
ROSA: An Optimization Algorithm for Multi-Modal
Derivative-Free Functions in High Dimensions

Ilija Ilievski
College of Design and Engineering
National University of Singapore

ilija@u.nus.edu

Wenyu Wang
College of Design and Engineering
National University of Singapore

wenyu_wang@u.nus.edu

Christine A. Shoemaker
Civil and Environmental Engineering

Cornell University
cas12@cornell.edu

Abstract

Derivative-free, multi-modal optimization problems in high dimensions are ubiq-
uitous in science and engineering. Obtaining satisfactory solutions to high-
dimensional optimization problems requires many objective function evaluations.
At the same time, commonly used Bayesian optimization methods are typically
computationally too expensive for sufficient sampling of the high-dimensional
space which limits their function approximation accuracy and leads to sub-optimal
solutions. We propose ROSA, a novel optimization algorithm based on well-known
optimization techniques such as randomized optimization, simulated annealing,
and surrogate optimization. ROSA is several orders of magnitude computationally
more efficient than leading scalable Bayesian optimization methods, while also
obtaining comparable or better solutions with as many as 4 times fewer objective
function evaluations. We compare ROSA with a diverse set of methods on many
synthetic high-dimensional benchmark functions and real-world problems.

1 Introduction

Many important problems in science and engineering require the optimization of multi-modal
derivative-free functions, often resource-limited to only several thousand function evaluations. For
example, calibration of water simulation models [1, 2], climate simulation models [3, 4], aircraft wing
design [5–7], vehicle design optimization [8], and machine learning hyperparameter optimization [9–
11]. With the proliferation of data and computing power, the functions of interest have become
increasingly higher-dimensional. Thus, we focus on optimizing functions in 50 to 500 dimensions
and with an evaluation budget limited at most ten times the dimension.

Applying optimization methods to high-dimensional functions is a difficult problem due to the curse
of dimensionality, that is, the volume of the sampling space and the required function evaluations for
an accurate function approximation grow exponentially with the number of dimensions. One line of
research, led by REMBO, attempts to avoid the problem by embedding the high-dimensional space
in a lower-dimensional space where the optimization is performed [12]. A closely related method
is SASSBO which optimizes only some of the dimensions [13]. However, REMBO’s assumption
that the high-dimensional function can be accurately represented in low dimensions is often not
valid in practice, and SASSBO’s high computational requirements limit its application to problems
with evaluation budgets of at most hundred function evaluations. Another line of research is the
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scalable Bayesian optimization methods, which aim to fit a sparse Gaussian process models [14],
or fit a Gaussian process models only on subset of evaluated points around a trust region [11]. But,
sparsifying the solutions space or using only subset of the evaluated points often results in suboptimal
solutions. Finally, the inherit computational expense of fitting and tuning Gaussian process models,
commonly limits the application of these models to problems with evaluation budgets of at most
thousand iterations.

We propose a fundamentally different optimization algorithm that combines metaheuristic search
method with a polyharmonic spline surrogate. Polyharmonic splines are fitted in closed-form and
require no tuning, in addition to being accurate approximates of high-dimensional functions [15]. Our
metaheuristic search method merges ideas from randomized optimization and simulated annealing to
achieve optimal exploration-exploitation trade-off and efficiently avoid local optima. To summarize
our contributions are: 1. We develop ROSA, a novel optimization algorithm for efficient multi-modal
optimization of high-dimensional derivative-free functions with an evaluation budget of several
thousand evaluations. 2. We open-source our modern and efficient implementation of ROSA, able to
run on CPUs and GPUs. We hope our code will be used by researchers and practitioners in a wide
range of applications in science and engineering.

2 Method

We develop an optimization method for a multi-modal derivative-free function over a hypercube
defined by a and b in d dimensions. That is x∗ = argminx†∈[a,b]d f(x

†), notation info in Sec. A.1.

