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ABSTRACT

Recently, fine-tuning of language models (LMs) via zeroth-order (ZO) optimization
has gained significant traction due to their ability of memory-efficient deployment,
significantly reducing memory cost over first-order methods. However, the existing
studies on ZO optimization for LM fine-tuning often exhibit slow convergence and
reliance on the hand-crafted prompts. In this paper, we first investigate the impor-
tance of the adaptive gradient-based ZO optimization method in mitigating these
limitations. Toward this, we revisit memory-efficient zeroth-order Adam (MeZO-
Adam) and make important findings that merely considering adaptivity can enable
faster convergence while improving the generalization ability compared to previous
studies. Interestingly, we further observe that decreasing the level of adaptivity
might be recommended in ZO optimization potentially due to the high variance
of ZO gradient estimate, hypothesized as weak adaptivity hypothesis. Based upon
our hypothesis, we propose MeZ0-A3dam, MeZO-Adam with Adaptivity Ad-
justments according to the parameter dimension. We provide the dimension-free
theoretical guarantee on both the convergence and the generalization of MeZO-
A’dam, providing strong evidence for our hypothesis. Extensive experiments show
that MeZO-A*dam can achieve faster convergence and better generalization over
several baselines across LMs of various sizes on diverse datasets. By adaptivity
adjustments, MeZO-A3dam outperforms MeZO, MeZO-SVRG, and MeZO-Adam,
with up to an average of 36.6%, 16.9%, 6.8% improvements in performance and up
to an average of x12.6 and x 1.8 faster convergence, respectively. Furthermore, by
leveraging an off-the-shelf low-bit optimizer, MeZO-A’dam achieves an average
of 40.3% and 43.6% memory reduction from MeZO-SVRG and MeZO-Adam.

1 INTRODUCTION

Since the rise of large language models (LLMs), research has focused on leveraging their capabilities
(Radford et al., 2019; Zhang et al., 2022; Touvron et al., 2023). Building on their success, fine-
tuning pre-trained LLMs becomes a key strategy for adapting them to downstream tasks. However,
it requires significant memory, making it impractical for practitioners. This challenge has led to
alternatives like in-context learning (ICL, Min et al. (2022)) and parameter-efficient fine-tuning (PEFT,
Li & Liang (2021); Lester et al. (2021); Hu et al. (2022)). However, ICL often yields suboptimal
performance (Malladi et al., 2023) and requires time-consuming prompt engineering, introducing
memory overhead. While PEFT is more efficient than full fine-tuning (Full FT), it still requires more
memory than inference alone due to activation memory (Azizi et al., 2024) and one may increase the
number of trainable parameters to achieve satisfactory performance, potentially driving up resources.

As a consequence, a separate line of research, the zeroth-order (ZO) optimization recently have
been explored to fine-tune LLMs (Malladi et al., 2023; Guo et al., 2024; Liu et al., 2024b; Zhang
et al., 2024). ZO optimization requires neither the memory nor the computation costs associated
with gradient calculations. Additionally, unlike ICL, it does not require longer context length. The
pioneering study, MeZO (Malladi et al., 2023) demonstrated that zeroth-order stochastic gradient
descent (SGD) (Robbins & Monro, 1951) can effectively fine-tune language models with only
inference-time memory and computation budget.
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Table 1: Comparisons among SoTA memory-efficient ZO methods with the parameter dimension d.
The symbols v/X indicate whether each column is considered or not in the analysis of each method.
In summary, our work is the first attempt to analyze the convergence and generalization considering
both the momentum and the preconditioner in terms of theory. Also, the dimension-free guarantees
are significant contributions in theory, which is generally not available in previous ZO literature.

. . Convergence Generalization
Algorithm ‘ Momentum ‘ Preconditioner Guarantee ‘ Error Bound
MeZO X X v/ (Dimension-free) | X
MeZO-SVRG X X v (Depends on d) X
MeZO-A*dam (Ours) ‘ v ‘ v/ (Adam) ‘ v/ (Dimension-free) ‘ v (Dimension-free)

However, while MeZO reduces memory consumption, it suffers from slower convergence and
longer training time. Also, MeZO requires hand-crafted, task-specific prompts to achieve acceptable
performance, which limits its broader applicability. While prompts are common in LLM fine-tuning
(Wei et al., 2022; Sanh et al., 2022; Ouyang et al., 2022; Chung et al., 2024), their complexity
diminishes the practicality of ZO optimization. To speed up convergence, sparse gradient methods
(Liu et al., 2024b; Guo et al., 2024) have been proposed, selectively updating a small subset of
parameters, though prompts are still required. More recently, MeZO-SVRG (Gautam et al., 2024)
integrates the stochastic variance-reduced gradient (SVRG) estimator for faster convergence without
prompts, however, it incurs high computational costs due to full-batch gradient calculations. In
addition, the variance-reduced method may not be effective for deep learning tasks (Defazio & Bottou,
2019). Furthermore, their accuracy gap compared to full FT still remains to be often significant.

All the aforementioned studies have focused on vanilla SGD while adaptive gradient methods such as
Adam (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) or Lion (Chen et al., 2023) have become
standard in traditional fine-tuning of LLMs. In MeZO, only a brief introduction to MeZO-Adam
and simple experimental results in prompt-dependent settings have been presented, showing little
difference from MeZO. However, the full potential of adaptive gradients in more generalized ZO
fine-tuning scenarios is yet to be fully unveiled.

Toward mitigating the above limitations of MeZO, in this paper, we revisit the MeZO-Adam in LLM
fine-tuning. We first empirically discover that the adaptive gradients are advantageous in a prompt-
free fine-tuning scenario. More importantly, we observe that controlling the amount of adaptivity
of MeZO-Adam indeed matters, upon which we introduce weak adaptivity hypothesis and propose
MeZ0-A3dam that allows to adjust the adaptivity according to the parameter dimension.

Our main contributions are summarized below:

* We thoroughly investigate on the adaptive gradient ZO optimization for fine-tuning and first
reveal its importance in a prompt-free fine-tuning scenario. Specifically, we make an important
observation that decreasing the adaptivity level can potentially be beneficial in ZO optimization.
This may be attributed to the high variance of ZO gradient estimate. We then articulate weak
adaptivity hypothesis and present MeZO-A>dam. This allows the degree of adaptivity according
to the parameter dimension enabling faster convergence compared to non-adaptive alternatives.

» We theoretically analyze the convergence and the generalization of MeZO-A3dam. While the
convergence complexity and the generalization error bound heavily depend on the parameter
dimension d in most ZO optimization analysis, we make an important theoretical observation
that decreasing the adaptivity level can allow us to obtain a dimension-free guarantee. This
provides strong evidence for the weak adaptivity hypothesis. Additionally, we provide theoretical
insights into how much the degree of adaptivity should be adjusted. Table 1 summarizes the
comparisons in theory among state-of-the-art memory-efficient zeroth-order methods.

» Our extensive experiments demonstrate that MeZO-A3dam consistently surpasses several existing
ZO baselines across various sizes of language models on different benchmarks, in all three
aspects: generalization, convergence, and memory consumption. More precisely, MeZO-A3dam
outperforms (1) {MeZO, MeZO-SVRG, MeZO-Adam} with up to an average of {36.6%, 16.9%,
6.8%} better generalization, (2) {MeZO-SVRG, MeZO-Adam} with an average of {x12.6,
x 1.8} faster convergence speed, and (3) {MeZO-SVRG, MeZO-Adam} with an average of
{40.3%, 43.6%} lower memory consumption, respectively.
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Algorithm 1 MeZO-A"dam: Memory-efficient Zeroth-Order Adam with

1: Input: Stepsize oy, momentum parameter (81, 82) = (0.9,0.999), batch size B, base adaptivity
parameter , = 10~%, and scaling function i : R — R (ex. h(d) = d).

2: Initialize: 0y € R%, my = 0, and V;, = 0.
3: fort=1,2,...,T do
4 Draw a minibatch sample S = {x1,--- ,zp}.
5: gi < % Zil VL(O:_1; ;). > Minibatch ZO gradient (Definition 2.1)
6: my < Simy_1 + (1 — 51)g:. > Momentum construction
7: vy < Povi_q + (1 — Ba) 992 > Preconditioner construction
8: My, Uy <— 7171151 ) 711”'532, > Bias corrections
>

. _ ™y
10: 0; «—0;_1— \/ﬁjr 5 > Descent step
11: end for

12: Output: 61

2  PRELIMINARY: MEMORY-EFFICIENT ZEROTH-ORDER OPTIMIZATION

In this section, we introduce the memory-efficient zeroth-order optimization (MeZO), a pioneering
study in this line of work. We describe three components of MeZO, namely, (i) simultaneous
perturbation stochastic approximation (SPSA), (ii) zeroth-order SGD (ZO-SGD), and (iii) memory-
efficient implementation.

Definition 2.1 (Simultaneous Perturbation Stochastic Approximation (SPSA, Spall (1992))). Fora
model parameter @ € R and a loss L, the SPSA on minibatch B estimates the gradient as
~ L(6 iB) — L(0 — pu; B
V(o p) = L0 B “LOZ B,
2u
where the random vector u is sampled from standard d-dimensional Gaussian distribution u ~
N(0, 1) and p being a smoothing parameter.

Note that, under the limit case of p — 0, the SPSA gradient estimate becomes an unbiased estimator
of the first-order true gradient V.£(8).

Zeroth-Order SGD (ZO-SGD). The zeroth-order SGD updates the model parameter 6; via ZO
gradient estimate as 6;,1 = 6; — at§£(0t; B:) where « is the stepsize at time ¢ and B; is the
minibatch at time ¢. Note that ZO-SGD must save the variable u in the memory since the same
random variable « should be used in computing both £(6 + pu) and £(0 — puw).

Memory-efficient Implementation. In extremely high-dimensional problems, storing the variable u

and the gradient V£(0) requires additional memory equivalent to the model parameters, which can
impose a burden in terms of memory. To bypass caching the variable u, Malladi et al. (2023) propose
an in-place implementation by storing a single random seed and reproducing the variable « when
required. We provide the pseudocode for the detailed implementations including MeZO in Appendix.

3 CONTROLLING ADAPTIVITY MATTERS IN ZEROTH-ORDER OPTIMIZATION

In this section, we discover the importance of adaptive gradients in zeroth-order fine-tuning. Fur-
thermore, we highlight the significance of handling the adaptivity level, through which we articulate
weak adaptivity hypothesis and propose our optimization algorithm, MeZO-A3dam.

3.1 MEMORY-EFFICIENT ZEROTH-ORDER ADAM (MEZO-ADAM)

Although MeZO has become a breakthrough approach in LLM fine-tuning due to its memory
efficiency, it suffers from notoriously slow convergence, which takes excessive overall fine-tuning
time. To address this issue, MeZO-SVRG appears to mitigate convergence speed through a variance-
reduced method, but the average per-step time still remains considerably slow in practice due to the
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Figure 1: A proof-of-concept: fine-tuning RoOBERTa-Large on SST-2 with ZO methods.

full-batch gradient computation. Moreover, the variance-reduced method may not be effective for
deep learning tasks according to the previous study (Defazio & Bottou, 2019).

In light of these factors, also as adaptive gradient methods have become standard in LLM fine-tuning,
we begin by questioning the value of employing adaptive gradients in zeroth-order optimization.
Toward this, in this paper, we revisit the memory-efficient zeroth-order version of Adam (MeZO-
Adam). We provide the detailed algorithm in Alg. 1, in which m; and v, are constructed in the same
manner as the first-order Adam (line 5 ~ 8) except the gradient estimation (line 5). The scaling
function A (line 9) for MeZO-Adam can be simplified to h(d) = 1.

