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Abstract

Information Extraction (IE) systems are tradi-001
tionally domain-specific, requiring costly adap-002
tation that involves expert schema design, data003
annotation, and model training. While Large004
Language Models (LLMs) have shown promise005
in zero-shot IE, performance degrades signif-006
icantly in unseen domains where label defini-007
tions differ. This paper introduces GUIDEX,008
a novel method that automatically defines009
domain-specific schemas, infers guidelines,010
and generates synthetically labeled instances,011
allowing for better out-of-domain generaliza-012
tion. Fine-tuning LLaMa 3.1 with GUIDEX013
sets a new state-of-the-art across seven zero-014
shot Named Entity Recognition (NER) bench-015
marks. Models trained with GUIDEX gain up016
to 10 F1 points over previous methods with-017
out human-labeled data, and nearly 4 F1 points018
higher when combined with it. Models trained019
on GUIDEX demonstrating enhanced compre-020
hension of complex, domain-specific annota-021
tion schemas. Code, models, and synthetic022
datasets will be released upon acceptance.023

1 Introduction024

Information Extraction (IE) tasks (Grishman, 1997)025

are structured around two core components: a for-026

mal schema specifying target entities/relations and027

human-readable guidelines defining their interpre-028

tation. Despite their utility, IE systems face sig-029

nificant scalability challenges due to domain de-030

pendence. Adapting to new domains requires sub-031

stantial resources, including (1) domain experts to032

design schemas and annotation rules, (2) trained033

annotators to label data accordingly, and (3) ma-034

chine learning specialists to develop performant035

models. This complex process creates a bottleneck036

for real-world applications where label definitions037

frequently evolve across contexts.038

Early attempts to remove the need for anno-039

tated data (zero-shot IE) framed the task through040
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Figure 1: Impact of GUIDEX for zero-shot NER on
different domains. In GoldFT , the model is trained
solely on gold training data, whereas in GuideXFT +
GoldFT it is also trained on our synthetic dataset.

Question Answering (Levy et al., 2017) or Natu- 041

ral Language Inference (Obamuyide and Vlachos, 042

2018; Sainz et al., 2021) paradigms, leveraging su- 043

pervised data from these auxiliary tasks. While 044

showing initial promise, these methods remained 045

constrained by their reliance on manually crafted 046

schemas and limited cross-domain generalization. 047

More recent advancements leveraging Large 048

Language Models (LLMs) have streamlined 049

schema definition processes (Li et al., 2024), facili- 050

tating adaptation to new domains. However, perfor- 051

mance gaps persist when deploying these systems 052

in unseen domains where label semantics diverge 053

from training distributions (Sainz et al., 2024). Our 054

work addresses this challenge by automating the 055

generation of domain-specific schemas, guidelines, 056

and annotated data to bridge the seen-unseen do- 057

main divide. 058

Data Augmentation (Feng et al., 2021) and Syn- 059

thetic Data Generation (Teknium, 2023; Xu et al., 060

2025) have proven particularly valuable in the era 061

of LLMs. In IE, traditional techniques like distant 062

supervision (Mintz et al., 2009) aim to enhance 063

model performance but often introduce noisy anno- 064

tations. While effective for achieving high recall, 065
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distant supervision frequently generates spurious066