The proposed algorithm, ROSA, is based on three fundamental ideas in multi-modal, derivative-free
optimization: (i) Randomized Optimization, where one randomly samples points by adding a random
vector to the current best point. However, instead of adding random perturbations to all dimensions,
ROSA only changes a small and decreasing number of dimensions at each iteration. (ii) Simulated
Annealing, where one allows accepting a worse neighbour as the current best point, but with a
probability that decreases with the number of iterations. (iii) Surrogate optimization, where one fits a
surrogate such as Gaussian Process and uses an acquisition function such as Expected Improvement
to decide where to evaluate f next. Instead, ROSA uses computationally efficient surrogate such as
polyharmonic splines to only rank the neighbours and evaluate on f the top-ranked neighbours.

The algorithm takes as inputs an objective function f we wish to minimize and an evaluation budget
nmax. ROSA starts by evaluating the objective function at n0 points, sampled uniformly at random
from the function input space. The point that gives the lowest objective function value is set as the
current best point, x′, from where the optimization iterations start.

At each iteration, ROSA selects a set of dimensions to be perturbed at random, with a probability of
being selected pφ = φ(n/nmax) . The probability of each dimension being selected is a decreasing
function (φ) of the amount of the currently used evaluation budget (Sec. 2) and it is independent
from the selection of the other dimensions. Formally, we define the set of selected dimensions:
A = {k : υ < φ(n/nmax) | k ∈ I, υ ∼ U(0, 1)}, where I = {1, . . . , d} and U(0, 1) is Uniform
distribution over (0, 1) ∈ R. In case, A = ∅, then A = {j} where j is a random sample from I,
ensuring at least one dimension is always selected. The probability of a dimension being selected is
also independent across iterations, resulting in different dimensions being selected at each iteration.

We create a set C of q neighbouring points, with q ≫ d, i.e. C = {x̂i | i ∈ {1, . . . , q}}, by adding
random perturbations to the selected dimensions of the current best point x′ (Sec. 2). Selecting the
dimensions is independent across the x̂i points, so each point may have different dimensions selected.
We then evaluate each x̂i point in C on a polyharmonic spline surrogate and select the point with
lowest surrogate value as the next evaluation point x◦.

The point x◦ is evaluated on the objective function and it is accepted as the current best point with
probability pα = g(f(x◦), f(x′), n), given by g, the acceptance probability function (Sec. 2). After
exhausting the evaluation budget we return the current best point and its objective value. Note that
ROSA is easily parallelizable by choosing the m lowest surrogate value points instead of a single
point, given that one is able to run the objective function efficiently in parallel.

Next, we describe the algorithm’s components, and in the appendix, we define the algorithm in
pseudo code (Alg. 1), provide a proof of convergence (Sec. A.2), and open-source our code at https:
//github.com/ili3p/ROSA.
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Algorithm 1 Randomized Optimization with Simulated Annealing (ROSA)
Inputs:

1. Objective function f(x) : Rd → R1, with x ∈ [a,b]d ⊂ Rd, where a and b are
d-dimensional vectors that delineate the objective function domain.

2. Evaluation budget nmax.
Step 1: Initialization

(a) Sample uniformly at random n0 points and define the set Dn0
as a set of pairs of point

and its function value, Dn0
= {(x1, f(x1)), . . . , (xn0

, f(xn0
)) | xi ∼ U(a,b)}.

(b) Define x′ as (x′, f(x′)) ∈ Dn0
such that f(x′) ≤ f(xi) ∀ (xi, f(xi)) ∈ Dn0

.
(c) Define y′ as the current lowest found objective value, y′ = f(x′).
(d) Define n as the number of currently evaluated points, n = n0.

Step 2: Main optimization loop
while n ≤ nmax do

(a) Fit a polyharmonic spline surrogate H on Dn (Equation 2).
(b) Create a set C of q neighbouring points around x′, C = NG(x′, n/nmax) (Algorithm 2).
(c) Define the set S as a set of pairs of neighbour point and its surrogate value,

S = {(x̂i, H(x̂i)) | x̂i ∈ C}.
(d) Denote x◦ as the best point in S, i.e. H(x◦) ≤ H(x̂i) ∀ (x̂i, H(x̂i)) ∈ S.
(e) Perform a function evaluation y◦ = f(x◦) and update Dn+1 = {(x◦, y◦)} ∪ Dn.
(f) With probability pα = g(y◦, y′, n) (Section 2) accept the new solution x◦ and set x′ = x◦

and y′ = y◦.
(g) n = n+ 1.

end
Return: The lowest objective value and the corresponding point, y′ and x′.

