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MOTIONFLOW: LEARNING IMPLICIT MOTION FLOW
FOR COMPLEX CAMERA TRAJECTORY CONTROL IN
VIDEO GENERATION

Anonymous authors
Paper under double-blind review

Figure 1: Our method faithfully generates highly realistic and multi-view consistent videos from the
given camera trajectory and reference image.

ABSTRACT

Generating videos guided by camera trajectories poses significant challenges in
achieving consistency and generalizability, particularly when both camera and
object motions are present. Existing approaches often attempt to learn these
motions separately, which may lead to confusion regarding the relative motion
between the camera and the objects. To address this challenge, we propose a
novel approach that integrates both camera and object motions by converting them
into the motion of corresponding pixels. Utilizing a stable diffusion network, we
effectively learn reference motion maps in relation to the specified camera trajectory.
These maps, along with an extracted semantic object prior, are then fed into an
image-to-video network to generate the desired video that can accurately follow
the designated camera trajectory while maintaining consistent object motions.
Extensive experiments verify that our model outperforms SOTA methods by a large
margin. Please visit our anonymous project page to watch the generated videos.

1 INTRODUCTION

Through extensive and in-depth research on diffusion models(Song et al., 2020; Saharia et al., 2022;
Yu et al., 2023), researchers have significantly improved the quality and diversity of video generation.
Recent models, such as DynamicCrafter (Xing et al., 2023), exhibit the ability to generate long,
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high-quality videos with complex dynamics. However, these methods focus on prompts like texts,
images, depth maps, contour maps, human pose or projection maps(Guo et al., 2023a; Hu et al., 2023;
Guo et al., 2023b; Li et al., 2023; Mou et al., 2023; Peruzzo et al., 2024; Wu et al., 2023; Zhang &
Agrawala, 2023; Hu et al., 2023), often neglecting the precise control over camera motions, which is
essential in applications such as film production, virtual reality (VR), and augmented reality (AR).
These fields require not only high-quality video contents but also precise adherence to specified
camera movements to achieve the desired visual effects.

To enable precise camera control in video generation, several strategies have been developed to
integrate trajectory information into generative networks. Although they have made certain progress
in improving the flexibility in control and video quality, the generalizability and consistency still need
improvement. AnimateDiff (Guo et al., 2023b) aggregate camera information through LoRA (J. et al.,
2022) to conditionally guide video generation along specific directions. However, its flexibility is
limited when handling user-customized camera trajectories. MotionCtrl (Wang et al., 2024c) utilizes
the camera transformation matrix as trajectory information and injects it into the generative model.It
employs separate modules to learn camera and object motions, allowing independent motion control
in small-scale scenes such as indoor scenes. Nevertheless, Training the two types of motion separately
while ignoring their relationship may lead to confusion regarding the relative positions of objects and
the scene. Additionally, its relatively simple encoding of camera information restricts its applicability
to precise camera control for large-scale outdoor scenes. CameraCtrl (He et al., 2024) adopts plücking
embeddings (Sitzmann et al., 2021) as the primary camera trajectory representation, which enhances
the implicit mapping between camera motion and pixels. However, the generalizability is still limited,
as it struggles to generate videos that differ substantially from the training data. Additionally, these
methods primarily support text prompt inputs, which often fail to accurately convey the visual details
of the desired video.

To address the above issues, we propose MotionFlow, a novel video generation network guided by
camera trajectories, which is capable of producing consistent and coherent 3D videos. Considering the
limited visual information provided by text guidance, we instead opt for image guidance to accurately
capture the desired video details. Unlike previous methods that modeled camera trajectories and
object motions separately to guide the video generation process, we adopt a pre-trained image stable
diffusion model that progressively and synchronously interacts with both camera motions and image
semantic features. This approach enables us to jointly encode semantic information as object-aware
motion priors during video generation. By mapping camera and object motions onto pixel trajectories
and training a network to learn these pixel movements, we effectively avoid the confusion associated
with separate learning methods.

