowledge base to evaluate the 467

entity type. We find that TABi outperforms BLINK 468

on both coarse and fine types by 7.0 and 6.9 micro 469

F1 points, respectively (see Appendix C.2). This 470

further confirms that our loss helps the query and 471

entity embeddings encode types. 472

5.3 Entity similarity ranking 473

To understand how well our method learns finer- 474

grained type hierarchies, we create a novel en- 475

tity similarity task inspired by word similarity 476

tasks (Schnabel et al., 2015). The goal is to create 477

a dataset of entity pairs where two entities have a 478

high similarity score if they share a fine-grained 479

type and a lower similarity score if they only share 480

a coarse type. We sample 500 entity pairs that share 481

Wikidata types of varying coarseness and use the 482

KGTK Semantic Similarity toolkit (Ilievski et al., 483

2021)11 to automatically assign ground truth sim- 484

ilarity scores between the pairs using a weighted 485

Jaccard similarity metric (see Appendix C.3). 486

11https://github.com/usc-isi-i2/
kgtk-similarity
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TransE ComplEx BLINK TABi

Spearman ρ 62.4 63.4 59.4 69.7

Table 5: Spearman rank correlation on an entity similar-
ity task over pairs of Wikidata entities.

In Table 5 we compare the Spearman rank cor-487

relation of the inner products of BLINK and TABi488

entity embeddings with the ground truth similar-489

ity scores, as well as two popular knowledge graph490

embeddings, TransE (Bordes et al., 2013) and Com-491

plEx (Trouillon et al., 2016) (for which we use co-492

sine similarities between entity pairs provided by493

KGTK). We find that TABi can outperform BLINK494

and even the knowledge graph embeddings at this495

task. This is surprising, since the knowledge graph496

embeddings are trained on triples which include497

Wikidata types, whereas TABi is only trained with498

coarser-grained FIGER types.499

6 Discussion500

Our approach has a couple limitations. First, we501

assume a high-coverage, relatively coarse type sys-502

tem is available. If many entities in the training503

set do not have types, the gains of using a type-504

enforced contrastive loss would be reduced. Fur-505

thermore, to pull together query embeddings of the506

same type, the type system needs to be sufficiently507

coarse-grained and the batch size large enough,508

such that multiple examples in a batch have the509

same type. Second, our method is designed for510

open-domain tasks (e.g. QA) which tend to have511

short queries as input and where types are often512

a strong signal for disambiguation. We observe513

that knowledge graph relations and co-reference,514

which our method does not optimize for learning,515

are important for longer input, such as with entity516

linking tasks. We are interested in incorporating517

other forms of structured data, including different518

modalities, into our model as future work.519

7 Related Work520

Entity disambiguation with types Our work is521

inspired by prior work that has used types for en-522

tity disambiguation (Ling et al., 2015; Gupta et al.,523

2017; Raiman and Raiman, 2018; Gillick et al.,524

2019; Onoe and Durrett, 2020; Orr et al., 2021).525

Most closely related to our work are Gillick et al.526

(2019) and Gupta et al. (2017). Gillick et al. (2019)527

train dense entity retrievers with Wikipedia cate-528

gories as input, but do not include types in the loss529

function. On the other hand, Gupta et al. (2017) 530

incorporate types through multi-task learning with 531

type prediction, but rely on alias tables to limit the 532

candidates. Generally, prior works that use types 533

assume mention boundaries are given as input and 534

were not designed for learned end-to-end retrieval. 535

Finally, similar to our work, Gupta et al. (2017), 536

Onoe and Durrett (2020), and Orr et al. (2021) 537

demonstrate that using types can improve disam- 538