Polyharmonic Spline Surrogate A polyharmonic spline surrogate is a linear combination of radial
basis functions and a polynomial tail. The polyharmonic kernels are scale invariant, so they do not
require tuning of hyperparameters such as the length-scale in the case of the squared exponential and
Matérn kernels, the most common Gaussian Process kernels. The polyharmonic spline surrogate
is defined as: ϕ(r) = rk if k = 2n − 1 for n ∈ N and as ϕ(r) = rk ln(r) if k = 2n for n ∈ N,
where r = ∥x− ci∥2 and ci are the centres, i.e., the evaluated points used to fit the surrogate. ROSA
incorporates a cubic spline, ϕ(r) = r3, which is conditionally positive definite kernel of order 2. So,
we include a linear polynomial tail to ensure the stability of the solutions of the system of equations
used to fit the surrogate parameters. Formally, given n number of d-dimensional vectors, x1:n, we
construct an polyharmonic spline interpolation model with:

H(x) =

n∑
i=1

λi(||x− xi||2)3 + b⊤[1,x⊤] (1)

The model parameters λi:n, bi:d are determined by solving the following linear system of equations:[
Φ+ η P
P⊤ 0

] [
λ
b

]
=

[
F
0

]
(2)

Here Φ ∈ Rn×n is defined as Φi,j = (||xi − xj ||2)3, i, j = 1, . . . , n, 0 ∈ R(d+1)×(d+1), P ∈
Rn×(d+1) has its i-th row defined as [1,x⊤

i ], λ = [λ1, . . . , λn]
⊤, F = [f(x1), . . . , f(xn)]

⊤, and η
is a regularization constant. When n < d+ 1, we fit the model parameters via least squares.

Acceptance Probability Function The acceptance probability function promotes exploration
by accepting with some probability a point with a worse objective function value as the cur-
rent best point [16]. We define the acceptance function as pα := g(f(x◦), f(x′), n) =

min(exp[−(f(x◦)−f(x′))
Tn

], 1), where f(x◦) is the new, possibly worse, objective function value,
and f(x′) is the current best objective value. Tn is the cooling temperature with geometric schedule,
i.e., Tn = αnT0, where T0 and α are set to common values [17] and fixed throughout our experiments.
We accept x◦ as the current best point with probability pα.
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Probability of Perturbing a Dimension We define the function φ(n/nmax) as a simple decreasing
step-function that goes from 1e−1 to 1e−6 (see code for the specific implementation). In Sec. B.5,
we analyse our choice of probabilities for selecting dimensions by comparing the default ROSA,
with ROSA-Const. 20D where we perturb min(20, d) dimensions, ROSA-Const. 10% where we
use constant function φ(·) = 1e−1, ROSA-Increasing, where we increase the probabilities from
0.10 to 1.00, ROSA-Reversed Default, where we increase the probabilities from 1e−6 to 1e−1.
In Figure B.3 we observe that the performance of ROSA is similar as long as the probabilities are
decreasing.

Perturbation Distribution To the selected dimensions of the current best point, we add random
samples from truncated normal distribution (Eq. 5) with mean 0 and perturbation radius fixed to one
sixth of the objective function domain range, i.e., σ = (b− a)/6. It is important that the samples are
coming from truncated normal distribution, instead for example from uniform distribution [11], as
otherwise the distribution of the samples gets heavily skewed towards the domain bounds (Figure B.2).
We recommend that σ is set to one sixth of the bounded range such that 99.7% of the hypercube
space is reachable from the centre point. To empirically justify our choice, we benchmark ROSA
with multiple σ values and show that ROSA is fairly robust to different values of σ, with the default
version only having a small advantage on some functions (Figure B.4). The pseudo code is in Alg 2.

Algorithm 2 Neighbour Generation in ROSA
Inputs:

1. Point x′ around which to generate neighbouring points.
2. Percentage of currently spent evaluation budget η = n/nmax.

Configuration:
1. Bounding hypercube [a,b]d ⊂ Rd of permitted values of x.
2. A decreasing step-function that maps a percentage of spent budget to a probability of

perturbing a dimension, pφ = φ(η) (Section 2).
3. Number of neighbour points q.

