
Evaluating and Improving Tool-Augmented
Computation-Intensive Math Reasoning

Beichen Zhang13∗, Kun Zhou23∗, Xilin Wei4, Wayne Xin Zhao13†,
Jing Sha5, Shijin Wang56, Ji-Rong Wen123

1Gaoling School of Artificial Intelligence, Renmin University of China.
2School of Information, Renmin University of China.

3Beijing Key Laboratory of Big Data Management and Analysis Methods.
4College of Computer Science, Sichuan University.

5iFLYTEK Research, 6iFLYTEK AI Research (Central China).
{zhangbeichen724,wiselnn570,batmanfly}@gmail.com, francis_kun_zhou@163.com

{jingsha,sjwang3}@iflytek.com,jrwen@ruc.edu.cn

Abstract

Chain-of-thought prompting (CoT) and tool augmentation have been validated in
recent work as effective practices for improving large language models (LLMs)
to perform step-by-step reasoning on complex math-related tasks. However, most
existing math reasoning datasets may not be able to fully evaluate and analyze the
ability of LLMs in manipulating tools and performing reasoning, as they often only
require very few invocations of tools or miss annotations for evaluating intermediate
reasoning steps, thus supporting only outcome evaluation. To address the issue, we
construct CARP, a new Chinese dataset consisting of 4,886 computation-intensive
algebra problems with formulated annotations on intermediate steps, facilitating
the evaluation of the intermediate reasoning process. In CARP, we test four LLMs
with CoT prompting, and find that they are all prone to make mistakes at the
early steps of the solution, leading to incorrect answers. Based on this finding,
we propose a new approach that can facilitate the deliberation on reasoning steps
with tool interfaces, namely DELI. In DELI, we first initialize a step-by-step
solution based on retrieved exemplars, then iterate two deliberation procedures that
check and refine the intermediate steps of the generated solution, from both tool
manipulation and natural language reasoning perspectives, until solutions converge
or the maximum iteration is achieved. Experimental results on CARP and six other
datasets show that the proposed DELI mostly outperforms competitive baselines,
and can further boost the performance of existing CoT methods. Our data and code
are available at https://github.com/RUCAIBox/CARP.

1 Introduction

Recently, large language models (LLMs) (e.g., GPT-3 and ChatGPT) have shown remarkable zero-
shot and few-shot performance on various tasks [1–6], including language generation and question
answering. As LLMs have been pre-trained on a vast amount of text data that covers a broad spectrum
of world knowledge, existing work also shows that LLMs can solve complex tasks, e.g., math
reasoning [7–12] and college entrance exam [4, 13].

To evaluate the capacity of LLMs for solving complex tasks, math reasoning datasets have been
widely used as testbeds, e.g., GSM8K [14] and MATH [15], where the math problems can not

∗Equal contributions.
†Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://github.com/RUCAIBox/CARP

be directly answered but require multi-step reasoning. To elicit LLMs for step-by-step reasoning,
chain-of-thought (CoT) [7, 16–20] has become the de facto prompting strategy, where LLMs can be
guided to generate a solution consisting of a series of intermediate steps to reach the answer. However,
previous work also reveals that LLMs are prone to make mistakes at intermediate steps, especially
in numerical computation [10, 21–24], and yet a minor mistake would lead to an incorrect final
answer. To alleviate it, a line of work [25–40] employs external tools to make up for the weakness
of LLMs, and can greatly improve accuracy of answers on math reasoning tasks. With the rapidly
evolving LLMs and tool-augmented methods, it is necessary to adopt a suitable math reasoning
dataset for evaluating them systematically and differentially. Whereas, problems in most existing
math reasoning datasets may only require the one-off utilization of tools [26, 27, 29, 30], which
are not adequate to fully measure the ability of tool manipulation in existing methods. Moreover,
even though incorrect answers often stem from errors in intermediate reasoning steps, most existing
datasets are not equipped to test this, due to a lack of formal annotations of the intermediate steps in
the solution text. The two issues limit existing math reasoning datasets to systemically evaluate and
analyze LLMs and tool-augmented methods.

To address them, we construct a new Chinese dataset that consists of 4,886 Computation-intensive
AlgebRa Problems associated with formulated annotations of all the intermediate steps, namely
CARP. In CARP, problems require deriving multiple intermediate math expressions based on math
knowledge, and solving them based on arithmetic knowledge, which makes it a complex and difficult
dataset to evaluate the computation-intensive math reasoning ability. In addition, the formulated
annotations also enable researchers to test the accuracy of intermediate reasoning steps for analyzing
the errors of LLMs. As shown in Table 3, four popular LLMs with CoT prompting can not solve
over half of the problems in our CARP, indicating the difficulty of CARP. Furthermore, we also find
that all LLMs are more likely to make mistakes in the first step (over 69%), leading to totally wrong
solutions and answers. It reveals that LLMs mostly fail in performing early reasoning steps, and can
not correct the errors in the latter steps. Based on CARP, we also devise a variety of fine-grained
interfaces based on available tools, to provide practical functionalities for handling complicated
calculations. These interfaces can also be applied to other math reasoning datasets to improve the
tool manipulation capacity of LLMs.

Considering that LLMs can not fix errors in early steps by themselves in the generation, we propose a
new approach that can deliberate 3 the reasoning steps of LLMs with tool interfaces, namely DELI.
DELI can iteratively refine the generated result from both tool manipulation and natural language
reasoning, which makes it able to correct the mistakes of existing solutions from different perspectives
and avoid error accumulation. Concretely, we initialize a step-by-step solution for the given question
based on retrieved relevant exemplars, then iterate two deliberation procedures that check and refine
the generated solution from the perspectives of tool manipulation and natural language reasoning,
until reaching the stop condition, e.g., solution has converged or iterations reach the maximum
number. Such a way is similar to the solution checking process of humans, and can elicit LLMs to
deliberate and correct the possible errors in intermediate steps of the solution. We evaluate DELI and
existing prompting methods on CARP and six other computation-intensive datasets. Experimental
results show that DELI mostly outperforms competitive baselines (e.g., 9.35% accuracy improvement
over the best baseline on CARP), and can further boost the performance of existing CoT prompting
methods.

To summarize, our major contributions are:

• We construct a new dataset named CARP with formulated annotation of intermediate reasoning
steps for systematically evaluating LLMs in solving computation-intensive math problems, and devise
interfaces with practical functionalities to help LLMs.

• We propose DELI, a new approach that can deliberate and correct the reasoning steps of LLMs
with tool interfaces.

• We conduct extensive experiments to show the superiority of our DELI over existing prompting
methods on 7 computation-intensive math reasoning datasets.

3In this work, we use the term “Deliberation” to reflect that the LLM can self-check and refine its generated
solution iteratively until the result converges. This iterative refinement bears resemblance to the human cognitive
process of meticulous contemplation and correction of potential errors in problem solving.

2

2 Related Work

Math Problem Solving Datasets. A line of work constructs math word problem datasets with
annotations of several math equations [41–52, 35, 53]. With the growth of the language models’
reasoning ability, researchers propose more challenging math word problem datasets annotated with
natural language solutions. GSM8k [14] is a diverse math problem dataset with multi-step reasoning
annotation. However, the above math word problem datasets do not involve complex math domain
knowledge, and the computation types are limited. MATH [15] is a challenging dataset at high school
competition difficulty, covering various math domains. Besides, math subsets of AGIEval [13] collect
problems requiring complex reasoning and computations from college entrance exams for humans.
Our proposed CARP dataset mainly differs from these computation-intensive datasets in two aspects:
(1) We provide formulated annotations of intermediate reasoning steps, thus supporting both process
and outcome evaluation; (2) We provide fine-grained interfaces for evaluating the tool manipulation
ability of LLMs in complex reasoning.