Note that, in Alg. 1, the construction of m; and v; could be implemented in a memory-efficient
manner, however, we empirically observe that it is not computationally efficient. Therefore, in practice,
we merely construct the ZO gradient at each iteration and save only m; and v; in the optimizer
states. Note also that the small constant §, added to ,/v; to prevent the denominator from being
zero, is referred to as an adaptivity parameter. If § is large, the influence of the preconditioner ,/v;
diminishes, allowing § to control the level of adaptivity. There have been studies on the role of §
(Zaheer et al., 2018; Nado et al., 2021), however, it has never been explored in ZO optimization.
Throughout this paper, we refer to § as the adaptivity parameter.

3.2 MEZO-A3DAM: MEZO-ADAM WITH ADAPTIVITY ADJUSTMENTS UNDER WEAK
ADAPTIVITY HYPOTHESIS

In this study, the adaptivity parameter § plays a crucial role, which will be discussed in this section.
Note that it is known that stochastic ZO gradient exhibits high variance which comes from both (i)
high dimensionality of the parameter and (ii) minibatch sampling. Notably, sampling noise is also
inherent in first-order stochastic gradients; thus, the primary factor for the high variance of stochastic
Z0 gradient results from high dimensionality. Based on this observation, in zeroth-order optimization,
we hypothesize that the base adaptivity parameter 6, = 10~8 of Adam might encourage excessive
adaptivity where the ZO gradient estimate already has a high variance, which can eventually hinder
the optimization process. Under this intuition, we articulate the weak adaptivity hypothesis.

Weak Adaptivity Hypothesis. The adaptivity parameter of zeroth-order Adam should be scaled
according to the parameter dimension relative to the base adaptivity parameter of first-order Adam.

In other words, this hypothesis means that the small amount of adaptivity is enough in ZO optimization.
The hypothesis directly motivates our proposed algorithm, MeZO-A3dam, which is MeZO-Adam
with Adaptivity Adjustments. In details, the line 9 with a non-trivial scaling function h in Alg. 1
characterizes the key feature of MeZO-A3dam.

As a proof-of-concept, we explore the optimization of training RoBERTa-Large (Liu, 2019) on
SST-2, focusing on two main points: (i) whether using adaptive gradients in zeroth-order optimization
can outperform existing ZO methods such as MeZO or MeZO-SVRG:; (ii) whether scaling up ¢
in MeZO-Adam actually provides any benefits in terms of optimization. Figure 1 illustrates our
proof-of-concept results on the learning curves of both fine-tuning loss and validation accuracy. As
MeZO-Adam itself surpasses ZO baselines in terms of both convergence and generalization, the
advantages of using adaptive gradients can be clearly observed. More surprisingly, MeZO-A3dam
which adjusts the adaptivity with = 10~2 shows faster convergence and achieves lower fine-tuning
loss as well as better generalization than MeZO-Adam, which partially supports our hypothesis.
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In the following section, we aim to address our hypothesis via in-depth study from a theoretical
perspective. Additionally, we intend to provide theoretical insights on "how to choose the scaling
function h in practice?". In other words, "how much the adaptivity parameter ¢ should be scaled?"

4 THEORY

In this section, our primary goal is to provide the theoretical evidence for weak adaptivity hypothesis
in terms of both convergence and generalization in ZO optimization. We are interested in the
optimization problem: mingcga £(6) == 1 3" | £(0; 2;) for dataset S = {z1,--- , 2, } where

L(0; z;) = L;(0) denotes the loss evaluated on the single datapoint z;. For notations, we simply use
|| - || for £2-norm and || A||2 represents the matrix 2-norm, i.e., the maximum eigenvalue of a matrix A.

4.1 CONVERGENCE

We analyze the convergence of MeZO-Adam in non-convex optimization. For this purpose, we begin
with the following standard conditions in this line of research.

(C-1) The loss function £ is L-smooth, i.e., |[VL(0) — VL(0')| < L||@ — ¢'|| for all 8,6’ € R<.

(C-2) The first-order stochastic gradient is unbiased and has a bounded variance. Further, we assume
that the true gradient is bounded, i.e., E [VL(6; z)] = VL(0), E [||[VL(0) — VL(6; 2)|]?] < o2,
and |VL(0)|| < G for all datapoint z.

(C-3) There exists v > 0 and ¢ > 0 such that

< min v, > max v,
K i€d],te[T] S i€[d],te[T] v

where v; ; denotes the i-th coordinate of v,. We define a condition number x5 which is the key

_ VC+e
= A

quantity for our analysis: ks

The condition (C-1) is standard in non-convex optimization analysis. In condition (C-2), the unbi-
asedness of stochastic gradients and bounded variance are fundamental in stochastic optimization
literature (Ghadimi & Lan, 2013). The bounded gradient condition in (C-2) is frequently used in
convergence analysis in the context of adaptive gradient methods (Kingma & Ba, 2015). The last
condition (C-3) is also assumed in the previous study on the analysis of zeroth-order adaptive gradient
methods (Chen et al., 2019; Nguyen et al., 2022).

Along with standard conditions, we introduce our key assumption to achieve dimension-free conver-
gence. Toward this, we review the local effective rank condition proposed in Malladi et al. (2023).

Assumption 4.1 (Local Effective Rank Malladi et al. (2023)). Let G(0;) = max;cp | VL(0y; 23) ||

where z; is a data sample from training dataset S = {z1,--- , z,}. Then, there exists a matrix
H(0;) = L 1 for the L-smooth loss such that:

1. For all 0 satisfying ||0 — 6:| < adG(6;), we have V2L(6) < H(6;).

2. The effective rank of H(0y), i.e., m is at most v where r < d.

The authors assume that d-dimensional Gaussian random variable is sampled from the radius of v/d
for simplicity, which we also assume for our theory, however, the analysis could be easily extended
to a general Gaussian random variable case using the probabilistic approaches (i.e. given failure
probability n € (0, 1), the statement holds with probability at least 1 — 7). The Assumption 4.1
enables the convergence rate to be irrelevant of the problem dimension d by dramatically reducing
the number of directions that the model parameter could move along around the current parameter 6;.
Note that, however, Malladi et al. (2023) only consider the limit case of the smoothing parameter
u, i.e., p — 0, while the zeroth-order algorithm we actually use in practice employ strictly positive
> 0, thus the analysis in MeZO is not available in real cases. In addition, the analysis in Malladi
et al. (2023) do not allow for the adaptive gradients, such as ADAGRAD or ADAM. To bridge the gap
in the theory, we propose the revised version of local effective rank condition that allows for both
strictly positive smoothing parameter 1 > 0 and the adaptive gradients.
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Assumption 4.2 (Revised Local Effective Rank). Let G(0;) = max;c,) [|VL(0y; 2;) | where z; is
a data sample from training dataset S = {z1,--- , z, }. Then, there exists a matrix H(0;) <X L - I,
for the L-smooth loss such that:

1. For all @ satisfying ||6 — 6| < 22 (%u\/cj+ G(Gt)) + puv/d, we have V2L(0) < H(0;).

2. The effective rank of H(6y), i.e., m is at most r where r < d.

Note that for vanilla SGD with the limit case of p — 0, the revised local effective rank condition
(Assumption 4.2) just boils down to the original local effective rank condition (Assumption 4.1). The

term p+/d is a by-product due to strictly positive smoothing parameter .

Now, we are ready to state our main convergence theorem.

Theorem 4.1 (Convergence of MeZO-A3dam). Under the conditions (C-1) ~ (C-3), and Assumption
4.2 with the following parameter settings

(1—p1)é

a=0 () , 1—p <min{l,¢e?}, T = L

1 <
— . us—=
(=5 "~ dvd
where the constant ci denotes the small enough constant, ZO-Adam is guaranteed to converge to
e-stationary point with the complexity given by

c1ArgsLr V¢ ksG? (ks +c1) B
Er[IVL(OR)|?] < (61 (1+ 5) H RN 02) 0O(e?) = O(e?).

‘We make several remarks on our Theorem 4.1.

ks Lr

On Novelty. In fact, there were a study (Chen et al., 2019) on zeroth-order adaptive gradient methods.
However, this work did not consider the exact Adam update rule. Thus, we emphasize that our
analysis is the first attempt for the convergence guarantee of the zeroth-order version of Adam.

On Dependency of d. The complexity in Theorem 4.1 seems to be independent of the problem
dimension d, however, the constants ks and ( can rely on d implicitly. In this sense, the next
proposition and corollary demonstrate the condition for completely dimension-free convergence rate.

Proposition 4.1 (Condition on ¢ for Dimension-Free Convergence). Givenn € (0, 1), we assume
that the parameter § satisfies 6 > 0§} (\ /dlog (dT/ 77)) where g is the base adaptivity parameter

of the first-order Adam. Then, with probability at least 1 — 1, we have k5 = O(1) and \/C/§ = O(1).

Corollary 4.1 (Dimension-Free Convergence Rate of MeZO-A3dam). Under the parameter settings
in Theorem 4.1 and Proposition 4.1, ZO-Adam enjoys completely dimension-free convergence rate.

Remarks. The Proposition 4.1 and Corollary 4.1 illustrate why the adaptivity parameter § should be
scaled in terms of convergence. It might be possible that one can improve the order of § with respect
to d in Proposition 4.1 with the tighter bound. However, it is highly non-trivial in our experience.
Note also that, in general, the total iteration 7" is much smaller than the parameter dimension d for
fine-tuning LLMs (i.e. d > T'). Despite the probabilistic guarantee in Proposition 4.1, the failure
probability 7 could be handled so that it does not significantly hurt the order of §. Therefore, it
can be concluded that MeZO-A3dam requires roughly at least h(d) = +/dlog(d) to ensure the
dimension-free convergence rate. We will corroborate this remark through experiments in Section 5.

4.2 GENERALIZATION

Along with the convergence guarantee, we also provide the theoretical insights of MeZO-Adam in
the perspective of the generalization. In pursuit of this, we use the uniform stability (Bousquet &
Elisseeff, 2002; Hardt et al., 2016; Lei, 2023) of the randomized optimization algorithm (e.g. SGD).

For our arguments, we summarize the notations used in this section. We denote .4 by a randomized
optimization algorithm such as SGD or Adam and S € Z" by the training dataset where Z"
represents the collection of datasets with the size n sampled from the data distribution D. The
quantity A(S) represents the trained parameter using the algorithm A on the training dataset S.

Now, we start with the definition of the generalization error.
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Definition 4.1 (Generalization Error). The generalization error €y, is defined by the gap between
the population risk R(0) = E...p [L(0; z)| and the empirical risk Rs(0) = (1/n) Y i, L(6; z;)
evaluated on the dataset S = {z1, 22, ,zn} as €gen = Eoop [R(A(S)) — Rs(A(S5))].

According to previous studies (Bousquet & Elisseeff, 2002; Hardt et al., 2016) on the generalization,
€gen 18 closely related to the uniform stability of the optimization algorithm. Thus, we introduce the
notion of the uniform stability.

Definition 4.2 (Uniform Stability (Bousquet & Elisseeff, 2002; Hardt et al., 2016)). The randomized
algorithm A is said to be egay-uniformly stable if for all neighboring datasets S, S' € Z™ such that
S and S’ differ in only one sample, we have E 4 s [L(A(S); z) — L(A(S"); 2)] < €stab-

The uniform stability measure how sensitive the algorithm A is for each training sample. The next
lemma provides the connections between the generalization error and the uniform stability.

Lemma 4.1 (Theorem 2.2 in Hardt et al. (2016)). If A is egap-uniformly stable, then the generalization
error is bounded by |€gen| < €gtap.

Thanks to Lemma 4.1, all we have to show is that MeZO-A3dam is indeed uniformly stable with
suitable stability bound. To this end, we assume standard conditions in this line of work.

(G-1) The loss function £; = L(-,z;) for each datapoint z; is L-smooth, i.e., |VL;(6) —
VL (0| <L||@—@|forall 6,0 c R

(G-2) Each loss function £; is G-Lipschitz, i.e., |£;(0) — £;(0")] < G||@ — 0’| for all 6,0’ € R%.

(G-3) Each loss £; is bounded by strictly positive constant M, i.e., |[£;(0)] < M.