Algorithm: Create a set C of q neighbour points x̂i where for each point:
1. Define a set of selected dimensions: A = {k : υ < φ(η) | k ∈ I, υ ∼ U(0, 1)}, where

I = {1, . . . , d} and U(0, 1) is Uniform distribution over (0, 1) ∈ R.
2. Construct the permutation vector z = [z(k)]⊤, for k ∈ I, z(k) = τ ∼ T (0, σ, α(k), β(k)),

if k ∈ A otherwise, z(k) = 0. Here T (0, σ, α(k), β(k)) is truncated Normal distribution
with mean 0 and standard deviation σ bounded by α = a− x′ and β = b− x′.

3. Set x̂i = x′ + z.
Return: The set of C = {x̂i | i ∈ {1, . . . , q}} neighbour points.

3 Experiments

ROSA combines ideas from simulated annealing, randomized optimization, and surrogate optimiza-
tion. Accordingly we compare ROSA with baselines that employ ideas from simulated annealing,
Dual Annealing [18], randomized optimization, PSO [19], and surrogate optimization (lq-CMA-
ES [20], TuRBO [11], DYCORS [21]). We also compare ROSA to an evolutionary algorithm
(CMA-ES) as it have been shown to be competitive in optimization of black-box functions with large
evaluation budgets [22]. ROSA is most similar to TuRBO and DYCORS, the three methods add
random perturbations to the current best, so we list their similarities and differences in Table B.1.

We compare the methods on three well-known synthetic functions, Ackley [23] — a function most
surrogates can approximate well, Michalewicz [24] — a function with flat surface and sharp ridges
where surrogates are often not helpful, and Rastrigin [25] — function riddled with many good local
minima and thus algorithms often get stuck in a local minimum. 2D visualizations of the three
functions are shown in Figure B.1. We vary the number of dimensions from 60 to 200 to evaluate
how the algorithms’ performance scale with the number of dimensions. As an additional challenging
benchmark suit we use the BBOB-largescale suite from COCO [26].

As real-world problems we use the well-known benchmark problem of optimizing vehicle design
introduced by General Motors at MOPTA08 [8] (in 124D), and optimizing 496 portfolio weights
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for maximizing volatility adjusted returns while minimizing max drawdown, a common finance
application of non-convex optimization methods. We perform parallel optimization with m = 50
on problems with a budget of more than 2,000 evaluations, such as BBOB-320D, BBOB-640D, and
Portfolio Optimization, on the rest we perform serial optimization (m = 1). For details see Sec. B.1.

Ackley Michalewicz Rastrigin MOPTA PRTF
Method \Dim. 60 120 150 200 60 120 150 200 60 120 150 200 124 496
Sobol 12.39 13.01 13.15 13.28 -13 -23 -27 -34 869 1854 2349 3200 308 -
PSO 13.35 13.52 13.67 13.60 -17 -28 -33 -42 898 1897 2413 3218 316 -36.9
DA 12.69 13.10 13.17 13.34 -12 -21 -26 -32 878 1856 2349 3213 313 -
CMA-ES 8.74 8.65 8.47 8.50 -13 -23 -27 -35 714 1533 1953 2697 251 -53.7
lq-CMA-ES 4.14 4.46 4.58 4.63 -13 -22 -27 -33 669 1293 1620 2168 235 -
TuRBO 4.56 5.77 6.20 6.38 -24 -54 -69 -92 421 805 1008 1334 243 -67.0
DYCORS 2.23 2.51 2.53 2.6 -32 -68 -86 -113 286 569 711 957 - -
ROSA 2.69 1.99 1.90 1.8 -35 -71 -89 -118 272 520 653 884 226 -77.9

Table 1: Mean best value obtained from 30 independent trials, across problems and dimensions, for
each method under comparison, with bold we denote the best overall result. PSO - particle swarm
optimization, DA - Dual Annealing.

Results The results in Table 1 show that ROSA significantly outperforms all methods under
comparison on all functions across dimensions (with the exception of DYCORS on Ackley 60D).
Further, ROSA advantage over the other methods increases with increasing number of dimensions,
showing that ROSA is especially suited for the high-dimensional optimization problems that are
becoming increasingly ubiquitous. Given the no free lunch theorem, we do not claim ROSA will
outperform any method on any function. However, on multi-modal derivative-free functions, such as
the representative set of functions in our benchmark, ROSA is expected to outperform.