Tool-Augmented Language Models. To expand the capability boundaries of language models, a
line of work employs external tools to aid them [25–40]. Existing work typically employs LLMs to
determine tool arrangement or generate programs, then executes them in a single pass to obtain the
results for solving math word problems [26, 27, 29, 30, 34]. Nevertheless, computation-intensive
math problems encompass a range of challenges, including math domain knowledge, math expression
understanding, and complex computations. The plan-and-execute approaches, which lack a procedure
of reasoning based on intermediate results, may not be sufficient for handling such problems. Re-
Act [32] is a tool-augmented approach that interleaves reasoning and tool manipulation in the solving
process. We extend ReAct to the math domain by incorporating our fine-grained tool interfaces as a
component of our iterative deliberation approach.

Iterative Refinement Methods. Large language models have demonstrated remarkable performance
in math-related tasks [7, 17, 16, 54–60]. Chain-of-thought (CoT) prompting is notably effective
for complex reasoning in LLMs [7, 16]. However, LLMs are prone to make minor mistakes in
multi-step reasoning [61]. To this end, existing studies explore iteratively refining reasoning steps
with LLMs [62–71]. A line of work leverages self-generated feedback to improve math problem
solutions [63–65]. However, recent studies show that LLMs may struggle with identifying problems
in the text or providing faithful explanations [61, 72, 73]. Therefore, minor errors, such as inaccurate
computation, pose a challenge for LLMs to check and correct solutions when solving computation-
intensive problems. Another line of work explores iterative methods for solving computation-intensive
math problems. Learning to Program [74] aims to iteratively learn natural language problems from
training sets to guide the solving process. Progressive-Hint Prompting [69] is an iterative method that
leverages prior answers as hints to guide LLMs in generating better CoT solutions.

3 CARP Dataset

Computation-intensive math reasoning task aims to solve complex math problems that require
performing multi-step arithmetical computation and reasoning based on mathematical knowledge.
Typically, to solve a computation-intensive math problem, humans or models need to iteratively
derive the math expression and then compute the result (via calculators or other tools), until obtaining
the final answer. In this way, the accuracy of intermediate reasoning and computation steps is crucial,
where a subtle error would lead to completely wrong answers. In this paper, we construct a new
dataset CARP (Computation-intensive AlgebRa Problems) that provides the formulated annotations
of all the intermediate steps for the computation-intensive middle school math problems. Based on
the annotations, we also design a set of interfaces with fine-grained computation functions, to help
LLMs manipulate commonly-used tools for solving these problems.

3.1 Dataset Construction

Although there are a number of computation-intensive math problems in available datasets, their
solutions are generally not well-formulated natural language and may omit intermediate steps [41–
52, 35, 13]. To construct a well-formulated dataset, we first collect real-world computation-intensive
math problems, and then invite crowdworkers to extract and annotate their expression flow graph.

3

Table 1: An example from CARP, which is translated into English. Errors are marked in red.
Problem The solution to the equation ax + 2bx = 3 is x = 1 , then the solution to the

equation a(y − 1) + 2b(y − 1) = 3 is ?

Solution From the question we have : a+ 2b = 3 , a(y − 1) + 2b(y − 1) = 3 . Rectifying
gives (a+ 2b)y − (a+ 2b) = 3 , i.e., 3y − 3 = 3 , therefore y = 2 .

ChatGPT Substituting x = 1 into ax + 2bx = 3 gives a + 2b = 3 , and substituting y − 1
gives a(y − 1) + 2b(y − 1) = 3, which simplifies to ay + by = 3 . · · · · · · The
answer is y = 3

3−a − 1

Error Type Reasoning error.

Table 2: Statistics for CARP dataset.
Statistic Number
of training samples 3,410
of development samples 500
of testing samples 976

of nodes (Avg./Max) 6.0/18
of edges (Avg./Max) 5.7/25
of expression nodes (Avg./Max) 4.7/15

Problem length (Avg./Max) 52.1/257
Solution length (Avg./Max) 71.3/278

𝑎𝑥 + 2𝑏𝑥 = 3

𝑦 = 1

Given Conditions

𝑥 = 1 𝑎 𝑦 − 1 +2𝑏 𝑦 −1 = 3

𝑎 + 2𝑏 𝑦 − 𝑎 + 2𝑏 = 3

3𝑦 − 3 = 0

𝑎 + 2𝑏 = 3

factored expr

common factor

substitution
substituted expr

substitution

equation

substituted expr

Figure 1: An EFG annotation example for CARP.

Data Collection. We collect the math problems and their step-by-step solutions from a Chinese
education website Zhixue4, which contains vast problems to provide education assistance for students.
We mainly crawl middle school math problems, since they are of moderate difficulty and require
basic arithmetic computations (e.g., quadratic equation) and mathematical knowledge (e.g., Veda’s
theorem), making them a good testbed for computation-intensive math reasoning. We first crawl
about 1,000,000 problems with solutions. Then, to obtain computation-intensive problems, we design
hand-crafted rules based on SymPy to roughly extract and count the computation steps in solutions,
and only select the ones with both over one computation step and over two reasoning steps. Finally,
we invite math teachers to select about 10,000 high-quality examples for annotation.

Expression Flow Graph Annotation. In a math problem, the natural language solution can be
generally formulated as a directed acyclic graph (DAG), where the nodes and edges refer to the
intermediate results and derivation steps, respectively [75]. For computation-intensive problems,
we consider a special DAG format that adopts intermediate math expressions as nodes. We name it
expression flow graphs (EFG), as it can explicitly show how to derive new math expressions based
on existing ones in the step-by-step reasoning process. In this way, a solution can be formulated
as: starting from initial condition nodes within the problem, we continue deriving new nodes (i.e.,
intermediate math expressions) from existing nodes, until reaching the final expression that can obtain
the answer, where the computation results of intermediate expressions can be utilized for evaluation.
Whereas, a math problem may involve special initial conditions that are hard to be converted into
readable expressions, e.g., Equations have rational solutions. Thus, we add a special type of node to
store these conditions in natural language, while guaranteeing that all the derived new nodes are math
expressions. As an example, the EFG annotation of the Problem in Table 1 is shown in Figure 1.

Based on the above definition, we invite five middle school math teachers to crowdsource the
annotations of formulated EFGs for collected problems. The annotation process is similar to the
information extraction process [76], where we first extract the nodes and then link them to compose
the graph. Concretely, we first rely on hand-crafted rules to automatically extract the math expressions
and text conditions from the solution texts as node candidates. Then, we ask math teachers to link the
related node candidates and annotate their corresponding relations. To reduce the difficulty, we utilize
heuristic rules to select the most possible related nodes and relations as references. Consequently, we
can collect a set of edges with special relations connecting several nodes from the node candidates,

4https://www.zhixue.com/

4

Table 3: Evaluation results of different LLMs with CoT prompting on CARP.

Models Acc. ExpAcc Fail@where
Fail@first Fail@middle Fail@last

text-davinci-002 31.15 37.45 79.04 11.29 9.65
text-davinci-003 37.50 44.89 73.61 15.41 10.98
claude-v1.3 40.78 46.89 76.85 12.08 11.05
gpt-3.5-turbo 49.39 56.48 69.69 16.36 13.94

which compose the EFG of a problem. After annotation, we further design an automatic verification
program to verify the completeness of the EFG and the validity of relations, and filter improper ones.
Besides, we also ask teachers to check the annotated EFGs from each other, to judge if the EFG has
fully covered the whole problem-solving process of the problem, and refine the incomplete ones.

3.2 Dataset Details

Dataset Description. The statistics of the CARP dataset are shown in Table 2. CARP consists
of 4,886 middle school computation-intensive algebra problems, and each problem is associated
with a natural language solution and an annotated EFG. Our annotated EFG explicitly depicts the
step-by-step reasoning process of a math problem in a readable and concise format. On average, an
EFG contains 6.0 nodes and 5.7 edges, as we only keep the expressions and conditions that lead to
the final answer in the EFG. Besides, an EFG has 4.7 expression nodes on average, which are the
main stem of the reasoning process and can be used for evaluating the accuracy of intermediate steps.

To solve the problems in CARP, LLMs require to iteratively perform reasoning based on math
knowledge to correctly derive the intermediate math expressions, and solve it accurately. As the
example in Table 1, given the conditions, a reasonable solving process should first deduce the
intermediate equation a+ 2b = 3 by substituting x = 1 into ax+ 2bx = 3, and then reformulate the
equation a(y− 1) + 2b(y− 1) = 3 to support plugging a+2b = 3 into it. Such a reformulation step
is not easy to reason out, and ChatGPT has made a mistake there, leading to a wrong answer.