biguation of rare entities. 539

Retrieval for open-domain NLP There has been 540

extensive work on dense retrieval for open-domain 541

NLP tasks (e.g. Lee et al., 2019; Karpukhin et al., 542

2020; Oğuz et al., 2020). However, most prior work 543

has assumed unstructured text as the only input. 544

As an exception, Oğuz et al. (2020) incorporate 545

structured data, such as knowledge graph relations 546

and tables, into dense retrieval by flattening the 547

data into text and adding it to the retrieval index. 548

This approach is complementary to TABi, which 549

incorporates the structured data into the loss to 550

learn better representations of the existing index. 551

Alternatives to bi-encoders Several works have 552

focused on improving the bi-encoder model by 553

leveraging multiple embeddings for each query or 554

candidate (Humeau et al., 2020; Khattab and Za- 555

haria, 2020; Luan et al., 2021). These approaches 556

are complementary to TABi, which maintains a sin- 557

gle embedding for each query and candidate, and 558

may lead to further quality improvements at some 559

computational expense. 560

8 Conclusion 561

In this work, we introduce a method to train bi- 562

encoders on both unstructured text and structured 563

types through a type-enforced contrastive loss. As 564

our method simply changes the bi-encoder loss, 565

it generalizes to both dense entity and document 566

retrieval approaches and can be trained for end- 567

to-end retrieval for open-domain NLP tasks. Our 568

experiments find that our loss can improve retrieval 569

of rare entities for ambiguous mentions and can 570

better capture types in the embeddings. More- 571

over, we find that by adding an inexpensive re- 572

ranker, which leverages two non-learned compo- 573

nents (a sparse retriever and popularity statistics), 574

our method can achieve overall retrieval quality 575

comparable to much more expensive models. We 576

hope our work inspires future work on integrating 577

structured data into pretrained models. 578
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Appendix 856

A Experimental Setup Details 857

A.1 Baselines 858

We use pretrained models for all learned baselines. 859

For fair comparison, we use the KILT-E knowl- 860

edge base at inference time for all models (see 861

Section 4.1 for details on the knowledge base). We 862

include model parameter counts in Table 6. 863

Model # Parameters

Alias Table (Prior) 0
TF-IDF 0
DPR 220M
BLINK (Bi-encoder) 680M
BLINK 1.0B
ELQ 680M
Bootleg 1.3B
GENRE 406M
TABi 110M

Table 6: Number of model parameters.

For Alias Table (Prior), we compute the prior 864

probability of a mention-entity pair over the 865

BLINK training dataset. 866

For TF-IDF, DPR, and BLINK, we use the code 867

provided in the KILT repository.12 For the BLINK 868

cross-encoder, we use k = 10 as the number of re- 869

trieved entities passed to the cross-encoder, follow- 870

ing the recommended setting in Wu et al. (2020). 871

For ELQ, we use the code provided in the 872

ELQ repository.13 We use the Wikipedia-trained 873

ELQ model and the recommended settings for 874

the Wikipedia model provided in the repository 875

(threshold=-2.9). We find this outperforms the 876

WebQSP-finetuned ELQ model on average on Am- 877

bER and KILT. 878

For Bootleg, we use the code provided in the 879

Bootleg repository.14 We use the model version 880

from July 2021. 881

For GENRE, we use the code provided in the 882

GENRE repository.15 We use the BLINK-trained 883

model for experiments on AmbER (GOLD) and 884

the KILT-trained model for experiments on Am- 885

bER and KILT. We use the default settings (beam 886

size=10, context length=384 tokens). 887

12https://github.com/facebookresearch/
KILT

13https://github.com/facebookresearch/
BLINK/tree/main/elq

14https://github.com/HazyResearch/
bootleg

15https://github.com/facebookresearch/
GENRE
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A.2 Evaluation datasets888