Our network is built on AnimateDiff (Guo et al., 2023b), a pre-trained image-to-video generation
framework, to leverage its high-quality video generation capabilities. To enable precise camera
trajectory-guided control and ensure the generalizability of the method across various scenarios, we
employ an image stable diffusion network to progressively fuse the features of the reference image
with the camera motion trajectory. This information is iteratively injected into the video generation
network using cross attention mechanism as a pixel motion prior. Moreover, to directly enhance the
geometric consistency of the synthesized videos, we implicitly learn the semantic object features from
the reference image and incorporate them into the video generation network through cross-attention
mechanism using these features. This approach improves the quality of the synthesized video frames
that contain the semantic objects during the iterative denoising steps of the diffusion model. Extensive
experimental results demonstrate that our method demonstrates superior 3D consistency, visual
quality, and camera trajectory controllability compared to previous approaches.

We summarize our main contributions as follows:

• We introduce a framework that iteratively uses an image diffusion network to learn implicit
pixel-level motion flows from camera trajectories and image guidance jointly, achieving
high-quality video generation results that adhere to the input camera trajectories.

• We propose to extract semantic object information from the image guidance to enable the
video generation network to be aware of these objects through object attention, thereby
improving the quality of these objects’ pictures in the generated videos.

• We conduct extensive experiments to demonstrate the superiority of our MotionFlow network
over SOTA methods both qualitatively and quantitatively.
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2 RELATED WORKS

2.1 CONDITIONAL IMAGE TO VIDEO GENERATION

Conditional image to video (I2V) generation aims to synthesize videos guided by user-provided
cues. Recent methods often leverage diffusion models for their stability in training and flexibility
in manipulation. Ni et al. (2023) proposes to generate latent flow sequences using a non-pretrained
diffusion model to animate images. Their work effectively synthesize motions like facial expression,
human actions, and gestures against an almost static background. Shi et al. (2024) introduce a
two-stage training approach, each utilizing a diffusion model to generate explicit motion maps and
corresponding video. Although these methods could produce vivid motions in open-domain scenarios,
they can not incorporate explicit and precise camera control for the video generation task.

2.2 VIDEO GENERATION WITH CAMERA CONTROL

To facilitate camera control, most methods typically use text prompts and specific camera movement
information to guide the generation of corresponding videos through cross-modal large models.

To effectively control camera motion, AnimateDiff (Guo et al., 2023b) employs the motion LoRA
modules to enable specific camera movements, though quantitative control can be challenging.
Focusing on the explicit control of both camera and object motion, MotionCtrl (Wang et al., 2024c)
achieves flexible motion control. However, its camera motion control module relies on 12 pose
matrix parameters as input, which may not sufficiently capture the geometric cues needed for precise
camera control. Direct-a-video (Yang et al., 2024) proposes a camera embedder to manipulate camera
poses, but it only conditions on some basic camera parameters(such as pan or zoom), limiting its
control capabilities. In contrast, CameraCtrl (He et al., 2024) adopt plücker embeddings as the
camera trajectory parameters, effectively injecting the camera information. Based on this embedding,
VD3D (Bahmani et al., 2024) and CamCo Xu et al. (2024) respectively introduce a ControlNet-like
conditioning mechanism and an epipolar attention module to better incorporates camera embeddings.
Our method further employs a twin diffusion model to encode these plücker embeddings, allowing for
the adaptive and progressive introduction of camera pose information during the iterative denoising
process of the diffusion model. Additionally, we enhance plücker embeddings into progressive
implicit embeddings, further improving global consistency and stability in the generated videos.

By adopting image prompts, our approach provides a more direct and accurate condition for genera-
tion. Moreover, it can be combined with cross-modal large models to facilitate multi-stage, text-driven
video generation.

3 METHOD

The core idea of our method involves the progressive injection of semantic and pixel-level motion
information into a diffusion-based video generation network. As illustrated in Figure 2, we employ a
reference motion network to extract pixel-level motion with semantic information from a reference
image and a camera trajectory, which serves as a motion flow to guide video generation through
reference attention. To further identify potential moving foreground objects and stationary back-
grounds within the scene, we introduce a semantic extractor to capture semantic information. This
information is then injected into the video generation network through both pixel-wise addition and
object attention. For the video generation network, we utilize the pre-trained model of AnimateDiff
(Guo et al., 2023b), enhancing it by incorporating reference attention and object attention in each
block of the UNet architecture.