Evaluation Metrics. Based on EFGs, we can evaluate the intermediate step-by-step reasoning process
of LLMs. Specifically, we propose two new metrics, i.e., ExpAcc and Fail@where. ExpAcc measures
the recall rate of expression nodes on the reference EFG by the generated output. Considering that a
math problem may have different ways to solve it, we also regard the ancestors of a recalled expression
in EFG as recalled ones, as the generated output has derived the subsequent conclusion starting from
the ancestors. In this way, ExpAcc can be obtained by finding matched expression nodes in the
reference EFG, then counting their ancestors and themselves as matched ones for computing the rate.
We use SymPy to determine if two mathematical expressions match. Fail@where is another type of
metric for analyzing where are the causes of incorrect answers, and we define three implementations,
i.e., Fail@first, Fail@middle, and Fail@last. The three metrics refer to the rates of making the first
mistakes in the first step, middle steps, and last step (before the answer) within all generated incorrect
solutions, respectively.

As shown in Table 3, we evaluate competitive LLMs [2, 77] on CARP with chain-of-thought
prompt [7] and report Accuracy, ExpAcc, and Fail@where. First, all LLMs can not solve over half of
the problems in CARP (under 50.0%), and the accuracy of intermediate steps is relatively low (under
57.0), indicating the difficulty of computation-intensive math reasoning. Second, all LLMs are more
likely to make mistakes in the first step, while less likely in the last step. It demonstrates that LLMs
are prone to fail in early steps, due to misuse of improper math knowledge or wrong calculations.
Thus, careful deliberations on early steps might be promising to reduce errors of the model.

3.3 Tool Interfaces

As the results in Table 3 and existing work [15, 22, 10, 23]., it is hard for LLMs to solve computation-
intensive math problems, especially for numerical calculation. In the real world, humans can utilize
tools (e.g., calculator) to avoid errors in manual work. Inspired by it, we consider augmenting LLMs
with tools for handling complicated calculations. Considering the complexity of math calculation, we

5

devise multiple interfaces based on available tools, to provide specific and practical functionalities.
All the interfaces are formulated into a unified format with detailed descriptions, to support convenient
manipulation of LLMs. Concretely, we mainly utilize SymPy [78] as the tool, which is a Python
library including various basic and advanced arithmetic operators. Based on it, we encapsulate three
types of interfaces to help the computation of LLMs: (1) Numerical Computation: compute the
value v of an expression e by calculating directly or substituting existing conditions. (2) Equation
Solving: solve an equation or inequation e, or solve the system of equations or inequalities {e}. (3)
Expression Transformation: transform an expression e into the desired format e′.

Based on them, we devise fine-grained interfaces covering commonly used functionalities in math
calculation. Details of interface definitions are listed in Appendix A. We set the name, arguments,
and output formats of each interface, associated with a docstring that provides a natural language
explanation for its usage. These interfaces are general to various computation-intensive math
reasoning tasks, and can help LLMs perform complex computations. In addition, we also add
a special interface, think, which can utilize the LLM to analyze existing conditions, deduce new
conclusions, and create new math expressions, before or after tool manipulation. It can also help
handle the cases that fail to invoke computation interfaces, where LLMs think to produce an output
instead, to prevent the solving process from being interrupted.

3.4 Discussion

Our proposed CARP dataset focuses on systematically evaluating LLMs in solving computation-
intensive math problems. CARP exhibits three key characteristics: First, solving problems in CARP
involves multi-step reasoning with math domain knowledge and complex computations; CARP
provides fine-grained interfaces to assess the ability of LLMs to manipulate tools during complex
reasoning. In this context, LLMs should understand the usage of various interfaces and invoke them
appropriately multiple times based on reasoning and math knowledge during the solving process.
Third, evaluation metrics for intermediate reasoning steps are incorporated, based on formulated
annotations. This allows for a more nuanced analysis of the multi-step reasoning performance of
LLMs, in contrast to existing datasets that primarily focus on evaluating outcome accuracy [13–15].
Through these metrics, researchers can quantify the models’ proficiency in the problem-solving
process and gain insights for model improvement.

4 Approach

According to the results in Section 3.2, LLMs struggle to solve computation-intensive math problems
on their own and frequently make mistakes at early reasoning steps. Inspired by the human practice of
reviewing and verifying solutions, we propose a new approach that can deliberate the reasoning steps
of LLMs with interfaces of tools, namely DELI. The overview of DELI is shown in Figure 2. In DELI,
we leverage a retrieval-augmented chain-of-thought prompting strategy to initialize a step-by-step
natural language solution. Then, we iterate the two-stage deliberation method that checks and refines
the solution from the perspectives of natural language reasoning and tool manipulation. After multiple
iterations, we can finally obtain a more reasonable solution with the answer.

4.1 Retrieval-Augmented Solution Initialization

As DELI focuses on deliberating over LLM-generated solutions, we aim to initialize a high-quality
step-by-step solution for the given question that covers useful math knowledge and arithmetic
operators. Therefore, we propose to retrieve relevant problems and solutions as the exemplars, and
then utilize the chain-of-thought prompting method [7] to generate the initial solution based on them.
Concretely, given a math problem p, we first retrieve top-k relevant problems C = {⟨pi, si⟩}ki=1
from the candidate pool based on question-question matching, where the retriever can be either
lexicon-based [79] or dense retrieval models [80]. Then, the retrieved problems with their associated
step-by-step solutions, will be employed to compose the input prompt, to elicit LLMs for performing
chain-of-thought reasoning. The pattern of the input prompt is denoted as: “You are a helpful assistant
for solving math problems in LaTeX format: [p1], [s1], · · · , [pk], [sk], [p]”. In this way, LLMs
would follow the exemplars to perform step-by-step reasoning, and can also refer to useful math
knowledge from them, leading to high-quality initial solutions for deliberation. Note that such a way
also supports other prompting methods to initialize solutions.

6

Question: If 𝑥 + 1 𝑥 + 𝑞 ……
Answer: (𝑥 + 1)(𝑥 + 𝑞)…….
Question: ……
……

Answer: 𝑥 − 2 1 − 𝑘𝑥 − 2𝑥 − 3 2𝑥 + 3 =
− 4𝑥! − 𝑘𝑥! + 5𝑥 − 15 , since the result does not
contain the primary term of 𝑥 , we get 5 =
0.Hence no solution.

Retrieval-Augmented Solution Initialization Iterative Deliberation

calculate(expr)
► new_expr

solve_eq(expr)
► new_exprs

expand(expr)
► new_expr

collect(expr, symbol)
► new_expr

……

think(thought)
► conclusion

Tool InterfacesDeliberation with Chain of Thought

Retrieve QA pairs

Serve as exemplars

Deliberation with Tool Manipulation

Answer: Expanding (𝑥 − 2)(1 − 𝑘𝑥) − (2𝑥 − 3)(2𝑥 +
3 gives 𝑥! −𝑘 − 4 + 𝑥 2𝑘 + 1 + 7… … we get 2𝑘 + 1 = 0，
which gives 𝑘 = − "

!. The answer is: − "
!

Action: expand(𝑥 − 2 1 − 𝑘𝑥 − 2𝑥 − 3 2𝑥 + 3)
Output: −𝑘𝑥! + 2𝑘𝑥 − 4𝑥! + 𝑥 + 7
Action: collect(−𝑘𝑥! + 2𝑘𝑥 − 4𝑥! + 𝑥 + 7, 𝑥)
Output: 𝑥!(−𝑘 − 4) + 𝑥(2𝑘 + 1) + 7
Action: solve_eq(2𝑘 + 1 = 0)
Output: [𝑘 = − "

!]

Final Answer: − "
!

Return

Invoke

Question: Knowing that the result of (𝑥 − 2)(1 −
𝑘𝑥) − (2𝑥 − 3)(2𝑥 + 3) does not contain 𝑥 in the
primary form , then 𝑘 = ____ ?