labels due to its reliance on imperfect heuristics.067

Similarly, LLM distillation (Hinton, 2015)—where068

smaller student models learn from larger teacher069

models—faces inherent limitations: student per-070

formance is constrained by the teacher’s capabil-071

ities and often fails to capture all valid instances.072

Both methods also require predefined annotation073

schemas, severely limiting their adaptability to074

novel domains where label definitions may shift.075

In this paper, we tackle the aforementioned limi-076

tations by introducing GUIDEX, a novel data gen-077

eration method inspired by the work of domain078

experts. It is designed to generate schemas, guide-079

lines and annotated examples for any new do-080

main which allows to improve IE performance on081

new as well as on unseen domains. This approach082

consists of four main steps. Given a set of docu-083

ments from the target domain, an LLM is used to084

identify the key information within each document,085

summarizing and synthesizing its content into a set086

of bulleted ideas. Next, the extracted information087

is structured into a standardized format, typically088

a JSON file. Then, the model is asked to gener-089

ate the annotation schema and the corresponding090

annotation guidelines based on the previously struc-091

tured annotations. This approach ensures that the092

annotations align with the guidelines and remain093

comprehensive. This step is particularly crucial,094

as it guarantees the correctness of the schema and095

significantly reduces potential annotation errors in096

the generated data. Finally, we ask the model to097

generate the final annotations following a standard098

code-style format.099

We validated our data generation approach by100

training state-of-the-art models using the syn-101

thetic data produced through our methodology.102

When fine-tuning base models, such as LLaMa103

3.1 (Grattafiori et al., 2024), exclusively on our104

dataset, we observed an average improvement of105

10 F1 points across seven Named Entity Recog-106

nition (NER) benchmarks in zero-shot evaluation.107

Furthermore, when leveraging our data to enhance108

state-of-the-art approaches, we achieved a notable109

improvement of nearly 4 F1 points on the same110

benchmarks (see Figure 1), establishing a new state-111

of-the-art.112

2 Related Work113

In this section, we review the literature related to114

our work. We begin by highlighting the most signif-115

icant studies that involve LLMs for IE. Following 116

that, we will focus on methods for generating syn- 117

thetic data aimed at the same task. 118

LLM-Based IE. Recent advances in IE increas- 119

ingly leverage LLMs to tackle tasks such as Named 120

Entity Recognition (NER), Relation Extraction 121

(RE), and Event Extraction (EE) in both zero-shot 122

and few-shot settings (Brown et al., 2020; Raffel 123

et al., 2020; Xu et al., 2024a). By prompting (Li 124

et al., 2022; Ashok and Lipton, 2023; Wang et al., 125

2021; Wei et al., 2024, 2023; Xu et al., 2024b; 126

Mo et al., 2024) or fine-tuning (Zhou et al., 2023; 127

Lou et al., 2023a; Gui et al., 2025) these mod- 128

els can be guided to extract relevant spans (e.g., 129

entities, relationships) in raw text. Methods like 130

InstructUIE (Wang et al., 2023),and RUIE (Liao 131

et al., 2025) build on the idea of formulating IE as 132

an instruction-following or retrieval-based gener- 133

ation task, showing that well-structured prompts 134

can improve performance without extensive human- 135

annotated data. 136

A specialized subtrend emphasizes schema and 137

guideline guided strategies, where the LLM is 138

trained to follow explicit annotation rules (Sainz 139

et al., 2024; Pang et al., 2023; Bai et al., 2024). 140

These methods demonstrate that providing precise 141

definitions and examples of valid or invalid an- 142

notations can significantly enhance zero-shot IE 143

outcomes, reducing error rates from ambiguous to- 144

ken boundaries or unclear entity types. Similarly, 145

KnowCoder (Li et al., 2024) encodes structured 146

knowledge into LLMs to facilitate universal IE 147

across multiple domains, underscoring the value of 148

carefully specified label schemas. Although these 149

guideline-oriented approaches maintain higher con- 150

sistency across domains, they often depend on time- 151

consuming, manual curation of instructions. As 152

new tasks or domains emerge, the annotation guide- 153

lines must be updated or expanded, posing a key 154

scalability challenge. 155

Synthetic Data Generation for IE. Distant su- 156

pervision remains one of the earliest forms of syn- 157

thetic data labeling, aligning knowledge-base facts 158

with textual mentions to automate the creation of 159

large-scale IE datasets (Mintz et al., 2009). While 160

this technique helped address the scarcity of anno- 161

tated data, it is susceptible to label noise because 162

the mere co-occurrence of entities in a sentence 163

does not necessarily confirm their relationship (Sur- 164

deanu et al., 2012). More recent developments in- 165

corporate multi-instance multi-label learning and 166
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Figure 2: GUIDEX process overview. The approach transforms raw text into structured annotations by dynamically
inferring schemas, generating executable guidelines, and resulting annotations.