(G-4) The minimum/maximum entry of the adaptation vector v; and v} is uniformly bounded by

< min_ {wv4,v},}, > max {wv, v},
Fy_ie[d],te[T]{ b t”} <_ie[d],te[T]{ bt t”}

where v represent the preconditioner constructed during training on the dataset S’

The conditions (G-1) ~ (G-3) are standard in the uniform stability framework (Hardt et al., 2016; Guo
et al., 2024) The last condition (G-4) is very similar to the condition (C-3) in convergence guarantee.
This condition is also required for generalization analysis of first-order adaptive gradient methods
(Nguyen et al., 2022).

Under the above conditions, MeZO-Adam is indeed uniformly stable by the following theorem.

Theorem 4.2 (Uniform Stability of MeZO-A3dam). Under the conditions (G-1) ~ (G-4) with the
following parameter configurations
« C1 C2 C
= —, ]_ — = —, ]_ — = —, S K
Qg ; ﬁl,t nt Blt dnt 2PN d\/&

where o, c1, ca, and c,, are constants, MeZO-Adam is uniformly stable with the stability bound as
1 1
€stab < ﬁ (2MQ1 + QQ) Tl 1Ha

for strictly positive constant q > 0. Note that the constants Q;’s and q satisfy Q;,q < 53%.

Note that the recent work (Liu et al., 2024a) derives the generalization error bound of various zeroth-
order optimization algorithms under the uniform stability framework, however, it does not include
the error bounds of any adaptive gradient methods. In terms of first-order optimization, Nguyen et al.
(2022) discuss the uniform stability of the adaptive gradient methods including Adam. However,
it only considers the case of 3;; = 0, which boils down to the RMSprop. Therefore, in terms of
both zeroth-order optimization and adaptive gradient methods, our Theorem 4.2 provides the first
generalization analysis with exactly non-zero 3; and (5.

Similar to the convergence analysis, it can be also seen in Theorem 4.2 that the adaptivity parameter
0 should be scaled to obtain dimension-free generalization error bound due to the constants ();’s.

Corollary 4.2 (Dimension-Free Generalization Error Bound of MeZO-A3dam). Under the adaptivity

parameter § > 0of2 (d2/ 3) where &g denotes the base adaptivity parameter of the first-order Adam,

then we have dimension-free stability bound in Theorem 4.2 with Q; = O(1) w.r.t. d for i € {1,2},
1

11
which results in dimension-free generalization error bound as €gen < O(%) by Lemma 4.1.
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Remarks. According to Corollary 4.1 and Corollary 4.2, it is clear that the adaptivity parameter &
should be scaled to achieve the dimension-free bounds in terms of both convergence/generalization,
which is strong theoretical evidence for our weak adaptivity hypothesis. In the next section, we will
show that our hypothesis indeed empirically holds with an appropriate choice of scaling function h.

5 EXPERIMENTS

In this section, we evaluate the efficacy of MeZO-A3dam and validate our weak adaptivity hypothesis
on fine-tuning LMs with various-sized models and tasks. In Section 5.1, we summarize the experi-
mental setup and the main comparisons among different ZO methods will be presented in Section
5.2. In addition, we analyze the memory usage of different ZO methods and leverage an off-the-shelf
low-bit optimizer for MeZO-A3dam, verifying its effectiveness in Section 5.3.

5.1 EXPERIMENTAL SETUP

In all experiments, we follow the experimental setup of MeZO-SVRG (Gautam et al., 2024) such as
models, datasets, prompt-free format, and hyperparameters. The details on the experimental setup are
provided in Appendix B.

Models. We use DistilBERT (Sanh, 2019) and RoBERTa-large (Liu, 2019) as representative masked
language models, and GPT2-XL (Radford et al., 2019), OPT-2.7B, and OPT-6.7B (Zhang et al., 2022)
as autoregressive language models. The language models are trained in single precision (FP32), while
the large model (OPT-6.7B) is trained using half-precision (BF16).

Datasets. As downstream tasks, we consider SST-2 (Socher et al., 2013), MNLI (Williams et al.,
2018), QNLI (Wang et al., 2019b), and CoLA (Warstadt, 2019) from the GLUE benchmark (Wang
et al., 2019b). For the large-scale model, OPT-6.7B, we evaluate each algorithm on SST-2 and
RTE (Wang et al., 2019b) from the GLUE benchmark, as well as BoolQ (Clark et al., 2019) and
WiC (Pilehvar & Camacho-Collados, 2019) from the SuperGLUE benchmark (Wang et al., 2019a).
For each task, we randomly sample 512/256 examples from the training/validation set, respectively.

Empirical choices of scaling function h. Based on our theory in Proposition 4.1 and Corollary
4.2, § should be scaled by at least max{+/dlog(d), d*/3} = d?/? relative to the base adaptivity
parameter &y = 10~8. Given that our theoretical results provide lower bounds for h, we explore a
range of approximately from /(d) = 0.1d?/? to h(d) = 10d?/3. For instance, the adjusted adaptivity
is approximately at least 1 x 10~ for models with fewer than 100M parameters, 5 x 10~3 for models
up to 500M, 1 x 10~2 for models up to 2B parameters, and 3 x 10~2 for models up to 7B parameters.

Computational Resources. All the experiments are conducted on a single GPU machine and the
different GPUs are used according to the model sizes. We use NVIDIA RTX 2080 for the masked
LMs (DistilBERT, RoBERTa-large) and NVIDIA RTX A6000 for the medium-sized autoregressive
models (GPT2-XL, OPT-2.7B). In particular, for the large autoregressive model (OPT-6.7B), Intel
Gaudi-2 (96GB) GPUs are used.

5.2 LANGUAGE MODEL FINE-TUNING PERFORMANCE

Generalization. Table 2 and 3 provide comprehensive comparisons of various ZO methods across a
range of model sizes and tasks. Our proposed MeZO-A3dam demonstrates outstanding performance,
superior to other baselines in both small and large-scale models.

In Table 2, MeZO-A3dam consistently outperforms MeZO, MeZO-SVRG, and MeZO-Adam by a
great margin for DistiIBERT and RoBERTa-large. Specifically, MeZO-A>dam achieves the highest
average rank with MeZO-SVRG and MeZO-Adam showing similar rankings. In terms of perfor-
mance, MeZO-A3dam achieves an average improvement of 36.6%, 6.4%, and 6.8% over MeZO,
MeZO-SVRG, and MeZO-Adam, respectively. These results highlight the advantages of adaptivity
adjustments, which provide strong empirical evidence for our weak adaptivity hypothesis.

Table 3 further illustrates the scalability of adaptivity adjustments when applied to larger models.
MeZO-A3dam consistently meets or surpasses the performance of baselines across all datasets,
achieving an average rank of 1.2. In particular, MeZO-A3dam improves the performance about 25.0%,
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Table 2: Validation accuracy comparison among ZO methods for masked LMs on various datasets.
Note that the results for MeZO and MeZO-SVRG are read off from Gautam et al. (2024).

DistilBERT (66M) RoBERTa-large (355M) Avg.
Method SST-2 MNLI QNLI CoLA SST-2 MNLI QNLI CoLA Rank
MeZO (Malladi et al., 2023) 52 36 50 63 56 43 59 68 4.0
MeZO-SVRG (Gautam et al., 2024) 72 46 68 68 84 49 80 79 2.6
MeZO-Adam (Malladi et al., 2023) 77 47 71 69 85 48 71 75 2.3
MeZO-A3dam (Ours) 81 53 72 69 88 52 82 81 1.0

Table 3: Validation accuracy comparison among ZO methods for autoregressive LMs on various
datasets. Note that the results for MeZO and MeZO-SVRG are read off from Gautam et al. (2024).
The mark T represents our reproduced results based on the official implementation. '

GPT2-XL (1.5B) OPT-2.7B OPT-6.7B Avg.
Method SST-2 MNLI CoLA SST-2 MNLI CoLA SST-2 RTE BoolQ WiC Rank
MeZO (Malladi et al., 2023) 59 41 61 61 42 62 74 56 65 52 3.8
MeZO-SVRG (Gautam et al., 2024) 65 44F 69 65 43t 67 71 59 65t 59 2.7
MeZO-Adam (Malladi et al., 2023) 81 48 73 86 45 74 92 59 65 59 1.6
MeZO-A3dam (Ours) 89 47 73 92 57 73 92 63 68 62 1.2

16.9%, and 5.7% on average compared to MeZO, MeZO-SVRG, and MeZO-Adam, respectively.
These results further emphasize its superiority for larger models and more complex tasks.

Convergence. Figure 2 compares the GPU hours required by various ZO methods to attain equivalent
performance levels. Notably, our MeZO-A3dam consistently achieves significantly faster convergence
times than MeZO-SVRG and MeZO-Adam, underscoring its superior computational efficiency.

In Figure 2(a), MeZO-A3dam significantly reduces the GPU hours required to achieve the same
performance level as MeZO-Adam. On average, MeZO-A3dam delivers computation times that are
x 1.8 times faster than MeZO-Adam across all models and datasets. Specifically, MeZO-A3dam
achieves x3.0, x2.5, and x 1.7 faster convergence than MeZO-Adam for OPT-2.7B on MNLI, OPT-
6.7B on BoolQ, and GPT2-XL on SST-2, respectively. Our results confirm the clear advantage of
adaptivity adjustment in enhancing both convergence speed and scalability.

Similarly, the comparison of the convergence time between MeZO-A3dam and MeZO-SVRG in
Figure 2(b) shows a drastic reduction in the convergence time. MeZO-A3dam provides an average
of x12.6 faster convergence speed compared to MeZO-SVRG. For instance, the same level of
performance as MeZO-SVRG can be obtained by MeZO-A3dam x50.3, x25.1, and x9.8 faster for
GPT2-XL on CoLA, OPT-2.7B on CoLLA, and OPT-6.7B on BoolQ. These substantial reductions in
computational time across models and tasks illustrate that MeZO-A3dam offers a faster convergence,
making it an excellent choice for training large-scale models in a time-efficient manner.

5.3 MEMORY CONSUMPTION ANALYSIS AND COMPRESSED OPTIMIZER

In terms of memory consumption, MeZO-A3dam requires at least 3d memory, where each d counts
to the dimension of 8;, m,, and v; in Alg. 1. This memory requirement might appear inconsistent
with memory efficiency, which is the central goal of ZO optimization. However, it is important
to note that adaptive gradient methods such as Adam are widely used in fine-tuning LLMs. Thus,
extensive studies have been conducted to reduce memory consumption. In particular, we leverage the
well-established memory-efficient solution, 8-bit Adam (Dettmers et al., 2022), which substantially
reduces the memory footprint of MeZO-A3dam to 1.5d for 32-bit training and 2d for 16-bit training.

As illustrated in Figure 3(a), MeZO-A3dam with the 8-bit optimizer demonstrates a substantial
reduction in memory usage compared to both MeZO-SVRG and the standard 32-bit MeZO-A3dam.
Specifically, the 8-bit MeZO-A3dam requires, on average, 40.3% and 43.4% less memory than
MeZO-SVRG and 32-bit MeZO-A3dam respectively, although it demands 33.5% more memory
than MeZO. Moreover, the 8-bit MeZO-A3dam enables fine-tuning of the OPT-13B model on a
single 80GB GPU, which would not be feasible with either MeZO-SVRG or 32-bit MeZO-A3dam.
Furthermore, as shown in Figure 3(b), both the 8-bit and 32-bit variants of MeZO-A3dam yield

'We attempted to reproduce all the results of MeZO-SVRG; unfortunately, for some cases, replication was
not feasible. In such cases, we report the results obtained by running the official implementation ourselves.
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Figure 2: Required GPU hours to achieve equivalent performance levels for MeZO-A>dam and two
different methods across various models and tasks. The results are shown only where MeZO-A3dam
provides better generalization than the other one.
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Figure 3: (a) Memory usage comparison across methods in GB for different sizes of OPT models and
batch sizes in single precision (FP32) training. (b) validation accuracy comparisons for 32-bit and
8-bit MeZO-A3dam on SST-2 and various models.

comparable performance across all considered models, thereby demonstrating that the 8-bit optimizer
can be employed in MeZO-A>dam without sacrificing performance.