Figure 2: The overview of our DELI. DELI initializes the step-by-step solution via retrieval-
augmented strategy, and then performs iterative deliberation with tool manipulation and chain
of thought, respectively.

4.2 Iterative Deliberation

Based on the initial solution, we iterate two types of deliberation procedures, i.e., deliberation with
tool manipulation and deliberation with chain of thought, until reaching the stop condition. In
deliberation procedures, we adopt specific in-context exemplars to guide LLMs, for checking and
correcting the errors in the current solution. Next, we first introduce details of the two deliberation
procedures, and then present the stop conditions.

Deliberation with Tool Manipulation Prompting. Since LLMs are prone to make mistakes in
numerical calculation, we design the procedure of deliberation with tool manipulation, for seeking
help from external tools to address it. Based on our devised interfaces in Section 3.3, we aim to
rewrite the current solution into a process that orderly invokes the interfaces to produce the result. In
this way, the deliberation procedure is divided into a sequence of steps, where the LLM should select
the interface and then invoke it to produce the intermediate result in each step.

First, we construct an instruction introducing the goal and formats of this procedure, and details
of available interfaces. For each interface, we not only list its name, arguments and description,
but also provide an example to exhibit the usage, e.g., “expand(expression: str)→ new expression:
str: Expand the expression into a polynomial. For example, expand((x + 1)2) → x2 + 2x + 1”.
Then, we demonstrate several exemplars to guide LLMs to invoke the interfaces. Each exemplar
consists of four parts, i.e., a question, a trial, multiple actions, and their outputs. The trial is a
step-by-step solution either from the initial stage or the last iteration, which may contain errors
requiring correction. Actions are a series of interface invocations derived from the trial, and outputs
are the intermediate results by executing the actions, e.g., “Action: solve_eq(2k + 1 = 0). Output:
[k = − 1

2]”. Based on the instruction and exemplars, the LLM would be elicited to generate the action
in formal language iteratively (i.e., selecting the interface and setting its arguments), then execute
it to obtain the output, until reaching the answer. To guarantee the continuity of the deliberation
procedure, we set a special token after the generated action, for pausing the generation process and
waiting for the result of interface invocation. In the iterative selection-then-execution process, we can
deliberate the intermediate steps of the generated solution, and benefit from tool manipulation for
accurate computation.

Deliberation with Chain of Thought Prompting. After deliberation with tools, we can obtain the
solution consisting of a series of actions to invoke interfaces and their outputs. Next, we further
deliberate the solution with the chain of thought to reorganize it into the natural language, which
can better leverage the learned textual knowledge from LLMs to recheck it and also improve the
readability.

Similarly, we also leverage an instruction with in-context exemplars to compose the input prompt.
The instruction is “You have access to both natural language problem solving processes and formal
problem solving processes, but there may be errors within them. You need to learn the correct
methods in order to better solve problems. ”, to introduce the goal of the deliberation procedure. All

7

the exemplars are composed of four components, i.e., a question, a given solution, the verification,
and the revised solution. The given solution is the last natural language solution that is either the
initial solution or the solution from the last deliberation iteration with chain of thought, and the
verification is the formal language solution from the last deliberation procedure with tool interfaces.
The revised solution is the result of integrating the two types of solutions into the chain-of-thought
manner, where the errors and unreasonable steps have been corrected. Guided by the exemplars,
LLMs would deliberate the intermediate steps from in-context solutions, and generate a new natural
language solution. Besides, as there are often inconsistent intermediate computation results in the
in-context solutions, we also add an instruction to elicit LLMs to trust more on the result from tool
manipulation, i.e., “If the computed result in the verification differs from the computed result in the
given solution, the computed result in the verification must be used as the standard”.

Stop Conditions of Iteration. The two deliberation procedures would be alternated multiple times,
where the solution might be iteratively revised and improved. To control the cost, we set the stop
conditions of the iteration process. First, once the solution of the new iteration is the same as the
last one, the iteration stops, since the iteration has converged. Second, if the answers to the two
deliberation procedures are consistent, we will also stop the iteration. Third, if we have reached the
maximum number of iterations, the answer from the last deliberation procedure with tool manipulation
will be regarded as the final answer, as the procedure can better solve computation subproblems,
leading to a more accurate answer.

5 Experiment

5.1 Main Experiments

Evaluation Datasets. In addition to CARP, we collect 6 existing computation-intensive math
datasets for evaluation, including Algebra, Prealgebra, Counting & Probability (CP) and Number
Theory (NT) from MATH [15], and GK-Cloze (GKC) and SAT-Math (SAT) from AGIEval [13]. The
datasets involve multi-step reasoning and computation with knowledge ranging from middle school
to competition level. Details about the datasets are listed in Appendix B

Baselines. We compare our proposed DELI with several competitive prompting methods for LLMs.
(1) CoT prompting methods: Random CoT [7] randomly selects exemplars from the training set.
Complex CoT [81] samples the most complex problems and their solutions as exemplars. Retrieval
CoT retrieves the most relevant problems and solutions from the training set as exemplars. (2)
Tool-augmented prompting methods: PAL [26] converts the reasoning process into a Python program
and executes it to get the answer. ReAct [32] interleave reasoning and interface invocations multiple
times to get the answer, which is a basic component of DELI. (3) Iterative prompting methods:
Learning to Program (LP) [74] aims to iteratively learn solutions from training sets to guide LLMs
in solving similar problems based on in-context learning. Learning to Program (LP) [74] employs
iterative learning from training sets to steer LLMs in context-based problem solving. As a variant of
our framework, Iterative CoT integrates the existing CoT solution and self-generated feedback into
a refined solution. Similarly, Iterative ReAct refines interface invocations using pre-existing ones
and self-feedback.

Implementation Details. We employ OpenAI gpt-3.5-turbo (May 2023) API as the solver and
reasoning tool and implement the computation tool based on SymPy [78]. We set the temperature to
0 and top_p to 1 for determined outputs. To retrieve similar problems, we train a sentence embedding
model following SimCSE [80] to index MATH datasets and employ the BM25 algorithm [79] for
the CARP dataset. The maximum number of iteration turns is set to 3 for all datasets and iterative
methods. For each dataset, we specify the descriptions of interfaces that may be useful to solve the
problems in prompts.

We initialize the solution with Retrieval CoT in most datasets. For GK-Cloze and SAT-Math, we
initialize the solution with Random CoT, since these datasets only provide few-shot exemplars but
not training sets. Following the settings in Zheng et al. [69], the initial solutions of PHP are from
Complex CoT in the subsets of MATH (Algebra, Prealgebra, CP, NT), while using the same initial
solutions as DELI in other datasets.

8

Table 4: Results on 7 computation-intensive math reasoning datasets. We copy results of LP from Guo
et al. [74]. The best and second-best methods are marked in bold and underlined respectively..

Methods CARP Algebra Prealgebra CP NT GKC SAT Avg.
Random CoT 49.39 49.37 55.57 32.91 29.81 14.41 65.91 42.48
Complex CoT 48.06 51.64 53.73 32.91 32.22 - - -
Retrieval CoT 63.93 53.75 56.72 33.12 30.00 - - -

PAL 40.00 34.29 50.52 35.86 31.30 5.93 47.73 35.09
ReAct 64.11 54.51 54.53 41.77 31.67 16.94 72.27 48.07

LP - 49.60 52.30 30.20 29.80 - - -
PHP 61.68 54.42 57.86 36.71 35.37 16.94 71.82 47.82

Iterative CoT 61.27 52.74 55.34 33.97 29.81 14.41 69.55 45.30
Iterative ReAct 61.17 53.92 52.12 37.34 32.22 15.25 70.00 46.00

DELI 73.46 59.65 58.32 39.03 33.15 17.80 74.54 50.85

Random CoT

Complex CoT PHP

Retrieval CoT
40

50

60

70

80
CARP

CoT + DELI
CoT

Random CoT

Complex CoT PHP

Retrieval CoT
45

50

55

60

65
Algebra

Random CoT

Complex CoT PHP

Retrieval CoT
30

34

38

42
Count. & Prob.

Figure 3: The results of combining DELI with existing CoT methods.