We include statistics on the evaluation datasets889

described in Section 4.1 in Table 7 (AmbER)890

and Table 8 (KILT). We report the head/tail sub-891

sets for AmbER as defined in Chen et al. (2021).892

Note we split AmbER randomly into dev (5%)893

and test (95%) splits and report results on test.894

We consider the open-domain tasks in KILT (fact895

checking, question answering, slot filling, and di-896

alogue) and evaluate retrieval on eight datasets:897

FEVER (Thorne et al., 2018), T-REx (Elsahar et al.,898

2018), Zero Shot RE (Levy et al., 2017), Nat-899

ural Questions (Kwiatkowski et al., 2019), Hot-900

PotQA (Yang et al., 2018), TriviaQA (Joshi et al.,901

2017), ELI5 (Fan et al., 2019), and Wizard of902

Wikipedia (Dinan et al., 2019).903

A.3 Training data904

We include additional details about the training data905

described in Section 4.1. In the BLINK training906

data, each sentence has a single mention labeled907

with mention boundaries and a gold entity from908

a Wikipedia anchor link. The KILT training data909

is a superset of the BLINK training data, that ad-910

ditionally contains sentences from standard fact911

checking, slot filling, open domain QA, dialogue,912

and entity linking datasets. With the exception of913

the entity linking examples, the additional exam-914

ples have a gold entity label, but no gold mention915

boundaries.916

As we use distant supervision to assign type917

labels, they may not actually occur in the context,918

introducing noise. Additionally, we do not have919

types for all entities. We are able to assign types to920

73% of examples in the BLINK training data and921

87% of examples in the KILT training data.922

A.4 Training procedure923

We describe the training procedure for TABi. We924

tie the query and entity encoders (i.e. use a sin-925

gle encoder) and initialize from a BERT-base pre-926

trained model (Devlin et al., 2019). Following927

BLINK’s protocol (Wu et al., 2020), we set the928

maximum context length to 32 tokens and the max-929

imum entity description length to 128 tokens. We930

set the batch size to 4,096 and use the AdamW931

optimizer (Loshchilov and Hutter, 2019) with a932

linear learning rate schedule and 10% warmup. Un-933

like BLINK, we train TABi without hard negative934

sampling.935

We conduct a grid search for the type weight936

α, temperature τ , and initial learning rate by train- 937

ing for one epoch on the BLINK training set and 938

selecting the best values on the BLINK dev set 939

(9,938 Wikipedia examples).16 We sweep α in 940

{0.1, 0.25}, τ in {0.01, 0.05}, and the initial learn- 941

ing rate in {1e-4, 5e-4} for a total of 8 trials. From 942

our grid search, the best hyperparameters were as 943

follows: α = 0.1, temperature τ = 0.05, and ini- 944

tial learning rate=5e-4. 945

We use the same hyperparameter configuration 946

for training on both the BLINK training data and 947

the KILT training data. Like BLINK, we also train 948

for 4 epochs (for both datasets). We use 16 A100 949

GPUs for training (25 min/epoch for BLINK train- 950

ing data, 40 min/epoch for KILT training data). 951

A.5 Re-ranking details 952

We use two tunable weights for the re-ranker: λ is 953

a weight on the sparse retriever scores and κ is a 954

weight on the global entity popularity scores. We 955

use the TF-IDF retriever that we use as a baseline 956

as for the sparse retriever (see Appendix A.1 for de- 957

tails). Like Chen et al. (2021), we use the monthly 958

Wikipedia page views (from October 2019) as the 959

measure of global entity popularity. We normalize 960

scores before linearly combining and re-rank the 961

top-10 scores. Note that tuning these weights does 962

not require re-training or re-running the bi-encoder 963

evaluation. 964

We tune λ and κ on each of the 14 dev 965

sets (6 dev sets for AmbER and 8 dev sets for 966

KILT) by first selecting λ that performs best 967

on the linear combination of the bi-encoder and 968

sparse retriever scores, and then fixing λ and 969

tuning κ. For both λ and κ, we sweep in 970

{0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}. We 971

include the best configuration for each dev set in 972

Table 9. 973

B Extended Retrieval Results 974

B.1 AmbER results 975

We extend the results on AmbER included in Sec- 976

tion 4. First, we report results for the consistency 977

metric introduced in Chen et al. (2021) for top-1 978

retrieval in Table 10. This metric measures the pro- 979

portion of mentions where all queries for the men- 980

tion are correct. In particular, Chen et al. (2021) 981

found that retrievers have a tendency to "collapse" 982

all predictions for a mention to the most popular 983

16We remove examples that do not have a gold entity in the
KILT-E knowledge base.
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Dev Test

Dataset Total # Head # Tail Total # Head # Tail Type of Queries

Human FC 594 284 310 11,290 5,054 6,236 Templated claims
Non-human FC 1,369 728 641 26,017 13,500 12,517 Templated claims
Human SF 297 138 159 5,645 2,531 3,114 Subject-relation facts
Non-human SF 684 355 329 13,009 6,759 6,250 Subject-relation facts
Human QA 297 123 174 5,645 2,546 3,099 Templated questions
Non-human QA 684 343 341 13,009 6,771 6,238 Templated questions

Table 7: AmbER dataset statistics.