The progress plots in Sec. C show that not only ROSA achieves lowest objective value after exhausting
the evaluation budget, but it also consistently outperforms most methods on most problems after any
number of iterations. For example, on Ackley 200D (Figure C.2 right), ROSA achieves the lowest
value found by TuRBO, the scalable Bayesian optimization method, after only using 27% of the
evaluation budget. Which means ROSA achieved comparable solution to TuRBO with almost 4
times fewer function evaluations. Furthermore, ROSA’s code is two orders of magnitude faster than
TuRBO’s (Figure C.10). This means, as opposed to scalable Bayesian optimization methods, ROSA
can be applied to difficult problems necessitating otherwise prohibitively large number of evaluations.

The outperformance of ROSA is also confirmed on the ten multimodal functions in high dimensions
of the BBOB benchmark suite. In 160D ROSA performance is matched by DYCORS after 75% of
the budget (Figure C.8). However, DYCORS computational requirements are too great to be run on
the 320D and 640D problems (Figure C.9). Which once again confirms the need of a method with
not only good optimization performance but also that is scalable and computationally efficient to be
able to optimize high-dimensional problems and with many function iterations.

We perform sensitivity analysis of ROSA’s crucial algorithm component, the neighbouring points
generation. We justify our choice of probability of perturbing a dimension with the results in Fig-
ure B.3, the way we set the standard deviation of the perturbation distribution in Figure B.4, and our
choice of perturbation distribution in Figure B.5.

4 Discussion

With this paper, we aim to address the problem of optimization of multi-modal, derivative-free
functions in high dimensions by developing an optimization method that is computationally efficient,
while achieving excellent optimization performance on 15 representative functions in 9 distinct
dimensions. We hope ROSA will serve as an alternative to Bayesian optimization methods when they
are not suitable for the task. ROSA’s modular algorithm design is based on fundamental optimization
ideas developed and time-tested over decades of research. The modular design also allows for
easy customization to specific problem types and further development of the algorithm. As an
example, future work involves adapting the exploration vs exploitation trade-off to unseen problems
by dynamically adjusting the probability of perturbing a dimension and the acceptance probability.
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A Appendix

A.1 Notation

Notation Description
f objective function we wish to minimize
x a vector, objective function input, or a point, used interchangeably
x
(k)
i the k-th element, i.e., dimension, of the i-th vector x
d number of objective function dimensions, i.e., input vector length x

a,b vectors, delineating the bounds of the objective function domain
x̂ a neighbour vector, only evaluated on the surrogate
x′ the current best vector, i.e., an evaluated point with lowest objective function value
x◦ the current best neighbour, i.e., a point with lowest surrogate function value
y′ current lowest objective function value found
y◦ objective function value of the current best neighbour

H(x̂) a surrogate mapping neighbour vectors x̂ to objective function value estimates
ϕ(||x− xi||2) kernel function centred on the evaluated point xi

n number of spent function evaluations
nmax number of maximum function evaluations, i.e., the evaluation budget size
n0 number of function evaluations used for initialization
η percentage of evaluation budget spent, i.e., n/nmax
pα probability of accepting the solution y◦ as the current best

g(y◦, y′, η) function outputting the probability pα of accepting the solution y◦
pφ probability of selecting a dimensions for perturbation
φ(η) function outputting the probability pφ of selecting a dimension
I the set of dimensions, i.e. I = {1, . . . , d}
A the set of selected dimensions for perturbation during neighbour generation
C the set of neighbour points
D the set of pairs of point and objective function value, used to fit the surrogate
ξ the set of evaluated points, i.e., the algorithmic running history
S the set of pairs of neighbour point and surrogate value

U(a, b) Uniform distribution between a and b
T (0, σ,a,b) truncated Normal with mean 0 and standard deviation σ bounded by a and b
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A.2 Convergence Analysis

After n ≥ n0 times of objective evaluation, consider the current best d-dimensional neighbour vector
x◦
n as a random vector. Define ξn = {x◦

1, . . . ,x
◦
n} to store all the evaluated points, i.e., the entire

algorithmic running history after n iterations.