Main Results. Table 4 shows the results of DELI and baselines on the 7 datasets. For the comparison
among CoT prompting methods, Retrieval CoT outperforms Random CoT [7] and Complex CoT [81]
on average, indicating that involving relevant problems and their solutions is beneficial for answering
complex math problems. Augmented with tools, ReAct [32] achieves better average performance than
CoT prompting methods, showing the effectiveness of manipulating tools in solving computation-
intensive math problems. Besides, ReAct can also perform better than competitive baselines, e.g.,
PAL [26], LP [74] and PHP [69] on the benchmark. A possible reason is that ReAct adopts our
devised interfaces to manipulate tools, which enables it to better deal with fine-grained computation
operators. Finally, DELI performs better than all baselines in most cases. In DELI, we incorporate an
iterative two-stage deliberation strategy to check and refine the generated step-by-step solutions from
the LLM. Such a way is also more effective than just iterating CoT or ReAct, as it can better integrate
the manipulation of tools and reasoning in natural language.

5.2 Analysis

Combining with Existing CoT methods. In DELI, we initialize a step-by-step solution by retrieving
problems and solutions as exemplars. Actually, our DELI also supports other prompting methods
to initialize solutions. We report the performance of combining DELI with different CoT methods
on CARP, Algebra, and CP. As shown in Figure 3, DELI can greatly boost the performance of all
CoT methods, which demonstrates that our DELI is general to various CoT prompting methods to
fix part of their intermediate errors. Among all methods, DELI can improve the performance of
Retrieval CoT a lot. It indicates that our adopted retrieval-augmented solution initialization way is
more suitable for our deliberation approach.

Impact of Iterative Deliberation Turns. We also study how the performance of DELI changes w.r.t.
the maximum iterative deliberation turns. To comprehensively investigate it, we select CARP, Algebra,
and Prealgebra for evaluation, and also report the performance of Iterative CoT, Iterative ReAct,
Retrieval CoT and ReAct as reference. As shown in Figure 4, the performance of DELI consistently
increases w.r.t. the increasing of maximum iteration turns.For comparison, the performance of other

9

0 1 2 3
58
60
62
64
66
68
70
72
74 CARP

DELI
Iter. CoT
Iter. ReAct
Ret. CoT
ReAct

0 1 2 3
50

52

54

56

58

60 Algebra

0 1 2 3

50

52

54

56

58

Prealgebra

Figure 4: Accuracy of different methods w.r.t. the maximum number of iteration turns.

iterative methods does not always increase, and can even drop with an increase in maximum turns.
It demonstrates that LLMs are not easy to be steered to deliberate and correct errors, and DELI
is a suitable way that deliberates from the perspectives of reasoning in natural language and tool
manipulation, like humans that iteratively check the solution by thinking critically and using tools.

Table 5: ExpAcc and Fail@where on a challenging
subset of CARP.

Methods ExpAcc Fail@where
first middle last

CoT 13.91 67.97 22.65 9.38
ReAct 12.58 66.41 29.69 3.91
DELI 18.90 60.16 25.78 14.06

Evaluating Intermediate Reasoning Steps.
We evaluate the accuracy of intermediate rea-
soning steps for different methods via our pro-
posed metrics ExpAcc and Fail@where on 128
challenging problems from CARP that are incor-
rectly answered by all the methods. As shown in
Table 5, DELI achieves better ExpAcc than CoT
and ReAct. Besides, the results of Fail@where
show that DELI is less declined to generate com-
pletely wrong solutions (with lower Fail@first),
and has a larger percentage of near-correct solutions (with higher Fail@last). It indicates that DELI is
able to correct wrong intermediate results by the proposed iterative two-stage deliberation strategy.

6 Limitations

First, due to the need for quality control of the problems and the requirement of formulated annotation
of intermediate reasoning steps, we retain and annotate relatively small-scale data the dataset size (at
the order of thousands), future work should focus on expanding the data sources and increasing the
scale of annotation. Second, to assess the tool manipulation ability of LLMs, the dataset primarily
includes middle school-level math problems. Higher difficulty levels, such as high school or college-
level mathematics, have not been incorporated. Future efforts can involve annotating intermediate
steps for more challenging problems and designing tools for advanced math concepts. Third, the
experiments conducted with OpenAI API are limited to GPT-3.5 series, as we do not acquire access
to GPT-4. Consequently, the evaluations are constrained to the capabilities of GPT-3.5. To provide
a more comprehensive assessment, future research can consider expanding the evaluation scope to
include a wider range of base models.

7 Conclusion

In this paper, we proposed CARP, a computation-intensive algebra problem dataset with formulated
annotation of intermediate reasoning steps for systematically evaluating LLMs in tools manipulation
and math reasoning. Based on experiments in CARP, we found that popular LLMs with chain-of-
thought prompting can not solve over half of the problems in CARP, and they are more likely to
make mistakes in early steps, leading to wrong answers. To alleviate it, we proposed DELI, a new
approach that can deliberate the intermediate reasoning steps with tool interfaces. DELI incorporated
two iterative deliberation procedures to check and refine the intermediate reasoning steps of the
generated step-by-step solution, from the perspectives of tool manipulation and natural language
reasoning. To verify the effectiveness of DELI, we conducted extensive experiments on CARP and 6
other computation-intensive math reasoning datasets. Experimental results have shown that DELI
outperforms baselines and can boost the performance of various CoT prompting methods.

10

Acknowledgments and Disclosure of Funding

This work was partially supported by National Natural Science Foundation of China under Grant No.
62222215, Beijing Natural Science Foundation under Grant No. L233008 and 4222027. And this
work is also partially supported by the Outstanding Innovative Talents Cultivation Funded Programs
2021 of Renmin University of China. Xin Zhao is the corresponding author.

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 2020.

[2] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis
Christiano, Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with
human feedback. ArXiv, abs/2203.02155, 2022.

[3] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[4] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

[5] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

[6] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian
Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Z. Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jianyun Nie, and
Ji rong Wen. A survey of large language models. ArXiv, abs/2303.18223, 2023.

[7] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, Quoc Le, and
Denny Zhou. Chain of thought prompting elicits reasoning in large language models. ArXiv,
abs/2201.11903, 2022.

[8] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning
problems with language models. ArXiv, abs/2206.14858, 2022.

[9] Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony S. Hartshorn, Elvis
Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language
model for science. ArXiv, abs/2211.09085, 2022.

[10] Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and Julius Berner. Mathematical capabilities of
chatgpt. ArXiv, abs/2301.13867, 2023.

[11] Wayne Xin Zhao, Kun Zhou, Zheng Gong, Beichen Zhang, Yuanhang Zhou, Jing Sha, Zhigang
Chen, Shijin Wang, Cong Liu, and Ji rong Wen. Jiuzhang: A chinese pre-trained language model
for mathematical problem understanding. Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2022.

[12] Wayne Xin Zhao, Kun Zhou, Beichen Zhang, Zheng Gong, Zhipeng Chen, Yuanhang Zhou,
Ji rong Wen, Jing Sha, Shijin Wang, Cong Liu, and Guoping Hu. Jiuzhang 2.0: A unified
chinese pre-trained language model for multi-task mathematical problem solving. Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023.

11

[13] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin
Saied Sanosi Saied, Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for
evaluating foundation models. ArXiv, abs/2304.06364, 2023.

[14] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[15] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xi-
aodong Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. ArXiv, abs/2103.03874, 2021.

[16] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. ArXiv, abs/2205.11916, 2022.

[17] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

[18] Guhao Feng, Yuntian Gu, Bohang Zhang, Hao-Tong Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: a theoretical perspective. ArXiv, abs/2305.15408,
2023.

[19] Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei.
Language models are multilingual chain-of-thought reasoners. ArXiv, abs/2210.03057, 2022.

[20] Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Olivier Bousquet, Quoc Le, and Ed Huai hsin Chi. Least-to-most prompting
enables complex reasoning in large language models. ArXiv, abs/2205.10625, 2022.

[21] Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and Xifeng Yan. Limitations of language models
in arithmetic and symbolic induction. ArXiv, abs/2208.05051, 2022.