# Dev # Test Type of Queries

FEVER 10,444 10,100 Mutated Wikipedia claims
T-REx 5,000 5,000 Subject-relation facts
Zero Shot RE 3,724 4,966 Subject-relation facts
Natural Questions 2,837 1,444 Search engine questions
HotpotQA 5,600 5,569 Crowd-sourced questions
TriviaQA 5,359 6,586 Trivia questions from trivia sites
ELI5 1,507 600 Reddit questions
Wizard of Wikipedia 3,054 2,944 Crowd-sourced dialogue

Table 8: KILT dataset statistics.

λ κ

AmbER (GOLD)

Human FC 0.00 0.25
Non-human FC 0.75 0.00
Human SF 0.00 0.25
Non-human SF 0.50 0.25
Human QA 0.50 0.00
Non-human QA 0.25 0.00

AmbER

Human FC 0.50 0.00
Non-human FC 0.25 0.00
Human SF 0.00 0.25
Non-human SF 0.25 0.00
Human QA 0.25 0.00
Non-human QA 0.25 0.25

KILT

FEVER 0.75 0.75
T-REx 0.50 0.00
Zero Shot RE 0.75 0.50
Natural Questions 0.50 1.00
HotpotQA 1.00 0.75
TriviaQA 0.50 1.25
ELI5 0.50 1.75
Wizard of Wikipedia 0.75 1.25

Table 9: Best configuration for re-ranker weights λ
(sparse retriever weight) and κ (popularity weight) tuned
on the corresponding dev sets.

entity for the mention, which would result in a low984

consistency value. We find that TABi outperforms985

all models on this metric. Second, we include re-986

sults for top-10 retrieval accuracy (accuracy@10)987

on AmbER to understand the retrieval performance988

at largerK (Table 11). We find that TABi continues989

to outperform baselines on average.990

FC SF QA
Model H N H N H N Avg.

TF-IDF 1.0 0.6 2.5 2.5 2.5 2.5 1.9
DPR 0.2 3.8 1.2 10.7 2.3 12.2 5.1
BLINK (Bi-enc) 9.4 0.7 36.1 6.4 35.9 20.5 18.2
BLINK 5.4 0.0 17.6 8.6 27.7 29.7 14.8
ELQ 3.9 0.0 24.7 12.4 29.6 16.2 14.5
Bootleg 3.0 0.0 26.7 15.5 31.6 27.8 17.4
GENRE 4.3 1.0 28.3 39.2 10.9 13.9 16.3
TABi 44.1 4.0 60.0 61.8 56.7 41.9 44.7

Table 10: Consistency results on AmbER for top-1. The
consistency is the fraction of mentions where all queries
for a mention are correct.

B.2 KILT results 991

We include R-precision results on the KILT dev 992

sets for the tasks and baselines in the main paper 993

in Table 12. As with the AmbER experiments, 994

we use the KILT-E knowledge base for inference 995

for all models. We see that GENRE and TABi 996

outperform the other baselines across the tasks, and 997

TABi continues to perform comparably to GENRE. 998

Note that only GENRE and TABi were trained on 999

KILT training data. BLINK, ELQ, and Bootleg 1000

were trained on Wikipedia training data and DPR 1001

was trained on question answering data. 1002

We also report results on the KILT test and dev 1003

sets for recall@5. In addition to R-precision, re- 1004

call@5 is reported on the KILT leaderboard and 1005

measures the proportion of gold entities for a 1006
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Fact Checking Slot Filling Question Answering
H N H N H N Average