Finally, let Q(x, δ) denote the open ball centred at x with radius δ, i.e., Q(x, δ) = {x† | ||x−x†||2 <
δ}, and Σ(ξn) denote the σ-field generated by the random vectors in ξn.

Theorem 1 Let f be a real-valued function defined on B ⊆ Rd and suppose that x∗ is the unique
global minimizer of f on B in the sense that f(x∗) = infx∈B f(x) > −∞. Following the pseudo
code in Algorithm 1, ROSA iteratively generates random vectors {xn}n≥1, and maintains a sequence
of random vectors [x′

n] as follows: x′
n = x◦

n with probability pα = g(f(x◦), f(x′
n), n) (Section 2)

otherwise x′
n = x′

n−1. Then x′
n converges to x∗ almost surely.

Proof. Fix ε > 0 and n ≥ n0 + 1. Assume that there exists δ(ε) > 0 such that |f(x)− f(x∗)| < ε
whenever ||x − x∗||2 < δ(ε). Hence, the event [xn ∈ B : |f(xn) − f(x∗)| < ε] ⊇ [xn ∈ B :
||xn − x∗||2 < δ(ε)], and so,

P [xn ∈ B : |f(xn)− f(x∗)| < ε | Σ(ξn−1)] ≥ P [xn ∈ B : ||xn − x∗||2 < δ(ε) | Σ(ξn−1)]
= P [xn ∈ Q(x∗, δ(ε)) ∩ B | Σ(ξn−1)]
=

∫
Q(x∗,δ(ε))∩B P (xn = x | Σ(ξn−1))dx

(3)

In ROSA, the neighbour x◦
n is generated by adding independent truncated normal samples to the

selected dimensions of x′
n−1. Let En,j denotes the event that the j-th dimension of x′

n−1 is selected
for perturbation and P (En,j) = pφn

= φ(n/nmax) > 0 (see Section. 2). Therefore, the candidate
x◦
n has the following conditional density function given Σ(ξn−1) for each n > n0,

P (x◦
n = x | Σ(ξn−1)) =

∏d
j=1 P (x◦n,j = xj | Σ(ξn−1))

=
∏d

j=1 [P (x◦n,j = xj | Σ(ξn−1), En,j) · pφn

+P (x◦n,j = xj | Σ(ξn−1),¬En,j) · (1− pφn)]

≥
∏d

j=1 T (x◦n,j = xj | Σ(ξn−1)) · pφn
,

(4)

where T is a truncated normal density function in the following form,

T (x◦n,j = xj | Σ(ξn−1);σj , aj , bj) =
1√
2πσ2

j

exp
[−(x◦

n,j−x′
n−1,j)

2

2σ2
j

]
Φ(

bj−x′
n−1,j

σj
)− Φ(

aj−x′
n−1,j

σj
)

(5)

with Φ being the cumulative function of a standard normal distribution and the rest defined in
Section A.1. Bounding (5) from bellow:

T (x◦n,j = xj | Σ(ξn−1);σj , aj , bj) ≥
1√
2πσ2

j

exp
[−(bj−aj)

2

2σ2
j

]
Φ(

bj−aj

σj
)− Φ(

aj−bj
σj

)
=: Cj > 0 (6)

Then, (4) is also bounded with:

P (x◦
n = x | Σ(ξn−1)) ≥

d∏
j=1

Cj · pφn
. (7)

Finally, combining (7) with (3) yields,

P [x◦
n ∈ B : |f(x◦

n)− f(x∗)| < ε | Σ(ξn−1)] ≥
∫
Q(x∗,δ(ε))∩B

∏d
j=1 Cj · pφn

dx

≥ ψ(Q(x∗, δ(ε)) ∩ B)
∏d

j=1 Cj · pφn

=: L(ε) > 0,

(8)
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where ψ is the Lebesgue measure on Rd and pφn denotes the probability used to select dimensions.
Thus, from (8), we have P [x◦

n ∈ B : |f(x◦
n)− f(x∗)| < ε | σ(ξn−1)] is lower bounded by L(ε). By

following the same argument as in the proof of theorem in p.40 of [27], we show that x′
n converges

to x∗ almost surely. ■

B Experimental Setup

B.1 Methods

We compare ROSA with a diverse kind of methods, namely:

• Sobol, a quasi-random baseline represented by a scrambled Sobol sequence [28]; We use
PyTorch’s implementation of scrambled Sobol, available at link.