Using the 8-bit Adam, we dramatically reduce the memory requirement of MeZO-A>3dam, bringing it
close to that of inference and making it a highly competitive solution for ZO fine-tuning of language
models. This allows MeZO-A3dam to maintain its advantages of adaptive gradients while achieving
memory efficiency, possibly positioning it as an optimal choice. It is noteworthy that, although the
theoretical memory requirements for both MeZO-SVRG and MeZO-A3dam are identical (at least
3d), our MeZO-A*dam can leverage off-the-shelf memory-efficient optimizers such as the 8-bit
Adam, which is not available for MeZO-SVRG. This distinction reinforces MeZO-A3dam as a more
favorable option regarding both convergence speed and memory efficiency in fine-tuning LLMs.

6 CONCLUSION

In this paper, we revisited MeZO-Adam and highlighted the advantage of using adaptive gradients in
zeroth-order fine-tuning in a prompt-free scenario. Further, we provided an important observation
that reducing the level of adaptivity of MeZO-Adam is highly recommended in the zeroth-order
regime, which is hypothesized as weak adaptivity hypothesis. Given our hypothesis, we proposed
a MeZO-A*dam, which adjusts the adaptivity according to the parameter dimension. We analyzed
the convergence and generalization of MeZO-A3dam, providing dimension-free guarantees and
presenting strong theoretical evidence for our weak adaptivity hypothesis. We also validated that
MeZO-A3dam outperforms several existing ZO baselines in practice for fine-tuning various sizes
of language models on benchmark tasks across all three aspects: generalization, convergence, and
memory consumption, which empirically corroborated the weak adaptivity hypothesis. In future
work, we plan to investigate the zeroth-order adaptive gradient methods for more challenging loss
landscape.
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APPENDIX

A RELATED WORK

Fine-tuning Language Models.  One popular approach is parameter-efficient fine-tuning (PEFT), where
only a small subset of parameters are optimized. Examples include Low-Rank Adaptation (LoRA) (Hu et al.,
2022), prefix-tuning (Li & Liang, 2021), and prompt-tuning (Lester et al., 2021). While PEFT reduces the
number of parameters involved in optimization, it still requires significant memory and computation due to the
need for backpropagation and the storage of intermediate activations, optimizer states, and gradients. Moreover,
obtaining significant performance gains often necessitates expanding the number of parameters being fine-tuned.

Another method for adapting LLMs is in-context learning (ICL) (Min et al., 2022), which provides task-specific
instructions and examples to leverage LLMs’ inherent language understanding. While gradient-free, ICL faces
challenges such as selecting proper instructions and examples, increased inference times due to long context
lengths, and lower performance compared to fine-tuning.

Fine-tuning LMs with Zeroth-Order (ZO) Optimization.  Zeroth-order optimization, long explored
in conventional machine learning (Spall, 1992; Ghadimi & Lan, 2013), was first applied to LLM fine-tuning by
MeZO (Malladi et al., 2023). This method reduces memory consumption by generating perturbations on-the-fly
through random seeds, eliminating the need to store large perturbation vectors. As a result, ZO optimization
requires only inference-level resources. MeZO also provides theoretical guarantees, suggesting that scaling the
learning rate by the problem dimension ensures dimension-free convergence. However, this leads to slower
convergence rates. Additionally, MeZO’s use of hand-crafted task-specific prompts introduces extra overhead,
limiting its general applicability.

MeZO-SVRG (Gautam et al., 2024) improves zeroth-order optimization by incorporating the SVRG algorithm,
addressing the challenges of non-prompted fine-tuning through reduced gradient variance, which leads to
faster convergence and better performance. Similarly, SparseMeZO (Liu et al., 2024b) leverages sparsity by
updating only a subset of parameters for quicker convergence, while Fisher-informed sparsity (Guo et al., 2024)
selects parameters based on Fisher information for greater efficiency. Additionally, Zhang et al. (2024) offers a
comprehensive benchmark of ZO optimization methods like SGD, SignSGD, and Adam across various models
and tasks, with results suggesting that while Adam may not always outperform SGD, its success in LLM
fine-tuning merits further exploration.

B EXPERIMENTAL SETUP

In all experiments, we adopted the same experimental setup as used in MeZO-SVRG (Gautam et al., 2024)
including models, datasets, a prompt-free approach, and hyperparameters.

B.1 DATASETS

We focus on fine-tuning classification tasks in our experiments. Specifically, we utilize datasets from the
General Language Understanding Evaluation (GLUE) (Wang et al., 2019b) benchmark, such as Stanford
Sentiment Treebank (SST-2) (Socher et al., 2013) for sentiment analysis, Multi-Genre Natural Language
Inference (MNLI) (Williams et al., 2018), Question Natural Language Inference (Wang et al., 2019b), and
the Corpus of Linguistic Acceptability (CoLA) (Warstadt, 2019). Additionally, we extend the evaluation to
larger models like OPT-6.7B by testing them on more complex tasks from the SuperGLUE (Wang et al., 2019a)
benchmark, including Recognizing Textual Entailment (RTE) (Wang et al., 2019b), BoolQ (Clark et al., 2019),
and Word-in-Context (WiC) (Pilehvar & Camacho-Collados, 2019).

The datasets are sourced from the Huggingface datasets library. For each dataset, we randomly select 512
samples for training and 256 for validation, reporting validation accuracy since the test labels for GLUE and
SuperGLUE benchmarks are unavailable. This setup is identical to that used in MeZO-SVRG (Gautam et al.,
2024).

B.2 MODELING AND IMPLEMENTATION

We utilize DistilBERT (Sanh, 2019) and RoBERTa-large (Liu, 2019) as representative masked language models,
alongside GPT2-XL (Radford et al., 2019), OPT-2.7B, and OPT-6.7B (Zhang et al., 2022) as autoregressive
models. The small and medium-sized models (DistilBERT, RoBERTa-large, GPT2-XL, and OPT-2.7B) are
trained using single precision (FP32), while the larger OPT-6.7B is trained using half-precision (BF16).

For the experiments, we rely on the Huggingface t ransformers library to implement the models. Since we
focus on classification tasks, we employ models from the AutoModelForSequenceClassification
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Table 4: The hyperparameter search grid for the DistilBERT (Sanh, 2019) experiments. We do not
use any learning rate scheduling for MeZO-Adam and MeZO-A3dam. The final results are produced
using the configuration indicated by the bold values in the grid.

Algorithm Hyperparameters Values

Batch size {32,64} x

: —4 -5 -5
MeZO-Adam Learning rate {1 x 10_8,5 x 107°,1 x 107°} x
{1 x107%} x

Total Steps {200K}

Batch size {32, 64} x

Learning rate {1x107%,5%x10751x1075}x
MeZO-A3d

¢ ) {1x1074,1 x 1073, 1 x 102}
Total Steps {200K}

Table 5: The hyperparameter search grid for the RoBERTa-large (Liu, 2019) experiments. We do not
use any learning rate scheduling for MeZO-Adam and MeZO-A3dam. The final results are produced
using the configuration indicated by the bold values in the grid.

Algorithm Hyperparameters Values
Batch size {32,64} x
; —4 -5 -5
MeZO-Adam Learning rate {1x10 . 5x107°,1x107°}x
) {1 x107%} x
Total Steps {96K}
Batch size {32, 64} %
Learning rate {1 x107%5x1073%,1x107°}x
MeZO-A3d
© am s [5x 10745 x 1073, 5 x 102} x
Total Steps {96K}

and OPTModelForSequenceClassification classes, which add a classification head to the pre-trained
models.

The specific pre-trained models used in the experiments are: distilbert-base-cased for Distil-
BERT (Sanh, 2019), roberta-large for RoOBERTa-large (Liu, 2019), openai-community/gpt2-x1
for GPT2-XL (Radford et al., 2019), and facebook/opt—-2.7b and facebook/opt-6. 7b for OPT-2.7B
and OPT-6.7B (Zhang et al., 2022), respectively.

B.3 HYPERPARAMETERS

Table 4 ~ 8 provide the hyperparameter search grid used in our experiments. For reproducing the results in
MeZO-SVRG, we follow to the hyperparameters reported in MeZO-SVRG (Gautam et al., 2024). It is important
to note that MeZO-SVRG increases the total training steps by four times for batch size 64 and by three times for
batch size 128 to match the total number of queries (i.e., one forward pass for a single sample). However, in our
MeZO-Adam and MeZO-A>dam experiments for autoregressive LMs, we maintained the same total steps as in
MeZO-SVRG without further increasing them based on number of queries.

15
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Table 6: The hyperparameter search grid for the GPT2-XL (Radford et al., 2019) experiments. We
do not use any learning rate scheduling for MeZO-Adam and MeZO-A3dam. The final results are
produced using the configuration indicated by the bold values in the grid.

Algorithm Hyperparameters Values

Batch size {32,64} x

; —4 —4 —4
MeZO-Adam Learning rate {1x10 . 2x107%, 5 x 107*}x
{1x1078} x

Total Steps {8K}

Batch size {32, 64} x

Learning rate {1x107%2x107%5x%x 107%}x
MeZO-A3d

© s {1x1073,1x1072,1x 101} x

Total Steps

{8K}

Table 7: The hyperparameter search grid for the OPT-2.7B (Zhang et al., 2022) experiments. We
do not use any learning rate scheduling for MeZO-Adam and MeZO-A3dam. The final results are
produced using the configuration indicated by the bold values in the grid.

Algorithm Hyperparameters Values
Batch size {32,64} x
. g . .
MeZO-Adam Learning rate {1 x10 78, 2x107°,5 x 107°}x
0 {1x1078} x
Total Steps {8K}
Batch size {32, 64} x
. g . .
MeZO-A3dam Learning rate {1x107°,2x107°,5x107°}x

Total Steps

{1x1073,1x1072,1x 10" !}x
{8K}

Table 8: The hyperparameter search grid for the OPT-6.7B (Zhang et al., 2022) experiments. We
do not use any learning rate scheduling for MeZO-Adam and MeZO-A3dam. The final results are
produced using the configuration indicated by the bold values in the grid.

Algorithm Hyperparameters Values

Batch size {128} x

; -5 -5 -5
MeZO-Adam Learning rate {1x10 - 2x107°,5 x 107°}x
{1 x1078} x

Total Steps {8K}

Batch size {128} x

Learning rate {1 x107°,2x1075,5x107%}x
MeZO-A3d . ’

© s (1x1073,1x10°2,1 x 10~} x
Total Steps {8K}

16
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C PROOF OF THEOREM 4.1

Recall the Adam update rule, which would be
g:=VL(6:;B)
my = Simye—1 + (1 — B1)gs
Vi=BVior + (1 - B2)gs”

=
t_l—ﬂf
> Vi
VoToE

9t+1 = Ot — Oé(‘/}tl/Q + (SId)_lmt
We make several auxiliary lemmas for our analysis.

Lemma C.1 (Norm of Gaussian Vector). For a given 6 € (0,1/2), with probability at least 1 — 5, the norm of
Gaussian random vector w ~ N (0, 1) is bounded as

lu|l < +/2dlog(1/6)

Proof. From the concentration bound, we have

Hence, we have

2d

Lemma C.2. For positive semi-definite matrices A, B € R%*?, the following statement holds.
Tr(AB) < Tr(A)Tr(B)

52
Plllull < € >1 - 2exp (_f)

Let § = 2exp(—£2/2d). Then, we have

Proof. Let {v;}%_, be an orthonormal basis for B and {\;}%_, be corresponding eigenvalues. Then, we have

d d
Tr(AB) = Z(ABUL', V) = Z Xi{Avi,v;) = ?é?g]( AiTr(A) < Tr(A)Tr(B).

i=1 i=1

O

Lemma C.3 (Nesterov & Spokoiny (2017)). Let p ~ N (0, I,). Then, the expectation of the moment satisfies
Efllul] =1
Ellu)?] =d

E[[lu]"] < (d+n)"/
forn > 2.