This section is structured as follows: Section 3.1 provides a brief overview of the base video
generation network; Section 3.2 delves into the camera encoding information; Section 3.3 discusses
the integration of semantic information into the video generation backbone network; Section 3.4
explores the incorporation of pixel motion, generated by the reference motion network, into the video
generation framework to progressively guide the process; Finally, Section 3.5 presents a detailed
analysis of pixel-level motion with semantic and camera motion information.
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Figure 2: The overview of MotionFlow. Our framework is mainly constituted of two parts. In the
reference motion network, the camera trajectory is initially encoded using Trajectory Encoder and
added to the reference model using camera motion attention with the reference image to get the
reference motion priors. For the video diffusion process stage, firstly semantic features are extracted
through the semantic encoder to calculate the object attention and also fused with multi-frame noise.
Secondly, reference pixel motion is integrated through reference attention. In addition, Temporal
Modules are utilized to ensure consistency of generated video.

3.1 VIDEO DIFFUSION MODELS

Video diffusion models are a class of generative models that extend the principles of diffusion
probabilistic models for image generation to the domain of video synthesis. These models learn
to reverse a gradual noising process applied to video sequence data, enabling the generation of
high-quality, temporally coherent video sequences. Let x0 ∈ Rf×h×w×c represent a video latent
with f frames, each with dimensions h×w with c channels. The forward diffusion process is defined
as a Markov chain that gradually adds Gaussian noise to the original video:

xt =
√
ātxt−1 +

√
(1− āt)ε, ε ∼ N (0, 1) , (1)

where t ∈ 1, ..., T denotes the diffusion step, āt is a noise scheduler and ε is sampled from a
standard Gaussian noise. The model learns to reverse this process, estimating p (xt−1|xt), typically
parameterized by a neural network θ. The objective is to minimize the loss:

L(θ) = Ex0,ε,cond,t

[
∥ε− ε̂θ (xt, cond, t) ∥22

]
, (2)

where cond represents the conditioning inputs, which may include textual prompts, reference images,
camera trajectories, and scene outlines. Video diffusion models incorporate spatiotemporal archi-
tectures to capture both spatial details and temporal dynamics. They generally employ mechanisms
such as 3D convolutions, attention layers, or recurrent structures to ensure consistency across frames.
These models have demonstrated remarkable capabilities in tasks such as video generation, editing,
and motion transfer, pushing the boundaries of video synthesis quality and controllability.

3.2 TRAJECTORY ENCODER

The trajectory of camera motion can be represented through the transformation of the camera between
various frames within a video sequence. This transformation can be succinctly described using the
rotation matrix R ∈ SO(3), and the translation matrix t ∈ R3. MotionCtrl (Wang et al., 2024c)
represents camera motion by flattening camera parameters into 12D vectors and concatenating them
with time embeddings from the base video generation network. A lightweight fully connected network
then ensures dimensional consistency between the new combined embeddings and the original time
embeddings. However, this representation has limitations in accurately describing camera motion for
two primary reasons: 1. Camera parameters inherently reflect characteristics of the camera space,
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where rotation matrices and translation vectors carry distinct semantic meanings and should be treated
separately rather than flattened into a single vector. 2. Modeling the correlation between raw camera
parameters and pixel space is challenging, potentially limiting the model’s generalization capacity,
particularly for large-scale complex outdoor scenes. In order to better describe the camera pose, we
use plücker embeddings (Sitzmann et al., 2021) as the representation of camera trajectory. Given the
extrinsic and intrinsic camera parameters R, t,Kf for the f -th frame, we derive a plücker embedding
p̈f,h,wv ∈ R6 for each pixel located at (h,w). This embedding represents the vector from the camera
center to the pixel’s position as:

p̈f,h,w =
(
tf × d̂f,h,w, d̂f,h,w

)
, d̂f,h,w =

d

∥df,h,w∥
, df,h,w = RfKf [w, h, 1]

⊤ + tf (3)

Computing plücker embedding for each pixel results in a representation P̈ ∈ R6×F×H×W for a
specified trajectory. To inject the trajectory representation into the reference motion network, we
designed a trajectory encoder structurally similar to the camera encoder in CameraCtrl (He et al.,
2024). However, we improved the architecture: after each 2D ResNet block, we replaced the temporal
attention with self-attention and output multi-scale trajectory features.