[22] Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning
for mathematical reasoning. ArXiv, abs/2212.10535, 2022.

[23] Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. How well do large
language models perform in arithmetic tasks? ArXiv, abs/2304.02015, 2023.

[24] Tiedong Liu and Kian Hsiang Low. Goat: Fine-tuned llama outperforms gpt-4 on arithmetic
tasks. ArXiv, abs/2305.14201, 2023.

[25] Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv
preprint arXiv:2205.12255, 2022.

[26] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435,
2022.

[27] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks. ArXiv,
abs/2211.12588, 2022.

[28] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

[29] QING LYU, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidi-
anaki, and Chris Callison-Burch. Faithful chain-of-thought reasoning. ArXiv, abs/2301.13379,
2023.

[30] Joy He-Yueya, Gabriel Poesia, Rose E. Wang, and Noah D. Goodman. Solving math word
problems by combining language models with symbolic solvers. ArXiv, abs/2304.09102, 2023.

12

[31] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. ArXiv, abs/2210.03350,
2022.

[32] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. ArXiv, abs/2210.03629,
2022.

[33] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. Critic: Large language models can self-correct with tool-interactive critiquing. ArXiv,
abs/2305.11738, 2023.

[34] Shima Imani, Liang Du, and H. Shrivastava. Mathprompter: Mathematical reasoning using
large language models. ArXiv, abs/2303.05398, 2023.

[35] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun
Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language
models. ArXiv, abs/2304.09842, 2023.

[36] Bhargavi Paranjape, Scott M. Lundberg, Sameer Singh, Hanna Hajishirzi, Luke Zettlemoyer,
and Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language
models. ArXiv, abs/2303.09014, 2023.

[37] Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang, Albert Lu, Elizabeth Ke, Kevin
Liu, Linda Chen, Sunny Tran, Newman Cheng, Roman Wang, Nikhil Singh, Taylor Lee Patti,
J. Lynch, Avi Shporer, Nakul Verma, Eugene Wu, and Gilbert Strang. A neural network solves,
explains, and generates university math problems by program synthesis and few-shot learning at
human level. Proceedings of the National Academy of Sciences of the United States of America,
119, 2021.

[38] Chenfei Wu, Sheng-Kai Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan.
Visual chatgpt: Talking, drawing and editing with visual foundation models. ArXiv,
abs/2303.04671, 2023.

[39] Yongliang Shen, Kaitao Song, Xu Tan, Dong Sheng Li, Weiming Lu, and Yue Ting Zhuang. Hug-
ginggpt: Solving ai tasks with chatgpt and its friends in hugging face. ArXiv, abs/2303.17580,
2023.

[40] Cheng Qian, Chi Han, Yi Ren Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Disentan-
gling abstract and concrete reasonings of large language models through tool creation. ArXiv,
abs/2305.14318, 2023.

[41] Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning
to solve arithmetic word problems with verb categorization. In EMNLP, pages 523–533, 2014.

[42] Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Du-
mas Ang. Parsing algebraic word problems into equations. Transactions of the Association for
Computational Linguistics, 3:585–597, 2015.

[43] Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1743–
1752, Lisbon, Portugal, September 2015. Association for Computational Linguistics. doi:
10.18653/v1/D15-1202. URL https://aclanthology.org/D15-1202.

[44] Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin, and Wei-Ying Ma. How well do
computers solve math word problems? large-scale dataset construction and evaluation. In
Annual Meeting of the Association for Computational Linguistics, 2016.

[45] Shyam Upadhyay and Ming-Wei Chang. Annotating derivations: A new evaluation strategy and
dataset for algebra word problems. In Conference of the European Chapter of the Association
for Computational Linguistics, 2016.

[46] Yan Wang, Xiaojiang Liu, and Shuming Shi. Deep neural solver for math word problems. In
EMNLP, 2017.

13

https://aclanthology.org/D15-1202

[47] Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. ArXiv, abs/1905.13319, 2019.

[48] Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and
developing english math word problem solvers. ArXiv, abs/2106.15772, 2020.

[49] Arkil Patel, S. Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? In North American Chapter of the Association for Computational Linguistics,
2021.

[50] Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit,
Peter Clark, and A. Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. ArXiv, abs/2209.14610, 2022.

[51] Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard Tang, Sean Welleck, Chitta Baral,
Tanmay Rajpurohit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark, and A. Kalyan. Lila: A
unified benchmark for mathematical reasoning. ArXiv, abs/2210.17517, 2022.

[52] Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Singh Sachdeva, Peter Clark,
Chitta Baral, and A. Kalyan. Numglue: A suite of fundamental yet challenging mathematical
reasoning tasks. In Annual Meeting of the Association for Computational Linguistics, 2022.

[53] Paulo Shakarian, Abhinav Koyyalamudi, Noel Ngu, and Lakshmivihari Mareedu. An indepen-
dent evaluation of chatgpt on mathematical word problems (mwp). ArXiv, abs/2302.13814,
2023.

[54] Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large
language models. ArXiv, abs/2305.04091, 2023.

[55] Zhenwen Liang, W. Yu, Tanmay Rajpurohit, Peter Clark, Xiangliang Zhang, and Ashwin
Kaylan. Let gpt be a math tutor: Teaching math word problem solvers with customized exercise
generation. ArXiv, abs/2305.14386, 2023.

[56] Jakub Macina, Nico Daheim, Sankalan Pal Chowdhury, Tanmay Sinha, Manu Kapur, Iryna
Gurevych, and Mrinmaya Sachan. Mathdial: A dialogue tutoring dataset with rich pedagogical
properties grounded in math reasoning problems. ArXiv, abs/2305.14536, 2023.

[57] Wenhu Chen, Ming Yin, Max Ku, Yixin Wan, Xueguang Ma, Jianyu Xu, Tony Xia, Xinyi Wang,
and Pan Lu. Theoremqa: A theorem-driven question answering dataset. ArXiv, abs/2305.12524,
2023.

[58] Zhanming Jie and Wei Lu. Leveraging training data in few-shot prompting for numerical
reasoning. 2023.

[59] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. 2023.

[60] Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu, Hangyu Li, Erkang Zhu, Yue Wang,
Yin Tat Lee, Richard Peng, and Chi Wang. An empirical study on challenging math problem
solving with gpt-4. 2023.

[61] Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for textual
reasoning. In Neural Information Processing Systems, 2022.

[62] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. ArXiv, abs/2206.05802, 2022.

[63] Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and
Yejin Choi. Generating sequences by learning to self-correct. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=hH36JeQZDaO.

14

https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO

[64] Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491, 2023.

[65] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

[66] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

[67] Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert
West, and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. arXiv
preprint arXiv:2304.01904, 2023.

[68] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. ArXiv, abs/2304.05128, 2023.

[69] Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompt-
ing improves reasoning in large language models. ArXiv, abs/2304.09797, 2023.

[70] Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu, and Jun Zhao. Large language models are
reasoners with self-verification. ArXiv, abs/2212.09561, 2022.

[71] Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun, Julian McAuley, Wayne Xin Zhao, Leyu
Lin, and Ji rong Wen. Agentcf: Collaborative learning with autonomous language agents for
recommender systems. ArXiv, abs/2310.09233, 2023.

[72] Miles Turpin, Julian Michael, Ethan Perez, and Sam Bowman. Language models don’t al-
ways say what they think: Unfaithful explanations in chain-of-thought prompting. ArXiv,
abs/2305.04388, 2023.

[73] Potsawee Manakul, Adian Liusie, and Mark John Francis Gales. Selfcheckgpt: Zero-resource
black-box hallucination detection for generative large language models. ArXiv, abs/2303.08896,
2023.

[74] Yiduo Guo, Yaobo Liang, Chenfei Wu, Wenshan Wu, Dongyan Zhao, and Nan Duan. Learning
to program with natural language. ArXiv, abs/2304.10464, 2023.

[75] Jahring Jahring, N. Nasruddin, and Ida Farida. The effectiveness of mind mapping learning
models based on contextual learning on mathematical problem solving ability. 2020.