Lemma C.4 (n-th Momentum of Quadratic Forms for n = 1,2, and 4 (Magnus et al., 1978)). Let u ~ N(0, I,)
and A be a positive semi-definite matrix. Then, the expectation of the followings are

E [uTAu] =Tr(A)
E [(uTAu)Q] = (Tr(A))? + 2Tr(A?) < 3Tr(A)>
E [(uTAu)4] = (Tr(A))* + 32Tr(A)Tr(A%) + 12 (Tr(A))” + 12 (Tr(A))? Tr(A®) + 48Tr(A*)

< 105Tr(A)*

The inequalities come from Lemma C.2.

17
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Lemma C.5. Forany s,t € [T, we have

PR —~ 6
£ [aTH008.) < Y2000 +8) + VAL VL0, B)

2
g

<20 LPr(d +8)* + 10!31"(HV£(¢95)||2 + 5

N——

Proof. Recall the definition of g5 as
~ L(Os 4 pus; Bs) — L(6s — ,uus;Bs)u

gs = s

2p

The expectation of the quadratic form can be computed as
~T ~q_ 1 . . 2, T
E[67H(003:] = 1 3B[I(0, + pus; Ba) — £(0. — prus; B)Pul H(Or)us
1
442

IN

E[(E(Os + pug; By) — L(6, — Mus;zsg))“] \/E[(ugH(et)us)Q]
Hence, we have
L(0s + pus; Bs) — L(0s — pws; Bs) < p?Lljws||* + 2u(VL(0s; Bs), ws)
Therefore, we have by Young’s inequality
(L(8s + pes; Bs) — L(0s — prns; Bs)) " < 8" L |us | + 128" (VL(043 B.), ws)

Hence, the expectation is

E[(C(GS + pus; Bs) — L(0s — pus; Bs))“] < E[8p®LYjus|® + 1284 (VL(s; Bs), us)
< 8uLA(d+ 8)* + 3844 | VL(6.; By)||*

Finally, we arrive at

\/E[(E(Gs + pus; Bs) — L(0s — pus; Bs))ﬂ < V/BuSLA(d + 8)* + 384p2(|VL(6s; Bs) || *

< VBESLA(d + 8)* + /3844 VL(0s; Bs) || *
< 2V2u L2 (d + 8)° + 8V6,.° ||V L(0s; Bs)|?
The expectation of the quadratic form then would be

BlglH00.] < YU

- ?u%f’r(d +8)” + 6V2Lr||VL(6; BS)|?

< 2u°LPr(d + 8)° 4+ 10Lr||VL(0s; Bs)||?

(2vou' L2(d + 8)* + 8V61s2 |V L(04: B2) |2

2
<20’ L*r(d+8)° + 10Lr (VL. + T

Note that the Adam update rule could be re-written as

(1-B)me = pAi(1 — 87 Hm—1 + (1 — B1)ge

Hence, we have

BB 1B
my = -3 mt71+1_ fgz
The sum of coefficient is
Bi—Bi+1-P5
=1
1-p51

18
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Therefore, we could say
my =ceme_1 + (1 — c)ge

e e~ ~ 1—pt—1t
with initial condition m; = g1 and ¢; = ﬁl(l_ig%) Now, we define
1

€ — mt - Vﬁu(Ot)
&1 =ci(€—1+ VLu(0:—1) — VLL(O:))

We compute
€ =ci(€—1 + VLu(0:—1) — VLu(0:)) + (1 — ct)(g: — VLu(6:))
=& -1+ (1—ct)(@ — VLu(6:))
Lemma C.6. For d-dimensional standard Gaussian vector w = (u1,- - ,uq) ~ N(0, I4) and any vector
a = (a1, - ,aq), we have

Eu[|[(a, w)ull] < V3|al
Eu (@, w)ul*] = 3||a||”

Proof. We directly compute the quantity to be expected as

(a,u)u = (a1u1 + - - + aqua)u

d d d
= (D www, Y aiwiuz, -+, Y amug
i=1 i=1 =1

Thus, the expectation of the norm would be

Ell{a,wul] =E || (Z ammj)

IA
=
[]=
/-~
=
8
S
<
\:/
»

The first inequality comes from Jensen’s inequality, and the last equality is derived from the linearity of
expectation. Now, we compute the most inner term as

d 2 d
2
E a;UiUyj = Uj E araiuru]
i=1 k,l

By independency of u; and u;, we have

d

d 2
2
E E Qi Uiy =K ujg AR UL
i=1 k1

— Elaud
= 3(1?

since E[ujurw;] = 0 if either k or [ is not equal to j and E[u}] = 3. Thus, we have

E (@ upul] = |3 E (Zuu>

j=1 i=1

d
<[ 2.34
j=1
= V3| al

Similarly, we also have
E [|(a, wyu|*] = 3]a|*
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Lemma C.7. The expectation of ||g|| is bounded by

V1052 L2r?(d + 4)

5 +6[VL(O:; B.)[”

E[llg:|]* <E[llg:I*] <

Proof. By definition of g:, we have

e e
< é (L(et + pue) — L(0:) — p(VL(O:), m))m - (L(et — pg) — L£(0:) — p(VL(8,), —ut>)ut
+ %anmmot), w2
1 2 2
< 7z (E(Bt + pur) — L£(0:) — u<V£(0t)7ut>)ut + o3 (L(et — pag) — L(8;) — p(VL(Oy), —ut>)ut
+2(VL(8:), we)ue]|?
< EL a® 4 2V L0, ey e 2

- 2
The first and the second inequalities come from Young’s inequality, and we use the smoothness condition in the
last inequality as below. Thus, the expectation is

~ 12 M2L2 6 2
Eu [llgell”] < B | =5 llue]” + 2[[(VL(6e), ue)ue|

212 3
SML(;lJrﬁ)

+6[|VL(O:; By

where we use Lemma C.4 and Lemma C.6. Therefore, if we choose p < the expected gradient norm

1
(d+6)3/2"
is dimension-free! Also, if we assume bounded gradient, then we have

2L2(d+6)3
WLULEOL 4 6malIv L@ B

272 3 2
<,uL(d+6) +6(G2+i)

Eu.=[1g:]]

IN

= 2 B
= 5(B)?

From the preceding lemma, we define an important quantity o (B) for batch size B as
272 3 2
~ L (d+6
5(B)? = % +6 (G2 + %) 1)

where o comes from standard bounded variance condition of first-order gradient.

Lemma C.8. Under the bounded variance/gradient condition, i.e., B, [||VL(0:; 2) — VL(0:)|?] < 0 and
IVL(O:)|| < G, we have for batch size B

Eu = [||m|*] < 5(B)

II”

Proof. By mathematical induction and Jensen’s inequality for convex function || - ||%, it is easy to show that the

inequality holds.
Eu,2[[[7:]%] = Euz[lcmie—1 + (1 — co)ge||’]
< eB[[me—1 7] + (1 — c)E[lge]%]
< ctg(B)2 +(1- ct)E(B)2
=5(B)?
The first term is bounded by induction and the second term is bounded by the preceding lemma. O

Lemma C.9. Under the stepsize o < %, the following inequalities hold

[VLw(6:) = VLu(0:-1)[| < (1 =) (B)
Efllg: — VL.(0:)[] < o(B)
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Proof. Under the stepsize o < (=ce)d Ct % the following inequalities hold
I\Vﬁu( 1) = VLu(0:-1)]|* < L?)|0; — 6ea|®
1%l 2
Il

<
Taking the expectation, we have
IVLu(60) = VLu(8i-1)|” < (1 = c0)*5(B)?
The ZO gradient variance is bounded by
Elllg: — VLu(8:)|"] = Var(g:)
=E[lg.1"] - |E[g.]I”

—_—
IV Lw(0:)]2
< E[|g:[|”)
<5(B)*
O
Lemma C.10. The quantities E[||€;||] and E[||&:||] are bounded by
Eu.slllel] < 25(B)
Eu z[[I&:] < 25(B)
Proof. We use mathematical induction. By the definition of €;, we have
Elllell] =E[llci(e—1 + VLu(O:—1) — VLu(0:)) + (1 — 1) (G — VLL(6:))]]]
< ciBfllec-1l]] + ¢E[[VLw(8:-1) = VLO)I) + (1 = co)E[[|g: — VLu(6:)]]
< 2¢5(B)? 4 (1 — ¢)5(B) + (1 — ¢,)5(B)
= (=¢} +2¢: + 1)5(B)
=25(B)
In the second inequality, we use the induction on ¢ — 1 and Lemma 25. Since ||€;—1|| < ||| and E[||e:]|] <
20 (B) holds for all ¢, the bound for E[||&,]|] is also trivial. O

Lemma C.11. Adam satisfies

5 (2IV2u(601F ~ 2B < A/EEDA ngTj E [ H(6)m |

t=1

Proof. For ease of notation, we let (‘ZI/Q +0I;)"" = Ay and €, = iy — V.Ly(6:). By the revised local
effective rank condition, we have

2
Lu(014+1) — Lu(0:) < (VLu(0r), 0041 — 0:) + %HetJrl — 04|26,

2
o o o~
—aV Ly (0:) A + - 772l A s 220,

2
a”
< —al|VLL(8:)[a, — aVLL(0:)" Aser + 7||mt||itH(9t)At
2 1 2 1 2 o 2
< —allVLLO)IA, +a(SIVLa(O)I + S lleil”) + S IR, rrco0,
2
(e 2 « 2 [0 —~ 12
< =5 IVLu(@)l[a, + S llella, + WHT’HHH(%)
< - VLu(0)|* + +———m, H(6
< (\f+5)|\ (@)l (IJM;)IItH 2(\f+5) (6.)m
By telescoping the above inequality and taking expectation, we have

T

3= (52 791V 2w = 5 Ellel]) < £4(00) = Lu(r)

2

+ 2(\/57%)2 > E[mi H(0:)m]

t=1
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where we define A := £,,(01) — L.(0"). Hence, the above inequality could be rewritten as

S (f C+0)A | as y
2
t; (2||vz — 2B [l ]) + 52 E:: [mt (6:) mt]
Lemma C.12.
= 10Lro® o
> E[m{ H(0,)m.] < 2u°Lr(d + 8)°T + 5T+ 10Lr Y |[VL(8:)]
t=1 t=1

Proof. By the definition of 72, we have

m: = fimi—1 + (1 — B1)ge
= fimi_o + Bi(1—B1)ge—1+ (1 — B1)g:
= Bimo + -+ (1 — B1)ge

1_ﬁ1 Z/Bt 1/\1

Hence, by Jensen’s inequality, we obtain

[l 20,y = Z27(1 = B1)?

H(6:)

2
‘”H(Of,)

)2 Z ﬂlZ_
1=0

<(1-p5) Bi_i”giﬁi(et)

=0

t w —cH 1
where Z = =t — <
'L;Jﬁl 1_ﬁ1 - 1_51

t

E [l H(0)m:| < (1-5)_(5)" °E [l H(6.)3.]

0

. Taking the expectation yields

< (1= 1) Y (B) 7 (2u°LPr(d +8)* + 10Lr|[VL(0s; Bs)|?)
s=0
<201 = BrYEPLir(d+8)% + 10Lr(1 — B1) > _(B)'°(IVL(6s; By)|”
s=0

< 22 LPr(d+8)° +10Lr(1 = 81) 3 (B (IVLO)IP + %)

s=0
where we use Lemma C.5. We compute the summation as

t

;J(Bf)z_s\lv.c(os)l|2 = (30 (VL@ + %) ot (VL@ + %)

> (B T IvL@) = (8) 7 (IV L@ + %) + -+ (IVE@-)|* + %)

s=0

1

D () TIVL®) ) = VLO) + %

5=0
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Finally, we have

=

t 2
ZJE[mt (6:) mt] <2’ LPr(d+8)T + 10Lr(1— B1) Y ) g(va( )H2+%)

t=0 s=0

=

T—s

= 24" L°r(d + 8)*T + 10Lr(1 — f1) Z(HVE I + )
s—1 t=0

T (o
5,273 2 247
= 24" L7r(d + 8) T+10Lr; (HVE(Gt)H + B)
T
T+10Lr > VL)

t=1

10Lro?