3.3 SEMANTIC ENCODER

We design a semantic encoder to extract the semantic features of salient objects to let the video
generation network be aware of these objects. To achieve this, one feasible way is to mark the area
of these objects and send it to object attention modules, as shown in the Figure 2. To get these
fine-grained information, our semantic encoder employs a lightweight ViT architecture (Caron et al.,
2021) to adaptively identify potential areas of salient objects. This module is trained in the first stage,
which will be explained in detail in Section 3.6.

3.4 REFERENCE MOTION NETWORK

Recent works mainly rely on textual prompts combined with camera features for the camera trajectory
control in video generation (He et al., 2024; Wang et al., 2024c). However, due to the loss of
scene details in the prompts, it is difficult for them to accurately learn the features to represent
the motion of foreground objects and background scenes, potentially leading to low-quality results.
Therefore, images are often preferred in I2V tasks since they can convey more fine-grained scene
details compared to textual prompts. Some methods (Chen et al., 2023; Xing et al., 2023) adopt
CLIP image features in place of CLIP text features and feed them into the diffusion network through
cross-attention to achieve image guidance. However, the CLIP features emphasize the text-image
alignment and are learned with low-resolution(224×224) image input, which still prioritize high-level
abstraction of images and ignore image details.

Another approach is to leverage the ControlNet architecture (Zhang et al., 2023) to achieve camera
trajectory control. While this approach can utilize different conditional information to guide video
generation, its key limitation is that the supplementary conditional information must be well-aligned
with the underlying image features to enable effective interaction. Yet, the trajectory information
in camera space and the features in image space exist in different domains, making it challenging
for ControlNet to directly convert the trajectory information into motion guidance that the video
generation network can understand. Furthermore, the lack of high-quality video data that contains
precise camera poses also hinders the generalization capability of such approaches, as discussed in
Section 4.2,.

Our idea is to introduce a separate reference motion network to integrate the camera motion trajectory
and the semantic information of the reference image, directly producing reference motion maps that
can be used in the image space. Specially, as shown in Figure 2, this network adopts a pretrained
image stable diffusion(SD1.5 Unet 1) architecture (Voleti et al., 2024) that incorporates both self and
cross-attention layers within the spacial transformer. We inject the multi-scale camera features into

1https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
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the cross-attention layers to effectively capture semantic pixel motions as

Fout = Softmax

(
QKT

i√
d

)
Vi + λc · Softmax

(
QKT

c√
d

)
Vc, (4)

where Q = φi (zt)Wz , with φi (zt) ∈ RN×di
ϵ representing the spatially flattened tokens of the video

latent. Here, Ki = Ψ(img)Wki and Vi = Ψ(img)Wvi, where Ψ denotes the CLIP image encoder.
Similarly, Kc = Φ(cam)Wkc and Vc = Φ(cam)Wvc, with Φ representing the Trajectory Encoder.
The parameter matrices is denoted by W, and λc is the coefficient that balances image condition and
camera condition.

The weighted combination of camera and image conditions in the cross-attention allows the reference
motion network to integrate the encoded camera trajectory with the initial image features effectively.
Through end-to-end training, the network is able to predict reference motion maps that contain
pixel-level motion information caused by camera pose changes in a frame-by-frame manner. These
maps are then injected into the base video generation network through reference attention, as detailed
in section 3.5

3.5 VIDEO GENERATION NETWORK

We adopt AnimateDiff (Guo et al., 2023b) as the foundation of our video generation network.
We utilize the camera-related frame-by-frame reference motion maps generated by the reference
motion network to guide pixel-level motion in the video generation process. Specifically, for each
block of the video generation network, given the feature map mi ∈ Rf×c×h×w from the i-block
of the base network and the pixel motion pi ∈ Rf×c×h×w from reference motion network, we
concatenate pi with mi along the w dimension to obtain m′

i ∈ Rf×c×h×2w. Then we perform
cross-attention and extract the first half along the w dimension of the m′