noise reduction heuristics to mitigate erroneous167

matches (Hoffmann et al., 2011; Lin et al., 2016;168

Han and Sun, 2016; Xiao et al., 2020), yet these169

pipelines often rely on rigid predefined schemas,170

making it challenging to adapt to novel entity or171

relation types.172

Beyond distant supervision, emerging methods173

leverage LLMs themselves to generate synthetic174

data for IE tasks (Josifoski et al., 2023; Chen et al.,175

2017). UniNER (Zhou et al., 2023) and Know-176

Coder (Li et al., 2024) generate additional train-177

ing instances by prompting an LLM to produce178

sentences conforming to a particular label schema.179

This broadens coverage and reduces the require-180

ment for human annotation. However, the resulting181

data can suffer from stylistic repetition, domain182

mismatch, or incomplete label application if the183

model fails to follow the schema consistently (Xu184

et al., 2024a). Moreover, existing synthetic data185

generation techniques often do not provide robust186

mechanisms to manage data structure or coverage,187

resulting in partially accurate guidelines and noisy188

annotations.189

In light of these observations, our work in-190

troduces GUIDEX, a data generation approach191

that integrates both schema-driven and synthetic192

paradigms while addressing key limitations in di-193

versity and noise control. Rather than relying on194

fully manual guidelines or naive LLM-based gener- 195

ation, GUIDEX dynamically constructs annotation 196

schemas and guidelines for each document, then 197

synthesizes labeled text aligned with those rules. 198

This approach reduces the costs of manual schema 199

creation and mitigates the spurious annotations of- 200

ten seen in unconstrained synthetic data generation. 201

Crucially, we show that incorporating the result- 202

ing dataset into zero-shot IE training significantly 203

boosts performance across multiple benchmarks, 204

surpassing existing approaches whether they rely 205

on synthetic data and guidelines or not. By uni- 206

fying explicit guideline creation with data synthe- 207

sis, GUIDEX offers a low-noise strategy for robust 208

zero-shot IE across increasingly diverse domains. 209

3 GUIDEX: Guided Synthetic Data 210

Generation 211

In this section, we introduce GUIDEX, a structured 212

synthetic data generation approach designed to en- 213

hance IE capabilities of LLMs. Unlike traditional 214

LLM distillation approaches or distant supervision, 215

which often rely on predefined annotation schemas, 216

GUIDEX dynamically infers annotation schemas. 217

This approach reduces annotation inconsistencies, 218

enhances flexibility across different IE tasks, and 219

enables high-quality, guideline-driven annotations. 220
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As shown in Figure 2, the GUIDEX approach221