< 2’ LPr(d + 8)°T + 5

Lemma C.13. For €, we have the following recursive relation

T— ~
2 1 2 20'(B)2 2
- 5. u < - T
> (Blled”] = 5 I9Lu@)I) < T25-(543(1 = 61)°T)
Proof. By the definition of €;, we have
€ =81+ (1 —ci)(Gr — VLu(6:))
Also, we have
IVLw(8:) — VLu(O—1)]| < L] — 0,1

< *Hmt 1]l

A

O vl + 1V Lu(B 1)

Now, we compute the quantity ||€;—1]|* as

[€—1]% = llcier—1 + c(VLu(8i—1) — VLu(6:))]?

<E@—clle |+ (1+—) IVLa(00) — VLu(00 1)

1
< elle il + T IVLL(8) — VL0, )
— Ct
20212
(1 — p1)02
1 1-—
< e+ L2 ve @i P

< cilleral” + (llee—sll? + IV £u(Oe-1)IP)

(1-B1)6
2v2\/ksL"

lleell” = 1€e—11” +2(1 = co) (Gr-1,G¢ — VLu(80)) + (1 = c0)*[|ge — VLwu(8:)]

Taking the expectation, we have

under the stepsize condition o < Hence, by the definition of €;, we have

Busflel] < SEEE(le ) + L2 v a0l + (- co5()°
+ 2(1 — c)E[(&-1,50 ~ VL.(61))]
< %E[Hez_lﬂﬂ + (14’7,%[31)uvz:u(et_l)n2 4 (1— )% (B)>

The expectation of inner product E;_1 [<£t_1,§t — vzu(91)>] =0,wehave Ey, 2[(&i—1,g: — VLu(0:))] =

0. Thus, we have

Euz [|lec]”] <

A

1 1- ~
LB e ]+ L PV a0 )P + (1 - )5 (B

= (1= 15 ) Bl + L2V L@ + (1 - ey
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By this relation, we have

1-— Bl 1—-c¢
E[le-a ]’ <~ Eller ]

Bfler-1 7] — Elledl] + B TLu6-1) ] + (1 )5 (B’

Hence, we have

T+1 T+1

> (Sl ) - BV L0 )I) < Ellel] - Eller )+ 3(5)° 31 - e0)
T+1
< Elllel?] + 5B 31— er)?

<&(B)* +5(B)> (4 13(1— 61)2T)
=55(B)* + 3(1 — 51)°5(B)’T

since €1 = g1 — VL«(01) and we use Lemma C.14. Therefore, we have

- 4ks5(B)?
> (2msEllled] ~ IVLu(@)I) < “FZ55 (54301~ 51)°T)
t=1

O

Proof of Main Theorem. Now, we combine Lemma C.11 and Lemma C.13. Summing up the following
inequalities.

Z(znvc 00|12 _sz[netu]) (‘[” O"“ZE[mt (6:) mt}
> (2usE[lell] = IVLu(0)]) < %(5%(1 —$1)°T)

t=1

Then, we have

T T ~
VE+HOHA  ak 4k55(B)?
Z||V£u(0t)”2 < ( o TZ [mt et mt] 16_7(181)(54—3(1 —BI)QT)
= [ I e —
Using Lemma C.12
~ 2
_ AAWEHO) | 20m0(B)” . 5B (1— BT
a 1-p
T
ks (o 2.3 2 . 10Lr(1 — B1)o? B 2
5 (2,u L’r(d+8)°T + — 5 T+ 10Lr(1 — p1) ; IVL(6:)]| )
. _ 1 .
Using Lemma ?? and p = v Ve obtain
T 3 T
IVLO) > < Zp>L*r2dT + 2 VL. (0:)]?
4
t=1
~ 2
< ZM2L2T‘2dT+ 8A(VC +9) I QOff(ﬁ?) ¥ 12ks5(B)2(1 — B)T
2aks5 () 55 2, 10Lr(1 = 1)o? N 2
+ T(z“ Lr(d+8)°T + ——— =0T+ 10Lr(1 - B) ; VL) )
Again, we have
~ 2
(1 —200"“” ) Z VLo 2122y 4 SAWC D) | 20m55(B)” 12k55(B)*(1 — B)T
a 1-5
273 2 _ 2
n daksp L(;T(d+ 8) T4 20cm<;L7:S(é B1)o T
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According to Lemma C.9, Lemma C.13, and the above inequality, we should choose « as

a<min{(1*ct)5 (1-B1)s 5 }
- L ’ 2\/5\/’%75[/7 20H5LT(1 — 51)

Note that we have

(1-p1)d <min{(1—ct)6 (1—p31)d 0 }

20ksLr — L ’ 2\/5\/%[/’ 20ksLr(1 — B1)
We choose the following parameter setting

(1—p51)é : 2 1 4

2 1-p51 < 1 T=——-==0©1
(e} 20/65.[/7“ ) ﬂl >~ mln{ , C1€ }a (1 _ 51)2 ( /5 )7
Under these parameters, we have
<1 - —zoangu - 51)) =1-(1-5)* > 5

We also have by the condition on o and T’

1 2
< £

ﬁicg(;

for some constant c2. Thus, the bound can be re-written as

T ~
ﬁl 2 3 2,2 2 8A(\/Z+ 6) 20/{50'(B)2 ~ 2
[t < = _
T ;Hvz:(et)n S QLI T T gy H12ms8 (B (1 - )
darsp®Lir(d + 8)? n 20aksLr(1 — B1)o?
0 0B
< ZM2L2r2d+ BAWVC +9)

+

2+ 32&55(3)20152

C25
+ 4o¢f<¢5u2L3r(d+ 8)2 20ciaksLro? o
1) 0B
Q

where c¢; and ¢z are constants independent of the problem dimension d. Here, o(B) is defined as

272, 2 2
5(B) = V105u° Lor*(d + 4) +6<G2+U—)

2 B
Lemma C.14. For c; and 1 defined in previous lemmas, we have

T+1

d(l—c)?<4+3(1-p)°T

t=2

Proof. By the definition of ¢, we have

Thus, we have for z =

—B1
T 1;3
A 1
B <=
Since 51 < 1, for any ¢ > ﬁ, we have

I 1
pr<p <=
e
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For this range of ¢, we have

l—a)=01-a7 3 ﬁ

17151 <t<T+1 171;31 <t<T+1
T+1 1
2

<OU-8)"Y

= (1-2)

3(1—B1)°T
since ———— ~ 2.50. Fort < , we use the following two inequalities
ey =0 £ d

2
1-2)"<e ™, eizgl—cc—i—%

Note that the ﬁrst inequality holds for any « € R with positive r > 0, and the second inequality holds for z > 0.
Since t < 1—5- (1 — 1)t < 1 holds, so again we have

(1-p0)*t? <1_ (1=t
2 - 2

Bl=(1—1-p) <e P <1—(1-Bi)t+

In this range, we have

1
Yo -a)?<-5) > [(=AH

2<t< 2<t< 1}51

1
-5
T+1

2 4
<=8 G gy
T+1

_4Zt2

T+1 4
1 x

<4

Combining two inequalities for each range, we have

T
Y (1—c)?<4+3(1-4)°T
t=1

D PROOF OF PROPOSITION 4.1

We assume that § > /7 since we would like to find the order of § that makes rs independent of the problem
dimension d. Therefore, the parameter & should be in order of at least O(+/C). Hence, we need to find the bound
for C.

<
C_mﬁém%l

The g7 ; could be bounded as

Ui

)

520 ,C(Bt + uut;Bt) - C(Bt - uut;Bt) 2 2
t,i 2
The coefficient could be bounded as

L(Ot + HUt; Bt) —
2p

IN

. 2
EOpiB) < L 4 6]

f%ﬂ+G¢3

IN

26



Under review as a conference paper at ICLR 2025

Proof. Let u; be 1-dimensional standard Gaussian sample. Then, we have
e
B(Jus] > 2] < 2exp (7)

Thus, we have for x = \/g

[ G 2 (-5)

By the bounded gradient assumption with differentiability of £, we have
1£:(0) — Li(¢)| < G160 — &
for any ¢ € [n]. Therefore, we have
|gt.i] < Glluwel|ur
< GVduy

Hence, we have

P[Giil > GVE] <P [VdGluri > GVE] < 2exp (—%)

By plugging £ = 2d log(2dT/n), we have

P {@,n > Gy [2d10 (MTT)

From this inequality, we have by union bound

i/
dr

IN

2dT

P [a > Gy [2d1og <T>,W T ie [d]] 24T

i| > Gy /2dlog (—),Vt,z’

0

Gl > G f2atox (22T

=P [ﬁt
<y >
te[T) i€[d]
n
<dl-—
- dT

=n
Therefore, the parameter ¢ is bounded by

¢ <2dGlog (@)
n

with probability at least 1 — n for given n € (0, 1).
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E PROOF OF THEOREM 4.2 WITH NON-ZERO 31 AND [35

We revisit the parameter update rule of ZO-Adam as

‘C(‘gt + pug; Zit) - ['(et — HUt; zif,)u
21 ¢
mit1 = Pime + (1 — B1)ge

Vi1 = Bove + (1 — Ba)gs?
mi4+1

VUi41 + 90

Note that the zeroth-order gradient is computed on a single datapoint z;,. We define several key quantities for
our analysis as below.

gt =

0t+1 = 975 —

&y = {6 = 04, } (the event)
di =10 — 0;]|, A= E[dt|&0],
pr = [lme —mill,  ®¢ = Elpe|E],
ov=|lve —vill, i =E[oe|]-
By the condition (G-4), we have that the minimum/maximum eigenvalues of preconditioners are bounded as

. /
min Vtiy Vg i b =
te[T],iE[d]{ i B, } v

/
max Ut V¢i} <
tE[T],iE[d]{ bin i} <€
The loss function £(-, z) with respect to each data sample z is assumed to be G-Lipschitz continuous and

L-smooth.
E.1 AUXILIARY LEMMAS FOR THEOREM 4.2

From now, we define some hyperparameters to be used in the following arguments.

Cu Cu

(d+16)%2 ~ g

1. The smoothing parameter y =

QA

g

2. 1—Brg=2L
nt
C2
3. 1— ==
X dnt
4. § = §od?/?

for some positive constants c1, c2, and c,,. In this configuration, it can be seen that 82 should be closer to 1 than
(1, which coincides with the practical case such as (81, 82) = (0.9,0.999).