[76] Chia-Hui Chang, Mohammed Kayed, Moheb R. Girgis, and Khaled F. Shaalan. A survey of
web information extraction systems. IEEE Transactions on Knowledge and Data Engineering,
18:1411–1428, 2006.

[77] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, T. J. Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. ArXiv, abs/2204.05862, 2022.

[78] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondrej Certík, Sergey B. Kirpichev,
Matthew Rocklin, Amit Kumar, Sergiu Ivanov, Jason Keith Moore, Sartaj Singh, Thilina
Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta,
Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Stěpán
Rouka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony M.
Scopatz. Sympy: Symbolic computing in python. PeerJ Prepr., 4:e2083, 2017.

[79] Stephen E. Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and
beyond. Found. Trends Inf. Retr., 3:333–389, 2009.

[80] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. ArXiv, abs/2104.08821, 2021.

[81] Yao Fu, Hao-Chun Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based
prompting for multi-step reasoning. ArXiv, abs/2210.00720, 2022.

15

A Interface Definition

We provide interface definitions of our tools in Table 6.

Table 6: Interface definitions of tools. Num. Comp., Eq. Solving, and Expr. Trans. refer to numerical
computation, equation solving, and expression transformation, respectively.

Category Interface Description

Num. Comp. calculate(e) → v Calculate the value v of e.
substitute(e, {c}) → v Substitute the contextual conditions {c} into e.

Eq. Solving

solve_eq(e) →, {e′} Solve the equation e to get the solution set {e′}.
solve_ineq(e) → {e′} Solve the inequation e to get the solution set {e′}.
solve_multi_eq({e}) → {e′} Solve the system of equations to get the solution

set {e′}.
solve_multi_ineq({e})
→ {e′}

Solve the system of inequations to get the solution
set {e′}.

partial_solve(e, u) → {e′} Solve the equation e assuming that u is an unknown
to get the solution set {e′}.

Expr. Trans.

expand(e) → e′ Expand e to get e′.
factor(e) → e′ Factorize e to get e′.
collect(e, x) → e′ Collect e based on the symbol x to get e′.
complete_the_square(e) → e′ Complete the square of e to get e′

Thinking think(l) → l′ Draw a conclusion l′ based on the free thought l.

B Details of Evaluated Datasets

We provide details of evaluating datasets in Table 7.

Table 7: Basic information about datasets in evaluated datasets. MS and HS refer to “middle school”
and “high school”, respectively.

Dataset Source Language Domain Difficulty Train Test
CARP Ours Chinese Algebra MS 3,410 976
Algebra MATH English Algebra HS 1,744 1,187
Prealgebra MATH English Algebra HS 1,205 871
Count. & Prob. MATH English Probability HS 771 474
Num. Theory MATH English Number Theory HS 869 540
GK-Cloze AGIEval Chinese Mixture HS - 220
SAT-Math AGIEval English Mixture HS - 351

C Case Study

To better present the process of DELI, we provide a case study that shows the solving process of
DELI on CARP, which is shown in Figure 5. We also report the solution of Retrieval CoT and ReAct
in the figure. It is noted that the solution of Retrieval CoT is also the initial solution in DELI.

First, both Retrieval CoT and ReAct make minor mistakes in the solving process. Although following
the correct solving idea from relevant solutions, Retrieval CoT struggles with expanding the expression
(x− 2)(1− kx)− (2x− 3)(2x+3), leading to an incorrect intermediate result. Besides, ReAct fails
at understanding the condition the expression does not contain the primary form of x, thus collecting
the expression according to a wrong term x2. Therefore, both CoT and ReAct can not solve the case
individually due to the challenges of computations and reasoning.

DELI iterates over the existing solutions. In deliberation with tool manipulation, the model reviews
the existing natural language solution, and invokes interfaces based on the ideas therein. In this case,

16

Iterate ① ② when the answers are inconsistent

Question:
Knowing that the result of (𝑥 − 2)(1 − 𝑘𝑥) − (2𝑥 − 3)(2𝑥 + 3)
does not contain 𝑥 in the primary form , then 𝑘 = ____ ?

Given Solution:
𝑥 − 2 1 − 𝑘𝑥 − 2𝑥 − 3 2𝑥 + 3 = −4𝑥! − 𝑘𝑥! + 5𝑥 − 15 … …

Verification:
… …
Action: solve_eq(2𝑘 + 1 = 0)
Output: 𝑘 = − "

!

Final Answer: − "
!

Revised Solution:
Expanding (𝑥 − 2)(1 − 𝑘𝑥) − (2𝑥 − 3)(2𝑥 + 3) gives 𝑥!(−𝑘 − 4) +
𝑥(2𝑘 + 1) + 7, since the result does not contain the primary
term of , since the result does not contain the primary term of
𝑥, we get 2𝑘 + 1 = 0,which gives 𝑘 = − "

!. The answer is: − "
!

……. You can use the following functions:
……
expand(expression: str) -> new_expression: str: Expand the
expression into a polynomial
collect(expression: str, symbol: str) -> new_expression: str ……
……

Question: Knowing that the result of (𝑥 − 2)(1 − 𝑘𝑥) − (2𝑥 −
3)(2𝑥 + 3) does not contain 𝑥 in the primary form , then 𝑘 =
____ ?
Trial: 𝑥 − 2 1 − 𝑘𝑥 − 2𝑥 − 3 2𝑥 + 3 = −4𝑥! − 𝑘𝑥! + 5𝑥 − 15 ,
since the result does not contain the primary term of 𝑥 , we get
5 = 0.Hence no solution.
Action: expand(𝑥 − 2 1 − 𝑘𝑥 − 2𝑥 − 3 2𝑥 + 3)
Output: −𝑘𝑥! + 2𝑘𝑥 − 4𝑥! + 𝑥 + 7
Action: collect(−𝑘𝑥! + 2𝑘𝑥 − 4𝑥! + 𝑥 + 7, 𝑥)
Output: 𝑥!(−𝑘 − 4) + 𝑥(2𝑘 + 1) + 7
Action: solve_eq(2𝑘 + 1 = 0)
Output: 𝑘 = − "

!
Final Answer: − "

!

(Examples)
Question: If (𝑥 + 1)(𝑥 + 𝑞)……
Answer: (𝑥 + 1)(𝑥 + 𝑞) = 𝑥! + 𝑞𝑥 + 𝑥 + 𝑞 = 𝑥! + (𝑞 + 1)𝑥 + 𝑞
…….
Question: Knowing that the result of (𝑥 − 2)(1 − 𝑘𝑥) − (2𝑥 −
3)(2𝑥 + 3) does not contain 𝑥 in the primary form , then 𝑘 = ____ ?

Answer: 𝑥 − 2 1 − 𝑘𝑥 − 2𝑥 − 3 2𝑥 + 3 = −4𝑥! − 𝑘𝑥! + 5𝑥 − 15 ,
since the result does not contain the primary term of 𝑥 , we get
5 = 0.Hence no solution.

⓪ Retrieval-Augmented Solution Intialization
……. You can use the following functions:
……
Question: Knowing that the result of (𝑥 − 2)(1 − 𝑘𝑥) − (2𝑥 −
3)(2𝑥 + 3)
……
Action: collect(𝑥 − 2 1 − 𝑘𝑥 − 2𝑥 − 3 2𝑥 + 3 , x!)
Output: 2𝑘𝑥 + 𝑥! −𝑘 − 4 + 𝑥 + 7
Action: solve_eq(2𝑘𝑥 + 𝑥! −𝑘 − 4 + 𝑥 + 7)
Output: [𝑘 = − #

!]

Final Answer: − #
!

Baseline: ReAct

① Deliberation with Tool Manipulation ② Integration with Chain of Thought

Figure 5: Case study of our method with baselines on the CARP dataset. The case is translated into
English.

the model invokes interfaces expand and collect in a row to get the correct expanded expression
(x − 2)(1 − kx) − (2x − 3)(2x + 3) = −kx2 + 2kx − 4x2 + 7 with the help of tools. Then, the
model solves the equation derived from the expanded expression and gets the correct answer.