consists of four sequential steps: document summa-222

rization, structured representation synthesis, anno-223

tation guideline generation, and instance extraction.224

Prior work has shown that LLMs struggle with225

information extraction in zero-shot settings, and226

attempting to perform the entire task in a single227

step leads to poor results. Instead, our structured228

process progressively refines raw text through these229

four stages, ensuring high-quality, structured anno-230

tations that align with inferred guidelines. Below,231

we describe each step in detail.232

Document summarization. The first step in the233

pipeline focuses on identifying the most impor-234

tant concepts within a document. To achieve this,235

the LLM generates a summary highlighting the236

key points, effectively recognizing relevant entities237

and events while structuring the extracted informa-238

tion. Instead of relying on a predefined annotation239

schema, this approach allows the model to deter-240

mine the relevant elements autonomously, resulting241

in more diverse and domain-specific annotations.242

Figure 2.I presents a sample summary generated243

for an article discussing Machine Learning frame-244

works in AI research. The model successfully iden-245

tifies key frameworks (TensorFlow and PyTorch),246

along with relevant entity details, including their247

developers and notable features.248

Structured representation. IE aims to identify249

specific spans of text that contain relevant informa-250

tion. In the second step of our approach, the model251

leverages both the previously generated summary252

and the original document to organize the extracted253

information into a structured JSON format. This254

representation ensures that key elements are sys-255

tematically categorized while maintaining direct256

references to the source text. To improve accuracy257

and conciseness, we enforce constraints that limit258

the extracted spans to the shortest possible length259

while preserving their full meaning.260

As depicted in Figure 2.II, the extracted informa-261

tion is transformed into a structured JSON format,262

where each entity is assigned meaningful labels263

and attributes. This structured representation en-264

ables better organization and downstream usability,265

ensuring that information is both interpretable and266

machine-readable.267

Guideline generation. Annotation guidelines268

play a critical role in improving zero-shot IE per-269

formance by ensuring consistency and reducing270

ambiguity in annotations (Sainz et al., 2024; Li 271

et al., 2024). However, manually crafting such 272

guidelines is a complex task, as it requires defin- 273

ing precise rules that account for variations across 274

different domains. To address this challenge, our 275

approach dynamically generates annotation guide- 276

lines based on the structured JSON representation, 277

the document summary, and the original text. In- 278

stead of relying on predefined schemas, the model 279

autonomously derives comprehensive descriptions 280

for each entity type, ensuring that all relevant at- 281

tributes are clearly captured. 282

Each generated guideline is formulated as a 283

Python dataclass, embedding a long and detailed 284

description of the entity type within the class doc- 285

string. The expected attributes of the entity are also 286

explicitly defined, with each field accompanied by 287

comments explaining its meaning and expected for- 288

mat. By structuring the annotation schema in this 289

manner, the model produces a standardized and 290

interpretable representation of the information. 291

Figure 2.III shows how this process results in a 292

set of structured dataclasses that define both entity 293

types and their relationships while preserving flex- 294

ibility. Unlike static annotation guidelines, which 295

may be limited in adaptability, this approach en- 296

sures that each document receives tailored guide- 297

lines that align precisely with its content. By encod- 298

ing these guidelines into Python code, the approach 299

maintains a high level of structural consistency. 300

Instance Extraction The final step of the 301

GUIDEX approach involves extracting concrete 302

instances of the entities and attributes defined in 303

the annotation guidelines. Using the structured 304

JSON representation and the inferred annotation 305

schema, the model populates entity classes with 306

specific values derived directly from the original 307

document. This step ensures that the extracted in- 308

stances strictly adhere to the predefined structure 309

and maintain high fidelity to the source text. 310

To achieve this, the model generates a Python 311

list where each entry corresponds to an instance 312

of one of the dataclasses created in the guideline 313

generation step. Each instance is populated with 314

concise values extracted from the text, prioritizing 315

single words or short phrases over verbose descrip- 316

tions to maximize precision and clarity. The model 317

is explicitly instructed to return only the structured 318

instances, without additional explanations or extra- 319

neous text. 320

As illustrated in Figure 2.IV, this process results 321
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in a structured dataset where each entity and its322

attributes are instantiated according to the inferred323

schema. This format ensures seamless integration324

into downstream applications, enabling models to325

leverage high-quality, structured annotations for326

training or evaluation. By enforcing a standard-327

ized representation of extracted instances, GUIDEX328

maintains consistency across different documents329

and domains330

GUIDEX enhances synthetic data reliability by331

structuring annotation guidelines and extracted in-332

stances as executable Python code, enabling auto-333

mated validation to detect hallucinations and in-334

consistencies. A consistency-checking mechanism335

systematically executes each dataset entry, flag-336

ging logical errors such as undefined entity types337

or misaligned attributes. An automated filtering338

script discards invalid annotations while retaining339

only schema-compliant ones, significantly reduc-340

ing spurious relationships and annotation noise.341

This structured validation process ensures high-342

quality, guideline-aligned synthetic data, leading to343

more robust and trustworthy IE models.344

4 The GUIDEX dataset345

This section presents the dataset constructed us-346

ing the proposed method. We begin by detailing347

the document collection process that served as the348

foundation for our dataset. Then, we provide sta-349

tistical insights to illustrate its composition and350

characteristics.351

Document Collection. The dataset was con-352

structed using FineWeb-edu (Penedo et al., 2024),353

a high-quality subset of the larger FineWeb dataset,354

specifically curated for educational content. From355

this collection, we randomly sampled ~10,000 doc-356

uments. The dataset exhibits a wide range of docu-357

ment lengths, spanning from 194 to 22.6k words.358

To preserve the coherence of the textual structure359

and maximize contextual understanding, we retain360

entire documents rather than segmenting them into361

smaller units such as paragraphs or sentences.362

Dataset Statistics. The GUIDEX dataset covers a363

diverse range of topics, as illustrated by the distribu-364

tion of the most and least frequent labels in Table 1.365

It includes a strong presence of categories related366

to Medicine (Symptom, Cause, Study, Treatment),367

Economics (Benefit, Resource, Application, Activ-368

ity), and History (Event, HistoricalEvent, Study).369

Additionally, it covers domains such as Music (Mu-370

Most common Least common

Freq. Label Freq. Label

1820 Symptom 1 MusicOrigin
1459 Benefit 1 AttitudesTowardsMusic
929 Resource 1 MusicStudy
927 Topic 1 DietRecommendations
837 Cause 1 FilterInformation
830 Location 1 AsyncDataSharing
786 Event 1 SoundMakingInformation
689 Study 1 MOOCDefinition
679 Treatment 1 MOOCDesign
609 HistoricalEvent 1 MOOCContent
586 Application 1 TeachingAndLearning
572 Activity 1 BenefitsAndChallenges

Table 1: Most and Least frequent labels in the GUIDEX
dataset.

sicOrigin, AttitudesTowardsMusic, MusicStudy) 371

and Education (MOOCDefinition, MOOCDesign, 372

TeachingAndLearning). In total, the dataset has 373

28,677 unique labels, with an average of 5.34 dis- 374

tinct labels per document. Each document contains 375

an average of 11.39 annotations, highlighting the 376

dataset’s richness and granularity. 377

5 Experimental Setting 378

In this section we outline the details of our ex- 379

periments. We begin by introducing the models 380

used for both synthetic dataset generation and fine- 381

tuning on manually annotated (gold) data. Next, 382

we describe the IE datasets utilized for training and 383

evaluation. Finally, we present the baselines and 384

state-of-the-art systems used for comparison. 385

5.1 Models 386

Synthetic data generation. For generating syn- 387

thetic data, we utilized the 70B variant of the 388

LLaMa 3.1 Instruct model. After evaluating vari- 389

ous alternatives, this model demonstrated consis- 390

tent reliability in generating high-quality outputs. 391

Although proprietary models exhibited marginally 392

better performance in some cases, we prioritized re- 393

producibility by selecting an open-source solution 394

for this research. 395

Model fine-tuning. All the models we trained are 396

based on the 8B variant of LLaMa 3.1 (Grattafiori 397

et al., 2024). We adopted the standard code-style 398

format for IE (Sainz et al., 2024; Li et al., 2024, 399

2023; Qi et al., 2024). To avoid negative impacts 400

derived by the input format discrepancies, we use 401

the base LLaMa 3.1 over the instruct variant. 402
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GUIDEXFT GoldFT AI Literature Music Science Politics Movie Restaurant AVERAGE