Lemma E.1. For anyt > to, the distance between the zeroth-order gradients, evaluated on the same datapoint
zi, but on the different parameters 6, and 0;, is bounded by

E |:H§£(9t; zi,) — VL0 2,)

H < pL(d+3)%% + V3LA,
< cuL +V3LA,

Proof. For simplicity, we denote L£(0¢; z;, ) =: L4, (6¢). By the definition of ZO gradient, we have

S L (00 4 pue) — L4, (0 — puy)

V,Cit ((975) = 2,LL Ut
_ Ly (O + pue) = L (00) — iV Li, (0), ur)
= 2/1/ t
_Liy (0 — pue) = L, (0:) — (VL (0), —ue) w
2p

+ (VL (0¢), ue)us
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Combined with the distance computed on the parameter 6}, we obtain

Li, (0¢ + prug) — Liy (0) — 1{VLi, (0:), us) "

VL, (0:) — VL, (6)) =

t

2p
_ Lii(0 — pur) = L3, (01) = p(VLi, (0e), —ue)
21 ¢
_ L, (02 + /“Lt) — L, (64) — M<v£it (02), ut> "
21 ¢
+ ‘cit ('92 - /“’Jt) — L:if, (02) _ M<v£it (02)7 7ut>
21 b

+ (VL (0:) — VL, (07), ue) ue
By the smoothness condition, the first four terms could be bounded by

H Li, (00 + pug) — L, (0) — u(VLs, (00), ue) utH
2p

Hence, the distance we are interested in could be bounded by

<

920,00 = VL, 0D < 1L lfusl® + [V L4, (80) = VL4, (0, ur) |

Taking the expectation using Lemma C.3 yields that

Eu [[9£0 60 = 920,00)||] < nLE [ual’] + Eu[[[ (VL3 60) = VL2, (80), w)ue]
< pL(d+3)*? + V3L||6, — ;|
Therefore, we have for p = (d—l—cw
B [[| 92000 — 923, 600)|| |£0] < cul + VLA

Lemma E.2. The norm of ZO gradient is bounded by

= L(d + 3)%/?
e [|9c. 0] < B2 1 vae
S—L+\/§G
- 2 3/1/2[/2
E{Hvz“(et) }g - (d+6)° +9G°
< 2 cnL? +9G?

Proof. By the definition of ZO gradient, we have

H§En 0| < H Li, (0 + pus) — Ez‘téit) - VL, (Oc)ue)
Liy (00 — pue) = Li,(01) = (VL3 (0e), —ur)
21 ‘
+ KV Li (62), we)ue |
From the above inequality, we have
~ 2 . _ I _ _
HV[% o <3 Hﬁu (0¢ + pue) — L4, (01) — p(VLi, (et)’“f>ut
2p
s H L1 (0 = pur) = Li, (gﬂ) = (VL (0), —u) |

+ 3((VLi, (0r), ueue|*
3u L?

luell® + 31V Ls, (60), ur)ue |
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Thus, we have the expectation

B [[9200]] < B [lull?) + B 1(TL:, (00), whuel]

3/2
_ uL(d+3)
= 2

3/2
< 7“]“(‘1;3) +3G

=%+x/§a

]

IN

+V3IIVL:, (6)]

and

- 2 3 2L2
B [0 00]| < 25 @ 0 +olvea 6ol

3ulL?
8

< gcuL"’ +9G*

Under our parameter settings of p, we finally get the results. O

< (d+6)° +9G°

Lemma E.3. The bound for j-th coordinate

E [@Lit (ot)ﬂ <81 (%M‘L‘*(d +16)" + 4\/105G4>
L4
<81 ( = +4v105G"
8nt
E [@z:i, (&)?] <9 (L;ﬁL?(d +16)% + 23/105@2)

2v/2
<9 (L—Q + 2\4/105G2>
= T\8V2

Proof. Using the definition of ZO gradient esimate, we have

5[5, 0] = (et -t

< «E [(cit(ot + uut)ibﬁit(gt _ uut)>8

The first mulplicant is bounded by
E [(Li, (0c + pue) — L3, (00 — pue))®] < E [8u"L¥|ue || " + 2048((V L3, (1), ue)®)]
< 8u'CL¥(d + 16)® 4 2048 - 105° ||V L3, (6:) |
< 8u'°LP(d +16)° + 2048 - 105°G®

— Liy(0r = pue) \° < L (8,1618(d + 16) 4 2048 - 10545G)
20 25645

1
———8ulSL8( 16)8 2048 - 105u8G8
\/ <8 d+16)8 + \/256M W

Hence, we have
\j E (Eit (0 + prue)
2561
= gﬂ LY (d+16)" + 4v/105G"

Finally, the j-th coordinate of the zeroth-order gradient is bounded by
B 1
E [vzit (et)ﬂ <81 (g WAL (d +16)* + 4\/10504)
414

<81 (8(dc+L BE +4\/WG4>
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Applying p = W, we have the final results. Lastly, we have
E [V, (03] < ( Wl oy 105G2)
TP\ 2vaa+16)
O

Lemma E.4. Under the assumption ||u:|| < V/d, the norms of ZO gradient and the momentum (without the
expectation) are bounded by

lgell < dG
[ma| < dG

Proof. We use mathematical induction. For ¢ = 1, the momentum is nothing but the scaled zeroth-order gradient
as
[mal| = [[Bimo + (1 = B1)V L, (61) ]
< (1= B)IIVL:, (61)]l
The size of zeroth-order gradient could be bounded by

H _ H Li, (01 + pur) — Liy (01 — pua)

H%ﬁll (91) 2,u Ul
< G‘ 01 + pur — (01 —Mul)uIH
2p
= Gllu®
<dG

since we assume G-Lipschitz continuity. For the initial condition, we have
Il = (1= B1) [ 9i, (6)|
<dG
By the induction, we have
[mell < Billmi—sl| + (1 = B1)

< BdG+ (1 — p1)dG
< dG

‘%z:i,, (6,

Lemma E.5. The norm of preconditioner (vector) is bounded by

Efllvell] <

Proof. We use induction. By the definition of v;, we have

d
loe |* th]

(B2vi—1,; + (1 — B2)g7 3)2

'M& |

<
Il
—

For t = 1, we have

d

lon]|* = Zvij
B d
(1—B2) Z
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Hence, we have by Lemma E.3

d
E[[loa]?] < (1= 82)* S E [g}]

j=1

c4L4
<
81d< 8(d+ 16)2 + 4105 G>

For v, we have
d
H%HQ = thz,j
2
= Z Bave—1,5 + (1 — 52)% 3)
<Z /821]1& 1_7 1_62)gt])

d
= Bellve—1]* + (1 = B2) Y _ gt
j=1

Finally, by induction, we have

E [[[ve]|*] < B2E [[lve—1["] + (1 = B2) ZE [9¢,5]
4 4

8(d n 16)2

4 4

<5281d( 8(d+ &

+ 4WG4) + (1 — B2)81d ( + 4\/WG4>

ctrt
< 81d r 41
<s ((d+16) 4 W)G>

The expectation of norm of v; is bounded by

E [[lvell]* < E [Jlve]”]

c. L
<81d [ —*~ — + 4v105G*
_8d(8(d+16)2+ O5G>

Hence, we obtain

2712
E[||loe]]] < 9Vd [ —="—— +2V/105 G>
e} < 9V 5
E.2 RECURSIVE RELATIONS FOR (A4, @4, %)
Recall the parameter configurations as
_ Cu
K= Tla+16)2
Bri=1-— h
nt
B2
=12
B2,t dnt
§ = 6od*?

Lemma E.6. The following recursive relation should hold that

A1 < 777
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Proof. For any t > to, we have that

I
mMi+1 ’ M1
div1 = || —a— — 0 + a————
t41 t ey T35 t Té-}—l Iy
!
<6 =0} + | 2L e
> H t tH ' /7Ut+1+5 /U£+1+5
Ry

= |6: — 0| + aR:

All the norm is £>-norm. We consider two cases for recursive relation for R;.

1
Case 1: With probability 1 — —, we have z;, = z;, where the same datapoint is sampled at time ¢. Thus, we
n

have
R, = Mt+1 . mfsﬂ
VUtr1 + 6 1/U£+1+5
< Mi41 . m2+1 mt+1 m§+1
T VU1 + 0 Ui +5 \/vt+1+5 \/’Ué+1+5
I

We first bound the term I; using the condition for eigenvalues of v; and 'U,lg by

1
I € ———fImesr —mi |

BRYARA

Using Lemma E.1, the bound for ||m¢11 — mj|| given z;, = z{, would be
I = miall = |[Bume + (1= B)VLGs: 20,) = Bim] = (1= B) VLG 2,)

< Bullme —mi + (L= 1) |L(0 20) = VE®; 2,)

|

Taking the expectation yields that

E [lmesr —mipallal{z, = 24, }] < 810+ (1= 81) (eul + VLA,
Hence, we have

B1®¢ + (1 — B1) (cuL + V3LA,)

E[L{z:, = 2,}] <

VY +6
< B1P: + (1 — B1) (CuL + \/gLAt)
- 0
The bound for J; can be computed as
!/ /
J, = M1 _ M1
Vi +6 o Jup 46

[l

1 1
o H«/vt+1+5 ,/U£+1—|—5

<dG

1 1
VUil + 9 B VUi +6

where the last inequality comes from Lemma E.4. The quantity we are interested in is the expectation of .J;,
which is given by

E[J:] =

1
- e sl

Vt+1

< dGE

1 1
VUtr1 + 0 B Vi 6
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where we use Jensen’s inequality for the expectation and Lemma E.4. The remaining term could be bounded as

L Vi — VO
Vi1 + 6 \/vgﬂ,]- +6 LSS 5) (\/m)
(otony - Vs 79)
(

1 1/leJ—&—é) Vig1,j 5)
0 \/Ut+1 ;T 8) + (\/ V41,5 +0)

53/2 (Vi1 = Vee1)

d 2
1 1
—E (> _
(j—l <\/Ut“’j u \/“£+1,y’ + 5) )

1
< o532 [lvet1 — vigall]

IA

SR N

Hence, the following norm is bounded by

E 1 _ 1
Vo 90 ol +96

Note that we have been considering the case of z;, = z;,, the bound for the distance [|[v¢4+1 — vi4 ;|| in this case
could be simplified as

e = vl = [ Bave + (L= B2) VL0 (6)° = Bovi — (1= B2) VL1 (017

923,67 - VL., (60)?

< Bollve — vil| + (1 — B2)

N

The bound for N; is

o
X

J

M=

) 1/2
(Vi (0] = VL0, 00)]) )

1

M=

1/2
~ ~ 2 ~ —~ 2
(Vﬁn (0); + VL, (92)1') (V/Ju (0); — VL, (92)3') )

1

1/2
(wcu (0:)2 + 2V L1, (6))1 ) (ﬁcit(et)j -V, (eg)j)Q)

IN
TN
‘Mg_

1

Therefore, the expectation of Vy is

E[N] <E -(i (265% ()2 + 2V L, (97’5)?) (@ﬁit (01); — VL, (92)3')2> 1/2]

j

d

1/4 1/4
(mit(et);+2m<e;>§)2> (z (mxa»—%wz»ﬁ) ]

M=

Il
-

=1

(€%

<E ( (Ncit(et) +AVL, (0)) >
J

| (e
(&

NE

) 1/2
vch (0,); %Lit(eg)j)> ]

Il
-

M&
”M“ HM&

<E (1 l(zvait(et) +2VL,, (0 )>

(VL (0 - Ve, (02)3-))}

)

<E [(\[HV,C” et)
< 2V2dGE [Hwit (0:) — VLi,(0))
< 2v2dG (cuL + V3LA,)

+ vazz, (0

)

) (H%z:“ (0)) — VL, (6)
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The last two inequalities come from Lemma E.4 and E.1. Hence, we have
E [HUM — vz, = zf] < B+ (1 — B2)2V2dG (C#L + \/§LAt)
Therefore, the expectation of J; under z;, = z;, is

1 1

E[J:] < dGE —
7] < Vo 00 Jup, +6

dG
WE [||Ut+1 — Vi H]

< 2?52 (52& + (1 - B2)2V2dG (cﬂL +V3LA, ))

1
If we consider § = don?/3d*/3 and 1 — B> = R we have

EJ <2 <Bzzt+2f0 (cHL+\/§LAt)>

. o1 .
Case 2: With probability —, we have z;, # z;,. Therefore, we obtain
n ,

E[R] <E [H M+ mtJrl
— /’Ut+1+6 ‘/Ut+l+5
1
<3 (E [[lmasall] + E [[lmisall])
< % <C“— + \/§G)
1

by Lemma E.2. Therefore, we have
A1 < Ap + aE[Re| & ]
P 1-— L 3LA
§At+o¢<1—l>ﬂl 4 ( 51)(% +4/3 z)
n

1
+a (1 - 1> 2?5/2 (ﬂ2zt +(1- B2)2v2dG (cuL + fLAt))
+ = (cuL + 2\/§G)

Arranging all the terms with respect to A, @, and 3¢, we can rewrite the above inequality with the form as
A1 S AAL + Bi®y +Ce Xy + Py as

Apiy < {H_M(l_TJ V6d°G2a(1 — B2)L (1_l>:|At

0 §3/2 n

Ay

+ Py
where P; is defined by

p, = 0= Be,l <1 - > V2a(l - Br)eud’G7L (1 - 1) +2 (cuL + 2\/§G)
1 n n no

53/2
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Under the parameter settings oz = %, 1-061e= %, 1—f2t=—-—,and § = Sod?/3, the quantity P is
acie, L 1 V2acac, G L 1 ( )
= 1—— — (1 - = —_— L+ 2V3G
P ndol < n) + nSS/Zt n + nd2/350 cul + f

. i acicy L B l \/504620#G2L B l «
o nt < d2/360 (1 n) + 53/2 1 n + d2/35o (C#L+2\/§G)

Lemma E.7 (Recursive Relation for ®;). For any t > to, the quantity ®; has the following recursive relation

Di1 < P10+ (1 - By) (1 - %) (cuL + \/§LAt) +1 ;L’Bl (cuL + 2\/§G)

O

Proof. For any t > to, we have that
Imeer = mis | = |[Bime + (1= BOVL(B ) = Bt — (1= B1)VLE}: )

|

|

< Billme = mi| + (1= B1) [ VL (05 2,) - VLO;: 21,)

We again consider two cases.