i as the input of the objection
attention, referred to as reference attention. As described in Section 3.3, we subsequently employ
the semantic encoder to capture semantic information, addressing potential moving foreground
objects and stationary backgrounds. This information is injected into the video generation network
through addition and object attention operations, as illustrated in Figure 2. We not only integrate
semantic information during the noise input process but also compute an attention map as a semantic
mask between the semantic feature map and the output of reference attention, referred to as object
attention. Simultaneously, inspired by the architectural concepts of AnimateDiff (Guo et al., 2023b),
we apply temporal attention to the output of reference attention to consolidate consistency between
consecutive frames. Specifically, we reshape the input feature map mi ∈ Rc×f×h×w to the shape
(h× w)× f × c. Then we calculate the self-attention across the temporal dimension f . The final
result is then pointwise multiplied with the semantic mask to produce the output of this block.

3.6 TRAINING STRATEGY

The video generation network is initialized using the pre-trained weights from AnimateDiff (Guo
et al., 2023b), while the reference motion network is initialized with the pre-trained Stable Diffusion
V1.5 (Rombach et al., 2022) model. The semantic encoder is initialized from ViT-S based DINO
(Caron et al., 2021). All other modules are initialized to zero. The MotionFlow is trained using
the Adam optimizer (Kingma & Ba, 2015), 8× GPUs, and batch size of 1 per GPU. In the first
stage, we train the Trajectory Encoder and motion extractor with a learning rate of 1e−4 for one day,
keeping the reference motion network and video generation network fixed. Subsequently, we train
all parts for three days with a reduced learning rate of 1e−5. We use RealEstate10K dataset (Zhou
et al., 2018) for training, which consists of 62 992 video clips for training and 7 391 video clips
for testing accompanied by diverse camera trajectories. To further evaluate the generalizability
of our model, we test it on the large-scale outdoor dataset DL3DV-10k (Ling et al., 2024), which
contains approximately 10 000 videos with known camera poses as well as the generation of videos
for animals.

4 EXPERIMENTS

Our experiments are conducted on a server equipped with 8× NVIDIA A800 GPUs. To better
evaluate the control of camera trajectories, we designed separate comparisons for small-scale and

6
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large-scale camera movements. Specifically, we conducted experiments to compare the geometric
consistency of the generated videos, the semantic consistency, and the alignment between the camera
trajectories and the target videos. Experimental results also reveal that our method can generate
high-quality videos for dynamic scenes that contain the motion of a part of active foreground objects,
such as the head movement of an animal.

CameraCtrl (He et al., 2024) and MotionCtrl (Wang et al., 2024c) are three baseline methods that
are most relevant to our method. To ensure fair comparisons, we trained all the methods on the
RealEstate10K (Zhou et al., 2018) dataset and tested them using the same camera trajectories and
image prompts. To validate the generalizability of our model, we compare our model with other
image-to-video generation models on DL3DV-10k(Ling et al., 2024), which is new to all the models.

Wild AnimalsOutdoor ScenesIndoor Scenes

Figure 3: Qualitative Results. Given a reference image (the topmost image of each group), our
approach demonstrates the ability to any camera trajectory. The illustration showcases results with
clear, consistent details, and continuous motion.

4.1 METRICS

We evaluate our method from two aspects: the alignment of camera trajectories and the visual quality
of the generated videos. The distance between predicted and ground-truth camera trajectories is used
to measure the alignment. Specifically, we predicted the camera trajectories for both the generated
and real videos using the same methods to eliminate the potential scale differences caused by different
Structure-from-Motion techniques. Considering the scale and differences between the rotation and
translation parameters in the camera matrix, we use rotation error and translation error to assess
them individually, following the approach of Wang et al. (2024c); He et al. (2024).

Four classical image-level quality metrics, including Fréchet Inception Distance (FID) (Heusel et al.,
2017), SSIM (Wang et al., 2004), PSNR (Hore & Ziou, 2010) and LPIPS (Zhang et al., 2018), are
used to evaluate the quality of the generated video frames, and video-level metric Fréchet Video
Distance (FVD) (Unterthiner et al., 2018) is further applied to assess video-level quality, similar
to previous video generation methods(Wu et al., 2023; Khachatryan et al., 2023; Cai et al., 2023b;
Ceylan et al., 2023; Cai et al., 2023a).