✗ ✗ 24.13 25.83 33.87 21.67 31.94 40.86 32.27 30.08
✓ ✗ 37.81 45.52 48.75 33.36 37.01 36.09 45.77 40.62
✗ ✓ 60.68 63.21 64.26 60.17 64.64 62.98 54.50 61.49
✓ ✓ 64.02 60.43 66.82 67.79 73.41 66.33 56.46 65.04

Table 2: Impact of GUIDEX fine-tuning and gold fine-tuning on zero-shot NER performance with LLaMa 3.1 8B.
GUIDEXFT denotes finetuning on GUIDEX data, while GoldFT fine-tuning on manually annotated data. ✓ shows
the presence of a training stage, ✗ shows its absence. Results are reported as F1-scores on out-of-domain datasets.

5.2 Datasets403

Training Datasets. Beyond the GUIDEX dataset,404

we trained our system using the same manu-405

ally annotated gold-standard data as Sainz et al.406

(2024). This gold-standard data comes from mul-407

tiple sources and covers several IE tasks includ-408

ing Named Entity Recognition (NER), Event Ex-409

traction (EE), Event Argument Extraction (EAE),410

Relation Extraction (RE), and Slot Filling (SF).411

Specifically, we utilized ACE 2005 (Walker et al.,412

2006) for NER, EE, EAE, and RE, while TA-413

CRED (Zhang et al., 2017) was employed for SF1.414

Additional NER datasets used for training include415

BC5CDR (Li et al., 2016), CoNLL 2003 (Tjong416

Kim Sang and De Meulder, 2003), DIANN (Fab-417

regat et al., 2018), NCBDisease (Doğan et al.,418

2014), Ontonotes 5 (Pradhan et al., 2013), and419

WNUT17 (Derczynski et al., 2017).420

Evaluation Datasets. To assess the effectiveness421

of our approach, we conducted evaluations on stan-422

dard zero-shot NER benchmarks. Specifically, we423

tested on multiple CrossNER (Liu et al., 2020)424

splits, as well as the MIT Movie and MIT Restau-425

rant datasets (Liu et al., 2013).426

5.3 Baselines427

We established two primary baselines: the base428

LLaMa 3.1 model and its fine-tuned counterpart429

using the manually annotated training datasets de-430

scribed in Section 5.2. From now on, we refer431

to the fine-tuned version as GoldFT. These base-432

lines will be compared to their variants pretrained433

on GUIDEX synthetic data: GUIDEXFT (trained434

solely on synthetic data) and GUIDEXFT + GoldFT435

(trained sequentially on both datasets).436

Beyond these controlled comparisons, we bench-437

mark our approach against seven state-of-the-438

art models. We include general-purpose conver-439

1Originally designed for RE, we followed Sainz et al.
(2024) in converting it into an SF task.

sational LLMs such as Vicuna (Chiang et al., 440

2023) and ChatGPT (Ouyang et al., 2022), as re- 441

ported by Zhou et al. (2023). Additionally, we 442

evaluate against specialized IE models, includ- 443

ing USM (Lou et al., 2023b), InstructUIE (Wang 444

et al., 2023), GoLLIE (Sainz et al., 2024), Know- 445

Coder (Li et al., 2024), and GLiNER (Zaratiana 446

et al., 2023). We also compare our method to 447

UniNER (Zhou et al., 2023), a synthetic data 448

generation-based approach for NER. 449

5.4 Implementation details 450

All models were trained using QLoRA (Dettmers 451

et al., 2023), with hyperparameters optimized 452

based on the validation splits of the training 453

datasets (see Appendix A). We followed the same 454

code-based input format as Sainz et al. (2024). 455

The data generation process was conducted on four 456

NVIDIA A100 GPUs with 80GB of memory each, 457

while model training was performed using two 458

GPUs of the same type. 459

6 Results 460

In this section, we discuss our experimental find- 461

ings by examining GUIDEX’s impact on perfor- 462

mance and comparing our approach against the 463

state-of-the-art. 464

Impact of synthetic data. Table 2 summarizes 465

our main comparisons by divding them into two 466

scenarios: when no manually annotated data is 467

available, and when it is. In the first scenario, we 468

evaluate the raw impact of our dataset, particularly 469

analyzing the extent to which it can assist a baseline 470

LLM in learning the task. In the second scenario, 471

we observe how the addition of manually annotated 472

data (and thus domain-specific knowledge) further 473

affects performance. 474

The top two rows of Table 2 show results when 475

no manual annotations are available for fine-tuning. 476

Without any task-specific data points, LLaMa 3.1 477
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Model Params Backbone Movie Restaurant AI Literature Music Politics Science Avg