• PSO, a particle swarm optimization method [19]; We follow the instructions at link to install
and run pyswarms on optimizing a function with bounds. We set options = {c1 : 0.5, c2 :
0.3, w : 0.9}, n_particles = 10, and use the "GlobalBestPSO" as optimizer with the rest
settings set to default.

• DA, Dual Annealing, a method that combines classical simulated annealing with fast
simulated annealing, coupled with a local search strategy [18]. We use the default values as
implemented in SciPy [29].

• CMA-ES, a model-free evolutionary optimization method [22]; We follow the instructions at
https://github.com/CMA-ES/pycma to install CMA-ES and run CMA with the default
settings. As an initial point x0 we set the middle point of the domain, i.e. x0 = (a+ b)/2,
where a and b are the upper and lower bounds respectively. Following CMA-ES authors
advice, we set σ0 to quarter of the objective function domain range.

• lq-CMA-ES, a surrogate-assisted evolutionary optimization method [20]; We follow
the instructions at http://cma.gforge.inria.fr/cmaes_sourcecode_page.html#
practical to install and run lq-CMA-ES with the default settings. As an initial point
x0 we tried setting the middle point of the domain and using a random point from n0
Latin Hypercube samples, the random LHS sample version worked better so we did all
experiments with x0 set to a random LHS point. Following lq-CMA-ES authors advice on
the above-mentioned URL, we set σ0 to half of the function domain range, to make sure
every space is within 2σ0 from every possible x0.

• TuRBO, a scalable Bayesian optimization method for high-dimensional surrogate optimiza-
tion [11]; We follow the instructions at https://github.com/uber-research/TuRBO/
to install TuRBO-1 and run TuRBO-1 with the default settings. We run only TuRBO-1
as our initial experiments with running TuRBO-m did not show any improvements over
TuRBO-1 but significantly increased the required computational resources and wall-clock
run time. Our initial experimental results are also supported by most experiments in [11].

• DYCORS, surrogate optimization method with dynamic coordinate search [21]. We use
the implementation at https://github.com/dme65/pySOT to install pySOT and run
DYCORS with the default settings [30, 31]. Due to pySOT’s reliance on older software
versions, we were not able to run DYCORS on MOPTA. DYCORS were also not run on
the 496D portfolio optimization problem and 320D & 640D BBOB problems as it required
unfeasible large amount of RAM memory.

ROSA is most similar to TuRBO and DYCORS, the three methods add random perturbations to the
current best, so we list their similarities and differences in Table B.1.

B.2 Benchmark functions

• Ackley is implemented as in https://www.sfu.ca/~ssurjano/ackley.html using the
recommended values. We evaluate Ackley in the domain x ∈ [−5, 10]D where D ∈
{60, 120, 150, 200}.

• Michalewicz is implemented as in https://www.sfu.ca/~ssurjano/michal.html.
We evaluate Michalewicz in the domain x ∈ [0, π]D where D ∈ {60, 120, 150, 200}.
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Probability of selecting a dimension

DYCORS min(20/d, 1) · (1− ln(n)/ ln(nmax))
TuRBO fixed to min(20/d, 1)
ROSA fixed to [1e− 1, 5e− 2, 5e− 3, 1e− 6]

Perturbation distribution
DYCORS Mirrored Normal

TuRBO Uniform
ROSA Truncated Normal

Perturbation radius
DYCORS dynamically adjusted based on performance

TuRBO dynamically adjusted based on performance
ROSA fixed to 1/6 of the domain range

Type of surrogate
DYCORS Cubic RBF with linear tail

TuRBO Gaussian Process with Matérn 5/2 kernel
ROSA Cubic RBF with linear tail

Exploration vs Exploitation trade-off
DYCORS Scoring function with cycling weights based on distance and surrogate value

TuRBO Fixed on surrogate value
ROSA Simulated annealing based acceptance function

Table B.1: Similarities and differences of key algorithm components of ROSA, TuRBO, and DYCORS.
The three methods are similar as they all add random perturbations to some dimensions of the current
best point.