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Geometric consistency. The effectiveness of camera-guided control is evaluated with the camera
trajectories estimated with the Structure-from-Motion technique. Due to the low overlap between
images of RealEstate10K scenes, the commonly used COLMAP (Schönberger & Frahm, 2016) fre-
quently fails to estimate their corresponding camera trajectories. Instead, we used ParticleSfM (Zhao
et al., 2022) similar to MotionCtrl(Wang et al., 2024c), a pre-trained network framework capable of
estimating camera trajectories in complex and dynamic scenes, to get the camera trajectories of gen-
erated videos. We evaluate the rotation part R ∈ R3×3, and the translation part T ∈ R3×1 separately.

7
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To fully compare our model and other camera trajectory guided video generation models, we conduct
basic trajectory (sample every 8 frames) and difficult trajectory (sample every max frame we can
sample). To guarantee the reliability of the experiment, we evaluated the error between the generated
video’s camera trajectory and the ground truth (GT) video trajectory using ParticleSfM (Zhao et al.,
2022), Dust3R (Wang et al., 2024b) and VggSfM (Wang et al., 2024a). As shown in Table 1, our
method can generate videos that align better with the GT camera trajectories compared to other
methods, both in basic and difficult trajectories.

Table 1: Quantitative comparisons (Pose got by Dust3r, VggSfM, and ParticleSfM). We compare
against prior work on basic trajectory and random trajectory respectively. T-Err and R-Err, represent-
ing TransErr and RotErr respectively, are reported as the metrics from Appendix A.

Basic Trajectory Difficult Trajectory

Dust3R VggSfM ParticleSfM Dust3R VggSfM ParticleSfM

T-Err↓ R-Err↓ T-Err↓ R-Err↓ T-Err↓ R-Err↓ T-Err↓ R-Err↓ T-Err↓ R-Err↓ T-Err↓ R-Err↓
CameraCtrl 0.092 0.300 1.499 0.204 2.80 0.924 0.080 0.291 1.711 0.195 3.17 0.648
MotionCtrl 0.059 0.228 0.882 0.215 2.02 0.914 0.054 0.227 1.012 0.226 2.10 0.739

Ours 0.043 0.223 0.767 0.156 1.66 0.886 0.053 0.210 0.802 0.146 1.77 0.574

Visual Quality. The image-level and video-level quality metrics are adopted for the video consistency
and image quality evaluation. To ensure fair evaluation, all models for comparison are trained on
the same dataset RealEstate10K with the same baseline SD1.5. As the the experimental results
demonstrated in Table 2 and Figure 4, our model not only generates high-quality videos guided
by camera trajectories but also outperforms other methods of the same type in terms of video
generation quality, highlighting the effectiveness of our approach. In Figure 1 and Figure 3, we
further demonstrate the results of videos generated by our method in indoor, outdoor, and dynamic
scenes, showcasing its adaptability and robustness across various video generation tasks.

Table 2: Quantitative comparison on visual quality.
Basic Trajectory Difficult Trajectory

LPIPS↓ PSNR↑ SSIM↑ FID↓ FVD↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ FVD↓
CameraCtrl 0.791 8.62 0.212 99.83 1079 0.796 7.57 0.17 112.77 1023
MotionCtrl 0.732 9.48 0.266 81.28 972 0.728 8.70 0.24 84.68 789

Ours 0.206 17.5 0.567 38.48 348 0.255 17.7 0.54 41.93 390

Generalizability Comparison. The outdoor dataset DL3Dv datasets (Ling et al., 2024) is em-
ployed to evaluate the generalizability of models which are trained solely on indoor datasets. As
shown in Table 3, our method demonstrates superior image-level and video-level quality with SOTA
methods (Xing et al., 2023; Chen et al., 2023; Guo et al., 2023b). This highlights the enhanced
robustness and generalizability of our method, which is attributed to the additional diffusion model
that progressively facilitates the synchronization of camera pose with the reference image. As a result,
it not only improves the original video’s generation capability but also provides better guidance and
control. The specific results are shown in Figure 5 and Table 3.