Vicuna-7B 7B LLaMa 06.0 05.3 12.8 16.1 17.0 20.5 13.0 13.0
Vicuna-13B 13B LLaMa 00.9 00.4 22.7 22.7 26.6 27.0 22.0 17.5

USM 0.3B 37.7 17.7 28.2 56.0 44.9 36.1 44.0 37.8
ChatGPT − − 05.3 32.8 52.4 39.8 66.6 68.5 67.0 47.5

InstructUIE 11B FlanT5 63.0 21.0 49.0 47.2 53.2 48.1 49.2 47.2
UniNER-7B 7B LLaMa 42.4 31.7 53.6 59.3 67.0 60.9 61.1 53.7

UniNER-13B 13B LLaMa 48.7 36.2 54.2 60.9 64.5 61.4 63.5 55.6
GoLLIE 7B CodeLLaMa 63.0 43.4 59.1 62.7 67.8 57.2 55.5 58.0

KnowCoder 7B LLaMa 2 50.0 48.2 60.3 61.1 70.0 72.2 59.1 60.1
GLiNER-L 0.3B DeBERTa-V3 57.2 42.9 57.2 64.4 69.6 72.6 62.6 60.9

GoldFT 8B LLaMa 3.1 63.0 54.5 60.7 63.2 64.2 60.2 64.6 61.5
GUIDEXFT + GoldFT 8B LLaMa 3.1 66.3 56.5 64.0 60.4 66.8 73.4 67.8 65.0

Table 3: Zero-Shot F1-scores on Out-of-Domain NER Benchmarks, reporting state-of-the-art systems and two
systems fine-tuned with and without GUIDEX