Model Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail Head Tail

TF-IDF 76.4 76.1 60.9 60.6 80.4 82.9 52.6 50.0 78.1 82.3 58.9 54.2 67.9 67.7
DPR 47.9 27.9 72.6 43.2 34.0 14.0 74.3 43.6 46.0 22.2 77.5 45.4 58.7 32.7
BLINK (Bi-encoder) 89.5 90.1 81.5 71.6 94.5 95.9 48.9 41.2 94.9 95.8 90.9 86.3 83.4 80.1
BLINK 91.1 85.8 83.9 76.3 94.1 95.2 49.3 41.5 94.9 95.8 91.2 86.6 84.1 80.2
ELQ 78.4 61.1 66.8 37.2 74.5 44.1 59.7 27.1 77.5 47.2 62.1 30.7 69.8 41.2
Bootleg† 98.3 97.6 69.9 65.7 96.5 93.6 66.8 56.2 97.1 96.7 74.8 76.3 83.9 81.0
GENRE 78.0 67.9 82.8 77.4 86.9 92.5 90.7 90.8 83.7 83.7 87.4 82.7 84.9 82.5
TABi 94.7 95.4 79.1 80.2 90.6 95.8 96.4 97.8 94.0 96.1 95.9 95.7 91.8 93.5

Table 11: Accuracy@10 on AmbER. H refers to the human subset and N refers to the non-human subset. †Models
with an alias table. Best score bolded and second best underlined.

Fact Check. Slot Filling Question Answering Dial.
FEV T-REx zsRE NQ HoPo TQA ELI5 WoW

TF-IDF 48.4 57.4 72.8 20.1 43.4 27.8 4.6 38.8
DPR 57.0 14.9 44.3 54.5 25.5 46.2 16.1 26.9
BLINK (Bi-encoder) 64.4 59.4 84.3 35.1 43.1 61.6 11.3 26.0
BLINK 67.6 61.0 87.4 33.5 47.9 65.9 9.7 26.5
ELQ 65.1 71.2 95.0 42.4 45.9 67.7 9.2 26.8
Bootleg† 62.3 69.4 81.8 34.5 43.6 53.1 9.7 28.2
GENRE 85.0 80.5 95.1 61.4 51.9 71.4 13.6 56.5
TABi 87.3 79.0 94.8 59.4 50.4 68.9 17.9 56.4

Table 12: R-precision on KILT open-domain tasks (dev data). †Models with an alias table. Best score bolded and
second best underlined.

query17 that occur in the top-5 ranked entities. If1007

there is a single gold entity, this is equivalent to1008

accuracy@5. We find similar trends as seen with1009

R-precision: TABi continues to have strong per-1010

formance, performing comparably to GENRE, and1011

outperforming other baselines (Table 13 (test) and1012

Table 14 (dev)).1013

C Extended Embedding Quality Analysis1014

C.1 Nearest neighbor mention type1015

classification1016

We include additional details on the datasets used1017

for mention type classification (experiments in Sec-1018

tion 5.2). The FIGER test set has 563 examples1019

and uses the 113 FIGER type taxonomy (Ling and1020

Weld, 2012). We use the subset of the OntoNotes1021

test set from Shimaoka et al. (2017) that removes1022

pronominal mentions. We further remove exam-1023

ples that map to the "other" type, resulting in a1024

final OntoNotes test set with 3,066 examples. The1025

classifier uses 50 types from the OntoNotes type1026

taxonomy (Gillick et al., 2014) across the sampled1027

training set and the final test set. While the train-1028

ing sets use distant supervision to label mentions1029

17The KILT benchmark supports multiple gold entities for
a query.

with types over Wikipedia and news reports, respec- 1030

tively, both test sets consist of manually annotated 1031

mentions in news reports. 1032

C.2 Nearest neighbor entity type classification 1033

We include the setup and extended results for the 1034

entity type classification task from Section 5.2. We 1035

create two datasets for entity type classification 1036

using the KILT-E knowledge base: Coarse-types 1037

and Fine-types. We use the seven coarse types in 1038

the FIGER type system as the coarse types and 1039

take the other types as fine types. We create the 1040

Coarse-types dataset by sampling without replace- 1041

ment 3,000 entities that correspond to the seven 1042

coarse FIGER types: "location", "person", "orga- 1043

nization", "product", "art", "event", and "building". 1044

We divide the sampled entities into training and 1045

test sets for a total of 16,781 training examples and 1046

4,195 test examples. Similarly, we create the Fine- 1047

types dataset by sampling without replacement 300 1048

entities that correspond to the FIGER fine types. 1049

We discard fine types that do not have at least 300 1050

entities, leaving 100 fine types. We then divide 1051

the sampled entities into training and test sets for 1052

a total of 23,884 training examples and 5,968 test 1053

examples. 1054
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Fact Check. Slot Filling Question Answering Dial.
FEV T-REx zsRE NQ HoPo TQA ELI5 WoW