Table 3: Generalization ability of outdoor scenes. IC: image condition.
Real10k DL3DV

LPIPS↓ PSNR↑ SSIM↑ FID↓ FVD↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ FVD↓
AnimateDiff 0.326 15.22 0.478 55.43 508 0.632 11.04 0.239 64.87 793
VideoCrafter 0.573 11.81 0.338 60.49 708 0.529 12.45 0.280 83.35 901

DynamicCrafter 0.272 16.38 0.523 47.91 589 0.336 14.92 0.339 70.12 719
MotionCtrl 0.763 9.14 0.218 74.84 977 0.776 9.77 0.174 97.54 1116

CameraCtrl+IC 0.479 13.62 0.423 60.89 704 0.554 12.87 0.282 85.21 1006
Ours 0.188 18.70 0.599 22.55 311 0.282 15.64 0.368 55.62 505
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Figure 4: Qualitative comparison on the control ability of and video quality.
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Figure 5: Qualitative comparison on the generalization ability of outdoor scenes. Cross-frame
misalignment and artifacts are highlighted with red dashed boxes.

4.3 ABLATION STUDY AND ANALYSIS

Reference Motion Network. We first verified the effectiveness of the reference motion network, the
most important module in our model. The first line of the Table 4 shows results generated with the
network trained without this network, where the output of trajectory encoder is directly fed into the
reference attention of video generation network. Significant drops of all metrics can be observed
when training without reference motion maps to provide reference motion flow. We further explored
the benefit of using stable diffusion pre-trained parameters for the reference motion network. The
results shows that adopting pre-trained parameters leads to an overall improvement, especially the
generative quality. This improvement can be attributed to the pre-trained model’s strong 3D priors
and image generation capabilities.

Semantic Extractor. As the second line of Table 4, the semantic extractor results in an overall
improvement. This is because the semantic extractor provides a semantic prior of the reference image
to the video generation network, which contributes to the decoupling of various objects with complex
motion.
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Table 4: Ablation study.

Visual Quality Camera Trajector Alignment

LPIPS↓ PSNR↑ SSIM↑ FID↓ FVD↓ TransErr↓ RotErr↓
w/o referNet 0.281 16.58 0.521 41.93 463 1.12 0.297

w/o Semantic Encoder 0.194 18.23 0.561 25.69 319 0.697 0.296
w/o stable diffusion pretrain 0.218 16.87 0.532 39.53 393 0.722 0.299

Full Model 0.188 18.70 0.599 22.55 311 0.608 0.295

…

…

Train (12 frames) Test (2 frames)

Deconv

Conv

OpticalFlow

(Estimated)

Predicted

(a)

(b) (c)

Figure 6: Toy experiment for the Reference Motion Maps interpreta-
tion.

Reference Image Generated Video Reconstructed Scene

Figure 7: Scene Reconstruction
with generated video.

Analysis of Reference Motion Maps. After translating reference motion maps (RMMs) into images
through the decoder of the pre-trained VAE, we observe that these images seem to record the salient
object movements in generated videos, as shown in the Figure 6 (a). We thus hypothesize that RMMs
contain optical flow (OF) information, and conduct a toy experiment to verify it. First, we estimated
OFs from a generated video (de Armas, 2019), and then treated them and the corresponding RMMs as
data pairs. Here we choose the video shown in the second example of Figure 5 as an example, where
the first 12 pairs of RMMs and OFs are taken as the training set and the 2 pairs at the last two frames
as the test set. Second, a shallow network is adopted to translate the RMMs to OFs. The network
consists of 3 deconvolution (Noh et al., 2015) layers for decoding features to image resolution and 2
convolution layers for feature translation, as shown in Figure 6 (b). We trained the network for 1k
epochs with a batch size of 12, L1 loss, and the Adam optimizer, taking approximately 40 seconds.
As the results illustrated in Figure 6 (c), the OF information can be directly extracted from RMMs of
test frames. While this experiment verifies the correlation between RMMs and OFs, we argue that the
learned RMMs have more abundant information than OFs to facilitate the camera trajectory control.