achieves an average F1 score of 30.08 across all478

seven datasets. While significant, it falls short479

of the best performing models. However, when480

trained with GUIDEX, the average F1 score im-481

proves significantly, with an increase of 10.5 points.482

Although not all seven tasks show improvement,483

those that do improve see notable gains. This484

demonstrates that our synthetic data effectively485

teaches the task to a baseline model and integrates486

domain-specific knowledge where it matters.487

The third row illustrates the impact of man-488

ually annotated data (GoldFT). As anticipated,489

these sentence-level annotations substantially boost490

results. Unlike our GUIDEX dataset—largely491

based on documents—both the training and eval-492

uation sets in GoldFT focus on sentence-level IE493

tasks. This alignment phase allows the model to494

tackle sentence-specific zero-shot tasks more accu-495

rately. Even so, the improvements we achieve with496

GoldFT are complementary to those achieved with497

GUIDEXFT.498

Lastly, the bottom row presents a model fine-499

tuned first with GUIDEXFT and then with GoldFT.500

It can be seen that both steps jointly increase perfor-501

mance by an average of 35 F1 points over the plain502

LLaMa 3.1 baseline (24.4 points over GUIDEXFT503

alone and 3.5 over GoldFT). Moreover, applying504

GUIDEXFT to a model already trained with GoldFT505

yields up to 7.6 additional F1 points, improving506

on six of the seven datasets. This indicates that507

the GUIDEXFT data can significantly enhance the508

model’s performance in various specific domains.509

We analyze the impact on a label-by-label basis in510

Section 7.511

Comparison with the state-of-the-art. Table 3512

presents a comparison of our best-performing513

model, which was fine-tuned on GUIDEXFT and 514

GoldFT, against various state-of-the-art zero-shot 515

NER systems. Our best approach achieves an aver- 516

age F1 score of 65.0, surpassing all other models 517

in the benchmark. Notably, it outperforms GoLLIE 518

by 7.0 F1 points. GoLLIE is a system similar to 519

GoldFT but based on CodeLLaMa. Additionally, 520

when compared to KnowCoder, another system 521

akin to GoldFT that uses a pretraining dataset to bet- 522

ter follow annotation schemas, our approach shows 523

a 4.9-point improvement. It is worth mentioning 524

that the pretraining proposed by (Li et al., 2024) 525

could provide complementary enhancements to our 526

method. In addition to its overall performance, 527

GUIDEX shows strong generalization across var- 528

ious domains. It achieves the highest F1 scores 529

in five out of seven benchmarks: Movie (66.3), 530

Restaurant (56.5), AI (64.0), Politics (73.4), and 531

Science (67.8). 532

These results highlight the effectiveness of 533

our approach in adapting to unfamiliar domains, 534

surpassing conventional instruction tuning and 535

guideline-based baselines. By utilizing LLMs and 536

domain-specific documents to generate synthetic 537

data, GUIDEX offers a reliable method for enhanc- 538

ing zero-shot IE. 539

7 Analysis 540

This section examines the impact of GUIDEX 541

across different labels, highlighting its benefits and 542

limitations. Table 4 provides a breakdown of per- 543

formance gains in various domains and identifies 544

cases where GUIDEX still struggles. 545

Do Guidelines Improve Domain-Specific La- 546

bels? GUIDEX effectively mitigates the overgen- 547

eralization tendency in zero-shot IE (Sainz et al., 548
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Dataset Label Summarized Guideline GoldFT GUIDEX + GoldFT

Natural Science Scientist A person who is studying or has expert knowledge of a
natural science field.

38.43 51.21

Person Individuals that are not scientist. 48.53 53.02

Politics Politician A person who is actively engaged in politics, holding a public
office, involved in political activities or part of a political
party.

35.12 44.37

Person Individuals that are not politician. 59.48 62.86

Politics PoliticalParty An organization that coordinates candidates to compete in a
particular country’s elections.

58.55 65.30

Organization A structured group, institution, company, or association that
is not a political party.

54.34 58.38

AI Location A specific geographical or structural location. 75.36 75.86

Music Country A sovereign nation. 81.62 82.45

Music Other Named entities that are not included in any other category. 15.99 13.02

Literature Other Named entities that are not included in any other category. 23.19 20.78

Table 4: F1 scores for specific labels from different datasets with summarized guideline descriptions. On green, the
labels where the domain knowledge acquired by training in GUIDEX is helpful for the model. On blue, the labels
where there is no improvement. And, on red, those labels that both systems struggle to identify correctly.

2024) by teaching models to differentiate between549

broad and fine-grained entity labels through struc-550

tured annotation schemas. Table 4 shows how base-551

line models frequently default to generic labels like552

Person instead of recognizing domain-specific en-553

tities such as Scientist and Politician, leading to554

misclassifications. Fine-tuning with GUIDEX sig-555

nificantly improves precision, with F1 gains of up556

to 12.8 points for these cases, as well as a 6.75-557

point increase in distinguishing PoliticalParty from558

the broader Organization category. The model,559

trained on explicit contextual definitions, applies560

labels more accurately, reducing errors where, for561

instance, political parties were misclassified as or-562

ganizations due to linguistic similarities. These563

results highlight the impact of structured guideline-564

driven learning in improving model adaptability, re-565

inforcing context-aware predictions, and enabling566

more precise entity differentiation in specialized567

domains. For inherently generic labels, such as568

Location and Country, the model already achieves569

strong performance without GUIDEX. This sug-570

gests that our approach is most beneficial for refin-571

ing entity granularity rather than improving well-572

established, domain-agnostic categories.573

Remaining challenges. Some labels, such as574

Other and Miscellaneous, remain problematic even575

with GUIDEX (see Figure 4). These categories576

often lack clear definitions, making it difficult to577

apply them consistently. Since GUIDEX generates578

precise guidelines, the absence of well-defined an- 579

notation criteria for these broad labels limits its 580

effectiveness. This aligns with findings (Sainz 581

et al., 2024) suggesting that guideline-driven mod- 582

els struggle with vague or catch-all entity types. 583

8 Conclusions 584

In this paper, we introduce GUIDEX, a novel ap- 585

proach for synthetic data generation aimed at IE. 586

We utilize GUIDEX to generate data suitable for a 587

variety of domains using documents from FineWeb- 588

edu. As a demonstration of the method, we gen- 589

erate a dataset with 10,000 annotated documents, 590

featuring a wide range of labels, from generic to 591

highly domain-specific. Using this generated data, 592

we train an IE model that surpasses the perfor- 593

mance of current state-of-the-art zero-shot NER 594

systems. Furthermore, we demonstrate that our 595

method effectively generates domain-specific an- 596

notations, which can be utilized to train robust IE 597

systems across multiple domains. 598

GUIDEX paves the way for two key research di- 599

rections: (1) advancing document-level IE method- 600

ologies, and (2) developing automated techniques 601

for handling ill-defined or generic labels like Other 602

and Miscellaneous. These challenges are critical 603

for IE applications but remain largely unexplored, 604

offering potential for future work. Our method pro- 605

vides a foundation to address these open problems 606

systematically. 607
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Limitations608