TF-IDF - - - - - - - -
DPR+BERT 73.5 - 40.1 46.8 10.4 31.5 - -
DPR 74.3 17.0 39.2 65.5 10.4 57.0 26.9 51.2
Multi-task DPR 87.5 83.9 93.1 68.2 28.4 68.3 27.5 67.1
RAG 75.6 33.0 59.5 67.1 12.6 57.1 22.9 74.6
BLINK+flair - - - - - - - -
GENRE 88.2 85.3 97.8 61.4 34.0 75.1 25.5 77.7
TABi 91.4 87.4 98.9 64.4 37.0 67.5 29.4 75.5

Table 13: Recall@5 on KILT open-domain tasks (test data). We report numbers from Petroni et al. (2021) and the
KILT leaderboard where available. Best score bolded and second best underlined.

Fact Check. Slot Filling Question Answering Dial.
FEV T-REx zsRE NQ HoPo TQA ELI5 WoW

TF-IDF 71.8 73.0 88.6 32.6 29.2 41.0 9.7 56.5
DPR 76.0 22.3 59.2 63.9 11.1 57.4 31.0 52.7
BLINK (Bi-encoder) 80.0 68.1 88.4 40.8 24.3 63.5 19.4 40.9
BLINK 82.9 69.6 89.6 43.7 27.4 66.9 22.3 44.6
ELQ 79.5 69.9 95.2 36.1 23.7 62.4 9.5 47.7
Bootleg† 81.0 74.3 85.6 37.2 26.3 69.4 14.0 49.3
GENRE 89.0 85.3 97.3 58.5 34.7 75.7 20.5 75.0
TABi 91.2 87.7 99.2 62.5 35.3 68.0 25.0 74.4

Table 14: Recall@5 on KILT open-domain tasks (dev data). †Models with an alias table. Best score bolded and
second best underlined.

Dataset Model Acc. Micro F1 Macro F1

Coarse-types BLINK 81.1 89.0 84.1
TABi 92.9 96.0 96.2

Fine-types BLINK 71.6 82.0 77.5
TABi 80.8 88.9 87.5

Table 15: Entity type classification using a nearest neigh-
bor classifier over entity embeddings.

Table 15 reports the results for entity type clas-1055

sification. We find that TABi outperforms BLINK,1056

suggesting that our loss helps cluster entities by1057

type in the embedding space.1058

C.3 Entity similarity task1059

We describe how we construct the dataset for the1060

entity similarity task. We first find the closure of1061

all Wikidata types assigned to each entity in the1062

KILT-E knowledge base. We then bucket Wikidata1063

types by the frequency with which they occur in the1064

KILT-E knowledge base (using five buckets). To1065

include types of varying frequencies, we randomly1066

sample 10 Wikidata types from each bucket (501067

types total). Finally, we sample 10 pairs of entities1068

for each type for a total of 500 entity pairs.1069

To assign "ground-truth" similarity values to1070

each entity pair, we submit the entity pairs to the1071

KGTK Semantic Similarity toolkit web API.18 We 1072

use the Jaccard similarity metric returned by the 1073

toolkit as the ground-truth similarity. This metric 1074

assigns larger values if the types shared by two enti- 1075

ties are more specific (i.e. fine-grained). As ground 1076

truth values are assigned automatically, there is 1077

some noise in the dataset. However, we observe 1078

that the trends on the entity similarity task generally 1079

follow the trends on the other embedding quality 1080

analysis tasks. 1081

18https://github.com/usc-isi-i2/
kgtk-similarity
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