4.4 APPLICATION: 3D SCENE GENERATION

Our method not only retains the original video generation capability of the model but also incorporates
camera control. With only a single reference image and a panoramic camera trajectory, we can
generate a corresponding scene video and can further perform 3D reconstruction on this video to
obtain explicit 3D scenes, as shown in Figure 7.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

Through a comparative study with existing camera-guided video generation frameworks, such as
CameraCtrl and MotionCtrl, our method demonstrates superior performance in controlling camera
movements across different scales. Furthermore, our model also demonstrates a significant advantage
in image and video quality compared to other video generation approaches.

Although our method can generate high-quality dynamic scenes while considering potential object
motion during camera movement, it lacks explicit guidance for object motion control. In the future,
we plan to employ image or point-based motion guidance to precisely control the spatial object
movement and the changes over time, while maintaining the generation quality and camera trajectory
alignment.
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networks: Neural scene representations with single-evaluation rendering. In NeurIPS, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
arXiv:2010.02502, 2020.

Thomas Unterthiner, Sjoerdvan Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski,
and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
arXiv:2303.14207, 2018.

Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitrii Tochilkin, Chris-
tian Laforte, Robin Rombach, and Varun Jampani. SV3D: Novel multi-view synthesis and 3D
generation from a single image using latent video diffusion. In ECCV, 2024.

Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotny. Vggsfm: Visual geometry
grounded deep structure from motion. In CVPR, 2024a.

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
Geometric 3d vision made easy. In CVPR, 2024b.

Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: From error
visibility to structural similarity. TIP, 2004.

Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
SIGGRAPH, 2024c.

JayZhangjie Wu, Yixiao Ge, Xintao Wang, Weixian Lei, Yuchao Gu, Wynne Hsu, Ying Shan,
Xiaohu Qie, and MikeZheng Shou. Tune-a-video: One-shot tuning of image diffusion models for
text-to-video generation. In ICCV, 2023.

12

https://doi.org/10.1145/3641519.3657497


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Xintao Wang,
Tien-Tsin Wong, and Ying Shan. Dynamicrafter: Animating open-domain images with video
diffusion priors. arXiv:2310.12190, 2023.

Dejia Xu, Weili Nie, Chao Liu, Sifei Liu, Jan Kautz, Zhangyang Wang, and Arash Vahdat. Camco:
Camera-controllable 3d-consistent image-to-video generation. arXiv preprint arXiv:2406.02509,
2024.

Shiyuan Yang, Liang Hou, Haibin Huang, Chongyang Ma, Pengfei Wan, Di Zhang, Xiaodong Chen,
and Jing Liao. Direct-a-video: Customized video generation with user-directed camera movement
and object motion. In ACM SIGGRAPH 2024 Conference Papers, pp. 1–12. ACM, July 2024. doi:
10.1145/3641519.3657481. URL http://dx.doi.org/10.1145/3641519.3657481.

Sihyun Yu, Kihyuk Sohn, Subin Kim, and Jinwoo Shin. Video probabilistic diffusion models in
projected latent space. In CVPR, 2023.

Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
In ICCV, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, 2023.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Wang Zhao, Shaohui Liu, Hengkai Guo, Wenping Wang, and Yong-Jin Liu. Particlesfm: Exploiting
dense point trajectories for localizing moving cameras in the wild. In ECCV, 2022.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
learning view synthesis using multiplane images. TOG, 2018.

A METRICS OF THE CAMERA TRAJECTORY CONTROLLABILITY

Rotation Error: The relative rotation distances are then converted to radians, and we sum the total
error of all frames,

Rerr =

n∑
i=1

arcos(
tr(RT

outi
RT
gti

)− 1

2
) (5)

Translation Error: The norm of the relative translation vector for each frame is also summed together
to form the translation error of the whole video,

Terr =

n∑
i=1

∥Touti − Tgti∥2 (6)

B ETHICS STATEMENT

We strongly discourage the misuse of generative AI to create content that causes harm or spreads
misinformation. Our camera trajectory-driven video generation approach could be abused to create
misleading or invasive content, especially when fed malicious reference images. To mitigate these
risks, we adhere to a strict code of ethics, respect privacy rights, comply with legal standards, and
encourage positive adoption of our technology. We also recommend incorporating content safety
mechanisms for the input image and generated video to prevent potential misuse, and we promote
responsible use of the generated content.
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