In this work, we present an approach for generat-609

ing synthetic data, which we used to enhance the610

performance of IE models on NER datasets across611

various domains. However, our evaluation does612

not encompass all potential applications of this ap-613

proach. For example, the automatically generated614

dataset consists of document-level texts rather than615

individual sentences. Our evaluation framework,616

on the other hand, focuses solely on sentence-level617

tasks. In the future, we aim to investigate the im-618

pact of our approach on document-level tasks.619
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A Implementation Details930

In this section, we further detail the whole process931

of GUIDEX. In Section A.1 we explain how we932

built the dataset, focusing on the hyperparameters933

used, the multi-step generation prompts, and the934

filtering process that ensures consistent annotations.935

In A.2 we describe the hyperparameters for both936

GUIDEXFT and GoldFT, outlining how they were937

tuned to achieve the outcomes showcased on Sec-938

tion 6.939

A.1 GUIDEX Dataset generation940

The GUIDEX dataset was built through a structured941

multi-step process designed to ensure high-quality,942

consistent annotations and guidelines. The dataset943

generation pipeline follows a systematic approach944

involving prompt-based multi-step generation, fil-945

tering for consistency, and the use of hyperparame-946

ter tuning to optimize the outputs.947

Model and Hyperparameters. The synthetic948

dataset was generated using LLaMA 3.1-70B In-949

struct, leveraging vLLM for efficient inference.950

The detailed hyperparameter settings used in the951

generation process are available in Table 5.952

Multi-Step Generation Process. To ensure953

structured and meaningful outputs, the dataset was954

built using a four-step generation pipeline. The first955

step involved extracting key points from the input956

text, reducing redundancy while preserving essen-957

tial information. The second step transformed this958

summarized content into a structured JSON repre-959

sentation, ensuring a consistent and standardized960

format. Next, annotation guidelines were gener-961

ated to define the expected attributes and structure,962

facilitating consistency across all annotations. Fi-963

nally, the model extracted instances based on these964

guidelines, ensuring that the final dataset adhered965

to a coherent format. The complete set of prompts966

used for each step can be found in Figure 3.967

A.2 GUIDEXFT & GoldFT968

This section summarizes the fine-tuning configu-969

rations for GUIDEXFT and GoldFT. Both models970

use LLaMa 3.1-8B with 4-bit LoRA, AdamW op-971

timization, and a cosine scheduler. GUIDEXFT972

supports longer sequences (8192 tokens) as it is973

suited for document-level input texts, and employs974

gradient accumulation, while GoldFT uses a larger975

per-device batch size without accumulation. Train-976

ing is conducted on 2× A100 (80GB) GPUs with977

Category Hyperparameter Value

Model Setup

Model Name LLaMa 3.1-70B Instruct
Tokenizer LLaMa 3.1-70B Instruct
Dtype bfloat16
Max Seq. Length 8192 tokens
Tensor Parallel Size 2

Generation Config
Temperature 0.7
Top-p 0.95
Max New Tokens 1024

Batching Batch Size 32
Processing Mode Batched prompts via vLLM

Hardware
GPUs Used 4× A100 (80GB)
CPU per Task 16

Table 5: Hyperparameter Settings for the GUIDEX Syn-
thetic Data Generation Stage.

DeepSpeed Zero-3, differing in sequence length, 978

batch sizes, and the number of training epochs. A 979

full overview is provided in Table 6. 980
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I DOCUMENT SUMMARIZATION PROMPT

II STRUCTURED REPRESENTATION PTOMPT

III GUIDELINE GENERATION PROMPT

IV INSTANCE EXTRACTION PROMPT

Figure 3: GUIDEX follows a multi-step prompting pipeline which allows for the creation of the synthetic guidelines
and annotations that conform GUIDEX and are used for GUIDEXFT.
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Category Hyperparameter GUIDEXFT GoldFT

Model & Quantization

Base Model LLaMa 3.1-8B LLaMa 3.1-8B
Quantization 4-bit LoRA 4-bit LoRA
LoRA Rank (r) 128 128
LoRA α 256 256
LoRA Dropout 0.08 0.05
Dtype bfloat16 bfloat16

Optimization

Optimizer AdamW AdamW
Learning Rate 3× 10−4 3× 10−4

Weight Decay 0.001 0.001
Scheduler Cosine Cosine
Warmup Steps 10% of total steps 10% of total steps

Batching & Seq. Length
Per-device Batch Size 4 16
Gradient Accumulation Steps 2 None
Effective Batch Size 8 16
Max Sequence Length (tokens) 8192 2048

Epochs & Checkpoints Epochs 3 1
Checkpoint Strategy End of each epoch End of each epoch

Hardware GPUs Used 2× A100 (80GB) 2× A100 (80GB)
Multi-GPU Support DeepSpeed Zero-3 DeepSpeed Zero-3
CPU per Task 22 22

Table 6: Hyperparameter Settings for GUIDEXFT and GoldFT.
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