Figure B.1: 2D plots of the used benchmark functions. Ackley left, Michalewicz centre, and Rastrigin
right.

• Rastrigin is implemented as in https://www.sfu.ca/~ssurjano/rastr.html. We
evaluate Rastrigin in the domain x ∈ [−5.12, 5.12]D where D ∈ {60, 120, 150, 200}.

• For BBOB we use the COCO suite [26] as implementation. We use the multi-modal
functions, F15 through F24, on the following instances [6, 12, 13, 9, 10, 12, 6, 1, 1, 2], chosen
at random, and optimize in 160, 320, and 640 dimensions.

A two-dimensional plots of each of the functions are shown in Figure B.1.

B.3 Real-world problems

We follow the instructions at https://www.miguelanjos.com/jones-benchmark to implement
the MOPTA08 problem. As MOPTA08 is a constrained optimization problem, we transform it to
unconstrained problem with funconstr(x) = fconstr(x) + 10

∑68
i=1 max(0, ci(x)) where ci ≤ 0 is a

constrain violation. As usual, we optimize the function in x ∈ [0, 1]124.

The Portfolio Optimization problem aims to maximize volatility adjusted returns and minimize the
maximum drawdown over the three year period of 2019-2022, of a portfolio consistent of 496 stocks
that were part of SP 500 during all three years. Specifically, we minimize m− r/(σ

√
252), where m

is the portfolio maximum drawdown, r is the total portfolio return after the three years, and σ is the
standard deviation of the daily returns.
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Figure B.2: Histograms of samples from different perturbation probability distributions for one
dimensional point x at 0.8. Only samples from truncated normal distribution are not skewed towards
the domain bound at 1.0 as samples from the other distributions that fall outside the domain are set to
the nearest bound.

Figure B.3: Method analysis: Varying the probability function of selecting a dimension to be
perturbed. Comparing the default ROSA, with ROSA-Const. 20D where we perturb min(20, d) di-
mensions, ROSA-Const. 10% where we use constant function φ(·) = 1e−1, ROSA-Increasing,
where we increase the probabilities from 0.10 to 1.00, ROSA-Reversed Default, where we in-
crease the probabilities from 1e−6 to 1e−1.

B.4 Computational resources

The experiments were run on a small cluster consisting of nodes with E5-2690v3 CPU and 32GB
DDR4 RAM. Each experiment was limited to 24 hours of total wall-clock run time.

B.5 Neighbour generation sensitivity analysis

C Benchmark results

In this section we share the progress plots of optimizing the benchmark functions. Each line represents
the mean of the lowest found objective value over 30 independent runs, with 95% confidence bounds
around it.
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Figure B.4: Method analysis: Varying the standard deviation σ of the truncated normal distribution
used to generate perturbation samples.

Figure B.5: Method analysis: Varying the distribution from which we sample perturbation samples.
Comparing usning Clamped Uniform with the default — Truncated Normal.
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Figure C.1: Ackley optimization in 60 (left) and 120 (right) dimensions.
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Figure C.2: Ackley optimization in 150 (left) and 200 (right) dimensions.
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Figure C.3: Michalewicz optimization in 60 (left) and 120 (right) dimensions.
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Figure C.4: Michalewicz optimization in 150 (left) and 200 (right) dimensions.
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Figure C.5: Rastrigin optimization in 60 (left) and 120 (right) dimensions.
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Figure C.6: Rastrigin optimization in 150 (left) and 200 (right) dimensions.
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Figure C.7: MOPTA08 optimization in 124 dimensions (left) and Portfolio optimization in 496
dimensions with 50 parallel evaluations (right).
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Figure C.8: Empirical cumulative distribution function (for details see [32]) of BBOB optimization
in 160 dimensions (higher is better).
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Figure C.9: Empirical cumulative distribution function (for details see [32]) of BBOB optimization
in 320 (left) and 640 (right) dimensions with 50 parallel evaluations (higher is better).
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C.1 Wall-clock time comparison
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Figure C.10: Wall-clock times of non-evaluation times, i.e. excluding the time it takes to run the
function evaluation and only considering the time it takes for an optimization method to propose next
evaluation point. Note that the y-axis is in log scale.
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