Case 1: When z;, = z;, with probability 1 — l By Lemma E.1, it could hold that
n

5|

Therefore, we have

|| < nLd+3)** +V3L|6. - 6]

’65(6&; Ziy) — @E(G;; Ziy)

E [H%a(et; 2i,) — VL0 2,)

| < eul+vaLA,

. e 1 .
Case 2: When z;, # z;, with probability —. By Lemma E.2, it should hold that
n

E, [H%c(et;zit) — L) 2,) | +E [HW(%;Z;)

!

] < feeoi
2 (% - \/§G>
=c,L+2V3G
by G-Lipschitz condition of £; for j € [n]. Thus, we have
Dy < P10 + (1 - Br) (1 7) cul + \/§LAt) +1 _nﬁl (cuL—i— 2v3G)

1
=(1-p) <1—5)WLA,5
Dy
+ b1 D
~—
Et
+ 0 -3
Fi

+ 9

where Q; is computed as

Q =(1-p) (1 - %) el + P (el + 2¢30)
2v/3(1 — B1)G

= (1—B1)euL +
Under the parameter settings 1 — 31 ; = c—lt, the quantity Q; is
n
cicul " 24/3c1G

nt n2t

i (cchL + 72\/§ch)
nt n

Q=
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Finally, we compute the bound for > .
Lemma E.8 (Recursive Relation for ;). For any t > to, the quantity ¥ has the following recursive relation

Yir1 < PoXi 4+ 9 (1 - %) (1 —B2)Ch (\/ﬁuL(d +6)%?% + \/éLAt)

272 3
+(1-B2) <W + 18G2)

Proof. By the definition, we have

fvess = il < Balloe = vl + (1= B2) | VL0, (8 = VL4, (61

We consider two cases.

. - 1 .
Case 1: When z;, = z;, with probability 1 — —. In this case, we have
‘ n

E [lver1 — vi4a]]] < BoXe + (1 — B2)2v2dG (cuL n ﬁmt)

1
Case 2: When z;, # z;, with probability —. We have
' n

920007 = 924,007 < |[Vin00]| + [V, 007

a 1/2 4 1/2
[Z@ (00 Z@Li;(e;)ﬁ]
" R .
e o]
_Hvzu (60) +ch AR

By Lemma E.2, the expectation of above inequality would be
[Hvz:,, (00)2 — VL, (67) H] <2(: °L +9G)
3
- L 18G
4 +

Finally, we have

Sip1 < BoXe + (1 - l) (1— B2)2V2dG (c#L +V3LA, ) (1 — B2) (%ciLZ + 18G2)
=2V6(1 — B2)dGL (1 - E) Ay

Gt

+ 0 P
Hy

+ B2 Xy
~~
I

+ Rt
where R is defined by

Ri=2v2 (1 - %) (1-Ba)en

1—p2 (3 5.9 2
n (ZCHL +18G)

Under the parameter settings oy = %, 1—051e = n— —Bo = and § = 80V/d, the quantity R, becomes
1 1 32 L2 18G*?
Re=—(2V2c,GL(1— — L
Y ( Ve, ( n)+ 4dn + dn )
O
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E.3 SPECTRAL NORM OF MATRIX A;
We construct the key matrix A for our recursive relations for (A¢, ®;, ;) as follows.

At+1 .At Bt Ct At Pt

Qi1 | =D & Fi Dy | + | O:

Et+1 gt Ht It Et Rt
—_— ——

At Iy
where each entry of A; is defined by
V3ai(1 — Bis)L 1 V6d2G2 (1 — Bay) L 1
At*{Hf =2)+ 5377 -a

[1 V3aci L V6acsG?L

Sod?Pnt? T 532

ot P 1 ot B
= : 1——) < — = -
Be B ( n> =8 S0d?/3t

IN

C o Oétﬂg,th 1— l < OétﬂQJdG o OéﬂQJG
b g3 n) = 2832 953
D= (1-pis) (1 - l) V3L < Ve L
n nt
E=p1t <1
Fi=0
Gr = 2V6(1 — B24)dGL (1 - l) < 2V6eaGL
n nt
H:=0
Iy = P2 <1

under our parameter configurations. The most complicated entries are A;, BB, and C;. To guarantee the uniform
stability of ZO-Adam, we let

1. ay % (diminishing learning rate)

2. Bri=1-— b
nt

B2
3. Boy=1— L2
Ba.t dnt

Lemma E.9. It should hold that

1

1
(Av1 + Bioz +CtU3)2 <vi4-Ur+ 5 Uz

t t
1

(Div1 + Esva + ]:t'U3)2 <vs+ ¥V1
1

(Gev1 + Heva + It'U3)2 <3+ ¥T1

for some suitable constants Uy, Uz, V1, and T1.

Proof. By the definition of each constant, we have

2
2 « «
At:1+t—2A1+t—4A2

2

B2 < o
b= 252
2L+ 4dG)? 1\°
2 < 0‘(7 _ =
Cr < 8294y ! n
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Hence, we can write the following term as

(Avr + Bva + Crvs)? = Afvf + (Beva + Crvs)® + 2401 (Bewvz + Crvs)

a

2
Depends on Sz Depends on <

2
[ o
t and 12

1 1 1 1
SU%+*U1+3U2+*3U3+*4U4
t t t t
since vy < 1 foreachi € {1,2,3}. The second row would be

2
(Dyv1 + Erva + .Ftv3)2 = ((1 - f1) (1 - %) V3Lvy + 5102)

1 2
< (1— B1)3L7 (1 - ﬁ) v} + 1,03
1
<+ ZVI

where we use Jensen’s inequality for convex function f(z) = 2% and 1 — B1; = 571 The last row can be
computed as

2
(Grv1 + Heve +ItU3)2 < (2\/6(1 — B2,t)dGL <1 - %) v1 + ﬂ2U3)
< (2\/6GL
- nt

2
v1 + 52113)
1 1

< v§ + ?Tl + thZ

where 77 is dimension-free since 1 — f2 ¢ = ﬁ.

Lemma E.10. The spectral norm of the matrix A is upper-bounded by

Al < exe (%Wl Wtk W+ %WLL)

Proof. By above Lemma, we have for suitable constants {Wi}?zl
1 1
[Aw|? < (vF + v3 +v3) + ?Wl + t—sz
1 1 1 1
<1+ -Wi+ SWot Wi+ Wy
t t t t
<exp (IWh 4+ SWa ot SWs 4 W
<p | = il = =
< exp Vit et gWet 2 W

where we use the inequality 1 4+ =z < e” for z > 0. O
Lemma E.11. The norm of vector I'; is bounded by
T ||

3 <a20%ciL2 2ac§ciG4L2 a? (CML + 2\/§G)2 12¢2G2

n2

9¢tL*
2 2 1%
el + 16d2n?

< ’ +8cLGPL” +
n2t? d4/352 o3 d4/352 H "
Proof. By the definition of 'y, we have

T2 = PP + QF + R}
2
2
I <aclcuL (12 1) VoGl (1 1), e (CHHmG))

= 272 d2/36, n 5(:)3/2 n d2/36,

2
1 2\/§C1G
T <C1cuL t—0 )

1 1\ 3217 1862\’
2v2¢,GL |1 — — £
+ n2t? ( Ve, ( n) + 4dn + dn )
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Rearranging all the terms, we have

T ||
2
<3 a’ciclL? N 20c3¢LG*L? o (cuL 4 2V/3G) 2RI 4 12¢2G? L 8RGPI 4 9cy L*
= n22 | d4/362 53 di/362 e n? " 16d2n?
where Z is well-defined by the above constant. O

Lemma E.12. We let

Then, we have

Mty

< Zexp (GWa+Ws +¢Wy) 1 (T o
< n aWi \ to

Proof. We let
o0
1
G=>
n=1
It is well-known that (, is finite for the integer s > 2. By the recursive relation in Lemma 1 and 2, we have

L L « a? Z
MT+1 < Z H exp <%W1 + ﬁWQ) X E

t=to+1 Lk=t+1
T r T 2
1 a a 1
=125 [T e (e om)] 3
t=to+1 Lk=t-+1
1. & | "1 1)1
2
SEZ Z exp(aW1Zk+aWQZk2>:|t
t=to+1 L k=t+1 k=t+1
T -
1 T 1
< ZZ Z exp (aW1 log (?) +a2C2Wg)} 7
t=to+1 -

IN

z Lo\ 1
Eexp(@Wz + W3 + UWa) Z (?) 3
t=to+1

Z exp (W2 + (sWs + CaWa) raw, i a1
t
n

t=to+1
< Z exp (C2Wa 4 (W3 + C4W4)Tawl /T faWi1
n to

IN

Zexp (C2Wa + (sWs + (uWy) 1 I a1
n aWi \ to

Finally, we will bound the term Az 1.

Proof. The generalization error bound for ZO-Adam is
R(f(,2)) =E[|f (073 2) — f(O7; 2)]]
<om® s gag
n

< 2Mtg n Z exp (CQWQ + (W3 +<4W4) G z aWy
-~ n n aWi \ to
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Therefore, we have

aWy
R(F(2) < & |2naeg 4 2P (Wa & GWa + Gaia) (Z) ]

1
n aW, to

We consider the function

T\
g(z) = Ciz + Cs (;)

To find the minimizer of this function, we take the derivative as

: T
g (ZII) = Cl — CQCBW

Therefore, the function g has a local optimum at

1
5 (C0) T e
Gy

The second derivative of this function would be
Cs3

T
g"(:v) = 0203(03 + 1)

s >0

for > 0. Therefore, the local optimum Z is the minimizer of the function g. Therefore, the function g has a
minimal value as

1 1 C3
PR 0203 C3+1 _Cg (&) C3+l _ _Csz
—C T 4+ Cy (T o2 T Tt
9(%) 1( c; ) st + 2( (0263) 3 )

1 _C3
CQCg C3+1 4CL Cl C3+1 4CL
— T Cs+1 T Cs+1
o (%2) i (g ) ;

1 C3
. CoC3 )\ C3+1 C1 C3+1 cc7i1
= C1< ch ) + Cy (0203) TCs

ZG exp (2Wa + (W3 + (uWa)
OCW1

€gen S @ (£>
n

for some positive constant < 1. Note that r o 53% since the constants W; o 53%' O

Under C1 = 2M,Cy = ,and C3 = oW1, we have
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