In deliberation with chain of thought, the model reviews both natural language and formal language
solutions from the previous iteration and generates a revised CoT solution, which fixes the com-
putation error in the original CoT solution according to interface invocations. In this case, due
to the consistent answers between the revised CoT solution and the previous ReAct solution, the
iteration terminates. In general cases, the iteration continues until solutions converge or the answer is
consistent, or the maximum number of iterations is reached.

D Prompts for Two-Stage Deliberation

We list the prompts for two-stage deliberation on CARP. The prompts are translated into English.

Listing 1: Prompt for Deliberation with Tool Interfaces.
You are ChatGPT, a math problem solver equipped with multiple functions to tackle

various math problems. While you may have access to existing problem-solving
processes, there is a possibility of errors. Therefore, you need to learn the
correct approaches to solve problems more efficiently. You can use the
following functions:

calculate(expression: str) -> new_expression: str: Calculate the value of the
expression and return it as a string. For example, calculate("34 * 2") -> "68".

solve_eq(expression: str) -> new_expressions: list: Solve the equation expression
and return the result as a list. For example, solve_eq("3 x + 4 = 1") -> ["x =
-1"].

solve_ineq(expression: str) -> new_expression: str: Solve the inequality expression
and return the result as a string. For example, solve_ineq("3 x + 4 < 1") -> "x
< -1".

17

solve_multi_eq(expressions: list) -> new_expressions: dict: Solve the system of
equations given by the list of expressions and return the result as a
dictionary. For example, solve_multi_eq(["x + y = 2", "x - 2 y = -7"]) -> {"x":
["x = -1"], "y": ["y = 3"]}.

solve_multi_ineq(expressions: list) -> new_expression: str: Solve the system of
inequalities given by the list of expressions and return the result as a string.
For example, solve_multi_ineq(["x \le 2", "x \le -7"]) -> "x \le -7".

substitute(expression: str, conditions: list[str]) -> new_expression: str:
Substitute the contextual conditions in the list into the expression and return
the result. For example, substitute("3 x + 4", ["x = 1"]) -> "7".

expand(expression: str) -> new_expression: str: Expand the expression into a
polynomial. For example, expand("(x + 1) ^ 2") -> "x ^ 2 + 2x + 1"

factor(expression: str) -> new_expression: str: Factorize the polynomial. For
example, factor("x ^ 2 + 2x + 1") -> "(x + 1) ^ 2"

collect(expression: str, symbol: str) -> new_expression: str: Collect the
coefficients of the corresponding powers according to the given symbol. For
example, collect("a x - 5 a + x ^ { 2 } - 5 x", "x") -> "- 5 a + x ^ { 2 } + x
(a - 5)"

partial_solve(expression: str, symbol: str) -> new_expression: str: Let the given
symbol be the unknown variable and solve the linear equation expression with
one variable. For example, partial_solve("x + 3 y - 3 = 0", "x) -> "x = - 3 y +
3"

think(thought: str) -> conclusion: str: Generate new conclusions based on natural
language description thought. Think should only be called when the above
functions are not applicable. For example, think("\sqrt{x-8} the expression
inside the root is always greater than or equal to 0") -> "x-8\\ge0"

To use ChatGPT, simply provide a mathematical problem or question in LaTeX format.
You can use any of the above functions to help solve the problem. Please follow
the following format:

Question: The input question you must answer. This appears only once.
Trial: The problem-solving approach that can be referred to. It may contain errors,

you can refer to the correct part in it.
Action: A function call, which should be one of the mentioned functions with

arguments. You must only call one function in one Action.
Output: The result of the action. Every Action must be immediately followed by one

and only one Output.
... (This Action/Output cycle can repeat N times.)
Final Answer: The final answer to the original input question. The answer should be

numerical or LaTeX math expression. Do not use natural language in the answer

Listing 2: Prompt for Deliberation with Chain of Thought.
You are ChatGPT, a mathematical problem solver equipped with multiple functions for

solving mathematical problems. You have access to both natural language problem
solving processes and formal problem solving processes, but there may be

errors within them. You need to learn the correct methods in order to better
solve problems. You can use the following functions:

calculate(expression: str) -> new_expression: str: Calculate the value of the
expression and return it as a string. For example, calculate("34 * 2") -> "68".

solve_eq(expression: str) -> new_expressions: list: Solve the equation expression
and return the result as a list. For example, solve_eq("3 x + 4 = 1") -> ["x =
-1"].

solve_ineq(expression: str) -> new_expression: str: Solve the inequality expression
and return the result as a string. For example, solve_ineq("3 x + 4 < 1") -> "x
< -1".

solve_multi_eq(expressions: list) -> new_expressions: dict: Solve the system of
equations given by the list of expressions and return the result as a
dictionary. For example, solve_multi_eq(["x + y = 2", "x - 2 y = -7"]) -> {"x":
["x = -1"], "y": ["y = 3"]}.

solve_multi_ineq(expressions: list) -> new_expression: str: Solve the system of
inequalities given by the list of expressions and return the result as a string.
For example, solve_multi_ineq(["x \le 2", "x \le -7"]) -> "x \le -7".

18

substitute(expression: str, conditions: list[str]) -> new_expression: str:
Substitute the contextual conditions in the list into the expression and return
the result. For example, substitute("3 x + 4", ["x = 1"]) -> "7".

expand(expression: str) -> new_expression: str: Expand the expression into a
polynomial. For example, expand("(x + 1) ^ 2") -> "x ^ 2 + 2x + 1"

factor(expression: str) -> new_expression: str: Factorize the polynomial. For
example, factor("x ^ 2 + 2x + 1") -> "(x + 1) ^ 2"

collect(expression: str, symbol: str) -> new_expression: str: Collect the
coefficients of the corresponding powers according to the given symbol. For
example, collect("a x - 5 a + x ^ { 2 } - 5 x", "x") -> "- 5 a + x ^ { 2 } + x
(a - 5)"

partial_solve(expression: str, symbol: str) -> new_expression: str: Let the given
symbol be the unknown variable and solve the linear equation expression with
one variable. For example, partial_solve("x + 3 y - 3 = 0", "x) -> "x = - 3 y +
3"

think(thought: str) -> conclusion: str: Generate new conclusions based on natural
language description thought. Think should only be called when the above
functions are not applicable. For example, think("\sqrt{x-8} the expression
inside the root is always greater than or equal to 0") -> "x-8\\ge0"

Follow this format:

‘‘‘
Question:
The input question that you must answer. It appears only once.

Given Solution:
A natural language solution that can be used as a reference, which may contain

errors. You can refer to the correct ideas in it.

Verification: Transform the original solution into a verification process that uses
functions, corrects any computational errors, and simplifies the process.

Action: A function call, which must be one of the functions mentioned above and
include parameters. You can only call one function in an Action.

Output: The result of an Action. Each Action must have one and only one Output
following it.

(Action/Output can be repeated any number of times...)
Final Answer: The ultimate solution to the original input problem.

Revise the given solution based on the verification process:
Revise the original solution based on the computed result in the verification

process. If the computed result in the verification process differs from the
computed result in the original solution, the computed result in the
verification process must be used as the standard.

‘‘‘

E Annotation Platform

We build an annotation platform for crowdworkers to annotate EFGs in CARP. A screenshot of the
platform is provided in Figure 6. First, given output nodes, crowdworkers are required to find the
nodes that have directed edges to the output nodes. Second, crowdworkers are required to annotate
relations between each node pair found in the first stage. Finally, the crowdworkers should review the
annotation, and remove irrelevant nodes that do not contribute to the reasoning process. Besides, if
the problem or solution has errors, the crowdworkers should annotate the error types and skip them.

19

Figure 6: A screenshot of the EFG annotation platform. The platform has been translated into
English.

20

	Introduction
	Related Work
	CARP Dataset
	Dataset Construction
	Dataset Details
	Tool Interfaces
	Discussion

	Approach
	Retrieval-Augmented Solution Initialization
	Iterative Deliberation

	Experiment
	Main Experiments
	Analysis

	Limitations
	Conclusion
	Interface Definition
	Details of Evaluated Datasets
	Case Study
	Prompts for Two-Stage Deliberation
	Annotation Platform

